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Abstract Information extraction from handwritten

documents involves traditionally three distinct steps:

Document Layout Analysis, Handwritten Text Recog-

nition, and Named Entity Recognition. Recent ap-

proaches have attempted to integrate these steps into

a single process using fully end-to-end architectures.

Despite this, these integrated approaches have not yet

matched the performance of language models, when ap-

plied to information extraction in plain text. In this pa-

per, we introduce DANIEL (Document Attention Net-

work for Information Extraction and Labelling), a fully

end-to-end architecture integrating a language model

and designed for comprehensive handwritten document

understanding. DANIEL performs layout recognition,

handwriting recognition, and named entity recogni-

tion on full-page documents. Moreover, it can simul-
taneously learn across multiple languages, layouts, and

tasks. For named entity recognition, the ontology to be

applied can be specified via the input prompt. The ar-

chitecture employs a convolutional encoder capable of

processing images of any size without resizing, paired

with an autoregressive decoder based on a transformer-

based language model. DANIEL achieves competitive

results on four datasets, including a new state-of-the-art

performance on RIMES 2009 and M-POPP for Hand-

writing Text Recognition, and IAM NER for Named
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Entity Recognition. Furthermore, DANIEL is much

faster than existing approaches.

We provide the source code and the weights of the

trained models at https://github.com/Shulk97/daniel.
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1 Introduction

The challenge of understanding handwritten documents

persists as a significant barrier in historical research,

leaving a treasure trove of documents rich in invalu-

able information largely untapped. Indeed, it would be

too costly and time-consuming to analyze these docu-
ments by hand entirely. This is why Handwritten Doc-

ument Recognition (HDR) has emerged as a means of

automatically extracting transcriptions from handwrit-

ten documents.

Traditionally, HDR relies first on Document Layout

Analysis (DLA), in order to detect the text lines, then

Handwritten Text Recognition (HTR) is conducted to

generate transcriptions. Yet, recent advancements sug-

gest a promising direction: the integration of HTR and

DLA through innovative architectures capable of in-

terpreting paragraphs and entire documents. One such

leading architecture in HDR is DAN [1], an encoder-

decoder framework recognized for setting the current

benchmark in the field.

However, merely extracting textual content indis-

criminately from handwritten documents seldom aligns

with the overarching objective of automatically extract-

ing key information from the documents. This task,

known as Information Extraction (IE), necessitates a

dedicated step following text recognition. This step

https://github.com/Shulk97/daniel
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involves locating and labeling the relevant informa-

tion within the entire document transcript. Previously

treated as a separate task, IE has recently been in-

tegrated into fully end-to-end architectures combining

HTR, layout recognition, and IE using a variant of DAN

[2]. This evolution heralds the emergence of Handwrit-

ten Document Understanding (HDU) as a distinct and

burgeoning research domain.

Very close to HDU, Visual Document Understand-

ing (VDU), focused on deriving actionable insights from

printed business documents, like invoices or receipts,

but also on interpreting complex structures like tables,

schemes, and images. This field of research has em-

braced similar methodological evolutions. Transition-

ing from reliance on OCR-dependent approaches to em-

bracing end-to-end architectures mirroring the encoder-

decoder architecture exemplified by DAN, VDU illus-

trates a convergence with HDU towards a unified ar-

chitecture paradigm.

This trend shows a pivotal shift towards using uni-

versal encoder-decoder architectures that can cater to

a broad spectrum of document categories. Whether

through a Convolutional Neural Network (CNN) or a

Vision Transformer (ViT) [3], the encoder’s versatil-

ity, coupled with an autoregressive transformer decoder,

showcases diverse capabilities. The decoders’ distinc-

tion mainly lies in their scale, with large-scale mod-

els like Donut [4] or Dessurt [5] boasting internal di-

mensions ranging between 768 and 1024, in contrast to

lighter models such as DAN, with a 256 decoder di-

mension. This diversity extends to the output of these

models, encompassing for instance joint layout and text

recognition, document classification or visual question

answering.

A significant merit of larger architectures over

DAN is their advanced language modeling capabilities,

achieved via transfer learning or model distillation from

pre-trained language models. Indeed, the integration

of pre-trained language models in the decoder side of

the architecture improves the overall capability of the

model not only for the text recognition task but most

importantly for labeling the textual content providing a

nuanced understanding of language, which is crucial for

excelling in tasks like IE. Conversely, DAN’s strength

lies in its convolutional encoder, capable of accommo-

dating any image size or aspect ratio without resizing,

a critical advantage for handwritten document recog-

nition, given the variability in document and character

sizes.

For these reasons, we propose to combine a convo-

lutional encoder for versatile image input, with a pre-

trained transformer-based language model used as a de-

coder for refined language modeling. The proposed ap-

proach also benefits from model distillation techniques

using a DeBERTa v3 model [6] trained on named entity

recognition (NER) to enhance its language understand-

ing capabilities.

Furthermore, transformers’ reliance on vast train-

ing datasets is a notable challenge, especially when the

goal is to accurately model the nuances of handwritten

documents in terms of layout and handwriting styles. A

prevalent strategy to circumvent this obstacle involves

the use of synthetic data, which, however, has its own

limitations. For instance, DAN employs a relatively nar-

row selection of fonts and a constrained textual corpus

based on the training labels for its synthetic data. This

approach is relevant for small-scale models, as only a

few fonts are necessary to pre-train the visual encoder.

Moreover, this choice of textual corpus ensures that lan-

guage modeling closely mirrors the target data. How-

ever, using a small set of fonts and a limited textual

corpus can lead to model overfitting in more expan-

sive frameworks. Indeed, a large encoder-decoder model

might show its transformer’s language modeling capa-

bilities to depend exclusively on textual cues from its

self-attention layer, rather than visual input to make its

predictions. In extreme scenarios, this reliance solely on

linguistic patterns can result in the generation of sen-

tences that are grammatically correct but have no link

with the input image.

In contrast, larger VDU models like Donut [4],

Dessurt [5], or Pix2Struct [7] incorporate synthetic data

boasting a wider array of visual and linguistic elements

but often lack a sufficient representation of handwrit-

ten fonts. In fact, these models are designed primarily

to process printed commercial documents. Some works

utilizing handwritten fonts in their synthetic data have

been proposed recently, but they are limited to line im-

age generation [8,9].

To address these shortcomings and enhance the

versatility of the model, we introduce a sophisticated

synthetic document page generator. This generator is

equipped with an expansive library of 600 handwrit-

ten fonts and includes texts in English, French, and

German, aiming to significantly broaden the model’s

applicability and learning potential.

Since its introduction in 2022, DAN is a bench-

mark for full-page handwriting recognition. Nonethe-

less, its relatively slow inference speed inherent to its

autoregressive, character-level prediction process has

been a notable limitation. In response, the Faster-DAN

[10] variant was proposed, offering enhanced inference

speeds thanks to the simultaneous recognition of all text

lines. However, this gain in speed came at the expense

of recognition accuracy degradation. Our proposal navi-

gates these challenges adeptly by combining a subword-
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scale prediction mechanism and an optimized imple-

mentation to get a remarkable speed, while performing

better or equally with other existing methods.

In this work, we introduce a Document Atten-

tion Network for Information Extraction and Labelling

(DANIEL), a groundbreaking end-to-end architecture

for handwritten document understanding.

The main contributions of our work are summarized

as follows:

– We propose the Document Attention Network for

Information Extraction and Labelling (DANIEL),

a fully end-to-end architecture performing Lay-

out Analysis, Handwritten Text Recognition and

Named Entity Recognition on full-page documents.

– With its fully convolutional encoder, DANIEL can

handle document images of any size and any aspect

ratio without resizing.

– We design a new pre-training method that trains

DANIEL simultaneously on multiple layouts, lan-

guages, and tasks. Unlike VDU pre-training meth-

ods, this method is specially designed for processing

handwritten documents including documents with

complex layout, and is suitable for large models

which are prone to overfitting, thanks to the inte-

gration of a rich diversity of visual and linguistic

aspects.

– The proposed network achieves a new state-of-the-

art performance for HTR on RIMES 2009 and M-

POPP and competitive results on IAM and READ

2016.

– We demonstrate that applying model distillation

from a large language model enables DANIEL to

achieve a new state-of-the-art performance for NER

on IAM NER even outperforming sequential meth-

ods. DANIEL also achieves state-of-the-art results

on M-POPP NER.

– DANIEL brings a new state of the art in terms of

speed on every dataset it was evaluated compared to

existing full-page text recognition and named entity

recognition architectures.

– We provide the source code, the synthetic data gen-

erators, and the weights of the trained models.

This paper is organized as follows. Section 2 re-

views related work in Handwritten Text Recognition,

Named Entity Recognition, and Visual Document Un-

derstanding. Section 3 details our architecture. Section

4 describes the real datasets and the synthetic datasets

that we designed to train the model. Section 5 outlines

the pretraining strategy. Section 6 compares various

fine-tuning strategies, presenting the results in terms of

Handwritten Text Recognition, Named Entity Recog-

nition, and inference speed.

