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Abstract13

Degradation of the seismic signal quality sometimes occurs at permanent and temporary sta-14

tions. Although the most likely cause is a high level of humidity, leading to corrosion of the15

connectors, environmental changes can also alter recording conditions in different frequency16

ranges and not necessarily for all three components in the same way. Assuming that the con-17

tinuous seismic signal can be described by a normal distribution, we present a new approach18

to quantify the seismogram quality and to point out any time sample that deviates from19

this Gaussian assumption. We introduce the notion of background Gaussian signal (BGS)20

to characterize a set of samples that follows a normal distribution. The discrete function21

obtained by sorting the samples in ascending order of amplitudes is compared to a modified22

probit function to retrieve the elements composing the BGS, and its statistical properties23

(mostly its standard deviation σG). As soon as there is any amplitude perturbation, σG24

deviates from the standard deviation of all samples composing the time window (σ). Hence,25

the parameter log
( σ

σG

)
directly quantifies the alteration level. For a given frequency range26

and a given component, the median of all log
( σ

σG

)
that can be computed using short time27

windows, reflects the overall gaussianity of the continuous seismic signal. We demonstrate28

that it can be used to efficiently monitor the quality of seismic traces by using this approach29

at four broadband permanent stations. We show that the daily log
( σ

σG

)
is sensitive to both30

subtle changes on one or two components as well as the signal signature of a sensor’s degra-31

dation. Finally, we suggest that log
( σ

σG

)
and other parameters that are computed from the32

BGS bring useful information for station monitoring in addition to existing methods.33
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1 Introduction34

Both permanent and temporary deployed seismometers can be degraded during their op-35

erating time (e. g. Ekstrom et al., 2006; Davis and Berger, 2007). Visual inspection of the36

daily signal at each station allows any alteration of the signal to be detected quickly, but is37

incompatible with limited observatory staff that can operate more than 50 stations. On the38

other hand, as the continuous seismic signal varies as a function of time and frequency, and39

not necessarily in the same way for the three components, a decision of physical intervention40

on site driven by an AI based on observables such as spectrograms is, to our knowledge, not41

fully operational yet. There is thus a need for simple but reliable parameters to efficiently42

monitor the seismic signal quality.43

Though the noise level depends on location and installation conditions, a number of issues44

such as mass-centering failures, glitches, increases in instrument self-noise, or corroded com-45

ponents can alter the continuous seismic signal. It may also sometimes happen that the46

failure disappears and the signal returns to a satisfactory quality, so no one will know that a47

problem ever occurred. One of the well known origin of recording condition degradation can48

be found in a high level of humidity, leading to corrosion of the internal electronic system.49

Hutt and Ringler (2011) indicate that i) high humidity conditions can modify the response50

of the instrument and ii) water vapor and moisture in the electronics appears to explain51

many of the observed anomalies.52

In the field of quality control which aims to rapidly detect any deterioration, progress53

have been made during the last years (e. g. McNamara and Boaz, 2010). One can note the54

emergence of several automatic methods for monitoring stations, as presented in Ringler55

et al. (2015) and Casey et al. (2018) but those approaches are mostly dedicated to the de-56

tection of other issues than a degradation of the seismic signal quality (signal continuity,57

data availability). Probability of power spectral densities (PPSD) can provide very useful58

information, but require sufficiently large time windows to detect changes over time. To59

evaluate the seismic data quality, a strategy consists in comparing signals recorded at col-60
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located sensors (Tasič, 2018), or at stations in close proximity (Kimura et al., 2015). This61

generally cannot be used for a permanent array with station inter-distances of about 50 km.62

Pedersen et al. (2020) present an innovative way to measure the quality of a single station, by63

comparing the standard deviation of the signal between the different components. Although64

this method appears to be efficient to detect malfunctions, it is not suitable for detecting65

signal degradation affecting all components simultaneously, and it seems difficult to define66

common thresholds that works for all stations.67

In this article, we propose a novel approach based on the study of the seismic signal68

gaussianity to detect possible degradation of its quality. In section 2, we present a method69

allowing to discriminate, in any data set, the samples that can be considered as Gaussian,70

from the others (i.e. perturbed samples). Assuming that the seismic signal is intrinsically71

