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Acceptable definitions of thermal sensation for cold and hot water immersion do not 22 

exist. The use of subjective thermal sensation scales remains unsolved with broad 23 

psycho-physiological, and semantic implications. We hypothesize that perception of 24 

thermal sensation could be a valid and reliable indicator for thermal strain during 25 

exposure in water. We aimed to provide a theoretical background for behavioral 26 

thermoregulation and neurocognition to support an integrated thermal sensation scale 27 

for estimation of thermal load during head-out water immersion. This research used a 28 

mixed methods approach. Domains were identified and items were measured for 29 

thermal load to examine the content validity. Thereafter, we formed an integrated scale 30 

based on standard 10551 of International Organization for Standardization (ISO). 31 

Finally, we conducted a pilot study for the face validation of the scale based on a 30 32 

min head-out water immersion at 26oC in healthy adults (females, n=4; males, n=4; age: 33 

22.6 ± 8.0 years; body mass, 67.7 ± 9.5 kg; height, 169.0 ±5.6 cm). We identified three 34 

aspects (environment, physiological and behavioral thermoregulation) and a total of 18 35 

items, of whom eight items (water temperature, immersion duration, core temperature, 36 

skin temperature, body heat storage, shivering, thermal sensation, and thermal comfort) 37 

were acceptable based on terms of scale-level content validity index (S-CVI = 92%). 38 

Conditions incorporated into our scale included: icy <12oC, cold 12-24oC, cool 24-39 

29oC, neutral 29-38oC, warm 38-43oC, and hot >43oC. We found excellent face validity 40 
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based on a reported homogenous cool feeling and physiological thermoregulatory 41 

responses. Our study revealed our model could reasonably characterize body thermal 42 

load though whole-body thermal sensation based on well-established thermoregulatory 43 

mechanisms during water immersion. Further research is needed to validate the 44 

accuracy of our behavioral model in a variety of water temperatures and in a larger 45 

sample size. 46 

Keywords: whole-body water immersion, thermoregulation, thermal sensation, scale 47 

calibration 48 
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Background 49 

Acceptable definitions of cold and hot water thermal sensation are not available. Prior 50 

work has not conclusively determined if thermal sensation can be used as a reliable 51 

indicator for estimating thermal strain during water exposure [1–4]. This problem is 52 

multidimensional, because of the difficulty in understanding the perceptual meaning of 53 

sensation, the variety of thermal scales and the difficulty in finding objective criteria 54 

that could separate physiological responses from cognitive interpretation (Auliciems, 55 

1981; Chatonnet & Cabanac, 1965; Lee et al., 2009; Schweiker et al., 2017). Metabolic 56 

heat production and body heat gain or loss are important for modulating behavior that 57 

motivates individuals to exit unbearable aquatic environments and could play a 58 

significant role for understanding a novel thermal perception model specifically while 59 

in water [2,9,10]. However, considering the challenges that affect the validity and 60 

reliability of subjective scales, such as type of scales (visual analog, categorical, 61 

numerical), number of categories, verbal descriptors, and leading question are 62 

important to understand [7,8,11,12].  63 

 Thermal perception is expressed as the conscious state of how a person 64 

perceives the external environment (i.e., sensation) influenced by skin and internal body 65 

temperature and discriminates into cognitive-emotional experience (i.e., pleasantness, 66 

comfort) and sensory experience (thermal sensation)(Fig. 1). Moreover, during water 67 

immersion skin temperature contributes around 40% and core temperature around 60% 68 

for whole-body temperature sensation. This ratio differs slightly in ambient conditions 69 

for comfort, as both core and skin temperature contributes equally [13,14]. Also, 70 

participants may be affected unconsciously by body heat storage that is reflected in 71 

thermoeffector output (e.g., core and shell temperature) to vote their temperature 72 

sensation [2,15]. Additionally, the pleasantness rating could provide useful information 73 

about an individual’s thermal alliesthesial status (e.g., normothermia, hyperthermia, 74 

hypothermia) throughout the duration of water immersion [16].  75 

Verbal anchoring phenomenon is often overlooked by many researchers, in 76 

which thermal choice was affected by the type of scale, numerals, and experimental 77 

conditions [1,3,8,17–24]. A typical verbal category universalizes the relationship 78 