2 Related Works

The convergence of deep learning techniques in hand-

writing text recognition, named entity recognition, and

visual document understanding has transformed the

landscape of document analysis. This section explores

the evolution and integration of these domains, high-

lighting how advancements have enabled comprehen-

sive and automated interpretations of both the textual

and visual content of handwritten documents, enhanc-

ing the computer ability to extract and contextualize

information efficiently.

2.1 Handwritten Text Recognition

In the domain of handwritten text recognition, the

transition towards comprehensive document analysis

has marked a pivotal shift, moving beyond the tra-

ditional confines of isolated line or word recognition.

Earlier strategies necessitated the pre-segmentation of

documents into more manageable units like lines or

words and employed a variety of methods including

MD-LSTM [11], CRNN [12,13] (a combination of CNN

and BLSTM networks) or solely CNN-based approaches

[14,15]. These techniques primarily leveraged Connec-

tionist Temporal Classification [16] (CTC) to adeptly

navigate the alignment challenges intrinsic to handwrit-

ing variability during the training process.

While CTC was initially conceived for addressing

one-dimensional alignment problems, its application

has been ingeniously extended to the recognition of

text across paragraphs. This extension involved either

reinterpreting the inherently two-dimensional nature of
paragraphs into a linear format [17,18] or employing a

recurrent approach to implicitly segment lines prior to

applying CTC [19,20], thus facilitating the recognition

of continuously written text.

Simultaneously, with the evolution of attention-

based models like transformers solving the alignment

problem, the cross-entropy loss was demonstrated to be

sufficient to account for character sequence recognition.

While early methods were using LSTM [21] or MD-

LSTM [22] models, recent ones are based on transform-

ers [9]. The incorporation of attention mechanisms en-

ables these architectures to adeptly handle text recog-

nition tasks not just at the line level [23,24,9,25,26,8]

but also over entire paragraphs [27,22] and in the case

of transformer-based methods also over complete pages

[28,1]. Most of the transformer-based approches rely on

using synthetic data during training to prevent overfit-

ting, an inherent phenomenon to these architectures.

However, the sequential nature of prediction in

transformer models often results in slow inference
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speeds when compared to methodologies that predict

every line simultaneously. To counteract the latency in

inference speeds inherent to transformer-based archi-

tectures, innovations such as the Faster-DAN [10] have

been introduced. This variant of the DAN [1] enhances

processing speed by parallelizing line predictions, al-

though this increase in efficiency may sometimes come

at the expense of recognition accuracy. Similar methods

to improve the inference speed of autoregressive models

exist in other fields such as machine translation [29] or

speech recognition [30].

2.2 Named Entity Recognition

Information Extraction (IE) in digitized documents

generally unfolds in a three-step pipeline: document

image segmentation, text recognition, and Named En-

tity Recognition (NER) on the transcription. A notable

challenge within this framework is the cascading effect

of errors: mistakes at any stage adversely affect the ac-

curacy of subsequent steps. This sequential methodol-

ogy not only demands annotated datasets and stage-

specific training, but adjustments in any one phase may

require retraining the downstream processes. Moreover,

processing extensive datasets in this manner generates

a plethora of intermediate files, particularly during seg-

mentation, leading to substantial storage demands.

As detailed in section 2.1, methodologies for Hand-

written Text Recognition (HTR) have been developed

to operate at the page level. When integrated with NER

techniques, such as those utilizing the BERT [31] lan-

guage model, a comprehensive IE pipeline emerges.

Concurrently, significant strides have been made in

executing HTR and IE in an end-to-end manner, both

at line level [32,33,34,35] or at page level by employing

Feature Pyramid Networks for generating word bound-

ing boxes [36]. These strategies, known as combined or

integrated approaches, offer a promising alternative to

traditional sequential methods.

Similarly, recent advancements have introduced a

segmentation-free architecture that seamlessly inte-

grates DLA, HTR, and NER capabilities. Notably, sev-

eral innovations leverage an encoder-decoder framework

[27,37,2], which combines a convolutional encoder with

a transformer decoder. Distinctively, another approach

adopts a fully transformer-based architecture, uniquely

structured into three branches [5].

In the literature, very few datasets can serve for

benchmarking both handwriting recognition and NER.

The first dataset to allow such a benchmark was Espos-

alles [38] which comprises handwritten marriage records

in ancient Catalan. It is crucial to acknowledge that,

given the advancements in model performance, the Es-

posalles dataset’s relevance for current model evalua-

tion has diminished, with top method [2] now achieving

a 96.84% IEEHR metric [39].

Recently, the IAM dataset [40] was augmented with

Named Entity annotations providing a more challeng-

ing dataset. The IAM dataset is an HTR dataset that

consists of English handwritten paragraphs with sen-

tences extracted from the LOB corpus and the IAM

NER dataset is an augmented version that includes

named entity annotation following the OntoNotes on-

tology [41]. Very recently, M-POPP [2], a dataset

containing French handwritten marriage records was

proposed as a third challenging benchmark. Another

dataset for IE from handwritten documents is SIMARA

[42]. Nonetheless, this dataset is not a NER dataset

per se, as it does not comprise actual sentences, which

makes it more of a key-value extraction dataset.

The debate between integrated (end-to-end) and se-

quential IE methods remains unresolved. Integrated ap-

proaches, as demonstrated, can enhance both HTR and

IE performance by expanding contextual understanding

through concatenated line predictions [32]. However,

limited evidence also suggests that sequential methods,

particularly those employing advanced language models

like RoBERTa [43] pre-trained for NER, could surpass

integrated models in efficacy [44] when working on seg-

mented word images, although the end-to-end methods

described here skip the transcription part altogether,

which is not our objective.

2.3 Visual Document Understanding

Visual Document Understanding (VDU) has evolved

to cover a wide spectrum of tasks beyond simple text

recognition. These tasks include for instance document

classification, visual question answering, and form un-

derstanding, focusing on extracting pivotal informa-

tion from semi-structured documents, predominantly

those that are printed. For these tasks, the research

community has increasingly leaned towards employing

pre-trained transformers for their versatility, sparked

by breakthroughs in language models like BERT [31].

Among the pioneering models, Layout-LM [45] stands

out as the first to synergistically model both text and

layout, leveraging the capabilities of BERT. It inte-

grates OCR-generated text and bounding box coor-

dinates with patch images derived from these boxes,

marking a significant advancement in the field.

Subsequent innovations have introduced variants

and improvements to Layout-LM, such as BROS [46],

which eschews visual features in favor of a relative spa-

tial encoding and zone masking training strategy, and
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Layout-LM v2 [47], enriching the model with visual to-

kens and supplementary pre-training tasks aimed at re-

fining text-image alignment. The introduction of Lay-

outLMv3 [48] marks another leap in this evolution by

eliminating the need for convolutional neural networks

(CNNs) for image feature extraction, using a unified

text and image masking technique during pre-training

instead. This approach simplifies the architecture and

enhances efficiency across various VDU tasks. By in-

corporating a word-patch alignment objective, Lay-

outLMv3 finely tunes the model’s understanding of the

complex interplay between textual and visual document

components.

Traditionally, these methods have adopted sequence

labeling approaches, grounded in encoder-only trans-

formers. However, the exploration of generative ap-

proaches, such as the one mentioned in TILT [49], ad-

dresses the limitations inherent in extractive methods.

This is particularly useful in scenarios like Visual Ques-

tion Answering (VQA) where the answer may not be di-

rectly retrievable from the image, showcasing the adapt-

ability and innovative progress in the field of VDU.

Recent methodologies have mirrored those in HTR

and NER, moving towards end-to-end solutions by

eliminating reliance on classical Optical Character

Recognition (OCR) technology. This shift is exempli-

fied by innovative image-to-text models like Dessurt

[5] and Donut [4], which utilize transformer-based de-

signs to deliver a thorough understanding of both the

document’s layout and its content without using seg-

mentation annotation. These architectures are capable

of performing various tasks which are indicated to the

model via the input prompt. This input prompt can

be a simple start token or a question as is the case

for VQA. Donut, employing an encoder-decoder struc-

ture, integrates a SWIN [50] encoder with an mBART

[51] decoder, both of which are pre-trained to enhance

the model’s efficiency. Initially, Donut undergoes pre-

training through a simplified OCR task on synthetic

data, setting the stage for further specialization in areas

such as Document Classification, Visual Question An-

swering (VQA), or Document Information Extraction

through fine-tuning. Dessurt takes a similar path but

differentiates itself by incorporating an array of real and

synthetic datasets specialized for different downstream

tasks as well as pre-training tasks such as masked lan-

guage modeling applied to images. This comprehensive

pre-training regimen allows Dessurt to demonstrate its

versatility across nine different dataset-task pairings,

including HTR, underscoring its adaptability to vari-

ous document understanding challenges.

Adding to the landscape, Pix2Struct [7] introduces

an innovative pre-training task focused on screenshot

parsing. This task entails the transformation of masked

web page screenshots into simplified HTML structures,

marking a notable step forward in the model’s ability to

parse and understand complex web-based documents.

