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Real-time collision avoidance based on optic flow
divergence onboard an underwater vehicle

Lucia Bergantin1, Christophe Viel2, Luc Jaulin1

Abstract—Obstacle avoidance is a major challenge for un-
derwater robot navigation, especially in cluttered environments
where sonars are subject to reverberation and noise. Optic flow
cues are widely used for aerial drone navigation, as they can
be measured with broadly available sensors such as monocular
cameras. In this study, we investigate the use of optic flow
divergence for real-time collision avoidance onboard a Remotely
Operated underwater Vehicle (ROV) equipped with monocular
cameras. The measured optic flow divergence was first used
to trigger an autonomous emergency braking response, then to
estimate the relative distance of the underwater vehicle from the
detected obstacle using an Extended Kalman Filter. This relative
distance was used to maintain a predefined safe distance from
the obstacle. Tests were first carried out in a pool, then in a
harbour and a lake.

Index Terms—Obstacle avoidance, underwater navigation, op-
tic flow

I. INTRODUCTION

Obstacle avoidance is a major challenge for the naviga-
tion of Unmanned Underwater Vehicles (UUVs). The robot
must first be able to detect obstacles and then avoid them.
In the underwater environment, limited visibility generally
favours the use of sonar for obstacle detection. However, high-
performance sonars are expensive, and can be particularly
prone to interference in cluttered environments or near walls
due to reverberation and noise. The resulting acoustic image
is still useful for remote operators, but distance measurements
are often very noisy and too unstable for automated position
control systems in these conditions. In addition, the use of
sonar is not always authorised (in the vicinity of military
installations or near the coast, for example). Therefore, other
solutions need to be considered.
Several approaches for UUV navigation involving the use
of ArUco markers [27], acoustic systems [20], Simultaneous
Localisation and Mapping (SLAM) methods [29, 28] or feature
detection [5] have been proposed. Many of these approaches,
however, require the fusion of outputs from several sensors.
In cluttered environments, short-distance detection can be
performed using electric sense [4] or vision.
Optic flow is a visual cue representing the apparent motion
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of objects, surfaces, and edges caused by the relative motion
between an observer and a scene [6]. Optic flow cues are
widely used for Unmanned Aerial Vehicle (UAV) navigation.
Translational optic flow has been employed for controlled
landing [22], uneven terrain following [9] and localization
[14, 15]. Optic flow divergence has been used for visually
controlled landing [11, 24, 8, 12], honeybee-inspired visual
odometry [1] and obstacle avoidance [21, 26]. Methods for
measuring optic flow divergence were tested onboard UAVs
with a monocular camera [8, 12] and optic flow sensors
[1]. The optic flow divergence was also used to estimate
the relative distance between a UAV and the ground using
an Extended Kalman Filter (EKF) [1]. Some studies have
explored the possibility of using optic flow cues for UUV
navigation as well. A synthetic database of underwater scenes
was presented to train deep neural networks for optic flow
estimation [10]. Optic flow divergence resulting from depth
variations has been employed to evaluate the scale factor
of observed scenes to perform visual odometry onboard a
Remotely Operated Vehicle (ROV) [7].
ROVs are UUVs remotely controlled by operators on the
surface. They are connected via a tether and can be equipped
with cameras and other sensors for tasks like underwater
inspections, data collection, and maintenance in deep and haz-
ardous environments. Their field of application is vast, from
dam inspection, offshore platform, and pipeline maintenance
to marine research and underwater archaeology. Since ROV
operators face practical challenges in maneuvering due to
complex underwater conditions (currents, lack of visibility,...),
most works try to make robot control easier, more intuitive,
and safer [23, 25].
In this study, we investigate the use of optic flow diver-
gence for real-time minimalistic underwater collision avoid-
ance onboard an ROV (referred to here as BlueBee robot).
The presented approach is particularly suited for obstacles in
close proximity. Optic flow divergence was measured using
a monocular camera, based on the method presented in [12].
The occurrence of an optic flow divergence measured during
remote-controlled navigation was used to detect the presence
of an obstacle and thus trigger an autonomous emergency
braking response. The measured optic flow divergence was
then used to estimate the relative distance of the BlueBee
robot from the detected obstacle using an EKF. The estimated
relative distance was employed to reach a predefined safe
distance from the obstacle. Optic flow divergence was then
continuously measured thanks to an imposed small oscillation,
allowing the robot to maintain the predefined safe distance. To
evaluate the proposed method under different conditions, tests



Fig. 1. An expansion of the optic flow vector field is observed when a robot
approaches a surface (i), while a contraction is observed when the robot moves
away from it (ii).

were carried out in a pool, a harbour and a lake.