among a width of sensory stimulus with physical (water temperature) or physiological 79 

parameters (e.g., body heat production, skin temperature), only when the 80 

thermoregulatory theorems are fulfilled [25] However, scaling for thermal sensation 81 
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remains an unresolved case with mathematical and semantic aspects significantly 82 

interplayed [8,11,19,24,26].  83 

Alternatively, in psychometry, scaling of senses has been approached in a lot of 84 

ways depending on research aims [25,27]. In particular, according to the fractionation 85 

method, the fundamental infrastructure of a psychophysical scale, such as the inclusion 86 

of the midpoint and the number of points, was shaped with practicality and a 87 

satisfactory geometric or metric representation of the subjective feeling related to 88 

concrete range of thermal stimulus [25,28]. The main thrust of this scientific thinking, 89 

which was pursued by Lundgren et al. (2014), Glickman-Weiss et al. (1994), McIntyre 90 

(1976), and Rohles (2007), lined up to statistical procedures (e.g., Pearson correlation, 91 

ANOVA) with the aim of exhibiting a good fit to their thermal data. However, the above 92 

authors characterized intuitively each thermal anchoring, thereby underestimating the 93 

fallible nature of an abstract subjective measurement tool, such as visual analogue 94 

scales [1,20], and value of linguistic assessment information [18,21,22,25,29].  95 

  The axiomatization method highlights general fundamentals like that of human 96 

thermoregulation as followed in our research focused on the satisfaction of specific 97 

discrete measured properties, such as body heat storage, body temperature, and thermal 98 

perception [2,25,30]. With reference to the calibration of the ASHRAE and Bedford 99 

scales, selection of seven points was not set intuitively as occurred with language 100 

editing [9,22,25]. Indeed, the number seven stemmed from Miller’s empirical 101 

observations about the absolute judgement of equal-spaced auditory signals about 15dB 102 

[25,27]. Nevertheless, the seven-categories conversion from pitch to thermal feeling 103 

arose from a scientific concept dated back to the 1950s, in which nerve cells decode 104 

and analyze all kind of senses (e.g., smell, sight, taste, temperature) exactly alike. 105 

Therefore, it was speculated that thermal sensation distributes equally at the same rate 106 

among operative temperatures [25,31]. Though, newer evidence contradicts the 107 

equidistance of the ASHRAE scale [8,32–34], probably due to uneven activation of the 108 

threshold thermoreceptors.  109 

  In general, thermosensing has a strong molecular basis, as it is recognized 110 

through transient receptor potential ion channels (TRPs) located on the surface of nerve 111 

cells. In general, the TRPs are listed according to temperature threshold activation in 112 

response to cold and warm [35]. The cold TRPs are TRPM8 (12-28oC), TRPC5 (24-113 

37oC) and TRPA1 (<18oC) [36–40], and the warm TRPs are TRPV3 (30-37oC), TRPV4 114 

(28-42oC), TRPM3 (30-35oC), TRPM2 (38-42oC), and TRPV1 (>43oC) [37,39,41–45]. 115 
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Activation of these TRP ion channels can be derived from temperature, pH, and 116 

chemicals (e.g., CO2, H2S, H2O2, common elements contained in thermal springs) 117 

[46,47].  118 

 During water immersion,  it is advantageous to be able to assess an individual’s 119 

thermal status during water immersion, in an efficient and non-invasive way to address 120 

health risk situations (e.g., accelerated hypothermia or hyperthermia) [21,48]. In the 121 

event of recovering a conscious victim from a rescue that can communicate, where time 122 

is limited and no access to heat evaluation equipment is available, it would be a useful 123 

tool to estimate thermal load via a thermal sensation scale [21]. However, if these 124 

subjective scales have many points of selection accompanying with metonym 125 

descriptors in situations of emergency, victims may not easily respond to them. 126 