Pix2Struct innovatively integrates language prompts

(e.g., questions) directly onto the input image during

finetuning, treating all inputs through a single modal-

ity. This helps maintain both visual and textual context

together, which is crucial for tasks involving visually-

situated language. Recently, Nougat [52] introduced an

advanced document understanding framework based on

the Donut model and specifically tailored for processing

academic texts. This framework converts PDFs into a

structured markup language, facilitating the handling

of complex elements, such as mathematical formulas,

which are prevalent in many domains.

Recent methods predominantly utilize transformer

architectures following the encoder-decoder paradigm.

These approaches leverage synthetic data for both

printed and handwritten documents. The primary dis-

tinction among these methods lies not in the archi-

tectures themselves, but in their application. Indeed,

these models demonstrate versatility in performing a

wide range of tasks. Regarding handwritten documents,

some methods have focused exclusively on text and lay-

out understanding [1], while others have concentrated

solely on handwriting recognition and NER [27]. A

method [2] has been applied to layout understanding,

handwriting recognition, and named entity extraction

of handwritten documents, but it does not incorpo-

rate a pre-trained language model. However, the in-

tegration of language models through transfer learn-

ing or model distillation is a key advantage of large

Document Understanding architectures, as it signifi-

cantly enhances their language modeling capabilities,

especially for NLP tasks such as NER. The efficacy of

such architectures has been evaluated on commercial

documents, but not on handwritten documents. The

key difference between these two types of documents

is that commercial documents contain pre-structured

information, whereas handwritten documents require

locating the information within the text. There is a

lack of research on best practices for training mod-

els that incorporate language models for handwritten

documents especially to avoid overfitting on training

data. Therefore, this article presents the first study of

an encoder-decoder architecture applied to handwritten

documents, combining layout recognition, handwriting

recognition, and named entity extraction, and incorpo-

rating a pre-trained language model.
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Fig. 1 Diagram of the DANIEL architecture. DANIEL comprises a convolutional encoder that extracts a 2D feature map
f2D and a transformer-based decoder for the sequential prediction of subword, layout, and named entity tokens ŷi. Prediction
begins with a start token, provided as a query, which depends on the task at hand. At each step i, the model predicts the ith

token, which is then appended to the query for the subsequent prediction step.

3 DANIEL architecture

DANIEL is an end-to-end architecture that is able to

perform full page HTR and NER on handwritten doc-

uments.

This architecture is based on a image encoder and

a language decoder and takes as input two types of

information: an image and a start token as a query in-

dicating which task to perform to the model. It outputs

a sequence of tokens depending on the target task. The

model uses subword tokens to encode the textual con-

tent but also layout tokens as well as named entity to-

kens. The architecture is shown in Fig 1.

3.1 Encoder

For the encoder, we use an up-scaled version of the

DAN encoder. Contrary to most of the VDU architec-

tures such as Donut [4] or Dessurt [5], the encoder of

DANIEL is not transformer-based, it pivots to a con-

volutional architecture, thereby enabling flexibility in

handling various input sizes and aspect ratios. This flex-

ibility is crucial for avoiding alterations in the appear-

ance of characters in the images. In contrast, reference

architectures like Donut and Dessurt are constrained by

fixed input image sizes of 2560 × 1920 and 1152 × 768

pixels, respectively. Similarly, Pix2Struct is limited to

processing a fixed number of image patches, specifi-

cally 4096, which restricts its flexibility compared to

DANIEL.

Given the wide variation in dimensions and as-

pect ratios among handwritten documents, standardiz-

ing image sizes through resizing can lead to significant

discrepancies in character representation. Specifically,

documents of the same size can exhibit vastly differing

character sizes, highlighting the limitations of a one-

size-fits-all resizing approach.

We designed the encoder of DANIEL by upscaling

the original DAN encoder, doubling the embedding size

of the initial four blocks. Subsequently, the embedding

sizes for the following five blocks are increased from

256 to 512, and the final block is configured to 1024.

Table 1 gives information about the number of output

channels for each block and the corresponding block

type. The two types of layer blocks used are Convolu-

tional Block (CB) and Depthwise Separable Convolu-

tional Block (DSCB). More information on these blocks

can be found in [20]. For more details on the choice of

the encoder see 7.1.

The encoder transforms the input document image,

represented as x ∈ RH×W×C into a feature map f2D,

where f2D ∈ RHf×Wf×Cf . Here, H, W , and C de-

note the input image’s height, width, and number of

channels, respectively, with Hf = H
32 , Wf = W

8 , and
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Cf = 1024. We specifically consider grayscale images,

hence we set C = 1.

Subsequently, the feature map f2D is summed with

the 2D positional encoding. The augmented feature

map is then flattened to produce a 1D feature map f1D,

where f1D ∈ R(Hf×Wf )×Cf . This 1D feature map f1D

is subsequently fed into the decoder for further process-

ing.

Encoder of DAN Encoder of DANIEL

output size (block type, # output channels) (block type, # output channels)

H ×W (CB, 16) × 1 (CB, 32) × 1
H
2

× W
2

(CB, 32) × 1 (CB, 64) × 1
H
4

× W
4

(CB, 64) × 1 (CB, 128) × 1
H
8

× W
8

(CB, 128) × 1 (CB, 256) × 1
H
16

× W
8

(CB, 128) × 1 (CB, 512) × 1

(CB, 128) × 1 (CB, 512) × 1
H
32

× W
8

(DSCB, 128) × 3 (DSCB, 512) × 3

(DSCB, 256) × 1 (DSCB, 1024) × 1

# params 1.7 × 106 20.0 × 106

Table 1 Comparative table of the encoders of DAN and
DANIEL. CB stands for Convolutional Block and DSCB for
Depthwise Separable Convolutional Block.

3.2 Decoder

As a decoder, we employ the 4 first transformer blocks

from the mBART decoder [51]. This choice capitalizes

on its well-established language modeling capabilities.

We adopt Donut’s tokenizer, which utilizes the Sen-

tencePiece tokenization methodology [53]. However, we

refine its vocabulary as detailed in C. It is crucial to

emphasize that our focus is not on developing a charac-

ter recognizer, but rather a subword recognizer. Conse-

quently, the model is required to distinguish among tens

of thousands of tokens, a significant escalation from tra-

ditional systems that typically discriminate among only

a few hundred characters.

The decoder processes the feature map f1D along-

side a task-specific start token to produce a token se-

quence (ŷi)
m
i=1, with each ŷi ∈ Rv representing a one-

hot vector corresponding to the i-th token. Here, v de-

notes the vocabulary size, while m is set as a hyperpa-

rameter to determine the maximum length of the gener-

ated sequence. The final predicted sequence is decoded

into text via the greedy decoding method.

4 Datasets

4.1 Real datasets

To showcase the versatility and robust capabilities of

our model, we conducted evaluations across multiple

datasets, focusing on HTR and the combined appli-

cation of HTR and NER, which we will refer to as

HTR+NER. Characteristics of the datasets and the

dataset splits are provided in Tables 2 and 3 respec-

tively.

Dataset
# entity

categories
# unique

words
# layout
tokens

Dataset
level

IAM 18 14599 0 paragraph
RIMES 2009 0 16789 14 page
READ 2016 0 10023 10 page

M-POPP 118 11943 10 page

Table 2 Details about the datasets.

Dataset Training Validation Test
IAM - split RWTH 747 116 336
IAM - split custom 638 178 383

RIMES 2009 1,050 100 100
READ 2016 350 50 50

M-POPP 250 32 32

Table 3 Summary of dataset splits.

4.1.1 IAM

The IAM dataset [40] is a dataset written in English

by 500 different authors which comprises modern docu-

ments sourced from the LOB corpus. This dataset is

available at both line and paragraph levels. For the

purposes of this article, we utilize the paragraph level,

sometimes referred to as IAM page, since each docu-

ment presents a single paragraph per page. An example

of image from IAM page is shown in Fig 2.

The dataset images are stored in grayscale at a reso-

lution of 300 dpi. Initially developed solely for HTR, the

IAM dataset was later annotated for NER by [44], em-

ploying the OntoNotes v5 named entity ontology [41].

This augmented version of IAM is called IAM NER.

This annotation is available in two formats: a compre-

hensive version with 18 named entity categories and a

simplified version classifying entities into 6 categories

only. In this article, we employ the 18-category version

of IAM NER.

The dataset has multiple splits; in our research,

we evaluate DANIEL on the RWTH split, tailored for

HTR, and the custom split designed for NER by [44].

Using only the RWTH split would be sub-optimal for

NER and the same applies for the custom split since no

HTR performances have been reported in the literature

on this split.
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4.1.2 RIMES

The RIMES dataset [54], a widely used collection of

gray-scale images featuring French handwritten text,

was produced in the context of mail writing. The

dataset images are stored in grayscale at a resolution of

300 dpi. Our evaluation focuses on the page-level vari-

ant of RIMES, known as RIMES 2009 whose images are

available on Zenodo1. An example image from RIMES

2009 is shown in Fig 2. We use the same data partition-

ing, layout tokens, and reading order methodology as

detailed in [1]. This dataset features a complex layout

as each page is composed of a sequence of text blocks

that can belong to seven different classes: sender, recip-

ient, date & location, subject, opening, body, and PS

& attachment.

