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PACS 68.65.-k – Low-dimensional, mesoscopic, nanoscale and other related systems: structure
and nonelectronic properties

PACS 46.55.+d – Tribology and mechanical contacts
PACS 07.79.Sp – Friction force microscopes

Abstract – We theoretically model the manipulation of a nanorod by an atomic force microscope
(AFM), aiming at the determination of its sliding or rolling regimes of motion. It is found that, for
contact-mode manipulation, rolling requires simultaneous fulfilment of several conditions. Namely,
the corrugation of the substrate potential must be sufficiently high to overcome the effects of the
particle adhesion to the substrate and to the tip. On the other hand, the corrugation of the tip
potential should be relatively low to allow the particle corners to slide against the tip surface as
the particle rotates. Furthermore, only sliding is possible if the tip opening angle or its radius of
curvature exceed some critical values determined by the geometry of the particle cross-section.

Copyright c© EPLA, 2013

What happens to a nanoparticle during manipulation by
a scanning probe microscope? Why is it sometimes rolling
and sometimes sliding [1–5]? These questions are of direct
relevance in technological applications, where nanoparti-
cles are used as lubricants or as building blocks in nano-
electromechanical devices. Furthermore, they are of basic
importance for our understanding of the laws of nature
acting at the nanoscale. Perhaps, the main difficulty to
answer these questions theoretically is an extended hier-
archy of relevant time scales, covering about nine orders
of magnitude. The fastest one characterizes the vibration
period of single atoms (subpicosecond range). Next, the
center of mass of the nanoparticle exhibits oscillations in
the potential of the substrate on the nanosecond scale. The
oscillation period of the tip is in the microsecond region.
Finally, the slowest time scale derives from the transla-
tional motion of the probe, which typically covers only a
few lattice constants in a millisecond.
Accordingly, theoretical models of nanomanipulation

can be divided into two main groups: atomistic [6–8] and
continuous [9,10] ones. Atomistic modeling gives insight
into the fine details of the manipulation process. At the
same time, the large separation of time scales imposes
severe limitations on the direct atomistic simulation of

(a)E-mail: mykhaylo@physik.uni-bielefeld.de

the problem, both with respect to the number of atoms
(typically, a few thousand) and pulling velocities (typi-
cally, meters per second) [7].
Continuous models [9,10] usually treat a nanoparticle as

a regularly shaped object (e.g., a sphere) described by the
“macroscopic” concepts of contact mechanics. In contrast
to atomistic models, continuous models are applicable to
relatively large particles, where some important mech-
anisms related to their specific molecular structure are
unimportant. However, such a description becomes inap-
propriate for nanoparticles for several reasons [11,12].
Among others, due to the unavoidable deviations from
perfect rotational symmetry, the surface of a nanoparticle
actually consists of facets [1–5]. In particular, regularly
faceted nanorods can be synthesized with a remark-
ably large variety of polygonal shapes: triangular [13],
square [14], pentagonal [15], hexagonal [16], octagonal [17],
etc. Then, the contact properties of a nanoparticle with a
flat substrate —such as its friction coefficient— should
depend on the particle’s orientation and may be very
different if the contact is formed along the nanoparticle
facet or along one of the edges separating two adjacent
facets.
We present a coarse-grained hybrid model combining

the strengths of the two approaches: atomistic and
continuous. On the one hand, it is fast enough to be
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Fig. 1: (Colour on-line) The model: an N -sided nanoparticle of
radius RP is pushed by a conical AFM tip (opening angle α)
smoothly joined to a spherical apex of radius RT . The particle
configuration is specified by its center of mass rP and rotation
angle ϕ, and the tip configuration by the apex position rT .

computationally feasible on a laptop; on the other hand,
it is sufficiently detailed to make predictions about
geometry- and interaction-dependent regimes of sliding
and rolling motion of the nanoparticle. Specifically, the
model is applied to describe the contact-mode manipula-
tion of a regularly shaped nanorod on a periodic substrate
by a conical AFM tip with a rounded apex.
To exclude the possibility of in-plane rotation of the