The purpose of this study is to provide a theoretical background for temperature 127 

regulation to develop an integrated thermal sensation scale, which would combine 128 

body, water, and environmental temperatures for the assessment of thermal status 129 

during water exposure in humans.  130 

 131 

Hypothesis 132 
Given the suggestive evidence of the fundamental laws of thermodynamics between 133 

body and environments, we hypothesize that thermal perception and thermal strain 134 

assessment could be validated and serve as reliable indicators, not only in terrestrial but 135 

also in aquatic environments [2,9]. This hypothesis is based on insights from a previous 136 

scoping review that found an association between basic thermal descriptors for 137 

temperature sensation and physiological thermoregulatory responses (e.g., body heat 138 

storage) during water immersion, in which they are triggered as a causal reaction of the 139 

activation of a range of TRPs’ thermal thresholds, whose mechanism remains poorly 140 

understood [2]. To date, few studies have examined thermosensation in aquatic 141 

activities; while no attention has been given on the type of scale visual analog versus 142 

categorical scale, semiotic status of the lexemes upon each scale and their hermeneutics 143 

from the view of the participants and the external observers. We maintain our 144 

reservations about whether thermal sensation scales measure only thermal sensation, 145 

and not also thermal guessing [2]. Concerning number points and linguistic dimensions 146 

in a categorical scale, we believe that more than seven thermal categories and adjectival 147 

prepositions (e.g., slightly cool/warm) may confuse participants’ choice affecting the 148 

validity of the mental experience evidencing thermal guessing and not thermal 149 
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sensation. The former is a similar but longer neurocognitive process that shares a 150 

common neural network with the evaluation of temperature feeling [2,12,49,50]. 151 

Developing an integrated thermal sensation scale for water exposures may have 152 

practical application in real-world settings for spa workers, swimming coaches, 153 

lifeguards, if and only if, basic verbal descriptors upon the subjective scale reflect 154 

concrete thermal sensory experience while also accompanying discriminative 155 

biological patterns. In this case, we will select the temperature vocabulary for our scale 156 

according to the principle of discreteness and cross-linguistic after identifying the most 157 

common everyday linguistic elements for human temperature sensation [2,7,50] with 158 

the aim of being easily understood. So, this study provides a psychophysiological 159 

integration theory for real-time monitoring of thermal load in water via a simplistic 160 

approach that includes concrete perceptive words for thermal sensation and comfort 161 

evaluation.  162 

 163 

Evaluation of Hypothesis 164 
 165 
To confirm our hypothesis, we needed to develop an integrated thermal sensation scale 166 

following a mixed methods approach that is separated into three phases. In the first 167 

phase we identified domains and items and examined their content validity for 168 

approximation of thermal strain for water exposure. In the second phase, we formed the 169 

integrated scale based on the ISO 10551 standard presenting the physiology of whole-170 

body water immersion. In the third phase we conducted a pilot study for assessment its 171 

face validity and stability (test-retest design) utilizing 30 min head-out water 172 

immersions at 26oC in healthy females (n=4) and males (n=4) (age: 22.6 ± 8.0 years, 173 

body mass: 67.7 ± 9.5 kg, height: 169.0 ±5.6 cm) with no thermal injury and medical 174 

history. Written informed consent was given by all subjects who abstained from 175 

strenuous exercise, smoking, alcohol, and caffeine consumption 24 hours prior trials, 176 

while confirming a minimum of 6 hours sleep the previous night. The research protocol 177 

had been approved by the Ethics and Bioethics Committee of the School of Physical 178 

Education and Sport Science of the National and Kapodistrian University of Athens 179 

(No 1162/12-02-2020) and was re-approved by the General Assembly of the Medical 180 

School of the National and Kapodistrian University of Athens (No 42100-4/5/2022). 181 

 182 

First Phase: Domain-Item Identification & Content Validation 183 
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Initially, we determined the purpose of our rational thermal scale following the 184 

instructions of Boateng (2018), whose role was to predict not only the water 185 

temperature but also psychophysiological values. Using data from our previous scoping 186 

review we recognized three main dimensions: (i) environment, (ii) physiological 187 

thermoregulation, (iii) and behavioral thermoregulation [2]. The environment was 188 

defined as the physical quantities of weather (water and air temperature, humidity) 189 

affecting human body. Physiological thermoregulation was defined as mechanistic 190 

responses from an external or internal thermal stimulus. Behavioral thermoregulation 191 

was defined as conscious perception of thermal sensation and thermal comfort. Further, 192 

we analyzed all the factors for each dimension and compiled a form for being examined 193 

the content validity by a group of specialized scientists in the field of thermophysiology.  194 

