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Abstract

In this work, we develop models of cerebral venous blood flows in realistic 3D geometries
and run accurate numerical 3D simulations leveraging real data. These data come from
Magnetic Resonance Imaging measures and provide both morphological and physiological
information on the same subject. It allows to calibrate a subject specific simulation and
improve its reliability. We present the complete pipeline going from data pre-processing to
the integration in the simulation framework. The 3D Finite Element simulations in the main
cerebral venous vessels are coupled with Windkessel reduced models, whose parameters are
chosen according to the data, to take into account the neglected network. First results are
discussed and compared with literature data, opening the way to obtain reliable information
difficult or even impossible to obtain in vivo in a non-invasive way. All codes are in-house
openly developed ones to ensure reproducibility.

Introduction
Progress in computational power and numerical methods has made possible complex bio-fluids
simulations. The great interest of these numerical simulations is now obvious, as they give access
to information difficult or even impossible to obtain in vivo in a non-invasive way. In particular,
numerical simulations of blood flows in realistic geometries have been developed for years now
by numerous teams: arterial blood flows were first considered [14, 45, 8, 1] and more recently
venous blood flows [31, 27, 36, 46, 29]. The venous network draining the blood from organs to
the heart is less studied and though still less understood.

The main difficulty regarding the venous system is its rather high variability, even in healthy
cases, making its responses to perturbations really individual-specific [40]. In addition, its
interactions with other cerebral structures, such as the cerebro-spinal fluid (CSF), is crucial
for proper function of the brain and yet complex since it implies local phenomena. The use
of accurate 3D simulations with subject-specific data is then a possible way to observe these
complex hemo-dynamics effects at specific points of interest. This motivates the development
of procedures to extract real data and interface them with the numerical model. This work is a
part of the Human and Animal NUmerical Models for the crANio-spinal system (HANUMAN),
in which several approaches are explored to study the whole craniospinal system. In this paper,
we present a 3D numerical fluid model to compute blood flow in the cerebral venous network
(CVN) which aims to integrate real data coming from Magnetic Resonance Imaging (MRI) and
phase contrast magnetic resonance imaging (PC-MRI) stored in the hyper intracranial pressure
(HYPERPIC) database described hereafter. Numerical simulations are obtained via open access
codes based on finite element methods (FEM).

The whole structure composed by brain, spinal cord, CSF compartments and blood circu-
lation, forms the craniospinal structure, a dynamic system with many interactions. Since the
skull is fully rigid in adults, a key parameter is the inner pressure of this system [28, 48]. This
intracranial pressure (ICP) corresponds to the overall CSF pressure and is mostly regulated by

1



the cerebral venous system. Indeed, the CVN is part of the glymphatic system, recently dis-
covered, which plays a role in maintaining the homeostatic stability of the brain by exchanging
proteins and extracting toxins [33]. These functions are ensured by close connection between
the CVN and the CSF compartments, inducing a pressure relation. It follows that alterations of
this CVN can play a role in many cerebral diseases as cerebral hypertension, multiple sclerosis,
hydrocephalus, Alzheimer’s and other neuro-degenerative diseases. In presence of stenosis, it
have been showed that it can also induces inconvenience such as tinnitus [36]. As the ICP can
not be measured in a non-invasive way, we only have access to measurements made in necessary
cases, i.e. in pathological cases. Numerical simulations, as they involve computation of velocities
and pressure can provide information concerning the pressure in healthy subjects and thus, give
insights in deregulation of the system, leading then to pathologies. For all these reasons, devel-
oping a 3D numerical model of the CVN interfaced with real data seems to be a first valuable
step to better understand the complex interactions between blood and CSF flows.

The CVN is composed of veins and sinuses, which both drain venous blood from the brain
to the heart but differ in their composition. On the one hand, veins are blood vessels in the
usual sense since they are blood pipes composed by three layers (intima, media, adventice).
The distribution and composition of these layers gives veins flexibility and elasticity [22] and
makes them sensitive to pressure variation. On the other hand, sinuses are cavities formed by
folds of the dura mater, a dense membrane surrounding the brain, conferring them a quasi-
rigid structure. It follows that, in opposition to veins, sinuses are almost insensitive to pressure
variation. In this study, we choose to focus on the main CVN composed by: the superior sagittal
sinus, the straight sinus, the two lateral transverse sinuses and part of the intern jugulars. An
atlas representation of this main CVN is shown in Figure 1. This focus on sinuses allows to
neglect the possible fluid-structure interactions and makes the model computationally tractable.
However, this approach excludes the peripheral venous network, which can nevertheless be

Superior sagittal sinus
Transverse sinus(es)Intern jugular(s)

Straight sinus

Figure 1: Atlas view of the intracranial compartments. (Images courtesy of Visible Body.)

significant depending on individuals. This choice is first motivated by the technical limitations
induced by PC-MRI regarding the size of the vessels composing this peripheral network, and
then by the position in the MRI machine. Indeed, during the acquisitions the subjects are in the
supine position where venous blood is essentially drained by jugulars. The peripheral network
draining the blood in standing and sitting positions is thus almost invisible in MRI images [2].

This document is organized as follows. The first section is dedicated to the treatment of the
data to extract and interface them with the numerical model considered in the second section.
In the third section, numerical results are presented and discussed. Conclusion and perspectives
opened by this work can be found in the last section.

