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ABSTRACT: Achieving sufficient substrate-metal catalyst affinity is a fundamental challenge for developing synthetically useful 
C−H activation reactions of weakly coordinating native substrates. While hydrogen bonding has been harnessed to bias site selectivity 
in existing C(sp2)−H activation reactions, the potential for designing catalysts with hydrogen bond donors (HBDs) to enhance catalyst-
substrate affinity, and thereby facilitate otherwise unreactive C(sp3)−H activation, remains to be demonstrated. Herein, we report the 
discovery of a ligand scaffold containing a remote amide motif that can form a favorable meta-macrocyclic hydrogen bonding inter-
action with the aliphatic acid substrate. The utility of this ligand scaffold is demonstrated through the development of an unprece-
dented C(sp3)−H bromination of α-tertiary and α-quaternary free carboxylic acids, which proceeds in exceedingly high mono-selec-
tivity. The geometric relationship of the NHAc hydrogen bond donor and the coordinating quinoline ligand is crucial for forming the 
meta-macrocyclophane-like hydrogen bonding interaction, providing a guideline for the future design of catalysts employing second-
ary interactions.  

Despite significant developments in transition-metal cata-
lyzed C(sp3)−H functionalization over past decade, performing 
directed C−H metalation with native functional groups rather 
than exogenous directing groups (DGs) remains challenging.1 
In this context, the activation of alkyl C−H bonds directed by 
carboxylic acids based on cation-enabled weak coordination 
has been the main platform to demonstrate the feasibility of this 
approach. While innovation in ligand designing has enabled a 
wide range of free-acid-directed C(sp2)−C and C(sp3)−X bond 
formations (X = N, O),2 bromination of C(sp3)−H still requires 
the installation of external directing groups.3 Considering the 
broad utility of alkyl bromides as versatile intermediates in syn-
thetic organic chemistry,4 the invention of new methods for 
mono-selective β-C–H bromination of readily available carbox-
ylic acids lags behind the wide range of enzymatic C–H halo-
genation reactions.5  

The unique proficiency of bidentate ligands containing inter-
nal proton acceptors such as acetamides and pyridones for fa-
cilitating a wide range of C−H bond activation reactions of free 
acid has been demonstrated in numerous previous reports from 
our lab and others.6 However, despite repeated attempts, we 
have found that bidentate ligands fail to promote the C−H bro-
mination of free carboxylic acids (Scheme 1A, vide infra). Con-
versely, we have previously observed that monodentate pyri-
dine-type ligands enable the C(sp3)−H bromination of α-quater-
nary free carboxylic acid in modest yield.3d Unfortunately, no 
reactivity was observed with more challenging α-tertiary acids, 
and efforts to optimize this reactivity through routine screening 
have proven futile (Scheme 1B, vide infra). Intriguingly, the 
latter class of ligands has proven effective when the analogous 
transformation is directed by a more strongly coordinating elec-
tron deficient amide instead of a free carboxylic acid,3d suggest-
ing that the poor reactivity observed with free acids may be the 
result of insufficient affinity of the catalyst for carboxyl group 
in the presence of the interfering brominating reagent. In light 
of these results, we hypothesized that the desired transformation 

could be enabled through the design of a new type of monoden-
tate pyridine ligands with an additional function: enhancing the 
interaction between carboxylic acid substrates and the Pd(II) 
catalyst. 
Scheme 1. Pd(II)-Catalyzed C(sp3)–H Bromination of Free 
Aliphatic Acids 

 



 

It is well established that enzymes and metalloproteins can 
facilitate catalysis through remote hydrogen bonding with their 
substrates.7 For example, in the active site of cytochrome P450-
BM3, a fatty acid hydroxylase, hydrogen bond donors interact 
with the carboxylate group of the acid substrate, thereby direct-
ing site-selective C−H bond oxidation (Scheme 1C).7 Although 
hydrogen bonding directed catalysis8 has been successfully har-
nessed to bias site selectivity in C(sp2)–H activation,9 develop-
ment of ligands involving hydrogen bonding interaction to pro-
mote C(sp3)–H activation of free acid by increasing the binding 
affinity of the carboxyl group for the metal center remains to be 

demonstrated. We were particularly interested in the possibility 
of using our established meta-macrocyclophane geometry10 to 
assemble the hydrogen bonding interaction, helping to promote 
the desired interaction through control over distance and geom-
etry while suppressing undesired chelation of the hydrogen 
bonding donor motif to the metal center. Herein, we report the 
development of a β-C(sp3)−H bromination and chlorination of 
free carboxylic acids enabled by a novel quinoline ligand bear-
ing a pendant NHAc group that forms a hydrogen bonding in-
teraction with the carboxylate in a meta-macrocyclophane 
structure (Scheme 1D). 