Fig. 2 Examples of images from the IAM (left) and RIMES
2009 (right) datasets.

4.1.3 READ 2016

The READ 2016 dataset [55], a subset of the Ratspro-

tokolle collection from the READ project, was intro-

duced during the ICFHR 2016 competition on hand-

written text recognition. This dataset features Early

Modern German handwriting. We utilize the page-level

version, maintaining the same reading order and lay-

out classes as specified in [1]. An example page image

from READ 2016 is shown in Fig 3. Although the lay-

out complexity of the READ 2016 dataset is marginally

less than that of the RIMES 2009 dataset, it includes

nested text blocks. The classes of text blocks in this

dataset include page, page number, body, annotation,

and section, the latter comprising a group of linked an-

notation(s) and body text.

1 https://zenodo.org/records/10812725

4.1.4 M-POPP

The M-POPP dataset [2] is a dataset that is designed

for full-page HTR and IE across both handwritten and

printed documents. It was annotated as part of the Exo-

POPP project, which focuses on extracting information

from marriage records in Paris and its surrounding ar-

eas, covering the period from 1880 to 1940. In this ar-

ticle, we use the version 3 available on Zenodo2. An

example of an image from M-POPP is shown in Fig 3.

The layout of each page consists of three types of blocks:

Blocks A and C are situated in the margins, with Block

A containing the names of the married couple and Block

C, which is optional, containing marginal notes. Block

B, representing the main body of the text, is centrally

located. According to [2], the dataset features over a

hundred distinct writing styles. For IE, each record can

include up to 118 different information categories such

as the occupation of the husband. Our analysis concen-

trates on Blocks A and B to ensure comparability with

[2] for both pure Handwritten Text Recognition (HTR)

and the combined task of HTR and Information Ex-

traction (HTR+IE). Given that our study focuses on

handwritten documents, we exclude the printed por-

tion of the M-POPP dataset from our evaluation. For

clarity, in the remainder of this article, M-POPP refers

to the dataset containing annotations solely for HTR,

while M-POPP NER refers to the dataset containing

annotations for both HTR and NER.

Fig. 3 Examples of images from the READ 2016 (left) and
M-POPP (right) datasets.

2 https://zenodo.org/records/11296970

https://zenodo.org/records/10812725
https://zenodo.org/records/11296970
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4.2 Synthetic data

To the best of our knowledge, there is no large-scale

datasets of handwritten documents currently available.

Consequently, it is imperative to use synthetic data dur-

ing the pretraining phase of the model. The DANIEL

architecture is particularly prone to overfitting when

trained on datasets of limited size due to its substan-

tial number of parameters and its transformer-based

decoder. By using synthetic data, DANIEL not only

learns to interpret handwritten text and understand the

structure of various target documents but also learns

the language efficiently which enhances its performance

on NLP tasks, such as NER. As a consequence, pre-

training DANIEL on synthetic data requires not only

generating text images with a high degree of writing

variability but also generating text with as much vari-

ability as possible from the language perspective.

4.2.1 HTR synthetic datasets

Given the large scale of our model, it is crucial to use

a wide variety of fonts in order to avoid overfitting on

the selected fonts. To address this point, we employ a

script referenced in [5], which scrapes the website 1001-

fonts.com to obtain a significant collection of synthetic

fonts. We tailor the font selection for each language,

considering that some languages include special char-

acters not supported by all fonts. Indeed, restricting

ourselves to fonts that accommodate the characters of

all languages would severely limit our options. To align

with our focus on handwritten document recognition,

we predominantly use handwritten fonts in the gener-

ated datasets. However, we also incorporate a selection

of printed fonts, which are more plentiful. The training

process is designed to select fonts with an 80% proba-

bility for handwritten styles and 20% for printed styles,

ensuring the model’s training primarily on synthetic

handwritten text.

When generating synthetic data, the best method to

ensure that language modeling closely mirrors the tar-

get data is to use text labels from the training sets of the

target datasets. However, the datasets used for training

our model feature a relatively small number of samples,

ranging from 250 pages in M-POPP to 1050 pages in

RIMES 2009. Such small datasets can be problematic

for training large-scale transformer decoders like the

DANIEL decoder, as they are prone to overfitting. To

counteract this problem, we supplement the training

dataset with text from Wikipedia corpora in the tar-

geted languages34, thereby enriching the diversity and

quantity of the synthetic training data. Moreover, to en-

hance the stability of the attention mechanism during

line transitions, our method ensures continuity in lan-

guage flow from one line to the next when generating

the ground-truth text.

For each target dataset, we have customized a ver-

sion of the synthetic dataset generator to accurately

replicate the layout encountered within each dataset.

For READ 2016 and RIMES 2009, we build on the syn-

thetic data generators from [1]. Specifically for RIMES

2009, modifications were required to adapt the DAN

generator to our needs. For each paragraph, we use

text from Wikipedia, formatting it to mimic a RIMES

text block. This is achieved by randomly selecting a

real text block of the same type, then formatting the

Wikipedia text to match the original in terms of the

number of lines and words. For the M-POPP dataset,

we employ the generator developed by [2]. Regarding

the IAM dataset, we designed a synthetic data gener-

ator producing data consisting of a single paragraph,

structured with varying margins on the sides. Figure 4

shows an example of a synthetic page for RIMES 2009.

Fig. 4 Example of synthetic data for RIMES 2009.

3 For English and French, we utilize corpora from Hugging-
face: https://huggingface.co/datasets/wikipedia
4 For German, we employed a corpus from the Univer-

sity of Leipzig, as the preprocessed German corpus from
Huggingface was unavailable at the time of writing: https:
//wortschatz.uni-leipzig.de/en/download/German

https://huggingface.co/datasets/wikipedia
https://wortschatz.uni-leipzig.de/en/download/German
https://wortschatz.uni-leipzig.de/en/download/German
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4.2.2 HTR+NER synthetic datasets

IAM NER For the IAM NER dataset, we use the syn-

thetic data generator used for IAM and we add named

entity annotations to the generated data.

Generating labels of synthetic data for HTR is

straightforward using text corpora. However, creating

synthetic data for named entity recognition (NER)

poses more challenges due to the variability in the on-

tologies of named entities across different datasets and

languages. For instance, since IAM NER utilizes the

OntoNotes v5 ontology, it is necessary to use a corpus

annotated with the same set of named entity categories.

To address this point, we employed a method akin

to model distillation. This approach normally involves

training a student model to mimic the output logits of a

teacher model using a distillation loss [56]. In our case,

we use a language model trained on NER with the cor-

rect ontology to massively annotate text with named

entities. This annotated text is then utilized to gen-

erate synthetic data for IAM NER. Training DANIEL

on this data allows it to implicitly learn the represen-

tations taught by the teacher model, albeit through a

different modality: the teacher model processes text in-

put, while DANIEL processes image input. We use De-

berta v3 Large [6], a variant of BERT, as the teacher

model. The used version was trained for NER follow-

ing the OntoNotes v5 ontology5. This model is used to

annotate articles from the same Wikipedia corpus used

by the synthetic data generator of IAM.

M-POPP NER Unlike the IAM dataset, which is based

on very generic named entity categories, M-POPP NER

aligns more closely with an IE dataset, specifically tar-

geting data from marriage certificates. Creating a syn-

thetic dataset for M-POPP NER would necessitate a

substantial corpus of analogous marriage certificates

and a language model specifically trained to annotate

such data. To date, no such text corpus or language

model is publicly accessible. Moreover, there are cur-

rently no large-scale datasets with sufficiently similar

characteristics for effective named entity extraction.

Consequently, we did not utilize a synthetic dataset

specifically for M-POPP NER in our study. Instead,

we employed the synthetic HTR dataset of M-POPP.

This approach implies that for M-POPP NER, the

pre-training phase on synthetic data primarily aids in

learning handwriting recognition and layout patterns.

Therefore, information extraction is exclusively learned

through training on real data.

5 https://huggingface.co/tner/
deberta-v3-large-ontonotes5

While it would have been feasible to train a Large

Language Model (LLM) to generate and annotate doc-

uments akin to those in M-POPP, doing so would have

involved extensive prompt engineering to guarantee the

quality and diversity of the generated documents and

annotations. Although this approach has not been pur-

sued in this study, it represents a potential area for

future investigation.

5 Pretraining strategy

Training transformer-based model is difficult, that is

why existing methods in document understanding use

synthetic data and pre-trained models to limit the

amount of annotated data necessary for training.

The proposed pretraining strategy leverages syn-

thetic data to ease the model’s convergence. Initially,

the encoder is trained for the HTR task on synthetic

lines. In the subsequent phase, the model is trained to

recognize multiple lines in the correct reading order,

alongside the language modeling task, using synthetic

documents. Finally, the model is fine-tuned on real data

with different strategies described in section 6.1.

5.1 Encoder pre-training

Since we are using a pre-trained language model as a

decoder, it is necessary to use a pre-trained encoder as

well. Indeed, connecting the pre-trained decoder with a

randomly initalised encoder could damage the features

learned by the decoder.