1 Methodology for MRI processing

1.1 Materials and data

The CHIMERE team from Amiens CHU is a HANUMAN project partner specialized in MRI
acquisitions. The team carried out a study named HYPERPIC to understand how CSF, arterial
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and venous flows interact with ICP. To do so, they measure by PC-MRI, their flow curves
synchronized with cardiac cycle at different locations of the craniospinal system. They study
healthy volunteers and patients suspected to present high ICP. This study was approved by an
independent ethic committee and originally includes 16 subjects, half men and women, with
no neurological or spinal diseases known a priori. A description of the data is detailed in the
literature [24]. The protocol of this study includes morphological MRI sequences and PC-MRI
measurements. Our goal is then to use both this geometrical and physiological information as
inputs of our in silico fluid models.

The MRI acquisitions are fast, non invasive and non irradiating imaging techniques, providing
a 3D angiography of the intracranial and cervical vasculature. The images were acquired on 3T
scanner (Philips Achieva). 3D MRI angio images provides good structural information with a
millimeter scale space resolution in the acquisition plane. Capturing a fine blood vessel structure
from the MRI is crucial since the precision of FEM simulations relies on a good representation
of the vessel physical boundary. Among the available series in the HYPERPIC MRI datasets,
maximum intensity project (MIPs) series were selected for having a fine grained space resolution.
These series have also good properties adapted to depict small vessels [38], the contrast being
sufficiently high compared to surrounding structures. The settings is the following: the MIPs
series are acquired in the axial plane with a resolution of 288 × 288 × 80 for a spacing of
0.76 × 0.76 × 2.94 [mm3].

The PC-MRI acquisitions complete the structural information by quantifying the dynamic
inside slices of interest. In particular, it gives access to the magnitude of the blood velocity
at specific locations of the CVN. A PC-MRI slice is composed of a volumetric grid with some
spacial resolution and the velocity is recorded following a prescribed velocity encoding. The
amplitude of the fluid velocity is recorded on each voxel of the grid in the direction d normal
to the slice S. Each slice gives a time dependant velocity map with a duration of one cardiac
cycle split in 32 time steps. To do so the PC-MRI acquisition is synchronized on the cardiac
frequency. The final results is a mean cardiac cycle produced by average of 256 cardiac cycles
recordings. To optimize the quality of the PC-MRI, the velocity encoding must be selected in a
range close to the maximum expected velocity of the fluid of interest. The acquisition error is
below 10% and is sufficient to give a valuable information on fluid flows in a non-invasive way
and can be done in a clinical routine [34].

In this paper, we have decided to consider only healthy subjects of the cohort for our analysis,
because of follow-up issues with the pathological set. However, even in healthy cases, the overall
form of the CVN is subject to inter-individual variation. In particular, the sinus confluence
configuration (SCC) formed by the connection of the superior sagittal sinus (SSS) and the
straight sinus (StS) to the right tranverse sinus (RTS) and left tranverse sinus (LTS) can follow
several paths. Studies on the distribution of the SCC form in healthy population have been
made in [41] and more recently in [35, 25]. Among the 16 healthy participants available in
the HYPERPIC dataset, two subjects have been selected for their distinct SCC illustrated in
Figures 10 and 11 from numerical results in Section 3. They have been selected as they are
representative of the main encountered paths. The T2 case (Figure 10) is characterized by a
fully connected sinus tree made of the SSS, the StS, the LTS and the RTS up to the jugulars;
the T6 case (Figure 11) has a splitted network with two parts: couple {SSS,RTS} on the one
hand, and {LTS,StS} on the other.

1.2 Morphological extraction of vessels

Meshing the geometry of the vessels of interest is required to proceed with the computational
fluid dynamics (CFD) simulations. Virtual Angiography Toolkit (AngioTK) 1 is a framework
developed in a former project implementing a full pipeline from the original MRI to a virtual
MRI generated from CFD simulation using a set of numerical tools [7]. Some of these tools were
used in this work to extract the morphology of the vessels. The process is summed up in the
following steps:

1https://github.com/vivabrain/angiotk
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i.) Filtering the MRI properly to remove undesired structures and noise.

ii.) Parcelize to build a binary voxel map and highlight vessels of interest.

iii.) Skeletonize the binary map to extract centerlines with a radius information.

iv.) Reconstruct a smooth closed surface extrapolated from the centerlines properties with
cutted ends.

v.) Reconstruct a volumetric mesh adapted to the FEM simulations.
The first image pre-processing step i.) improves the MRI image by filtering the noise and

removing undesired elements from the 3D voxel matrix. Many algorithms may be used to high-
light vessels with more or less efficiency and the choice of the filtering method depends inherently
on the acquisition modality. Ranking Orientation Responses of Path Openings (RORPO)2 is an
in-house vesselness filtering tool developed during a former work [26] that has been used to ex-
tract the HYPERPIC sinuses network. The particularity of this method is to take into account
morphological information by removing non-tubular structures during the process. RORPO
has demonstrated its ability to achieve good results when compared with the state of the art
methods [23] despite having a high memory cost with respect to the image resolution.

The image segmentation steps ii.) is performed using classical algorithms available in the 3D
slicer software (thresholding, etc.) [13]. Only vessels of interest are kept to reduce the global
computation cost. This step requires a special attention since under- or over- segmentation
would result in vessel disconnections or merges (e.g. arteries close to jugulars).