Table 1. Investigation of Ligands for the β-C(sp3)–H Bromination of Free Aliphatic Acids 

 
Conditions: 1a (0.1 mmol), 2a (0.2 mmol), Pd(OAc)2 (10 mol%), ligand (15 mol%), PhI(OAc)2 (0.1 mmol), AcOH (0.1 mmol), HFIP (1.0 mL), 100 °C, air, 24 h. 1H 
NMR yields, using CH2Br2 as an internal standard. 
 

Bearing in mind our earlier effort to achieve β-bromination 
of pivalic acid using a quinoline ligand only gave 40% yield,3d 

we began to test various ligands using pivalic acid 1a as the 
model substrate (Table 1). While no product was observed in 
the absence of ligand, monodentate pyridine-type ligand L1’ 
provided 26% yield of the desired product, which is consistent 
with our previous report.3d Further screening with this ligand 
(L1’) did not improve the yield (see the Supporting Information 
for details). Most importantly, L1’ failed to show any reactivity 
with α-hydrogen containing acids, highlighting the need for 
novel ligands. As anticipated, bidentate ligands such as mono-
acetyl protected aminoalkyl pyridine (MPAPy) ligands (L2-L3) 

also gave poor yields. We next tried to extend the linker be-
tween the pyridine and the NHAc group (L4-L6) in the hope of 
disfavoring bidentate coordination and enabling a macrocyclic 
hydrogen bonding interactions to enhance the binding affinity 
of the substrate. Unfortunately, we didn’t observe any improve-
ment, which is most likely the result of the highly flexible linker 
either allowing for undesired chelation by the NHAc moiety or 
entropically disfavoring the desired H-bonding interaction. 
Based on our previous understanding of the favorable assembly 
of meta-macrocyclophane transition states in remote C–H acti-
vation,10 we incorporated one phenyl ring bearing the NHAc 
moiety at the meta-position into ligand scaffold and adjusted the 



 

ring size (L7-L11) to prevent the potential bidentate coordina-
tion. We found L9 significantly increased the yield to 62%. The 
poor performance of L8 (8-membered ring size) or L10 (10-
membered ring size) suggests that the precise ring size of the 
macrocyclophane hydrogen bonding interaction is crucial for 
enabling catalysis. The poor yields observed with ortho- and 
para-substituted ligands L12 and L13 further confirmed the fa-
vorable assembly of meta-cyclophane structures. 

Seeking to optimize ligand L9, we observed that further mod-
ification of the ligand backbone (L11-L18) did not significantly 
improve the reactivity. Switching from pyridine to isoquinoline 
(L19) resulted in a small increase in yield up to 68%. The com-
paratively poor performance of one-carbon homologated L20 
further highlighted the importance of the ring size of the mac-
rocyclic H-bonding interactions in this system. To promote an-
gle-compression through the Thorpe–Ingold effect, we intro-
duced a gem-dimethyl in L21 which gratifyingly led to a 

modest improvement in yield. A similar result was also ob-
served with L22, which might result from the constrained envi-
ronment provided by the 2,6-dimethoxy-1,1'-biphenyl moiety. 
Importantly, the possibility that the active species is a pal-
ladacycle formed through isoquinoline-directed intramolecular 
C–H activation of the ligand was excluded by the high activity 
observed with bis-ortho-substituted L22. In support of the cru-
cial role of the proposed hydrogen bond donor, the methylated 
analogue of L18 (L18’) and phthalimide protected analogue of 
L19 (L24), both incapable of the proposed hydrogen bonding 
interaction, gave poor yields similar to the simple mono-dentate 
pyridine ligand L1. Consistent with our hypothesis, L23 con-
taining a free alcohol as an alternate HBD—remained highly 
effective, afforded the brominated product in 63% yield. Simi-
larly, the importance of pyridine or isoquinoline motif was 
highlighted by the failure of thiol-based ligand L25 and aniline-
based ligand L26 to promote the reaction. 