Content validation was performed by the primary author (MN). The content 195 

validation procedure, in which 18 items arranged into three domains (four items in 196 

environment domain, nine items in physiology, and five items in behavioral 197 

thermoregulation domain), and a panel of six scientists pursuing research on 198 

thermoregulation accepted to evaluate on a 4-point scale the relevance of each item to 199 

the measured domains after receiving a detailed content validation form (see Appendix 200 

A). The ordinal point scale characterized by 1 = not relevant, 2 = somewhat relevant, 201 

3 = quite relevant, and 4 = highly relevant. The content validity index computed for 202 

each item (I-CVI) and domain following the common practices [52]; setting the 203 

acceptable CVI value at 0.86. Also, overall scale validity index (S-CVI) was estimated 204 

prior and after modifications. After suggestions from two reviewer’s we agreed to 205 

changes in the form and re-located an item from the physiological to behavioral domain. 206 

Ten items were excluded due to a very low I-CVI score varied from 0.16 to 0.67, as a 207 

result in improving at an excellent grade the S-CVI from 71% to 92%. Finally, only 208 

eight items satisfied the criteria (water temperature, duration immersion, core 209 

temperature, skin temperature, body heat storage, shivering, thermal sensation, and 210 

thermal comfort) (see Table 1). 211 

 212 

Second Phase: Development of the integrated sensation scale based on ISO 10551. 213 

According to the ISO 10551 standard we formulated a new thermal sensation scale 214 

based on the acceptable factors from content validation (see Fig. 2), with respect to 215 

theory about neural sensory capacity - in which humans estimate correctly a sense lesser 216 

to seven categorical levels - and with what is known about human thermoregulation and 217 
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thermal sensation in water for supporting the feasibility of an objective esthetic 218 

experience (Hensel, 1976; Hensel & Schafer, 1984; Luce & Krumhansl, 1988; Miller, 219 

1956; Ntoumani et al., 2023). Throughout the bibliography, we recognized six basic 220 

labels for temperature sensation: icy, cold, cool, neutral (neither cold nor warm), warm, 221 

hot, which constituted the thermal glossary for our scale. The “icy”, though it was not 222 

included in ASHRAE vocabulary, we added as an extreme antonym of the hot endpoint 223 

more suitable to represent extreme environmental stimuli [9,17,18,53–55]. Every 224 

anchor was superimposed with molecular (TRPs) and physiological responses (body 225 

heat, storage, core, and skin temperature) after 30 min of immersion. An acute 30 min 226 

immersion was selected mostly due to normothermic status at 26°C that allowed us to 227 

focus on the cornerstone role of skin thermoreceptors that theoretically contributed 228 

mostly to thermal sensation [14,56]. Regarding visualization of body heat storage, the 229 

thermal physiologist ER used the available raw data from Craig and Dvorak (1968) for 230 

a range of water temperatures for spotlighting its causal association with conscious 231 

responses [2].  232 

   Summarizing our data, we found a specific biological motif in the icy zone 233 

<12°C where the core and body temperature declined. Though, the lack of evidence of 234 

whole-body thermal sensation in extreme cold water temperatures suggests a 235 

deteriorated feeling shift away from the “cold”. We represented icy as a lower 236 

temperature range than the cold anchoring. Also, in the icy zone, we observed the cold 237 

shock response accompanied by hyperventilation, increased heart rate and maximal 238 

oxygen consumption owing to reflex activation of the sympathetic nervous system by 239 

rapid changes of the skin thermal afferents. Besides, there was a high risk of cold 240 

injuries, such as frostbite, which was assessed by finger skin temperature (TFsk <7 °C) 241 

and time-onset. Indeed, some unacclimatized naked subjects could not afford this 242 

noxious water temperatures even for 10 minutes [57–62]. Another highlighted 243 

observation, according to the thermal model of Mekjavic and Morrison (1985), was the 244 

complete inactivation of cold thermoreceptors below 12oC; indeed, TRPA1 expressed 245 

in C fibers stopped working at 12°C, while those expressed in Aδ fibers were still 246 

working at this concrete temperature range as appeared in Fig. 2 (Wang & Siemens, 247 