nanorod around an axis perpendicular to the substrate,
we assume that it is pushed in the middle and focus on a
two-dimensional description, as indicated in fig. 1. Due to
the large time scale separation, it is safe to assume that
atomic degrees of freedom are, at each moment of time,
in thermodynamic equilibrium constrained by the given
values of the nanoparticle’s center of mass position, rP , its
rotation angle, ϕ, and the tip apex position, rT , see fig. 1.
A further assumption is that all deformations are elastic
and occur on a time scale much faster than that of the
translational and rotational motion of the nanoparticle.
Finally, we focus on the case where the tip adhesion to
the substrate is sufficiently strong and the cantilever is
sufficiently rigid, so that the tip hardly moves vertically
or torsionally during manipulation. Thus, the tip apex
position rT is a time-dependent vector,

rT (t) = ex(xT (0)+V t), (1)

describing a contact-mode motion with constant velocity
V in x-direction and zero y-component.
The large time scale separation between the slow

cantilever tip and the fast particle coordinates allows us
to introduce the potential energy (more precisely, the
free energy), U(rP , ϕ; rT ), which is a unique function of
the coordinates rP and ϕ at a given tip position rT . It
also allows us to assume that the particle always finds
itself in the mechanical equilibrium corresponding to the

instantaneous position of the tip:

∂U(rP (t), ϕ(t); rT (t))

∂(rP , ϕ)
= 0 (2)

for a rather wide range of experimentally relevant veloci-
ties V . The thermal fluctuations of the fast atomic degrees
of freedom are thus accounted for by the free energy-type
potential U(rP , ϕ; rT ), while the much weaker remnant
thermal fluctuations of the much slower collective degrees
of freedom rP and ϕ are considered negligible in eq. (2).
As a convenient means of parameterizing the potential

energy, we employ the concept of pseudoatoms, represent-
ing the collective effect of large atomic groups. For an
N -sided nanoparticle from fig. 1, the simplest choice
consists in N pseudoatoms located in the nanoparticle’s
corners. The position rj of the j-th pseudoatom is then
determined by the coordinates rP and ϕ as

rj(rP , ϕ) = rP +RP [ex cos(ϕ+2πj/N)

+ey sin(ϕ+2πj/N)] . (3)

The potential energy is written as a sum over all
pseudoatoms,

U(rP , ϕ; rT ) =
∑
j

[uS(rj)+uT (rj − rT )] , (4)

where the two terms in the sum are the interaction
energies of the j-th pseudoatom with the substrate and
the tip. By a suitable choice of the individual pseudoatom
potentials and, if necessary, by changing the number of
pseudoatoms and adjusting their relative location, it is
possible to reproduce any realistic potential U(rP , ϕ; rT ).
At the same time, it is clear that the main parameters
that determine sliding or rolling of the nanoparticle
are adhesion and corrugation of the substrate and tip
potentials. Therefore, we focus for simplicity on the
following first-order Fourier expansion for the former:

uS(r) =
εS

β− 1

[(
σ

y

)β
− βσ
y

]
+∆U

(
σ

y

)β
cos
2πx

a
. (5)

The first term describes the effect of adhesion with adhe-
sion energy εS , equilibrium separation σ, and exponent
β > 1. Its attractive part is chosen to decay inversely
proportional to y, reflecting the van der Waals interac-
tion between two extended objects, which are separated
by distances much smaller than their own linear dimen-
sions [18]. Its repulsive part results from the steric inter-
action and elastic deformation of the two objects in close
contact. The second term in (5) accounts for the substrate
corrugation in x-direction. Since it is rooted in the same
type of short-range interaction as the steric and elastic
repulsion, we have chosen the same y−β-dependence of
both terms. Physically, we should have |∆U |< εS/(β− 1),
so that the corrugation term, which can be both positive
and negative, never overrules the repulsive first term at
small separations y.
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Our main objective is to find the conditions neces-
sary for rolling. Therefore, we should focus on the most
“rolling-friendly” case from the very beginning. We have
verified numerically that tip corrugation and adhesion
only hinder rolling: at finite adhesion, the particle sticks to
the tip with one of its facets, while corrugation prevents
the particle corners from sliding against the tip surface
as the particle is rolling. Therefore we exclude these
effects from our consideration. In reality, adhesion forces
between the nanorod and the tip cannot be turned off;
however, they can be made small in comparison to the
particle-substrate adhesion by increasing the nanoparti-
cle length. The reason is that, for a long nanorod, its
contact area with the substrate, and hence the correspond-
ing interaction energy, both scale linearly with length,
whereas the particle-tip contact area is length indepen-
dent. Denoting the distance from the tip surface to the j-th
pseudoatom by D(rj − rT ), see fig. 1, we assume that the
particle-tip interaction potential is thus of purely repulsive
form:

uT (rj − rT ) = εT
(

σ

D(rj − rT )
)β
. (6)