Hence, following the pre-training strategy of [1], we

first train the encoder alone by creating a standalone

line-level text recognition model from the encoder using

the CTC loss at the character level. This process entails

the integration of an adaptive max pooling layer to col-

lapse the vertical dimension, followed by the addition of

a convolutional layer and the application of a softmax

activation function. We use the same hyper-parameters

as in [1]. Regarding the training data we use the same

protocol as for training the entire DANIEL model ex-

cept that the generation is made at the line level. The

encoder is pre-trained for 40000 steps.

5.2 Curriculum learning

The next phase in the pre-training process is devoted to

training the entire model on synthetic documents. The

encoder of the DANIEL is initialized with the weights of

the pre-trained encoder from the previous pretraining

https://huggingface.co/tner/deberta-v3-large-ontonotes5
https://huggingface.co/tner/deberta-v3-large-ontonotes5
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step, while the decoder is initialized with the weights

from the Donut decoder6.

During this phase, DANIEL is trained on single-line

documents and progressively increases the maximum

number of lines per document to a specified upper limit,

lmax, fixed for each target dataset. We crop the gener-

ated images just below the last written line, allowing

the size of the images to expand proportionally with

the number of lines.

5.3 Teacher forcing

Following the original Transformer [57], we employ

the teacher-forcing strategy during the training phase,

where the architecture is trained to predict the next

token in a sequence based on the preceding tokens us-

ing the ground truth data instead of relying on its

own previous predictions, possibly erroneous. To en-

hance DANIEL’s resilience against prediction inaccu-

racies, we incorporate errors into the teacher forcing

method. Contrary to traditional text recognition mod-

els that operate at the character level, our model pro-

cesses text at the subword level. Given that the average

length of subwords in the vocabulary is four characters,

randomly substituting one subword with another from

the entire set of possible subwords could significantly

distort the prediction process. This could potentially

undermine the language model during training.

To mitigate this risk, we map each subword to a

list of admissible replacement subword candidates that

have a CER below a specific threshold, which varies de-

pending on the length of the subword. The longer the

subword, the lower the CER threshold required, except

for the longest subwords, which are infrequent in the

vocabulary and consequently have fewer subwords with

a small edit distance. We define a function threshcer

that assigns a CER threshold to each subword x, deter-

mining if another subword should be included in its list

of close subwords. The function is defined as follows:

threshcer(x) =


1.5 if length(x) ≤ 2

0.7 if length(x) = 3

0.5 if 3 < length(x) < 9

0.6 if length(x) ≥ 9

5.4 Training details

Our methodology employs the data augmentation tech-

niques previously utilized in [1]. For the RIMES 2009,

6 https://huggingface.co/naver-clova-ix/donut-base/tree/
official

READ 2016, and IAM datasets, we process images at

a resolution of 150 dpi. Similarly, for the M-POPP

dataset, we maintain the image resolution from the ver-

sion available on Zenodo7, which is also 150 dpi. It is

worth noting that the DANIEL model is fully capa-

ble of operating on images at their original resolution.

However, our experiments indicate that increasing the

resolution beyond 150 dpi does not yield significant per-

formance improvements, while substantially increasing

the computational load and training time. We normal-

ize images to get a zero mean and unit variance. This

standardization is based on the combined training sets

across all datasets.

For text recognition, we utilize a unique start to-

ken for all HTR datasets. In contrast, for NER, we use

distinct start tokens for each dataset, specifically, one

for IAM NER and another one for M-POPP NER. Ad-

ditionally, our vocabulary also includes special tokens

for each named entity category. Finally, for each layout

category of each dataset, we define an opening and a

closing tag.

Model training employs the Adam optimizer with a

learning rate of 10−4 and a mini-batch size of 4, utiliz-

ing a single A100 GPU (80 GB). For the teacher forcing,

we use an error rate of 30%. We implement a curricu-

lum learning strategy that adjusts the maximum num-

ber of lines per page (lmax) according to the unique

requirements of each dataset: 40 for RIMES 2009, 15

for IAM and IAM NER, 30 for READ 2016, and 80 for

M-POPP. We employ a diverse selection of synthetic

fonts tailored to the needs of each dataset: 5,998 fonts

for IAM and IAM NER, 3,944 fonts for both RIMES

2009 and M-POPP, and 961 fonts for READ 2016. The

variation in font selection across datasets is necessary

to accommodate the unique characters specific to each

language.

In this study, we investigate two types of pre-

training: multilingual and monolingual. In multilingual

pre-training, the model is simultaneously trained on

several synthetic datasets while in monolingual pre-

training, the model is pre-trained solely on the synthetic

dataset corresponding to the target dataset.

For the multilingual pre-training applied to IAM,

IAM NER, RIMES 2009, and READ 2016, the model

is pre-trained concurrently on the respective synthetic

datasets. When pre-training for the M-POPP dataset,

the model is trained on all the synthetic datasets used

in this study, including the synthetic M-POPP dataset.

The M-POPP dataset is handled separately due to its

requirement for finer attention granularity compared to

the other datasets mentioned. To address this speci-

ficity, we implement the procedure described in [2],

7 https://zenodo.org/records/10980636

https://huggingface.co/naver-clova-ix/donut-base/tree/official
https://huggingface.co/naver-clova-ix/donut-base/tree/official
https://zenodo.org/records/10980636
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which involves reducing the stride from 2 to 1 in block

5 of the encoder. This adjustment results in the fea-

ture map at the encoder output being Hf = H
16 instead

of Hf = H
32 , following the notation in 3.1. While this

modification increases training and inference times, it

is exclusively applied to the M-POPP dataset to meet

its specific requirements.

6 Experiments and results

6.1 Setup and fine-tuning strategies

In this article, we explore several fine-tuning strategies

using the weights obtained at the end of the correspond-

ing pre-training process. All strategies employ the same

hyper-parameters used during pre-training, except the

learning rate which is set to 10−5. The strategies we

evaluate are as follows:

Strategy A (concurrent fine-tuning): The model is

initialized with the weights of a model pre-trained us-

ing the multilingual setting and then fine-tuned con-

currently on all real datasets. Performance is assessed

on the validation set of each dataset independently, re-

taining the weights that yield the best results for each

respective validation set.

Strategy B (single dataset fine-tuning): The model

is initialized with the weights of a model pre-trained

using the multilingual setting and then fine-tuned on a

single dataset.

Strategy C (sequential transfer fine-tuning): Ini-

tially, the model is fine-tuned using Strategy A. Once

optimal performance is achieved for a specific target

dataset, the best validation weights are used to initiate

transfer learning on a new model. This new model is

then fine-tuned solely on this target dataset, similar to

Strategy B.

Strategy D (monolingual training): DANIEL is pre-

trained solely on the synthetic dataset corresponding

to the target real dataset. Subsequently, the model is

fine-tuned using the same approach as Strategy B. This

strategy assesses the impact of training DANIEL on

multiple synthetic datasets concurrently.

For each strategy, training continues with a partial

reliance on synthetic data while real data is incremen-

tally introduced. The probability of incorporating real

data begins at 0% and increases to 80% throughout

300,000 steps.

6.2 Evaluation metrics

To assess our model’s performance in HTR, we com-

pute both the Character Error Rate (CER) and the

Word Error Rate (WER) at the page level. When com-

puting CER and WER, special tokens such as layout

and named entity tokens are excluded.

Regarding the layout recognition evaluation, we use

the Layout Ordering Error Rate (LOER) and the mean

Average Precision on CER (mAPCER) introduced in [1].

Additionally, for the evaluation of NER perfor-

mance, we utilize the F1 score, computed using the

NERval library [58]. This approach matches predictions

to their ground truths at the character level with an

acceptable CER threshold of 30% to determine a valid

match between the predicted and actual data.

6.3 Results

6.3.1 Handwritten Text Recognition performance

For each dataset, we present the results obtained for

each fine-tuning strategy described in subsection 6.1.

The evaluation results for the IAM dataset are detailed

in Table 4.

DANIEL achieves very competitive results, outper-

forming Dessurt in terms of CER with a CER of 4.38%

and surpassing the DAN in terms of WER with a WER

of 10.89% using fine-tuning strategy B. As observed in

[5], the gap between the CER and WER is smaller for

subword-based methods than for character-based ones.

This characteristic highlights the direct contribution

and advantages of large subword language models.

Pre-training on multiple synthetic datasets proves

beneficial for the IAM dataset, even if the layouts of

these synthetic datasets differ. Strategies A, B, and C

outperform strategy D, likely because the inclusion of

text from different languages in the synthetic datasets

acts as regularization, reducing the risk of overfitting

on the synthetic data. From the results of strategies

A, B, and C, we can conclude that the best perfor-

mance is achieved when no other datasets except IAM

are used during training. This phenomenon might be

explained by the relatively large size and simple layout

(paragraphs) of the IAM dataset. Thus, training ex-

clusively on IAM is sufficient in terms of diversity and

does not lead to overfitting. Consequently, the model

does not benefit from including documents from other

real datasets, while using other real data increases the

risk of the model not being sufficiently specialized. If

the real data used for training do not closely align with

the evaluation data, this mismatch can adversely affect

performance.