II. MEASUREMENT OF THE OPTIC FLOW DIVERGENCE

An expansion of the optic flow vector field is observed when
approaching a surface, while a contraction is observed when
moving away from it (see Figure 1). This series of expansions
and contractions can be defined as the optic flow divergence
ωD. If we consider a robot equipped with a camera looking
straight towards a surface, ωD can be expressed as the ratio
of the robot’s velocity in the direction of the surface Vd to the
robot’s distance from the surface d:

ωD =
Vd

d
(1)

In this study, we built on a method presented by previous
authors to measure optic flow divergence with a monocular
camera [8, 12, 13]. Images were first converted from RGB
to greyscale. Features were detected with the Scale-Invariant
Feature Transform (SIFT) algorithm [18, 17] and tracked to
the next image with the Pyramidal Lucas Kanade method [3].
After calculating the image distances dt in the frame taken at
time ti and d(t+∆t) in the next frame at time ti+1 = ti +∆t
(with ∆t > 0 a chosen time interval), we computed the ratios
(dt − d(t+∆t))/dt and took their average divided by ∆t.
To compensate for the presence of underwater currents and
orientation instabilities due to remote operation, the highest
component of the rotational optic flow given either by the
rotation around axis y or z of the camera (see Figure 2.ii),
was subtracted from the optic flow divergence. Let us call
them ωR,y and ωR,z respectively. Since each component of the
rotational optic flow depends on the robot’s speed of rotation,
we can roughly approximate (for reasons of calculation time)
ωR,y and ωR,z using angular velocities given by the Inertial
Measurement Unit (IMU) of the robot. Note that ωR,y and
ωR,z depend on the camera position and orientation on the
robot. For example, on a downward-facing camera, ωR,y and
ωR,z can be approximated as the derivative of the robot’s pitch
and roll respectively. A more complete estimate in real time
of ωR,y , ωR,z and possibly ωR,x (expressed according to [16])
will be the subject of future studies.
The measured optic flow divergence was filtered to remove
outliers.

Fig. 2. i) Schema of the method used for measuring the optic flow divergence
ωD . ii) The BlueBee robot is equipped with a frontal monocular camera
and a downward monocular camera (with their respective coordinate systems
{Oc, x⃗, y⃗,z⃗}).

III. COLLISION AVOIDANCE

A. Hypotheses

In this study, we propose controls for a robot of type ROV.
Let us define Rc = {Oc, x⃗, y⃗,z⃗} the frame of reference of
the camera, where Oc is the center of the camera and x⃗
corresponds to the optical axis of the camera (see Figure 2.ii).
x⃗ represents the direction in which the optic flow divergence is
measured. Let Vx be the velocity of the robot in the direction x⃗.
Since ROVs are holonomic, we consider here that the robot has
already a low-level control allowing it to be driven directly in
translation on x⃗: we define ux the control input in the direction
x⃗. When the autonomous controls described below are not
activated, a manual control ux,operator given by an operator
(from a joystick, for example) is applied.

B. Emergency braking response

To detect obstacles in an underwater environment, we con-
tinuously measured optic flow divergence while an operator re-
motely controlled the BlueBee robot. When the measured optic
flow divergence was lower than an experimentally defined
threshold ωD lim < 0 (see Appendix A), we considered that an
obstacle was detected and an autonomous emergency braking
response was automatically activated. A strong impulse in the
opposite direction to the obstacle was imposed on the robot
to avoid it. When the obstacle was no longer detected, the
robot stopped the motors and then gave back the control to
the operator. The robot can so be in three different modes:
operator control (mode = 0), obstacle repulsion (mode = 1),
and stop repulsion (mode = 2).
The emergency braking control can be expressed as:

ux =


−kvV

∗
x if mode = 1,

0 if mode = 2,

ux,operator if mode = 0,

(2)



where V ∗
x = Vx if Vx can be measured or V ∗

x = 1 otherwise,
kv > 0 a design parameter whose value can be high if Vx is
unknown, and mode a discrete memory variable such that:

mode(k) =


1 if ωD ≤ ωD lim

2 if (ωD > ωD lim) and (mode(k − 1) = 1)

0 else
(3)

Note that the knowledge of the velocity Vx is not necessary in
the control (2). However, if Vx is known, this information
allows a smoother speed-proportional control. Otherwise, a
chosen motor impulse strong enough to stop the robot must
be chosen.