The center lines extraction step iii.) use a type of skeletonization algorithm based on Voronoi
diagrams implemented in the VMTK library [21, 3]. This method encodes the geometry as a
1D line (see Figure 2) formed by set of nodes located at the centers of the Voronoi diagram
(approximately at the center of the vessel). A local size metric is calculated as the maximum
radius of the inscribed sphere along the local vessel. The centerline is deduced from the shortest
path in the diagram connecting the ends of the vessel branches. The geometry precision depends
inherently on the quality of the binary map, but also on the MRI acquisition that must depict
the vessels boundary correctly. The characteristic radii of our vessels of interest obtained after
the center lines extraction, showed in Figure 2c, is comparable to the values found in the study
[32]. The detailed comparison is presented in Table 1 for our selected subjects T2 and T6.

Radius [mm]
Vessel [32] T2 T6
Superior sagittal sinus 2.0 → 3.19 4.64 ± 0.23 2.95 ± 0.18
Straight sinus 2.5 2.31 ± 0.86 1.76 ± 0.29
Right transverse sinus 1.78 → 2.52 3.15 ± 0.37 2.27 ± 0.45
Left transverse sinus 3.09 → 4.37 4.29 ± 0.42 3.00 ± 0.30
Right intern jugular 2.52 → 3.99 4.44 ± 0.37 2.86 ± 0.34
Left intern jugular 3.9 → 6.18 3.23 ± 0.62 3.07 ± 0.55

Table 1: Veins characteristic radii in [mm].

For the final steps iv.) and v.), a surface is reconstructed from the centerlines using a levelset
method with a marching cube algorithm and smoothed using a Taubin method [42]. The 3D
frontal Delaunay mesh is generated from the surface using an open source 3D finite element
mesh generator with CAD support (GMSH [17]) and adapted using an open source software for
simplicial remeshing (MMG3D [4, 10, 9]). An illustration of the mesh obtained at the end of
the process is presented in Figure 2d.

1.3 Flow rate extraction from PC-MRI

In our context, we have 3 PC-MRI slices per subject at our disposal. Their locations are
illustrated in Figure 3 for our subject T2 and are approximately the same for all the cohort.

2https://github.com/path-openings/RORPO
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(a) MRI volume representation. (b) Binary segmentation.

(c) Computed centerlines. (d) Smooth surface mesh.

Figure 2: Subject T2 surface mesh extrapolated from 3D segmentation though 1D centerlines
with estimated nodal radius.
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These slices are: (1) PCV30coro with a coronal orientation, 1 × 1 × 3[mm] resolution and
300[mm.s−1] encoding, located at the back of the head. It intersects the superior sagittal sinus,
the straight sinus and both transverse sinuses. (2) PCV60intra with a transverse orientation,
1 × 1 × 2[mm] resolution and 600[mm.s−1] encoding. This one is located above the transverse
sinuses and intersects the straight and the superior sagittal sinuses. (3) PCV60cervasc with a
transverse orientation, 1 × 1 × 2[mm] resolution and 600[mm.s−1] encoding. This last one is
located above the cervical level and intersects intern jugulars. It follows that we have access to
8 sections of the CVN.

PCV30coroPCV60intraPCV60cervasc

Figure 3: Location of the PC-MRI slices for T2 and the corresponding amplitude images.

The software Flow [5] is used to segment, integrate and convert the velocity maps coming
from the PC-MRI acquisitions into flow rates. Since the flow rates obtained depend on the
segmentation defined by the user, we consider several different segmentations and compute an
effective signal using Gaussian process regression. The effective flow rates we obtain following
this process are presented in Figure 4. In Table 2, we compare our measurements to a study
made by Stoquart-ElSankari et al. [40] gathering data from 18 healthy individuals. We then
observe that all the raw flows for our subject T2 and T6 are in the ranges provided by the study.
We also remark that a zero flux in some vessels can appear in the ranges from [40], it actually
happens that all the blood is drained by only one side without being a pathological situation.

(a) T2 flow rates. (b) T6 flow rates.

Figure 4: Raw flow rates obtained after the processing of the PC-MRI acquisitions.

Reference T2 T6
Location Range Mean ± s.d. Mean Rescale Mean Rescale
Right intern jugular 0 → 11350 6650 ± 2383 5965 7295 6097 4341
Left intern jugular 0 → 9084 2683 ± 2500 5052 6177 5787 4120
Sup. sagittal sinus 4350 → 7100 5917 ± 950 6840 9203 4662 6156
Straight sinus 1483 → 2983 2033 ± 467 3172 4269 1746 2305
Right transverse sinus 1550 → 13600 7233 ± 3400 8219 8219 4165 4164
Left transverse sinus 0 → 7767 3250 ± 2533 5254 5254 4296 4296

Table 2: Flow rates are given in [mm3.s−1]. Results of venous blood flow in 18 healthy volunteers,
from study [40].
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In order to be integrated in the numerical model, these raw flow rates have to be processed.
Since we will assume in Section 2 that the fluid is incompressible and that the domain is rigid,
we must ensure that the volume of fluid entering in the system is equal to the exiting volume. In
our case, the sum of blood volume passing through the superior sagittal sinus and the straight
sinus should be equal to the sum of blood volume passing through the intern jugulars. To make
data compatible to our assumptions, we proceed to a rescaling of flow rates. To circumvent
the effect of individual variability, we first define vessel groups: the SSS with the StS, the RTS
with the LTS and the intern jugulars together. We then assume that these three groups have
the same blood volume passing through over a cardiac cycle. These volumes are computed
by integration of the corresponding flow rate over a cardiac cycle duration. The volume of the
transverse sinus group is chosen as reference, since its acquisition is more accurate, and the other
volumes are adjusted to match it. The ratio between vessels inside each group is conserved while
adjusting the total volume. The flow rates obtained after rescaling are presented in Figure 5 and
correspond to the actual inputs of the model. After this rescaling procedure, we observe that
the flow rates of the SSS and StS are higher than the ranges provided by literature, see Table 2.
This is due to current limitation of our approach where several vessels are neglected, meaning
that we are not able to capture all the entering blood volume. The rescaling choice is motivated
by our desire to keep the exiting flow rates as close to acquisitions as possible, because we aim
to use it as a ground-truth to adjust the model parameters.