Table 5 presents the evaluation of DANIEL on the

RIMES 2009 dataset. This time, fine-tuning strategy C

achieves state-of-the-art results in terms of WER with

a WER of 11.22% and a CER of 5.8%.



DANIEL: A fast Document Attention Network for Information Extraction and Labelling of handwritten documents 13

Table 4 Text Recognition (TR) results on the IAM dataset
(RWTH split). Metrics are expressed in percentages.

Method CER WER
OrigamiNet [18] 4.7 -

VAN [20] 4.5 14.6
DAN [37] 4.3 13.66

Dessurt [5] 4.8 10.2
Ours - strategy A 5.02 11.95
Ours - strategy B 4.38 10.89
Ours - strategy C 4.75 11.44
Ours - strategy D 5.98 13.98

The performance is lower compared to the DAN in

terms of mAPCER and LOER. These results indicate

that some errors contributing to DANIEL’s CER and

WER are due to reading order issues, such as the in-

version of the order between two paragraphs in the pre-

diction.

This discrepancy arises from the synthetic data

used, which includes text from Wikipedia rather than

mail text, as found in the real data. Consequently, the

model can only rely on the spatial positions of text

blocks and not on the semantic content. Using a text

corpus with a semantic field closer to the real data could

therefore improve performance in layout recognition.

Similar to the IAM dataset, multilingual strategies

A, B, and C outperform the monolingual strategy D.

However, the gap in CER between multilingual strate-

gies is smaller. This is likely because the RIMES 2009

layout is more complex than that of IAM, making train-

ing on other complex datasets, such as READ 2016,

more beneficial for RIMES 2009 than for IAM.

Table 5 Text Recognition (TR) results on the RIMES 2009
dataset. Metrics are expressed in percentages.

Method CER WER LOER mAPCER

DAN [1] 4.54 11.85 3.82 93.74
Faster-DAN [10] 6.38 13.69 4.48 91.00

Ours - strategy A 6.01 11.40 5.50 90.13
Ours - strategy B 5.81 11.24 4.60 91.99
Ours - strategy C 5.80 11.22 6.57 90.21
Ours - strategy D 6.43 12.04 5.26 89.44

The results for READ 2016 are presented in Table

6. A clear distinction can be observed between fine-

tuning methods based on multilingual pretraining and

strategy D, which includes only synthetic and real data

from READ 2016. Using strategy C, DANIEL achieves

competitive results with a CER of 4.03% and a WER

of 15.63%. Given the limited amount of training data

in READ 2016, the inclusion of synthetic and real data

from other datasets appears to assist the model by pro-

viding regularization, even if the additional data are not

highly similar to those of READ 2016. Further improve-

ments could be achieved by using synthetic data more

visually similar to READ 2016, such as the synthetic

data introduced in [8].

Table 6 Text Recognition (TR) results on the READ 2016
dataset. Metrics are expressed in percentages.

Method CER WER LOER mAPCER

DAN [1] 3.43 13.05 5.17 93.32
Faster-DAN [10] 3.95 14.06 3.82 94.20

Ours - strategy A 4.41 16.03 4.95 91.42
Ours - strategy B 4.34 15.54 3.49 90.80
Ours - strategy C 4.03 15.63 3.37 92.66
Ours - strategy D 5.41 19.27 4.95 87.47

The final HTR dataset on which DANIEL was eval-

uated is M-POPP, with detailed results presented in Ta-

ble 7. Using fine-tuning strategy C, DANIEL achieved

state-of-the-art performance for HTR with a CER of

5.72% and a WER of 14.08%. Additionally, it set new

benchmarks for layout recognition with a LOER of

1.34% and a mAPCER of 89.28%. These results demon-

strate that our training scheme enables DANIEL to

achieve excellent performance even on a small and chal-

lenging dataset like M-POPP.

Regarding fine-tuning strategies, the variability in

results across different approaches is more pronounced

for M-POPP compared to other datasets. The disparity

in mAPCER between strategy A and strategies B and C

indicates that the increased CER for strategy A is likely

due to errors in layout analysis. An analysis of the pre-

dictions reveals that DANIEL occasionally misses ele-

ments in the margin, significantly increasing the CER

in the affected images. This may be because the model

is disrupted by the diverse layouts of other real datasets

it has encountered during training. Training DANIEL

on M-POPP using the monolingual strategy D resulted

in highly degraded performance, underscoring the im-

portance of multilingual pre-training.

Given the recent introduction of this dataset, there

is likely still room for improvement. For instance, the

text corpus used to generate the synthetic data may be

sub-optimal. Wikipedia provides a very generalist lan-

guage model, whereas M-POPP corresponds to a very

specific linguistic context. Therefore, using a text cor-

pus more similar to the marriage records in M-POPP

could improve the results. Another potential solution

could be to apply a self-training process, using predic-

tions on the unlabelled images from the M-POPP cor-

pus as pseudo-labels. This method has been successfully

applied to handwritten census tables in [59].

Summary - HTR Based on the results obtained

from the different datasets, it appears that the best

fine-tuning strategies for HTR are strategies B and C.
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Table 7 Text Recognition (TR) results on the M-POPP
dataset. Metrics are expressed in percentages. TR+IE stands
for joint Text Recognition and Information Extraction.

Method CER WER LOER mAPCER

DAN - TR [2] 7.21 16.42 5.35 83.03
DAN - TR+IE [2] 6.52 14.80 3.79 86.29
Ours - strategy A 8.35 17.36 5.12 80.98
Ours - strategy B 6.61 15.33 6.01 84.41
Ours - strategy C 5.72 14.08 1.34 89.28
Ours - strategy D 14.28 25.47 3.56 67.10

Strategy C seems preferable in the case of datasets like

READ 2016 or M-POPP, which contains little train-

ing data and are relatively different from the synthetic

data. For the other datasets, it is preferable to use strat-

egy B since this strategy involves fewer steps.

6.3.2 Named Entity Recognition performance

Besides HTR, we also evaluate the DANIEL capabilities

on NER tasks. The results are detailed in tables 8 and

9 for IAM NER and M-POPP NER respectively.

On the IAM NER dataset, DANIEL achieves very

impressive performances with new state-of-the-art re-

sults. On the RWTH split DANIEL obtains an F1 score

of 50.06% with fine-tuning strategy C. The only method

that performs better is obtained by [44]. It should be

noted that this method is a sequential approach based

first on a text recognition model and then on a BERT

language model specially trained on the annotation of

named entities from the OntoNotes v5 ontology. More-

over, their text recognition model works on word images

which avoids any reading order problems. If only end-

to-end methods are considered, DANIEL is thus state-

of-the-art on the RWTH split. On the custom split, the

results are even more impressive, with DANIEL achiev-

ing a new state-of-the-art F1 score of 58.29%, outper-

forming even sequential methods. This performance dif-

ference between the two splits can be attributed to their

design. DANIEL performs better in NER on the cus-

tom split because this split was specifically designed for

the NER task when this task was introduced on IAM

whereas the RWTH split was designed solely for hand-

writing recognition purposes. However, as Tusselman’s

method uses a BERT model pre-trained for NER, this

method shows less dependency on the distribution of

named entities in the real data. This explains why Tus-

selman’s results are more consistent across both splits.

Regarding the fine-tuning strategies, we observe that

the multilingual strategies (A, B, and C) outperform

the monolingual strategy D. However, the performance

differences among the multilingual strategies are rela-

tively small. This is likely because the other datasets

include only text recognition tasks and lack named en-

tity annotations, which is therefore less useful for IAM

NER.

Regarding M-POPP NER, the DANIEL model

achieves a state-of-the-art F1 score of 76.37% using fine-

tuning strategy C. The comparison between the mono-

lingual and multilingual strategies indicates that train-

ing on data containing named entities enhances NER

performance on the target dataset, even when these

named entities do not conform to the same ontology.

However, we believe that DANIEL’s performance on

M-POPP NER could be further improved by incorpo-

rating synthetic data that includes named entities from

the M-POPP dataset. Again, self-training on M-POPP

NER might also be a viable approach to explore, as it

would provide more training data adhering to the same

named entity ontology.

Summary - NER Based on the results from both

the IAM NER and M-POPP NER datasets, fine-tuning

strategies B and C demonstrate the best performance

for NER. Similar to handwriting recognition, the choice

between these two strategies depends on the charac-

teristics of the target dataset. For small datasets lack-

ing synthetic data with named entities, strategy C is

preferable as it leverages real data from other datasets

with named entities. For other datasets, both strategies

B and C yield comparable results; however, strategy

B is preferable due to its simpler implementation and

the absence of a requirement for real data from other

datasets.

Table 8 Information Extraction (IE) results on the IAM
NER dataset for both RWTH and custom splits. Metrics are
expressed in percentages.