C. Safe-distance maintenance control
Previous authors demonstrated that thanks to the optic flow

divergence the state vector X = [d, Vd]
T is locally observable

[12, 2]. As a consequence, we can use the measured optic flow
divergence to estimate the relative distance dest of the BlueBee
robot from the obstacle using an EKF. The EKF receives the
optic flow divergence as measurement and the acceleration ad
of the BlueBee robot (given by its IMU) in the direction of
the obstacle as input (see Appendix B). In this study, we use
the measured optic flow divergence to estimate the relative
distance dest of the BlueBee robot from the obstacle after an
emergency braking response. dest is then used to maintain a
predefined safe distance.
The safe-distance maintenance control can be expressed as:

ux = −sign (dest − d∗)ux,min (4)

where d∗ > 0 is the desired distance from the obstacle and
ux,min > 0 is a control value for a small displacement (see
an example for our experiment in Section IV). Note that
d∗ must be chosen such that optic flow divergence can be
measured stably. It can be observed that the control does not
use proportional or derivative terms but a constant term. This
prevents the robot from converging to the desired distance,
thus imposing a small oscillation to continuously measure
optic flow divergence and so continuously estimate the relative
distance of the BlueBee robot from the obstacle.

IV. THE BLUEBEE ROBOT

A BlueROV21 was used for tests in a pool, a harbour and
a lake. BlueROV2 are equipped by standard with a frontal
monocular camera, two lights facing forward, a barometer, and
an IMU. The BlueBee robot was also equipped with a second
monocular camera and two extra lights facing downwards to
measure ωD in that direction and thus use the barometer as
ground truth. Both monocular cameras are Low-Light HD
USB Camera2 (standard cameras on BlueROV2), developed
for underwater vision with excellent low-light performance,
good color handling, and onboard H.264 video compression.
An image of size 800× 600 was chosen for the transmission.
An acoustic camera Blueview3 was also equipped in the frontal

1https://bluerobotics.com/store/rov/bluerov2/
2https://bluerobotics.com/store/sensors-cameras/cameras/cam-usb-low-

light-r1/
3http://www.teledynemarine.com/blueview/

direction to obtain a 2D imaging sonar easy for humans to
interpret. Distance extraction is not possible directly on this
model.
The Bluerov already has translation commands provided by the
MAVROS package. A pwm input must be provided between
1000 and 2000, where 1500 is the neutral input, and 1000 and
2000 are the maximum power in one direction or the other.
The pwm input was so expressed as upwm, x = ux + 1500.
Note that motors have a dead-band such that they are inactive
if the input is in the interval upwm, x ∈ [1450, 1550]: we can
so choose ux,min = 60. The ROV’s downward speed can be
accurately measured using the barometer, but the ROV’s IMU
is not accurate enough to provide forward speed. Thus, we take
V ∗
x = Vx during downward and V ∗

x = 1 during frontal testing.
We take ωD lim = −0.05rad/s, kv = 400 and d∗ = 0.7m.
Optic flow divergence and control input were calculated with
a frequency of f = 15Hz and so dt = 1

f . The ROV was
controlled in depth and heading to keep them constant when
the operator did not control them.

V. EXPERIMENTAL RESULTS

A. Tests carried out in a pool

Tests were carried out in the pool of ENSTA Bretagne (in
Brest, Brittany, France; shown in Figure 3.i ). In order to use
the output of the barometer as the ground truth, tests were
performed using the monocular camera facing downwards and
the bottom of the pool was considered as the obstacle. The
downward-facing lights of the BlueBee robot were switched
on at maximum.
An example of real-time emergency braking response is shown
in Figure 3.iii. The blue section of the curves correspond to the
remote operation phase, during which an operator controlled
the BlueBee robot with a joystick to descend towards the

Fig. 3. i) The BlueBee robot in the ENSTA Bretagne pool (in Brest, Brittany,
France). ii) View of the bottom of the pool from the downward camera. iii)
Example of emergency braking response: the BlueBee robot was remotely
controlled (in blue) until an optic flow divergence ωD below the threshold
ωD lim = −0.05rad/s (gray area) was measured and the autonomous
emergency braking response was triggered (in red).