2015; Zygmunt & Högestätt, 2014). Whole-body water immersion in the cold zone 248 

reduced rectal body temperature, but not necessarily esophageal temperature; while it 249 

evoked bradycardia, activation of the parasympathetic system and shivering 250 

thermogenesis, mainly due to the action of TRPM8 [59,65–68]. In the cool zone, only 251 



Medical Hypotheses 

9 
 

shivering sensation appeared within the first 30 minutes, while no changes were 252 

observed to core temperature and other cardiovascular factors, such as oxygen 253 

consumption [57,59,67]. The function of TRPM8 in synergy with TRPC5 may be 254 

responsible for attenuated thermoregulatory response [38,39]. The neutral zone is a 255 

dynamic intermediate state not presenting shivering thermogenesis, sweating activity, 256 

and last but not least, changes in body temperature [57]. The human body has a very 257 

sophisticated construction and function for its survival mirroring, on a molecular level, 258 

in the complexity of neutral TRPs, as we spend the most of our time in indoor 259 

thermoneutral places. In the warm zone, sweating rate, total dry heat loss, metabolic 260 

alkalosis, core temperature, and heart rate were increased, possibly due to the action of 261 

TRPV4 and TRPM2’s action [14,41,69–74]. Simultaneously, we set the hot zone 262 

mainly by the unbearable pain and discomfort caused by the warm TRPV1 ion channel 263 

and the inability to complete an acute whole-body water immersion [75–78]. According 264 

to epidemiological studies, hot baths (>43oC) was deemed deleterious due to the danger 265 

of thermal injuries (burns, skin necrosis) and drowning – especially for prolonged 266 

immersion [75,77,79]. 267 

 268 

 Third phase: Face Validation  269 

A test-retest design was followed to examine the face validity of the integrated 270 

sensation scale, and its stability. Two repeated sessions, separated by at least one week, 271 

were compared in this study. Participants immersed in a constant water of 26oC at the 272 

shoulder level for 30 minutes. Each male participant wore a competitive swimsuit while 273 

females wore a two-piece swimsuit. Prior and after water immersion, volunteers rested 274 

in a sitting position for 5 minutes at an ambient indoor pool temperature of 25.4 ± 1.5oC 275 

(Thomas Traceable Memory Digital Thermometer, VWR Scientific, USA) and 61.8 ± 276 

6.3 % relative humidity (Mi Temperature and Humidity Monitor 2, Xiomi, China) for 277 

baselines measurements. On each trial, core temperature (Tcore: Thermoscan 5, Braun , 278 

Germany), skin temperature on the right side of four body locations: forehead, chest, 279 

hand, and thigh (Tskin: DS-273 1922L iButton, Maxim Integrated, USA) - that were 280 

taped with a transpore medical material (Tegaderm, 3M Health Care, USA) and 281 

calculated from the equation of Ramanathan (1964). Perception measurements were 282 

recorded every 5 min intervals prior, during, and after immersion. First, we evaluated 283 

firstly thermal sensation using our integrated scale (TS6), then assessed comfort 284 

judgment using the ASHRAE 4-point comfort scale (TC) (Gagge et al. 1967). The 285 
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leading question for thermal sensation was How do you perceive water? followed by 286 

the leading question for thermal comfort How comfortable do you feel in water/ambient 287 

environment now? 288 

 289 

Data Analysis 290 

Perception scales are ordinal (6-point and 4-point), therefore non-parametric statistics 291 

were selected. Shapiro–Wilk’s and Levene’s tests were used to check the normality and 292 

the homogeneity of all data prior to analyses. Wilcoxon matched-pairs ranked test was 293 

conducted for nonparametric data (thermal perception) every 5-min interval. For 294 

normal data, we applied one-way repeated ANOVA, or Welch ANOVA when equal 295 

variance assumption was not satisfied, at each time point for identifying any 296 

physiological alteration followed by a post-hoc Bonferroni analysis for ANOVA or 297 

Games-Howel analysis for Welch ANOVA, if needed. We set the significance level at 298 

p < 0.05. Face validity of the 6-point integrated scale was examined only by asking the 299 

participants how they felt in indoor pool. As no statistical analysis was supported for 300 

this kind of validity, we associated observed body and environmental temperatures, that 301 

were in line with the theoretical background of it.  302 

 303 

Empirical Data 304 

Environmental factors were equivalent between test-retest trials except from relative 305 

humidity (p < 0.01) that reduced the second time trial clapping from 65.4±7.5% to 306 