Next, we specify the model parameters in eqs. (5), (6)
and fig. 1. We set the substrate adhesion energy, εS , and its
lattice constant, a, to one, thus fixing our units of energy
and length. The equilibrium separation σ in (5) is typically
comparable to the lattice constant a, hence, we choose
σ= 1. With respect to the short-range repulsion in (5)
and (6), there remains a certain arbitrariness in the choice
of the exponent β and the prefactor εT in eqs. (5) and (6).
Fortunately, the character of motion of the nanoparticle
(rolling or sliding) turns out to be practically independent
of this choice, as we have verified by extensive numerical
simulations. Below, we present the results obtained for
β = 4 and εT = 1. Turning to fig. 1, the radius of the
nanorod RP is chosen so that its facet length is equal
to thirty lattice constants. The tip radius RT is chosen
to be smaller than the particle radius, i.e. the particle is
manipulated by the flat part of the tip.
In order to solve (1)–(6) with the above-specified para-

meters numerically, time is discretized into small steps.
At each step, the tip (1) is first moved by a tiny frac-
tion of the lattice constant of the substrate. Then, the
local minimum is determined with respect to the “fast
coordinates” rP and ϕ at the fixed new rT according to
eq. (2). In particular, this new local minimum must belong
to the same basin of attraction as the current values of rP
and ϕ.
Figure 2 shows which manipulation regime of a hexag-

onal nanoparticle is realized depending on the substrate
corrugation ∆U and tip opening angle α. For α< π/3,
rolling is realized for ∆U exceeding some α-dependent
threshold, which turns out to be particularly high for tip
opening angles close to π/6 and π/3. The behavior beyond
the realm shown in fig. 2 is as suggested by fig. 2 itself: For
α> π/3, only sliding is observed, and beyond ∆U = 0.22,

Fig. 2: State diagram showing which regime of motion of a
hexagonal nanoparticle (N = 6) is realized depending on the
corrugation of the substrate potential ∆U and the tip opening
angle α.

Fig. 3: (Colour on-line) Gliding and ploughing configurations
of a hexagonal nanoparticle in the sliding manipulation mode.
Blue arrows and red lines are explained in the main text.

the almost horizontal border at α� π/3 between rolling
and sliding regimes continues up to the maximum ∆U -
value of εS/(β− 1) = 1/3 (see above).
To better understand these findings, we first observe

that those configurations, where both contacts of the
nanoparticle with the substrate and the tip are formed
by its corners, are unstable: any small rotation of the
nanoparticle from such a configuration will lead to the
onset of a torque favoring further rotation in the same
direction. Therefore, sliding of a nanoparticle necessar-
ily requires that its contact either with the substrate or
with the tip is formed by one of its facets. The respec-
tive configurations will be henceforth denoted as glid-
ing and ploughing modes, see fig. 3. If both gliding and
ploughing configurations are unstable, the particle will be
rolling.
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To maintain rolling, one pseudoatom in contact with the
substrate must always serve as a pivoting point, similar to
the mechanism described in ref. [3]. This is only possible if
the substrate corrugation is sufficiently high to overcome
its adhesion. In agreement with fig. 2, a first indispens-
able prerequisite for rolling is thus a not too small value
of ∆U . Since the N model pseudoatoms encapsulate the
collective effect of large groups of real atoms, the corru-
gation parameter ∆U effectively takes into account also
the atomistic commensurability of substrate and particle
facets. Thus, our above condition on ∆U correlates well
with the experimental findings of Falvo et al., who report
sliding of carbon nanotubes on mica surface and rolling on
graphite, hence suggesting that “commensurate contact is
a necessary condition for rolling” [1].
Besides this energy condition, there is a second, geomet-

ric requirement that needs to be fulfilled in order for
the nanoparticle to roll: namely, a small rotation of the
nanoparticle out of the gliding or ploughing configura-
tion in the negative (clockwise) direction must result in a
torque produced by the tip in the same direction. The sign
of this torque can be readily determined for the particle-
tip interaction potential (6), where the force produced by
the tip on the particle is perpendicular to the tip surface.
Namely, if the tip normal (fig. 3, blue arrows) at the
point of tip-particle contact lies above the line joining this
contact point with the pivot point (fig. 3, red lines), then
the torque is negative and favors rolling; otherwise, it is
positive and promotes sliding.
Applying this criterion to a hexagonal particle, we can