Table 2. β-C(sp3)–H Halogenation of Free Aliphatic Acids 

 



 

aConditions: 1 (0.1 mmol), 2a (2.0 equiv), Pd(OAc)2 (10 mol%), ligand (15 mol%), PhI(OAc)2 (0.1 mmol), AcOH (0.1 mmol), HFIP (1.0 mL), 100 °C, air, 24 h. 
bConditions: 1 (0.1 mmol), 2b (2.0 equiv), Pd(OAc)2 (10 mol%), ligand (15 mol%), PhI(OAc)2 (0.1 mmol), AcOH (0.1 mmol), HFIP (1.0 mL), 100 °C, air, 24 h. 
cConditions for derivatization: (i) PhSH (2.0 equiv), NaOH (2.0 equiv), EtOH, 40 °C, 12 h; (ii) AgNO3 (2.0 equiv), EtOAc, 80 °C, 24 h; (iii) NaN3 (4.0 equiv), MeOH, 
40 °C, 24 h; (IV) NH3H2O (1.0 ml), 80 °C, 12 h. 

 
Having identified highly reactive ligands and reaction condi-

tions, we next sought to examine the scope of bromination re-
action (Table 2A). α-Gem-dimethyl carboxylic acids with a 
range of aliphatic chain all proved compatible, affording the β-
brominated products in high yields (3a-3f). A variety of func-
tional groups, such as fluoro, chloro, trifluoromethyl and ketone 
were tolerated (3g-3j). These functionalities are useful synthetic 
handles for subsequent derivatization, demonstrating the prac-
ticality of this methodology. Notably, in contrast to other β-
C(sp3)−H functionalization reactions,2a this protocol displayed 
exclusive selectivity for mono-functionalization despite the 
presence of two α-methyl groups. Aliphatic carboxylic acids 
bearing cyclic rings with four and six-membered rings were tol-
erated (3f, 3k). Phenyl groups were also compatible with these 
reaction condition (3l-3n) and remained intact despite the po-
tential for reactivity of the aryl or benzylic C−H bonds. Even 
electron-rich phenolic ethers (3o and 3v) were compatible de-
spite the usage of NBS and PIDA oxidants. Gemfibrozil, an oral 
drug, which is used to decrease lipid levels, could be converted 
to the corresponding β-brominated product in useful yield (3o). 
In addition, quaternary substrates containing a single α-methyl 

group consistently afforded good yields (3p-3t). Likewise, α-
tertiary aliphatic carboxylic acids afforded the desired mono-
bromination products in moderate to good yield (3u-3x). These 
substrates are typically challenging due to the lack of a favora-
ble Thorpe-Ingold effect as well as the potential for side reac-
tions due to the acidic α-C−H bond. In addition, we examined 
the ability of our novel ligand to promote the Pd(II)-catalyzed 
β-C(sp3)−H chlorination of free carboxylic acids owing to the 
bioactivity of alkyl halides in drug discovery (Table 2B).11 To 
our delight, both the quaternary carboxylic acids and α-tertiary 
acid substrates were chlorinated under this reaction conditions, 
affording the desired products in 41%-52% yields (4a-4c). 

The synthetic utility of this C(sp3)−H bromination was 
demonstrated by converting 3a  to a wide range of b-substituted 
aliphatic acids via nucleophilic substitutions (Table 2C). A di-
verse array of chemical bonds including C−S, C−O, and C−N 
bonds were easily forged, providing straightforward access to 
compounds which might be challenging to access from the free 
acid using other methods. Notably, this methodology could be 
applied to the synthesis of valuable β-amino acid (8). 

Scheme 2. Preparation and Solid-State Structure of Pd-L21 to Pd-L23 Complexes 

 
Conditions: Pd(OAc)2 (0.11 mmol), ligand (0.12 mmol) and N-methylmorpholine (0.12 mmol), DCM (5.0 mL), RT, overnight. 

 
To probe our mechanistic hypothesis experimentally, we first 

looked at the complexation of L21, one of our optimal ligands, 
with Pd(OAc)2 (Scheme 2). X-ray crystallographic analysis 
confirmed that this ligand binds to palladium in a monodentate 
fashion via the quinoline nitrogen and that it engages in a mac-
rocyclic intramolecular hydrogen bonding interaction between 
the amide and a palladium-bound carboxylate in the solid state. 