58.3±5.2%. Tympanic temperature (test F(7, 56) = 0.639 p > 0.722 vs retest F(7, 56) = 307 

0.069 p > 0.784), heart rate (test F(7, 46) = 1.127 p > 0.563, vs retest F(7, 46) = 1.652 308 

p > 0.121) and skin temperature (test F(7, 56) = 86.272 p < 0.001, vs retest [F(7,56) = 309 

58.237, p < 0.001) sustained stable between repetitions during water immersion. There 310 

was a time-effect only on skin temperature and thermal perception, as these parameters 311 

significantly changed in pre- and post-immersion compared to water immersion 312 

duration (p < 0.05). For all physiological and perceptual values, there was no 313 

statistically significant difference between first and second set of trials (p > 0.05). The 314 

face validity of the integrated thermal sensation scale was excellent as proved by a 315 

homogenous cool and slightly uncomfortable feeling in water for all measurements 316 

without any alteration of core temperature as demonstrated in Fig. 3.  317 

  318 

Consequences of the hypothesis and discussion  319 
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Our pilot study substantiates the hypothesis of the objective truth of thermal sensation, 320 

in which water temperature could approximate thermal perception and body heat stress 321 

and vice versa yielded to causal psychophysiological schema (Fig. 2). Our scale was 322 

developed according to well-established neurophysiological and cognitive mechanisms 323 

and divided into six temperature ranges: icy <12oC, cold 12-24oC, cool 24-29oC, neutral 324 

29-38oC, warm 38-43oC and hot >43oC (Fig. 2). The fixed temperature ranges 325 

represented the water temperature that coincided with the skin temperature of the 326 

immersed body parts. The main findings of this experiment were the homogeneity of 327 

thermoregulatory responses during the 30-minute immersion at 26oC, which were 328 

aligned with the predictions of our behavioral thermoregulatory model. Of particular 329 

interest was the common verbal expression of the thermal perception by all subjects, 330 

selecting the basic descriptor "cool" for thermal sensation and “slightly uncomfortable” 331 

for thermal comfort. 332 

As previously reported, skin temperature is the principal input for thermal 333 

sensation for a normothermic resting subject being consistent with our collective field 334 

data [9,14,18]. When the mean body Tsk is within a range of TRP ion channels as tuning 335 

with water temperature due to conduction heat exchange, a synergistic effect between 336 

epidermal TRPs take place for the formation of thermosensation in the central level 337 

according to combinatorial coding strategy [81,82]. The rate coding hypothesis, which 338 

analyzes neural activity as the frequency of cold and warm thermoreceptors’ firing rates 339 

[83], was followed by Kingma et al. (2012) to advance a mathematical 340 

neurophysiological model for thermal sensation. Even this model was alleged for its 341 

accuracy for ±0.5-scale unit in the ASHRAE scale, a perusal of time-to-event data of 342 

thermal sensation votes disclose a greater discrepancy. This may be due to structural 343 

failure, as it did not account TRPs temperature sensors, equalized the coding strategy 344 

between mammals (e.g. cat) and higher species like man, and limited predicted range 345 

for ambient air temperatures above 12oC [9,56,82,83]. On the other side of specificity 346 

rate coding, we proposed the concept of population coding that allow the combinatorial 347 

co-activation of differential expression of skin TRPs that crosstalk with other somatic 348 

cells in central or periphery level to explain the psychophysiological pattern of 349 

temperature discrimination threshold [82,84]. That is, during water immersion at 26oC 350 

in our study, some cool sensitive ion channels were triggered primarily from skin 351 

thermal stimuli, enforcing even more this signal from the cool-mechanical afferents 352 
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provoking from muscle tremor during shivering thermogenesis, mostly observed in 353 

unacclimatized participants [2,84].  354 

Particular attention is needed to devote to linguistic editing of thermal 355 

categories, chiefly to the escalation of the semantic nuance of the basic thermal 356 

adjectives [19,24,55]. Indeed, adjectival descriptors (much too, too, comfortably, 357 

slightly) that accompanied basic temperature terms (cool, neutral, warm) as for example 358 

in the ASHRAE and Glickman-Weiss scale may further strengthened the amorphous 359 