(a) T2 flow rates. (b) T6 flow rates.

Figure 5: Flow rates after interpolation by splines and rescaling.

2 Numerical model

2.1 Fluid modelling

The blood volume is mainly composed of plasma (54%) and red cells (45%), where the plasma is
itself essentially composed of water (97%). Despite its non-Newtonian intrinsic nature induced
by cells suspension, the blood can be considered homogeneous when observing it at macro-
scale level (≥ [mm]). In addition, in the vascular structures we investigate, i.e. medium/large
vessels, the blood is always in motion and red cells are not able to form rouleau. These remarks
allow us to consider the blood as: (1) incompressible, (2) homogeneous, (3) Newtonian, and (4)
isothermal [15, 44]. The set of incompressible Navier-Stokes equations is the usual candidate
to describe the dynamic of such type of fluid. In the Eulerian description the fluid motion
is encoded by a vectorial velocity field denoted u and a scalar pressure field denoted p. A
fluid is also characterized by its density ρ, which remains constant in the particular case of
incompressible homogeneous fluid, and its dynamic viscosity η. Although the rheology of blood
depends on several factors (e.g. protein concentration, cell deformability, shear field [43]) and
causes uncertainty in the choice of ρ and η, their ranges remain reduced and allow us to consider
fixed reference values ρ = 1.05 × 10−6[kg.mm−3], η = 3.5 × 10−6[kg.mm−1.s−1] [29].

Using the above notations, we can introduce the Navier-Stokes system of equations. Let
[0, T ] and Ω ⊂ Rd be the time interval and the domain of interest with d = 3 the dimension.
We denote Γ = ∂Ω its boundary and we assume that it exists a partition Γ = ΓDir ∪ ΓNeu. This
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partition is such that ΓDir ∩ ΓNeu = ∅ and ΓNeu ̸= ∅. The problem reads

ρ
∂u
∂t

+ ρ(u · ∇)u − η∆u + ∇p = f in [0, T ] × Ω

∇ · u = 0 in [0, T ] × Ω
u = g on [0, T ] × ΓDir

η
∂u
∂n − pn = Pn on [0, T ] × ΓNeu

u = u0 in {0} × Ω
p = p0 in {0} × Ω

(1a)

(1b)
(1c)

(1d)

(1e)
(1f)

where n is the external unitary normal to the boundary, f represents the external forces, g is a
prescribed boundary conditions and P is the external pressure. The first equation (1a) comes
from the conservation of the momentum and the second one (1b) from the incompressibility
hypothesis. The equation (1c) is a Dirichlet boundary condition, it is used to model either vessel
walls in the homogeneous case (i.e. u = 0) and the inlet by imposing the velocity corresponding
to flow rate computed in Section 1.3. The equation (1d) is a generalized Neumann boundary
condition used to couple the 3D model with the Windkessel sub-models at the levels of the
outlets via the external pressure term P . Indeed, by cutting vessels at the intracranial exit,
we have neglected the rest of the network. These Neumann conditions allow us to take it into
account in the model by mimicking its effect on the flow. The last two equations (1e) and (1f)
correspond to the initial state of the system and is computed by solving a steady-state Stokes
equations (linearized version of Navier-Stokes). Gravity is neglected here, leading to f = 0.

We introduce the functional spaces V = {v ∈ (H1(Ω))d,v|ΓDir = 0} for the velocity and
Q = L2(Ω) for the pressure. These functional spaces are equipped with inner products ⟨u,v⟩V =∫

Ω u · v + ∇u : ∇v dx and ⟨p, q⟩Q =
∫

Ω pq dx, and the associated norms ∥v∥V =
√

⟨v,v⟩V and
∥q∥Q =

√
⟨q, q⟩Q. Where : denotes the contracted product of derivatives

∇u : ∇v =
d∑

i=1

d∑
j=1

d∑
k=1

∂ui

∂xj

∂vi

∂xk
.

For t ∈ [0, T ], multiplying equation (1a) by a test function v ∈ V and integrating leads to∫
Ω

∂u(t)
∂t

· v + (u(t) · ∇)u(t) · v − ν∆u(t) · v + ∇p(t) · v dx = 0, (2)

then invoking the Green’s and the Stokes formulas, and using the boundary conditions coming
from (1c) and (1d), leads to the weak form∫

Ω

∂u(t)
∂t

· v + (u(t) · ∇)u · v − ν∇u(t) : ∇v + p(t)(∇ · v) dx =
∫

ΓNeu
P (t)n · v dσ. (3)

If we now look at equation (1b) coming from the incompressible hypothesis, we multiply it by
a test function q ∈ Q and we integrate over the domain, we obtain:∫

Ω
q(∇ · u(t)) dx = 0. (4)