Gaussian (Groos and Ritter, 2009; Zhong et al., 2015b,a; Aggarwal et al., 2020), we perform72

in section 3 an analysis of the signal quality of the stations G.ECH, FR.CAMF, FR.CARF73

and FR.VIEF. Finally, we propose in section 4 a comparison between our approach and the74

method described in Pedersen et al. (2020).75

2 Detection of non-Gaussian samples in an ensemble76

Let us consider a set of samples whose distribution follows a Gaussian law, hereafter referred77

to as “background Gaussian signal” (BGS). This ensemble is often written X ∼ N (µ0, σ0),78

where µ0 and σ0 are the mean and the standard deviation, respectively. Such a distribution79

can be characterised by a bell-shaped histogram (e. g. DeGroot, 2002) or a kernel density80

estimate as well as the Cumulative Distribution Function (CDF) in order to avoid any81

arbitrary choice of discretisation (bin). For a real-valued random variable X, the CDF (ϕ)82

is defined as the probability that X takes a value less than or equal to a given real x. One83

can also use the quantile function (i. e. the inverse of the CDF), called the Probit function84

(Bliss, 1934) in the special case of the standard normal distribution: µ0 = 0 and σ0 = 1 (see85

eq. (A4)). In practical, the Probit function (hereafter denoted as ϕ−1), can be approximated86
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by sorting, according to increasing values, any set of n samples (Xi)0≤i≤n−1 which follows87

the standard normal distribution (see theorem 2 in the appendix). The result of this sorting88

operation is hereafter called empirical Probit function, noted as ϕ−1
n , which is represented89

as a function of quantiles.90

In a general case, if the BGS follows a given Gaussian law (µ0, σ0), the Probit function (ϕ−1)91

can no longer describe the distribution of the ensemble, we then introduce the modified probit92

function, denoted as ϕ̂−1, by a translation/homothety of µ0 and σ0,93

ϕ̂−1 = µ0 + σ0ϕ−1. (1)

At this stage, µ and σ, the arithmetic average and the standard deviation, respectively (e. g.94

Feller et al., 1971) describe entirely both the BGS statistical properties and ϕ̂−1 (µ = µ095

and σ = σ0).96

If the sample set is now altered by a perturbation, which means presence of elements with97

large variations in amplitudes which significantly differ from the BGS, the classical estimators98

are biased (µ ̸= µ0 and σ ̸= σ0). The idea behind our method is to extract the subset of99

points composing the BGS from the complete ensemble. This can be done, once the signal100

is sorted according to increasing values, because deviant samples are located at the edges101

of ϕ−1
n . Consequently, it exists a given quantile interval [QA, QB ], separating the samples102

composing the BGS from those of the perturbations which can be located through a full103

exploration of the sorted sample space. In practical, ϕ−1
n is extracted for each tested quantile104

interval, its mean and standard deviation define the local ϕ̂−1 (eq. 1) over the same amount105

of samples. According to theorem 2, the misfit between ϕ−1
n and ϕ̂−1 is measured by the106

difference at the sense of the L∞-norm. The interval finally selected, hereafter denoted as107

[QA, QB ], defines the subset of samples which achieve the lowest misfit. In the following,108

the mean and the standard deviation of samples within [QA, QB ] are denoted as µG and σG,109

respectively, as they define the statistical properties of the BGS.110

The theory presented above is illustrated through three synthetic experiments (Fig. 1).111
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Figure 1. Illustration of how retrieving the Gaussian samples in three synthetic data set.
The same BGS is imposed for each case (A, B and C) with µ0 = 314 and σ0 = 16. A wide
and a narrow perturbations are added in B and C, respectively. The second line (A2, B2
and C2) presents these signals (black crosses), once sorted by increasing order of amplitude,
noted ϕ−1

n . For each case, the interval [QA, QB ] is given by the best fit between ϕ−1
n and

ϕ̂−1 (green), defining µG and σG, approaching the properties of the BGS.

The BGS (A1) is obtained by a random draw of n = 2, 000 points, with µ0 = 314 and112

σ0 = 16, which are the parameters to retrieve for all cases. The classical arithmetic mean113

and standard deviation (µ and σ) of the three sample sets, are displayed in A1, B1, C1.114

Let’s start with the pure BGS case (A1, A2, A3). The samples shown in A1 are sorted by115

ascending order of amplitudes to generate ϕ−1
n (black crosses in A2). The best fit between116

ϕ−1
n and ϕ̂−1 (green curve in A2) is obtained for the interval [QA, QB ] = [0, 1999], indicating117

that all samples follow a Gaussian law with µG = 313.6 and σG = 16.4. Obviously, since all118

the samples are considered as Gaussian here, µG = µ and σG = σ, and are relatively close119

to µ0 and σ0.120

In the second column of Fig. 1, a perturbation is added to the BGS. We can first notice that,121

obviously, µ and σ now differ from the values to be recovered (µ0, σ0). The exploration of122
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all possible quantile intervals gives [QA, QB ] = [0, 1759], which efficiently excludes the out-123

layer samples (red area in B2). This interval is associated with values of µG = 316.1 and124