tendency of thermal sensation possibly resulting in a greater discrepancy and 360 

measurement uncertainty among conscious responses [56,11,19,24,55,12,34,8,50]. It is 361 

quite common voters to focus more on the central values than on the extremities upon 362 

a scale e.g., selecting more easily “slightly cool” and then the “cool” anchor, when 363 

rating near thermoneutral zone affecting by temperature, immersion duration and 364 

personal characteristics. The cool temperature stimuli were expressed verbally identical 365 

among all the subjects upon the 6-point thermal sensation scale, while in previous 366 

studies, in which thermal sensitivity was rated using other sensorial scales has shown a 367 

variety range from “cool” to “neutral” [2,12,34,56]. Furthermore, time response 368 

increases as more increases the number of points and may steer to erroneous making-369 

decisions and may threaten the validity of thermal sensation [2,27,85].  370 

Hitherto, conscious temperature judgment was supposed purely subjective in 371 

water, ergo a poor indicator for body heat stress due to the absence or underestimation 372 

of a mathematical connection of thermal perception with biometeorological factors 373 

(e.g., ambient and body temperature) [4,83]. Indeed, methodological (e.g., water 374 

temperature, thermal sensation scale), statistical designs and correlational analysis 375 

either have violated some assumptions or have overridden holistic theoretical 376 

knowledge with a consequence to fail to capture the whole “true” empirical evidence 377 

for thermal sensation [1,3,4,56,63,83]. For example, Phik correlation coefficient, which 378 

never has been used in behavioral thermoregulation studies, is working well both with 379 

categorical (e.g., thermal sensation, comfort) and interval data (e.g., core and skin 380 

temperature) appearing as an either linear or non-linear relationship. This tool allows 381 

us to compare ‘apple and oranges’, but its calculation requires expensive software and 382 

complex calculations [86]. Overall, we cohered theoretical with empirical 383 

measurements about behavioral and physiological thermoregulation, as changes in 384 

sensory cognitive performance during passive thermal stress are significantly 385 



Medical Hypotheses 

13 
 

associated with changes in thermophysiological variables of individuals (Kingma et al., 386 

2020). 387 

 388 

Limitations 389 

The proposed integrated scale was superimposed exclusively with data during under 390 

water exposure. In the present pilot study, we had checked only for face validity; 391 

however, it is required a full validation of the scale using a greater variety of air and 392 

water temperatures, while measuring temperatures in body and environment with 393 

precise instruments than we had selected. Furthermore, a stronger design, to assess body 394 

heat storage would include indirect calorimetry to measure metabolic heat production. 395 

Additionally, Type I & II errors on Likert scales with no equivalent distances such as 396 

in thermal sensation scales, e.g., ASHRAE scale, were usually derived from 397 

misapplication of parametric statistics (t-test, ANOVA, Pearson correlation), anchoring 398 

points, instrument sensitivity, and a reduced power [8,26,34,50]. Therefore, these 399 

should have been taken altogether in serious consideration for a full validation of the 400 

integrated sensation scale.  401 

 402 

Implications 403 

Using a thermal perception scale that is capable of estimating thermal strain could help 404 

medical doctors and aquatic practitioners to prescribe aquatic exercise for concrete rate 405 

of water temperature ranges. For example, if a swimmer with multiple sclerosis or 406 

cardiac failure feels the water as “warm” from the beginning, this means that water 407 

temperature is above the thermoneutral spot and can worsen his clinical symptoms. 408 

Feeling the warmth sensation during exercise in cool water following our temperature 409 

classification could be translated into an increasement of body heat storage. Thermal 410 

sensation may act as an alarming precaution for coaches to modify the daily training 411 

(e.g., by reducing intensity and increasing rest) for a safe and beneficial aquatic session. 412 

Another application is in the lifeguarding domain, where a deterioration of coldness of 413 

the sea bather may indicate the probability of hypothermia, when meteorological 414 

conditions and immersion duration are already known. Montgomery’s work is one of 415 

the most well-established thermophysiological model to predict somatic reactions (e.g., 416 

shivering, core and skin temperature) for head-in and head-out water activities applying 417 

mostly for military purposes [87]. However, our data may be useful for the 418 

advancement of such model’s equations to evaluate additionally thermal sensation and 419 
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comfort. From an ecological perspective, there is an urgent need to develop such a 420 

simulated thermal perception tool to regulate thermal energy demands of pools for a 421 

healthy comfortable working environment bearing in mind its main usage (e.g., leisure 422 

activities, rehabilitation programs, sport), because its role determines the minimum 423 

operational water temperature, and energy savings. Cleary, the type of sensation scales 424 