To solve these non linear equations, we consider the characteristics method introduced in
[37]. This linearization method leads to a generalized unsteady Stokes problem and can be
considered as an implicit approximation, it then gives an unconditionally stable scheme [39].
For K ∈ N, δt = T/K denotes the time step used to discretize the time interval and we denote
t(k) = kδt, u(k) = u(t(k), .) and p(k) = p(t(k), .). We also need to introduce X

(
t(k)
)
, the position

at t(k) of the particle which is in X
(
t(k+1)

)
at t(k+1) coming from the characteristics method.
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The time scheme chosen is here an Euler scheme which limits the time convergence rate to 1.
Injecting the time discretization in the expression from equation (3) gives∫

Ω

1
δt

u(k+1) ·v−ν∇u(k+1) : ∇v+p(k+1)(∇·v) dx =
∫

Ω

1
δt

(
u(k) ◦ X(k)

)
·v+

∫
ΓNeu

P (k+1)n ·v dσ.

(5)
As detailed in the following Section 2.2, the output P (k+1) of the Windkessel sub-models is a
function of the current and previous velocity states, it then reads P (k+1) = P

(
{u(i)}k+1

i=0

)
. The

equation (5) can be split in several terms denoted:

a(u,v) =
∫

Ω
ν∇u : ∇v dx, (6)

b(p,v) = −
∫

Ω
p(∇ · v) dx, (7)

c(u,v) =
∫

Ω

1
δt

u · v dx, (8)

d(u,v) =
∫

ΓNeu
P
(
{u(i)}k+1

i=0

)
n · v dσ, (9)

In this way, the associated variational problem reads: knowing (u(k), p(k)), find (u(k+1), p(k+1)) ∈
V ×Q such thatc

(
u(k+1),v

)
+ a

(
u(k+1),v

)
+ b

(
p(k+1),v

)
+ d(u(k+1),v) = c

(
u(k) ◦ X(k),v

)
v ∈ V

b
(
q,u(k+1)

)
= 0 q ∈ Q

.

(10)

2.2 Windkessel four-components boundary condition

To take into account the truncated part of the network, we interface a Windkessel model to
the non-homogeneous Neumann boundary condition in (1d), through the external pressure P .
Different 0D models exist to model vascular networks and give a variety of behavior for P .
However, using complex 0D models usually involves more parameters and can make the model
tuning intractable. In this paper, we use at each outlet a four components Windkessel model
composed by; two resistances Rp (proximal) and Rd (distal), a capacitor C and a coil L. The
resistances are used to encode the hydraulic resistance applied by the vascular network, while
the capacitor models its compliance (elasticity) and the coil models the fluid inertia.

Pd C Ground3DDomain P Rp
Rd L

Figure 6: Representation of the four components Windkessel model.

The generic circuit used for the four components model is depicted in Figure 6 and has the
following exact solution [19]

P (t) = P (0)e
−t

RdC +L
(
Q′(t) −Q′(0)e

−t
RdC

)
+Rp

(
Q(t) −Q(0)e

−t
RdC

)
+ 1
C

∫ t

0
Q(s)e

s−t
RdC ds, (11)

where Q(t) =
∫

γ u(t) dσ and γ denotes the outlet surface. Using the time discretization, the
integral part of equation can be approximated by a trapezoidal rule

∫ t(k)=t

t(0)=0
Q(s)e

s−t(k)
RdC ds ≃ δt

2 Q
(0)e

−t(k)
RdC + δt

k−1∑
j=1

Q(j)e
(j−k)δt

RdC + δt

2 Q
(k). (12)
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Invoking again the time discretization, a backward Euler’s scheme allows to obtain an approxi-
mation of the flow rate derivative, it reads

Q′(k) ≃ Q(k) −Q(k−1)

δt
. (13)

Given an estimation Q̂′(0) of Q′(0) that exponentially vanishes over the time, we obtain the
scheme

P (k) = P (0)e
−t(k)
RdC + L

(
Q(k) −Q(k−1)

δt
− Q̂′(0)e

−t(k)
RdC

)
+Rp

(
Q(k) −Q(0)e

−t(k)
RdC

)

+ δt

2C

Q(0)e
−t(k)
RdC + 2

k−1∑
j=1

Q(j)e
(j−k)δt

RdC +Q(k)

 . (14)

Let Req = Rp + Rd be the equivalent resistance of the model, we set P (0) = Q(0)Req for the
initial pressure and Q̂′(0) = 0 as the initial flow rate derivative. The scheme obtained

P (k) = Q(0)e
−t(k)
RdC

(
δt

2C +Rd

)
+ δt

C

k−1∑
j=1

Q(j)e
(j−k)δt

RdC −Q(k−1) L

δt
+Q(k)

(
δt

2C +Rp + L

δt

)
, (15)

is based on an implicit formulation and is by nature unconditionally stable [19]. Finally, we split
the scheme in between its implicit and explicit parts

dimp (u,v) =
(
δt

2C +Rp + L

δt

)∫
Γ

u · n ds
∫

Γ
v · n ds, (16)

d(k)
exp (v) =

Q(0)e
−t(k)
RdC

(
δt

2C +Rd

)
+ δt

C

k−1∑
j=1

Q(j)e
(j−k)δt

RdC −Q(k−1) L

δt

∫
Γ

v · n ds, (17)

in order to inject it in the variational formulation.