Fig. 4. Example of collision avoidance carried out in the ENSTA Bretagne
pool (in Brest, Brittany, France): a) measured optic flow divergence ωD ,
b) pwm command given to the BlueBee robot, c) acceleration ad in the
direction of the obstacle given by the Inertial Measurement Unit (IMU) of
the robot, d) comparison of the estimated relative distance dest with the
ground truth d given by the barometer. A video of the tests is available at
https://youtu.be/qSBWyWI1wX0 .

bottom of the pool. As soon as an optic flow divergence
below the given threshold ωD lim was measured, the emergency
braking response (red section of the curves) was automatically
activated and the BlueBee robot autonomously moved away
from the detected obstacle.
We then tested the real-time safe-distance maintenance al-
gorithm under the same conditions. In the example shown
in Figure 4, the obstacle was detected at 1.8m from the
bottom of the pool and thus the BlueBee robot performed an
emergency braking stop within 3s. The EKF was initialized
at 1m (see Appendix A) and the estimated relative distance
dest converged to the ground truth d given by the barometer
within 11s from the emergency braking response. The average
percentage error after convergence d− dest was 5.3%, with a
minimum value of −9.52% and a maximum value of 26.84%.
dest was used to maintain the BlueBee robot at a predefined
safe distance of 0.7m from the bottom of the pool. The
imposed oscillations (see Figure 4.d) had an average amplitude
of approximately 0.2m.
Similar results were obtained by performing preliminary tests
with the frontal camera and considering the side of the pool
as an obstacle. Due to the lack of reliability of the equipped
sonar in such a confined environment, we lacked a ground
truth to validate our results.

B. Tests carried out in harbour and lake

Real-time safe-distance maintenance tests were carried out
in the Moulin Blanc harbour (in Brest, Brittany, France) in
salt water. Experiments were performed with the downward
camera under the same conditions as those carried out in
the ENSTA Bretagne pool, with similar results (as shown
in Figure 5.A i and ii). The bottom of the harbour was
considered as the obstacle to avoid and was detected at
a relative distance of about 1.3m. An emergency braking

response was triggered within 3s, after which the BlueBee
robot maintained a safe distance of 0.7m from the obstacle.
Preliminary tests with the frontal camera in fresh water
were also carried out in the Guerlédan lake (in Guerlédan,
Brittany, France; see Figure 5.B.i and ii). Here, the EKF
was initialized at 1.5m and d∗ was 0.8m. Due to the
high turbidity of the water, a Gaussian blur was applied
to each frame before measuring the optic flow divergence
and no further outlier filtering was performed. Although we
had no ground truth to validate our results, the real-time
safe-distance maintenance algorithm allowed the robot
to avoid small and hollow obstacles and maintain a safe
distance of 0.8m. Tests with the downward camera were
also performed, but the method was not effective since
the engine’s propulsion created dense clouds of particles
when the BlueBee robot was close to the bottom of the lake.
However, an emergency braking stop could still be performed.

A video of the tests carried out in the pool, harbor and lake
are available at https://youtu.be/qSBWyWI1wX0 .