(e.g., integrated 6-point, 7-point or 9-point extended ASHRAE) should be taken into 425 

account by thermal modelers, as it influences the estimations for desired ambient 426 

occasions [12,34]. Finding the optimal number of categories upon a scale for an easy 427 

and valid thermal sensation measurement requires further studies to be conducted in a 428 

variety of water temperatures, with greater sample size, also, measuring, if applicable, 429 

body heat storage and time response via eye-tracking technology. 430 

 431 

Conclusion 432 

Our main finding supports our initial hypothesis that thermal expression capable of 433 

predicting human thermoregulatory responses. In general terms, sensory phenomenon 434 

for temperature in terms of neural events, physiological and psychological responses is 435 

complex. What is new on our thermal sensation model is inclusion of the brand new 436 

concept about temperature threshold of TRPs for providing a theoretical framework on 437 

thermal perception, especially in the steady state. We critically analyze thermal votes 438 

within the context of environmental physiology, neurophysiology, and psychometry. 439 

These preliminary results suggest that the 6-point integrated sensation scale appeared a 440 

homogenous sense among participants during water immersion duration with an 441 

acceptable predictability for water and thermophysiological indices. A shift on the 442 

central thermal votes (e.g., from cool to neutral) may be sensitive enough for the 443 

detection of a thermoeffector alteration i.e., body heat storage during water immersion 444 

duration. Our study revealed that our model could characterize body thermal load 445 

though whole-body thermal sensation based on well-established thermoregulatory 446 

mechanisms during water immersion. Further research will be needed to validate the 447 

accuracy of our behavioral model in a variety of water temperatures and in larger 448 

sample size. 449 

 450 

 451 

 452 
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Table 1. I-CVI and S-CVI of the 6-point integrated scale. 693 
Identification of the thermoregulatory factors to assess heat stress  

Listed below are some factors for assessing thermal stress during 
whole-body water immersion 

 
 
 
 
 

CVI 

- Please indicate the appropriateness of factors to measure thermal 
sensation (Domain 1 & 2) or thermal stress (Domain 3): 
 1 2 3 4 
 the item is 

not relevant 
the item is 
somewhat 
relevant 

the item is 
quite 
relevant 

the item is 
highly 
relevant 

1. Domain: Environment 
1 Water temperature 1.00 
2 Air temperature 0.71 
3 Humidity 0.57 
4 Duration immersion 0.86 

2. Domain: Physiological Thermoregulation  
5 Core temperature 0.86 
6 Skin temperature  0.86 
7 Body Heat Storage 0.86 
8 Heart rate 0.29 
9 Ventilation 0.29 

10 Shivering 1.00 
11 Sweating 0.57 
12 Pain 0.57 
13 TRP’s (transient receptor potential ion channels) 0.71 
14 Thermal Injuries  0.57 

3. Domain: Subjective - Behavioral Thermoregulation   
15 Thermal Neutral Zone 0.57 
16 Thermal Comfort Zone 0.57 
17 Thermal sensation  0.86 
18 Thermal comfort  0.86 

 S-CVI                                                                                  0.70 
S-CVI (after removal factors with I-CVI < 0.57)           0.92 
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 696 

Figure 1.  Thermoeffector relationship between physiological indices and conscious mental 697 
state 698 
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Fig. 2 depicts TRP ion channels activation matched with our 6-point thermal scale. Each selected temperature ranges has been chosen depending 701 
on how a subject expressed his own thermal sensation after a 30 min water immersion and with what is known about the activation of TRP ion 702 
channels. TRP, transient receptor potential channel; Tsk, skin temperature; Tcore, Core body temperature; S, heat storage; LCT, lower critical 703 
temperature; HCT, higher critical temperature (Ntoumani et al., 2022). 704 
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Figure 3. Time-course of thermal sensation votes based on the 6-point integrated sensation 
scale during the experiment; Mean± SΕ. 
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