To highlight the remarkable specificity of this ligand frame-
work, we also examined L23, a slightly less reactive ligand 
bearing an alcohol HBD. In the complex formed from L23, we 
did not observe an intramolecular macrocyclic hydrogen bond-
ing interaction, but the alcohol instead participated in an inter-
molecular hydrogen bonding interaction with a carboxylate 
bound to a second equivalent of palladium demonstrating the 
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electronic viability of the proposed interaction. To gain addi-
tional insight into the optimal distance and geometry for the po-
sitioning of the NHAc group, we also considered L20, which 
has a longer carbon chain and lacks the gem-dimethyl group 
present in L21. In this case, the same macrocyclic hydrogen 
bonding interaction was observed as with L21, but structural 
parameters (H–O distance and N-H–O angle) suggested the in-
teraction was weakened, an observation consistent with the 

reduced yield observed with L20 (Table 1). To the best of our 
knowledge there is no report of similar intramolecular macro-
cyclic distal hydrogen bonding motifs in transition-metal com-
plexes as demonstrated by a careful search of the Cambridge 
Crystallographic Data Centre (CCDC). Altogether these data 
support our hypothesis that a hydrogen bonding interaction be-
tween the ligand and the carboxylate directing group can be lev-
eraged to enable increased reactivity. 

 
Figure 1. Free energy profiles and optimized TS structures (distances are in Å) with newly designed ligands. Methods: PBE0-
D3(BJ)/def2-TZVPP, SMD(Eps=16.7, EpsInf=1.625625) // PBE0-D3(BJ)/SVP, with correction to a solution-phase (0.01mol/L, 
concentation based on Pd concentration) and with Grimme correction for entropy at 100℃. All energies are in kcal/mol. 

 In order to further investigate the impact of the proposed hy-
drogen bonding interaction, we performed density functional 
theory (DFT) calculations on the C−H activation step and the 
preceding intermediates at the PBE0-D3(BJ)/def2-TZVPP, 
SMD(Eps=16.7, EpsInf=1.625625) // PBE0-D3(BJ)/SVP level 
of theory (C–H activation was determined to be rate determin-
ing based on the observation of a primary H/D KIE, see the Sup-
porting Information for details). We first examined a simplified 
model systems using pyridine ligand L1 both with and without 
exogenous hydrogen bond donors (see the Supporting Infor-
mation for details). As shown in the model system, the hydro-
gen bonding occurs preferentially at the uncoordinated oxygen 
of the carboxylate, which also possesses a more negative 
Hirshfeld charge (Figure S1-S4). However, while exogenous 
hydrogen bond donors enthalpically stabilized the C–H 

cleavage transition state, they were found to be net destabilizing 
due to the high entropic cost of assembling the higher order 
complexes (Figure S5, Table S1).  We next examined free en-
ergy profiles and the optimized structures of the CMD TSs with 
L1 and newly designed ligands L21 and L23 (Figure 1). As 
shown in Figure 1, the novel ligands participate in macrocyclic 
hydrogen bonding interactions with the carboxylate. They sta-
bilize catalyst-substrate complexation in all bound intermedi-
ates as well as in the rate-determining C−H activation transition 
state. Consequently, the free energy barriers for the rate-deter-
mining C–H cleavage step are 1.3 kcal/mol (with L21) and 1.6 
kcal/mol (with L23) lower than that with L1. These results are 
consistent with the higher yields obtained in reactions catalyzed 
by L21 and L23 and support a key role for the proposed H-
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bonding interaction in increasing catalyst-substrate binding af-
finity and enabling C–H activation.  

In summary, we have discovered a new class of pyridine-
based ligands containing a hydrogen bond donor that interacts 
with carboxyl directing group in substrates, thereby enabling 
the Pd(II)-catalyzed β-C(sp3)−H bromination and chlorination 
of free carboxylic acids. The broad substrate scope as well as 
the ease of valuable downstream transformations of the halo-
genated products demonstrates the synthetic potentiality of this 
strategy. Importantly, our bioinspired ligand design employing 
a secondary coordination sphere hydrogen bonding interaction 
was the key to the success of this C(sp3)−H halogenation.  
Based on DFT calculations, the free energy of the reaction path-
way using L21 or L23—ligands possessing pendant hydrogen 
bond donors—is lower than that for L1, a ligand incapable of 
hydrogen bonding. X-ray crystallographic analysis of palla-
dium-ligand complexes provide additional support for the pro-
posed interaction through meta-macrocyclophane hydrogen 
bonding interaction. We expect that this new ligand design con-
cept will be broadly applicable within the field of C–H activa-
tion and guide future ligand development efforts. 
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