Method
F1

(RWTH)
F1

(custom)
Type

Toledo [60] 14.9 18.0 Sequential
Rowtula [61] 32.3 30.3 Sequential

Tusselman [44] 52.0 53.6 Sequential
Dessurt [5] 40.4 48.5 End-to-end
DAN [37] 31.3 - End-to-end

Ours - strategy A 46.35 54.83 End-to-end
Ours - strategy B 48.86 58.29 End-to-end
Ours - strategy C 50.06 57.55 End-to-end
Ours - strategy D 41.79 53.25 End-to-end

Table 9 Information Extraction (IE) results on the M-
POPP NER dataset. Metrics are expressed in percentages.

F1
DAN [2] 76.37

Ours - strategy A 71.71
Ours - strategy B 74.20
Ours - strategy C 76.37
Ours - strategy D 59.64
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6.3.3 Inference speed

If DANIEL shows very interesting performances in text

recognition and named entity extraction, it also ex-

cels in terms of inference speed. This parameter, regu-

larly mentioned in VDU literature, is often overlooked

in text recognition and named entity extraction arti-

cles applied to handwritten documents. However, in-

ference speed is a crucial factor for real-world applica-

tions, especially when it comes to processing documents

in real-time or in very large quantities. Therefore, in

this section, we compare the inference time of differ-

ent state-of-the-art HTR and HTR+IE systems. For

practical reasons, we have only selected methods whose

code and weights were publicly available. Moreover, we

have also discarded methods applied to images of lines

or paragraphs because their inference time does not

take into account the time needed for the segmentation

steps they require. For HTR, the selected methods are

DAN, Faster-DAN, Dessurt and DANIEL. For NER,

only the methods based on DAN meet the required

criteria. Indeed, while pre-trained Dessurt weights are

publicly available for handwriting recognition, they are

not available for NER.

Before assessing the inference speed of the selected

methods, it is relevant to first examine the size of each

model. Table 10 presents the number of parameters for

each model. Models operating at the subword level have

significantly more parameters compared to those work-

ing at the character level. This discrepancy is primar-

ily due to the size of the vocabulary, which is consid-

erably larger for subword-level recognition models. As

detailed in C, the vocabulary size constitutes a sub-

stantial portion of the total number of parameters in

subword-based models. Nevertheless, a higher parame-

ter count does not inherently correlate with a reduction

in inference speed, as demonstrated in the next part of

this study.

Table 10 Number of parameters for DAN, Faster-DAN,
Dessurt and DANIEL. Parameters are expressed in millions.

Model DAN Faster-DAN Dessurt DANIEL
# params 7.0M 7.0M 163.9M 154.0M

Table 11 shows a comparison of the prediction times

between DAN, Faster-DAN, Dessurt and DANIEL for

HTR. These prediction times correspond to the aver-

age time per image computed over the prediction on

the complete test set of each dataset with a batch size

of 1 on an A100 GPU. We can observe that one of the

greatest assets of DANIEL is its inference speed. In-

deed, DANIEL is faster than every other existing model

while showing competitive or better recognition perfor-

mance. For instance, DANIEL is at least 4.8 faster than

DAN. The inference speed difference between DANIEL

and DAN is likely due to DANIEL’s prediction pro-

cess, which occurs at the subword level rather than the

character level. Thus, DANIEL predicts fewer tokens

than DAN to recognize the same text from a given

document. Additionally, the superior speed of DANIEL

comes from its implementation relying on the Hugging

Face transformers library8, which is renowned for its ef-

ficiency. Although DANIEL and Dessurt are both based

on subword prediction and have a similar number of pa-

rameters, DANIEL is four times faster than Dessurt on

IAM. We hypothesize that this difference is due to the

architectural differences between the two models. In-

deed, Dessurt is entirely based on transformer layers,

while DANIEL uses a fully convolutional encoder.

Table 11 Inference speed results for HTR on RIMES 2009,
READ 2016, IAM and M-POPP. Results are expressed in
seconds per image.

Method
RIMES

2009
READ
2016

IAM M-POPP

DAN [1] 4.94 3.84 2.85 15.5
Faster-DAN [10] 0.99 0.84 - -

Dessurt [5] - - 1.48 -
Ours 0.77 0.80 0.37 2.66

Table 12 presents a comparative analysis of predic-

tion times between DAN and DANIEL for HTR com-

bined with NER, using the same protocol as employed

for HTR. Once again, DANIEL demonstrates faster in-

ference speed for the HTR+NER task compared to
DAN. The DANIEL is indeed 6.35 times faster than

the DAN on IAM and 5.68 times faster on M-POPP.

Table 12 Inference speed results for NER on IAM NER and
M-POPP NER. Results are expressed in seconds per image.

Method IAM NER M-POPP NER
DAN [1] 3.24 17.94

Ours 0.51 3.16

7 Further studies

7.1 Encoder comparison

In this section, we study different convolutional encoder

architectures. First, we aim to assess the relevance of

choosing an encoder architecture derived from DAN. In

8 https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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Table 13 Details of the output embedding size for each block
of the evaluated variants of the DAN encoder.

Block
number

Encoder S
DANIEL
encoder

Encoder L

1 16 32 32
2 32 64 64
3 64 128 128
4 128 256 256
5 128 512 512
6 128 512 1024
7 128 512 1024
8 128 512 1024
9 256 512 1024
10 1024 1024 1024

# params 4.0M 20.0M 44.2M

this respect, we compare the performance of the chosen

encoder with a ConvNext v2 encoder [62]. Indeed, this

kind of architecture currently achieves the best perfor-

mance on ImageNet among convolutional architectures.

To ensure a fair comparison, we designed a ConvNext

v2 architecture with a similar number of parameters

as the DANIEL encoder, which is 20.0M. Therefore, we

build on the ConvNext v2 femto encoder and we set the

output embedding size of the last block to 1024 so that

this encoder is compatible with the input embedding

size of the DANIEL decoder. Additionally, we modify

the strides of two convolutional layers so that the out-

put feature map size is Hf = H
32 , Wf = W

8 following

the notation of 3.1. Thus, the resulting architecture has

19.8M parameters.

Secondly, we show that the scale of the chosen en-

coder is relevant when combined with the DANIEL

decoder. Therefore, we compare the DANIEL encoder

with two other variants. The first model named S is

a small variant with 4.0M parameters, and the second

model named L in a larger variant with 44.2M parame-

ters. Table 13 gives a detailled comparison of DANIEL

encoder with these two variants.

To limit the training time, we train each model ac-

cording to the monolingual D training strategy on the

IAM dataset. The performance of each encoder is de-

tailed in Table 14. Based on the results, we can con-

clude that using an encoder architecture derived from

the DAN encoder is indeed effective. The DANIEL en-

coder achieves superior results with a CER of 5.98%

and a WER of 13.98%, compared to a CER of 6.36%

and a WER of 14.26% for the ConvNext v2 encoder.

Since the performances of these two encoders are quite

similar, further investigation into using an encoder from

the ConvNext model family could be valuable in future

research.

In terms of encoder size, the results indicate that

an encoder with too few parameters is unsuitable for a

large decoder like the one of DANIEL, as evidenced by

the S encoder’s CER of 10.85% and WER of 22.28%.

Additionally, using an encoder larger than that of

DANIEL is not advisable, as it does not enhance per-

formance and only increases the number of parameters.

Table 14 Text Recognition (TR) results on the IAM dataset
(RWTH split) for each of the evaluated encoders. Metrics are
expressed in percentages.

Encoder CER WER
Encoder S 10.85 22.28

DANIEL encoder 5.98 13.98
Encoder L 6.50 14.72

ConvNext v2 encoder 6.36 14.26

8 Conclusion

This research introduced the Document Attention

Network for Information Extraction and Labelling

(DANIEL), an end-to-end architecture that has shown

remarkable performance in the domain of handwritten

document understanding. Our approach, which blends

a convolutional encoder with an autoregressive trans-

former decoder, has demonstrated its efficacy across

multiple datasets on Handwritten Text Recognition and

Named Entity Recognition, setting new benchmarks for

these tasks.

Unlike current VDU architectures that require a

fixed input size due to their vision-transformer encoder,

DANIEL, with its convolutional encoder, can accommo-

date input images of any size or aspect ratio without re-

sizing. This is a critical advantage for handwritten doc-

ument recognition, given the variability in document

and character sizes.

DANIEL achieves a new state-of-the-art perfor-

mance on RIMES 2009 and M-POPP and competitive

results on IAM and READ 2016 for Handwriting Text

Recognition. For Named Entity Recognition, DANIEL

achieves a new state-of-the-art performance on IAM

NER and state-of-the-art results on M-POPP NER.

We demonstrate that an end-to-end architecture such

as DANIEL can surpass every sequential method for

NER on IAM NER including methods using language

models such as BERT. This is made possible through

an innovative model distillation method that allows for

the transfer of knowledge from a language model.