conclude that sliding is the only contact-mode manipu-
lation regime possible for a rigid tip with opening angle
α> π/3, see fig. 3, as indeed found numerically in fig. 2.
If α< π/6, then the torque produced by the tip is nega-
tive for both gliding and ploughing configuration, so that
the particle can roll, provided that the substrate corruga-
tion ∆U is sufficiently high. If α is between π/6 and π/3,
then the torque produced by the tip is negative in the
gliding configuration and vanishes in the ploughing state.
But a small rotation out of the ploughing configuration
in the clockwise direction induces a small torque in the
same direction, and therefore rolling out of the ploughing
state is not excluded. Finally, if the tip opening angle is
close to the value π/6, then the particle’s contacts both
with the tip and the substrate are formed by its facets.
In this case, rolling is difficult, because of the adhesion of
the particle to the substrate and due to the fact that the
torque induced by a small rotation of the particle is small.
Likewise, by applying similar reasoning to nanoparticles

of different cross-sections, we now can predict their slid-
ing or rolling depending on the geometry of the tip. In
particular, we predict that a triangular nanorod (N = 3)
can never roll during contact-mode manipulation by a
rigid tip. In the case N = 4 (square cross-section), only
sliding will be realized for tip opening angles α> π/4,
with the possibility of rolling for α< π/4 and sufficiently
large ∆U . Rolling of a pentagonal nanoparticle (N = 5)

is possible for α< π/5. In the range π/5<α< 3π/10, the
particle will be gliding, and for 3π/10<α< 2π/5, the glid-
ing configuration becomes unstable, if ∆U is sufficiently
large. Then, the particle will turn into a ploughing config-
uration, with further rolling being hindered by geometric
constraints. Finally, for α> 2π/5, the gliding configuration
becomes stable again. The shape of the state diagram for
an octagonal particle (N = 8) is similar to fig. 2. Namely,
for α> 3π/8, the only manipulation regime possible is slid-
ing. For α< π/4 and π/4<α< 3π/8, the particle can roll,
provided that ∆U is sufficiently large. Near α� π/4, the
nanoparticle forms contacts with both tip and substrate
via its facets, with sliding being the preferred regime of
motion.
Although we have limited ourselves to tip radii RT
smaller than the particle radius RP , these considerations
can be immediately extended to RT >RP . In this case,
the tip surface can still be regarded as practically flat on
the length scales comparable to the length of the facet in
contact with the tip. By approximating the particle cross-
section with a circle centered at rP , we find that the angle
α∗ formed by the tip normal at the point of contact and
the substrate is related to the tip radius as

RT =RP
1+ sinα∗

1− sinα∗ . (7)

Manipulation by a tip with RT >RP will have a simi-
lar outcome as manipulation by a tip with RT <RP
and a “renormalized” opening angle α∗ given by (7).
Substitution into eq. (7) of the highest tip opening
angle αmax for which rolling is still possible in the case
RT <RP gives the largest tip radius R

max
T , such that the

particle will only slide if RT >R
max
T . In particular, for

a square particle we find αmax = π/4, and hence it can
only slide if RT >R

max
T � 6RP ; sliding of a pentagonal

particle (αmax = π/5) is guaranteed for RT > 4RP ;
a hexagonal particle (αmax = π/3) will slide for
RT > 14RP ; an octagonal particle (α

max = 3π/8) slides for
RT > 25RP .
In conclusion, we have introduced a model that allows

one to study manipulation of a nanorod by an AFM. We
have applied our model to the contact-mode manipulation
by a rigid AFM cantilever and found that, in contrast
to our everyday “macroscopic” experience, rolling of a
nanoparticle is a special regime of motion, which requires
simultaneous fulfilment of several conditions. Namely,
the corrugation of the substrate potential must be high
enough to overcome the effects of particle adhesion to
the substrate and to the tip. Furthermore, rolling is only
possible if the tip opening angle and/or the tip radius
is smaller than some value determined by the geometry
of the nanoparticle cross-section; otherwise, sliding is the
only possible manipulation mode. The model can be easily
modified to include the effects that we have left out
in the present paper, such as finite rigidity of the tip,
its adhesion and corrugation, and its oscillations in the
tapping manipulation mode.
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