2.3 Numerical approximation

In the case of CFD approximations, we need to choose carefully the couple of approximation
spaces velocity-pressure to ensure the compatibility with the inf-sup stable condition [18, 6]. A
typical set of admissible couples is Pk+1

h − Pk
h finite elements with k ≥ 1. For k = 1, it gives the

well-known Taylor-Hood finite elements couple P2
h − P1

h. We thus consider the approximation
space Vh = {v ∈ (P2

h)d | v|ΓDir
= 0} for the velocity field and Qh = P1

h for the pressure
field. These approximation spaces are spanned by their respective finite element basis denoted
Vh = span (ψ1, . . . , ψdN2) and Qh = span (φ1, . . . , φN1). Injecting these basis of Vh and Qh

in the bilinear forms (6), (7), (8) and (9), we respectively obtain: the stiffness matrix Ah ∈
RdN2×dN2 given by (Ah)ij = a(ψi, ψj), 1 ≤ i, j ≤ dN2; the divergence matrix Bh ∈ RN1×dN2

given by (Bh)ij = b(φi, ψj), 1 ≤ i ≤ N1, 1 ≤ j ≤ dN2; the mass matrix Ch ∈ RdN2×dN2 given
by (Ch)ij = c(ψi, ψj), 1 ≤ i, j ≤ dN2; and the Windkessel matrix Dh ∈ RdN2×dN2 given by
(Dh)ij = dimp(ψi, ψj), 1 ≤ i, j ≤ dN2.

Assuming that the initial state (u(0)
h , p

(0)
h ) is known, where the sub-index h denotes the

numerical approximation, we want to compute (u(k)
h , p

(k)
h ) for k = 1, . . . ,K. The algebraic

formulation associated to the variational problem (5) is a linear system of dimension dN2 + N1
given by [

Ch + Ah + Dh Bt
h

Bh O

] [
u(k+1)

h

p
(k+1)
h

]
=
[
d

(k+1)
exp

(
{u(i)

h }k
i=0

)
+ Chu(k)

h

0

]
. (18)

Solving the whole problem then requires to solve K times this linear system. This task is
achieved with parallel computing using in-house codes implemented with FreeFEM [20] and
that have been validated beforehand by manufactured solutions and physical test cases.

10



3 Numerical results
Simulation results are presented for the two subjects described in the previous sections, namely
T2 and T6. The computational meshes we use are composed of 326 349 tetrahedra for T2 and
221 971 for T6, respectively leading to 1 471 590 and 1 051 657 degrees of freedom. After
running validation simulations to ensure convergence of the numerical results w.r.t. both time
and space steps, we choose to use Kcycle = 801 time step per cycle, over 3 simulated cycles. It
gives a total of K = 2(Kcycle − 1) + Kcycle = 2 401 time steps to compute. The flow rates of
the SSS and the StS obtained in Section 1.3 are used as inputs for the model. Two Windkessel
sub-models are attached to the model outlet, corresponding to right and left jugular levels. The
flow rates of the RTS and the LTS are used to adjust the parameters of these Windkessel models
by comparing them to the model outputs. Although our outlets are located at the jugular level,
we choose to adjust them to transverse sinuses flow rates since the jugulars are outside the
hypotheses of our model. Indeed, jugulars are extra-cranial and elastic, even collapsible, they
can not be considered as rigid pipes. It is therefore unlikely that the model will be able to
reproduce correctly these flow rates.

3.1 Effect of the equivalent resistance in Windkessel models

A systematic method to adjust the equivalent resistance Req = Rp+Rd of each of the Windkessel
model is to observe the average flow rate and pressure over a cardiac cycle, they read

Q = 1
T cycle

∫ T cycle

0
Q(τ) dτ ≃ 1

T cycle

Kcycle∑
k=0

δt Q(t(k)) = 1
Kcycle − 1

Kcycle∑
k=0

Q(t(k)), (19)

P = 1
T cycle

∫ T cycle

0
P (τ) dτ ≃ 1

T cycle

Kcycle∑
k=0

δt P (t(k)) = 1
Kcycle − 1

Kcycle∑
k=0

P (t(k)), (20)

where T cycle is the cardiac cycle duration. Using a specific regression described in Appendix A
and based on 9 simulations, we are able to build the maps of average flow rate and pressure
at the right outlet with respect to right and left equivalent resistances. The maps obtained are
presented in Figure 7 and they allow us to infer ranges of the admissible resistances by setting
a target flow rate, i.e. the RTS one, and a pressure target of 7.5[mmHg], corresponding to
an healthy subject ICP in literature [12]. The ranges we obtained following this procedure are
presented in Table 3 and Table 4.

Resistance min max
Req,1 1.18 × 10−4 1.26 × 10−4

Req,2 1.84 × 10−4 2.08 × 10−4

Table 3: Ranges of admissible resistances for
T2.

Resistance min max
Req,1 2.27 × 10−4 2.55 × 10−4

Req,2 1.34 × 10−4 1.70 × 10−4

Table 4: Ranges of admissible resistances for
T6.

3.2 Compliance and inertance tuning

To obtain numerical simulations better fitted with the real data, we can tune the compliances
and inertances, and with the use of several indexes such as the amplitude, we are able to sort
and retain the best parameter sets. However, tuning the compliance and inertance of each
Windkessel model with systematic methods based on regression of these indexes is less adapted
than for the resistances case, as they interfere one with the other. It is then necessary to use
more elaborated data assimilation methods, which represents an ongoing work.

After an empirical exploration and in order to illustrate our model performance, we ran 4
simulations with the parameter sets presented in Table 5 for T2 and in Table 6 for T6. Note
that although the proximal resistances have been implemented and validated separately in the
model, we choose to keep them null. This means that we assimilate the equivalent resistance
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(a) T2 flow rate evolution. (b) T2 pressure evolution.