VI. CONCLUSIONS

While optic flow cues are widely exploited for applications
involving UAVs, only a small number of studies have explored
their potential for underwater navigation. This is particularly
interesting as previous authors have shown that optic flow cues
can be measured with commonly available sensors such as
monocular cameras [19, 24, 8, 12].
In this study, we present a real-time underwater collision
avoidance method based on the optic flow divergence cue
measured with a monocular camera. This method was tested
onboard an ROV (here referred to as BlueBee robot) in a
pool, a harbour and a lake to avoid downward and forward
obstacles. The measured optic flow divergence was used to
initiate an emergency braking response and then fused with
low-cost IMU’s outputs to estimate the relative distance of the
BlueBee robot from the detected obstacle with an EKF. The
estimated relative distance was used to reach a predefined safe
distance from the obstacle. The optic flow divergence was then
continuously measured thanks to a small imposed oscillation,
allowing the robot to maintain the predefined safe distance.
Our experimental results show that the optic flow divergence
cue can be used to avoid underwater collisions in real-time to
facilitate remote control of an ROV. This method relies solely
on the use of a monocular camera and an IMU, two sensors
commonly available on off-the-shelf ROVs. No transformation
of the perceived image is necessary to compensate for camera
rotation movements: only a rough approximation of the highest
component of the rotational optic flow is subtracted from the
optic flow divergence. The method presented in this study is
better suited to obstacles in close proximity and can therefore
be considered as complementary to sonar in the distance range
where sonar could be too affected by reverberation.
Future work will include a further analysis of each component
of the rotational optic flow (expressed according to [16]) to
improve their estimates and thus better measure the optic flow
divergence. As the optic flow divergence allows the BlueBee
robot to maintain a safe distance from the obstacle in order to



Fig. 5. A) Test carried out in the Moulin Blanc harbour (in Brest, Brittany, France): A.i) view from the downward camera, A.ii) a) measured optic flow
divergence ωD , b) pwm command given to the robot, c) acceleration ad in the direction of the obstacle given by the Inertial Measurement Unit (IMU) of
the robot, d) comparison of the estimated relative distance dest with the ground truth d given by the barometer. B) Test carried out in the Guerlédan lake
(in Guerlédan, Brittany, France): A.i) view from the frontal camera, showing a hollow obstacle; A.ii) preliminary results. A video of the tests is available at
https://youtu.be/qSBWyWI1wX0 .

avoid collisions, we could consider using a similar technique
to detect and follow a surface at a given distance based
solely on optic flow cues (for dam inspection, for example).
Future work will also include testing this approach for an
Unmanned Surface Vehicle to perform avoidance of both fixed
and moving obstacles.
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APPENDIX A
VISIBILITY THRESHOLD

A test was carried out in the ENSTA Bretagne pool to
determine the threshold below which the measured optic flow
divergence can be considered an indicator of the presence of an
obstacle. The BlueBee robot moved from the bottom of the
pool to the surface and the barometer was used to measure
its relative distance d from the bottom of the pool. The optic
flow divergence was measured using the downward monocular
camera with the robot’s downward-facing lights switched on
at maximum. Figure 6.a shows that from a distance d of
about 1m from the bottom of the pool the measured optic
flow divergence ranges around 0rad/s, indicating that the
obstacle is no longer detected under these conditions. A
test in which the robot descended from the surface to the
bottom of the pool showed similar results (see Figure 6.b).
To increase the robustness to noise, we chose a threshold
ωD lim = −0.05rad/s.

Fig. 6. Tests in which the BlueBee robot moves from the bottom of the pool
to the surface (a) and descends from the surface to the bottom of the pool (b)
respectively. (a.i and b.i) Distance d of the robot from the bottom of the pool
given by the barometer. Only the time interval between 0s and 14s is shown,
corresponding to the robot crossing the 1m threshold (dashed blue line). (a.ii
and b.ii) Measured optic flow divergence ωD (in black) and area bounded by
the thresholds ±ωD lim (in grey).

APPENDIX B
EXTENDED KALMAN FILTER

The BlueBee robot was modeled in the form of a double
integrator receiving as input the acceleration in the direction
of the obstacle ad given by its IMU. The robot’s state space
representation can therefore be expressed as: Ẋ = f(X, ad) = A ·X +B · ad =

[
0 1
0 0

]
·X +

[
0
1

]
· ad

Y = g(X) = [X(2)/X(1)] = Vd/d = ωD

(5)
where X =

[
d, Vd

]T
is the ROV’s state vector. The

discretized model of the BlueBee robot used in the EKF
calculations can be expressed as:{

X[k + 1] = Φ ·X[k] + Γ · U [k]
Y [k] = Ck ·X[k] +Dk · U [k]

(6)



with
Φ = eA·dt (7)

Γ = (

∫ dt

0

eA·τdτ) ·B ≈ dt ·B (8)

Ck = g(Xk) =

[
X2[k]

X1[k]

]
=

[
Vd[k]

d[k]

]
(9)

Dk = 0 (10)

where dt is the discretization time.
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