Not only has DANIEL proven to be competitive

in performance metrics, but it has also achieved re-

markable inference speed, surpassing existing architec-

tures in inference efficiency. The synthesis of subword-

scale prediction and optimized implementation posi-

tions DANIEL as a leading model for real-world ap-

plications where speed and accuracy are paramount.
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Moreover, the introduction of a novel synthetic

data generator specialized for handwritten documents

and tailored for diverse layouts and languages has en-

hanced DANIEL’s capacity to grasp and process mul-

tiple datasets. Our findings indicate that pre-training

DANIEL on synthetic data across various languages

and layouts improves its performance in both HTR

and NER. Additionally, incorporating real data from

other datasets is recommended when dealing with small

datasets.

While DANIEL marks a significant advancement,

we also recognize the scope for further refinement. Fu-

ture work may delve into enhancing its generalization

capabilities for new layouts or new information cate-

gories to extract without designing new synthetic data.

An intriguing avenue for future research could be ex-

ploring self-training methods. This approach involves

using model predictions on unlabeled data as pseudo-

labels, thereby increasing the volume of training data.
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A Details on synthetic data

We have observed significant variations in the size of charac-
ters generated by different fonts, even when the same font size
is specified. Given that our synthetic data generator already
varies the font sizes in the images it creates, it is crucial to
maintain consistency across images with identical font sizes.
To achieve this, we standardize the fonts based on size. Specif-
ically, we generate a consistent test phrase for each font, and
from this, we calculate a normalization factor for each font to
ensure the resulting images have comparable widths.

B Synthetic data examples

We provide examples of synthetic data for the dataset IAM
in Figure 5, and datasets READ 2016 and M-POPP in Figure
6.

C Details of implementation

C.1 Vocabulary Reduction

The tokenizer of DANIEL is based on the tokenizer from
Donut whose vocabulary is a pruned version of mBART [51]

Fig. 5 Example of synthetic data for IAM.

Fig. 6 Examples of synthetic data for READ 2016 (left) and
M-POPP (right) datasets.

vocabulary9. We envisioned DANIEL as a generalist model
capable of adapting to all documents in languages that use
the Latin alphabet. This means that some of the subwords
present in the Donut’s tokenizer vocabulary will never be en-
countered by DANIEL. Indeed, it contains subwords includ-
ing the Latin alphabet but also sinograms, the Arabic alpha-
bet, Cyrillic, etc. However, the size of the vocabulary directly
influences two layers in the decoder:

– The decision layer, which allows transitioning from an
embedding of size 1024 to output probabilities over the
57718 subwords of the vocabulary.

– The embedding layer, which enables encoding each of the
57718 subwords into an embedding vector of size 1024.

These two layers are dense layers and each comprises ap-
proximately 1024 × 57718 ≈ 59.1 M parameters, totaling
118.2M parameters. If we count the weights of these layers
in the total number of parameters of the DANIEL without
refinement of vocabulary, it totals 206.3M parameters. This
means that these two layers represent 57.3% of the parame-
ters of this model.

For this reason, we decided to reduce the size of DANIEL
vocabulary. To decide which subwords we wanted to remove,
we relied on the Unicode character table10, where characters
are grouped by blocks, and these blocks often correspond to
the original language. We thus established the list of blocks
(and therefore characters) that we did not want to support.
Then we considered that any subword containing at least one
of the unsupported characters was rejected.

To ensure that we were not rejecting a subword that
might be used, we compiled a list of subwords encountered

9 As explained in https://github.com/hyunwoongko/
asian-bart
10 https://en.wikipedia.org/wiki/List of Unicode
characters

https://github.com/hyunwoongko/asian-bart
https://github.com/hyunwoongko/asian-bart
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
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in all the real and synthetic data used. In total in the vo-
cabulary of the Donut’s tokenizer: 27610 subwords are used
and 25565 subwords have been rejected. The intersection be-
tween the rejected subwords and the used subwords is empty.
Finally, 4543 subwords are neither rejected nor used. Some
might be encountered later and others will never be used
but belong to Unicode blocks where the superfluous aspect
is not obviously apparent. The vocabulary size goes from
57718 to 32153, reducing its size by 44%. The embedding
and decision layers thus see their size reduced from 59.1M
to 1024 × 32153 ≈ 32.9M parameters each. The number of
DANIEL parameters thus drops from 206.3M to 154.0M.
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19. Théodore Bluche. Joint line segmentation and transcrip-
tion for end-to-end handwritten paragraph recognition.
In Proceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16, page
838–846, Red Hook, NY, USA, 2016. Curran Associates
Inc.

20. Denis Coquenet, Clément Chatelain, and Thierry Pa-
quet. End-to-end Handwritten Paragraph Text Recog-
nition Using a Vertical Attention Network. IEEE Trans-



DANIEL: A fast Document Attention Network for Information Extraction and Labelling of handwritten documents 19

actions on Pattern Analysis and Machine Intelligence,
45(1):508–524, January 2023.

21. J. Michael, R. Labahn, T. Gruning, and J. Zollner. Eval-
uating sequence-to-sequence models for handwritten text
recognition. In 2019 International Conference on Doc-
ument Analysis and Recognition (ICDAR), pages 1286–
1293, Los Alamitos, CA, USA, sep 2019. IEEE Computer
Society.
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minique Stutzmann, and Christopher Kermorvant. A
comparison of sequential and combined approaches for
named entity recognition in a corpus of handwritten me-
dieval charters. In 2020 17th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pages
79–84, September 2020.
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44. Oliver Tüselmann, Fabian Wolf, and Gernot A. Fink. Are
End-to-End Systems Really Necessary for NER on Hand-
written Document Images? In Josep Lladós, Daniel Lo-
presti, and Seiichi Uchida, editors, Document Analysis
and Recognition – ICDAR 2021, Lecture Notes in Com-
puter Science, pages 808–822, Cham, 2021. Springer In-
ternational Publishing.

45. Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. LayoutLM: Pre-training of Text
and Layout for Document Image Understanding. In Pro-
ceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages
1192–1200, August 2020.

46. Teakgyu Hong, DongHyun Kim, Mingi Ji, Wonseok
Hwang, Daehyun Nam, and Sungrae Park. Bros: A pre-
trained language model focusing on text and layout for
better key information extraction from documents. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 36:10767–10775, 06 2022.

47. Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei,
Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang,
Wanxiang Che, Min Zhang, and Lidong Zhou. Lay-
outLMv2: Multi-modal pre-training for visually-rich doc-
ument understanding. In Chengqing Zong, Fei Xia, Wen-
jie Li, and Roberto Navigli, editors, Proceedings of the
59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Volume 1: Long
Papers), pages 2579–2591, Online, August 2021. Associ-
ation for Computational Linguistics.

48. Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. Layoutlmv3: Pre-training for document ai
with unified text and image masking. In Proceedings of
the 30th ACM International Conference on Multimedia,
MM ’22, page 4083–4091, New York, NY, USA, 2022.
Association for Computing Machinery.

49. Rafa l Powalski,  Lukasz Borchmann, Dawid Jurkiewicz,
Tomasz Dwojak, Micha l Pietruszka, and Gabriela Pa lka.
Going full-tilt boogie on document understanding with
text-image-layout transformer. In Josep Lladós, Daniel
Lopresti, and Seiichi Uchida, editors, Document Analysis
and Recognition – ICDAR 2021, pages 732–747, Cham,
2021. Springer International Publishing.

50. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin,
and B. Guo. Swin transformer: Hierarchical vision trans-
former using shifted windows. In 2021 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
9992–10002, Los Alamitos, CA, USA, oct 2021. IEEE
Computer Society.

51. Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke
Zettlemoyer. Multilingual denoising pre-training for neu-
ral machine translation. Transactions of the Association
for Computational Linguistics, 8:726–742, 2020.

52. Lukas Blecher, Guillem Cucurull, Thomas Scialom, and
Robert Stojnic. Nougat: Neural optical understanding

for academic documents. In The Twelfth International
Conference on Learning Representations, 2024.

53. Taku Kudo and John Richardson. SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for Neural Text Processing. In Eduardo
Blanco and Wei Lu, editors, Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 66–71, Brussels,
Belgium, November 2018. Association for Computational
Linguistics.
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Brodin, and Edouard Geoffrois. Results of the RIMES
Evaluation Campaign for Handwritten Mail Processing.
In 2009 10th International Conference on Document
Analysis and Recognition, pages 941–945, July 2009.

55. Joan Andreu Sánchez, Verónica Romero, Alejandro H.
Toselli, and Enrique Vidal. ICFHR2016 Competition on
Handwritten Text Recognition on the READ Dataset.
In 2016 15th International Conference on Frontiers in
Handwriting Recognition (ICFHR), pages 630–635, Oc-
tober 2016.

56. Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Dis-
tilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop, 2015.

57. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez,  L ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

58. Blanche Miret and Christopher Kermorvant. Nerval: a
python library for named-entity recognition evaluation on
noisy texts. https://gitlab.teklia.com/ner/nerval, 2021.

59. Thomas Constum, Nicolas Kempf, Thierry Paquet, Pier-
rick Tranouez, Clément Chatelain, Sandra Brée, and
François Merveille. Recognition and Information Extrac-
tion in Historical Handwritten Tables: Toward Under-
standing Early $$20ˆ{th}$$Century Paris Census. In Sei-
ichi Uchida, Elisa Barney, and Véronique Eglin, editors,
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