(c) T6 flow rate evolution. (d) T6 pressure evolution.

Figure 7: Interpolant of the field of flow rate and pressure evolution at the right outlet with
respect to the equivalent resistance of the Windkessel models (9 simulations used as interpolation
points).

to the distal one, in order to keep the adjustment task tractable here. This unused parameters
still represent extra degrees of freedom to fit the model on the real data. In Figures 8a, 8b, 9a
and 9b we compare the flow rates obtained at the outlets of the model with the measurements of
the transverse sinuses and the intern jugulars from the PC-MRI acquisitions. We observe that
the simulated flow rates are relatively close to the measured ones, meaning that the numerical
model is able to reproduce the main features of the velocity field. Thus, we can consider this
velocity field extended by the model to the whole domain to infer quantities of interest with high
confidence. In Figures 8c, 8d, 9c and 9d we display the pressure found at the outlets and for
which we do not have measurements to compare with. Although the mean pressure is prescribed
at the outlets by the equivalent resistances of the Windkessel models, the pressure drop and the
pressure variations are fully computed by the numerical model, and yet gives an information
not accessible otherwise. We observe in Figure 9 that despite the flow rates associated to the 4
parameter sets are close to the measurements, the pressure field can show different behaviors.
It follows that without any extra information regarding the pressure, beside the physiological
values in literature, it is not possible to obtain a unique pattern for the pressure field. Finally, in
Figures 10 and 11, we show streamlines of the flow to illustrate its complexity and the presence
of local 3-dimensional effects that should be taken into account when this system is studied.
The pressure field is also presented to illustrate the variation between right and left sides of the
network.
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(a) Flow rate at the left outlet. (b) Flow rate at the right outlet.

(c) Pressure at the left outlet. (d) Pressure at the right outlet.

Figure 8: Simulation for T6 with parameter sets matching the flow rate evolution, see Table 5.

T2 Rp,1 Rd,1 C1 L1 Rp,2 Rd,2 C2 L2
Set 1 0 1.22 × 10−4 103 1 × 10−6 0 1.95 × 10−4 101 2.5 × 10−5

Set 2 0 1.22 × 10−4 103 1 × 10−6 0 1.95 × 10−4 102 2.5 × 10−5

Set 3 0 1.22 × 10−4 103 1 × 10−6 0 1.95 × 10−4 101 5 × 10−5

Set 4 0 1.22 × 10−4 103 1 × 10−6 0 1.95 × 10−4 102 5 × 10−5

Table 5: Sets of parameters for accurate simulations T2 case.

3.3 Discussion

Before going to the details of the results, we point out that one main limitation of the current
numerical model is its computational cost. The choice of the linearization using the character-
istics method is adapted to the situation as it tends to be very stable in the vascular simulation
context [16], and allows to use efficient algorithms in back-end. However this method is hardly
scalable in a parallel computing paradigm and leads to sub-optimal performances. In the current
state of our code we limit the computation to 4 cores, resulting in 10 to 12 hours per simula-
tions. Changing the methods used, and hence the corresponding code, to improve computational
efficiency while maintaining the confidence in the outputs represent an ongoing work.

Results for T2 and T6 are quite different, not only because of the geometry but also because
of the flow ratio between right and left. In both cases, we are able to adjust the resistances in
such a way that the mean value of the flow rate on the one hand, and of the pressure on the other
hand, match the provided values. However tuning the compliance and inertance parameters with
systematic methods based on regression is not possible and yet represent a challenging task, even
in this simple configuration. Sophisticated data assimilation methods must be considered at this
point to make this parameter research tractable before proposing extension of the current model.
Nevertheless, it appears that the values we obtained empirically are close to those one can find in
the literature [47, 11]. It is noticeable that at the jugular level, the model outputs are far from
the measurements, which is acceptable at the moment, since jugulars are outside hypotheses
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(a) Flow rate at the left outlet. (b) Flow rate at the right outlet.

(c) Pressure at the left outlet. (d) Pressure at the right outlet.

Figure 9: Simulation for T6 with parameter sets matching the flow rate evolution, see Table 6.

T6 Rp,1 Rd,1 C1 L1 Rp,2 Rd,2 C2 L2
Set 1 0 2.40 × 10−4 101 1 × 10−6 0 1.51 × 10−4 102 1 × 10−6

Set 2 0 2.40 × 10−4 101 5 × 10−5 0 1.51 × 10−4 102 5 × 10−5

Set 3 0 2.40 × 10−4 102 1 × 10−6 0 1.51 × 10−4 103 1 × 10−6

Set 4 0 2.40 × 10−4 102 5 × 10−5 0 1.51 × 10−4 103 5 × 10−5

Table 6: Sets of parameters for accurate simulations T6 case.

of the model. Although the pressure can not be set with certainty, the overall shape of the
pressure curve seems fairly close to what is usually observed, i.e. several peaks with a larger one
at first. The next step regarding this issue is to work on patients where the pressure is invasively
measured, in order to calibrate our parameters much better.

We made some choices to find acceptable parameters that can be discussed. As we also have
access to the arterial input at the cervical level (C2-C3, see slice PCV60cervasc in Figure 3), we
could have chosen to use the value of the total arterial flow as the reference volume for the venous
network. But as it have been already stated, lots of vessels are neglected in our model and this
would have lead to large values to drain outside the cerebral compartment, which is not realistic.
Finally, we observe that there is a phase shift in between model outputs and measurements (e.g.
in Figures 9a and 9d). The latter can not be reproduced by the numerical model due to the
fluid incrompressibility and the rigid structure hypotheses. Hence, this phase shift can be done
asymmetrically, by forcing the flow to go on one side via the Windkessel models, but not on
both sides at the same time.

An other limitation of our model is regarding the geometries and the associated meshes,
we remark that our choice of surface reconstruction based on center-lines leads to vessels with
circular sections. This is because the only information retained along centerlines is a radius.
Even if this approach seems well adapted for arteries, it is not really suited for veins and sinuses
as their sections are rarely this shape. However, it provides some starting point to deal with
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(a) Streamlines of the velocity field. (b) Pressure field.

(c) Zoom on the streamlines at the sinus confluence. (d) Zoom on streamlines at the left transverse sinus.

Figure 10: Simulation results for T2 with parameter set 1 from Table 5.
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(a) Streamlines of the velocity field. (b) Pressure field.

(c) Zoom on the streamlines at the sinus confluence. (d) Zoom on streamlines at the left transverse sinus.

Figure 11: Simulation results for T6 with parameter set 1 from Table 6.
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realistic meshes needed for the rest of the study. Efforts are currently made to circumvent this
limitation by recording additional information, such as three radii for triangular sections often
encountered in sinuses. Further work has to be done to estimate the impact of such circular
approximations of triangular sections regarding the current framework.

Conclusion
Excluding the software flow provided by the CHIMERE team, all steps of the current data
processing chain have been developed in order to provide a fully accessible, reusable and open
source framework [30].

To be in accordance with the physiology, we have shown that data of the specific subject
must be used. To this end, we developed processes to extract structural data from MRI as well as
physiological measurements from PC-MRI of the same subject. Due to the wide inter-individual
variability of the cerebral venous network, those tasks can essentially not be automatized, we
however implemented them in the most standardized manner. We also provided a methodol-
ogy to integrate these individual-specific data into our numerical model under certain arguable
choices and hypothesis. Almost all the available information is used in this context, either as
an input (mesh, boundary condition) or as a control for outputs (flow rates). Using comparison
between real data and these control measurements, we were able to adjust the parameters of our
model, up to some extent. The values obtained for these parameters look reasonable in regard
of the literature and tends to prove that the numerical model captures the essence of the physic
behind.

In addition, we have shown here that geometry is not the only data needed to make the model
reproduce a physiological behavior. Windkessel models seem mandatory to take into account
the neglected part of the venous network, and especially its structural component, while keeping
computations tractable. In the meantime, we have to find acceptable sets for the parameters
associated to these Windkessel sub-models and we have shown that this represents a challenging
task. The parameters calibration proposed here is only empirical and based on qualitative
observations. The main purpose of this work is rather to confirm that coupling between real
data and numerical model is necessary to obtain reliable physiological behaviors, than to provide
quantitative results yet. The current numerical model gives already encouraging results, even
if the outputs we obtain do not fit perfectly the real measurements. The quantitative aspect
requires a detailed exploration of the model, and especially the effects of each input parameters,
and represents an ongoing work.

Furthermore, several possible extensions of the current model have been proposed through
this paper and each of them should be considered carefully. The goal is to keep an accurate,
and yet understandable, numerical model. One last issue we address in the results discussion
is the lack of information regarding the pressure. The former purpose of such model was to
provide, at least, quantitative information on the pressure using only flow rates data and this
task is fulfilled. However, the model still have to be calibrated to make this pressure information
reliable, using for instance patient for whom the pressure is recorded invasively. Once this has
been achieved, the model can be used to infer de-regulations of the cerebral venous system in
pathological cases.
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A Model for interpolation of the mean flow rate
We denote Qtot the total flow rate (sum of right and left) and α the ratio between right and
left. Considering the model simplification described in Figure 12, we deduce

δPTR = αQtotRTR
δP1 = αQtotR1

δPTL = (1 − α)QtotRTL
δP2 = (1 − α)QtotR2
δP = δPTR + δP1
δP = δPTL + δP2

.

RSSS

RStS RTL

RTR R1

R2

3D-0D 
coupling

P

δP

δPTR δP1

δP2δPTL

Figure 12: Model simplification.

It follows that
αQtotR1 + αQtotRTR = (1 − α)QtotR2 + (1 − α)QtotRTL. (21)

Since RTR and RTL are unknown, we can rewrite (21) as

α = R2 +RTL
R1 +RTR +R2 +RTL

= R2 + a

R1 +R2 + b
, (22)

where a and b are to be defined. In order to define them, we can write (22) as

−a+ αb = R2 − α(R1 +R2) (23)

and use a linear regression with at least two simulations results. The pressure at the right, resp.
left, outlet of the 3D model corresponds to δP1, resp. δP2, they read

δP1 = R2 + a

R1 +R2 + b
QtotR1, δP2 = R2 + a

R1 +R2 + b
QtotR2. (24)

Now, if we consider a target ratio α∗ and a target pressure at the right outlet δP ∗
1 , we are looking

for R1, R2 such that {
R2+a

R1+R2+bQtotR1 = δP ∗
1

R2+a
R1+R2+b = α∗ ,

the solution of the problem readsR1 = δP ∗
1

Qtotα∗

R2 = 1
α∗−1

(
a− δP ∗

1
Qtot

− α∗b
) .
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