σG = 18.5 which are much closer to µ0 and σ0 compared to µ and σ. The values of ϕ−1
n (QA)125

and ϕ−1
n (QB) are of 258.9 and 369.3, respectively (horizontal dashed/dotted orange lines),126

which allow to separate anomalous samples (red points in B3) from the BGS.127

For the narrow anomaly case (C1), µ is not affected due to the symmetric shape of the128

perturbation but the σ is biased since all the elements are taken into account. The ex-129

ploration of the sorted data space returns here [QA, QB ] = [27, 1971], excluding outlayer130

samples composing the perturbation (red areas in C2). Back to the index domain (C3), the131

orange lines, given by ϕ−1
n (QA) and ϕ−1

n (QB), define the amplitude domain composing the132

BGS. Any sample above or below these two limits can be considered as perturbations. Once133

again, the value of σG = 16.9 is closer to the value of σ0 = 16 compared to σ = 22.3. For134

all cases, the two horizontal orange lines are very similar, which is consistent with the fact135

that the same BGS is imposed in the three synthetic signals.136

Finally, this approach allows to efficiently retrieve [QA, QB ] and thus the statistical char-137

acteristics of a BGS: µG and σG. As soon as an amplitude perturbation alters the data138

set, there is a mismatch between σG and σ. For the analysis of real signals, as µ0 and σ0139

are unknown, any deviation from the gaussianity of a given data set can be measured by140

log
( σ

σG

)
, in order not to depend on amplitudes and to reflect possible large variations from141

the reference state (σ = σG). For instance, in Fig. 1, the values of log
( σ

σG

)
is 0 exactly in142

(A) while it reaches values of 0.26 and 0.12 in (B) and (C), respectively, which correspond143

to significant deviations. A difference between µ and µG can also point out non-Gaussian144

features but can suffer from special cases such as a zero mean signals and/or symmetrical145

perturbations (Fig. 1 C). In the following, the word “perturbation” is used to describe any146

deviation from the Gaussian hypothesis (BGS), characterised by values of log
( σ

σG

)
greater147

than 0.148
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3 Application to the seismic station monitoring149

In this section, we propose to analyse the continuous seismic signal recorded at four per-150

manent broadband stations, using the method presented in section 2. In the following, it is151

assumed that the continuous seismic signal follows a Gaussian distribution (e.g. Groos and152

Ritter, 2009; Zhong et al., 2015b,a; Aggarwal et al., 2020).153

3.1 Methodology154

The gaussianity of the continuous seismic signal recorded during 24 h can be quantified155

by multiple analysis of short time windows. Results are shown in Fig. 2, using 1 h time156

windows, sliding with an overlap of 2
3 . Hence, each sample is analysed three times. In order157

to investigate the frequency dependence of the gaussianity, the signal is analysed through158

four period ranges: LF (T > 80 s), BP1 (20 s < T < 80 s), BP2 (1 s < T < 20 s) and159

HF (T < 1 s). In order to allow a reliable comparison between the different period bands,160

all signals are decimated at 20 samples per second in order to have the same amount of161

samples in each analysed window. The instrument response is removed in the period range162

[0.1, 160] s and the signal is converted into ground velocity.163

For each time window σ is computed using all samples whereas σG is defined after the164

computation of [QA, QB ]. Although we mostly focus on log
( σ

σG

)
to quantify the gaussianity165

and to detect anomalous behaviour of seismic stations, three other parameters can also be166

investigated:167

• µG, the Gaussian mean of the ranked samples within [QA, QB ]. Since the arithmetic168

average is subtracted from the signal amplitude before each filtering operation of a169

given 1 h time window, µG must be compared to zero;170

• G, the Gaussian point ratio, defined by the amount of selected samples in [QA, QB ]171

divided by the total amount of points of the sliding short time window;172
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• ML2 , the misfit between ϕ−1
n and ϕ̂−1 (Fig. 1, second row), using the L2-norm,173

ML2 = 1
(QB − QA)

√√√√ QB∑
i=QA

(
ϕ̂−1(i) − ϕ−1

n (i)
)2

. (2)

A low value of ML2 then reflects a high degree of gaussianity of the subset of samples174

selected in [QA, QB ].175

3.2 Single day analysis of the gaussianity176

Fig. 2 exhibits the four parameters defined above for a signal duration of 24 h (June 1, 2019),177

recorded at FR.CAMF (North component) and filtered in two frequency ranges: BP1 and178

HF. The sensor (Nanometrics T120QA) of this broadband permanent station is installed179

on the ground in a WWII blockhaus, in Brittany (France), and located at the top of a cliff180

facing the Atlantic Ocean (Fig. 3). The rock basement is composed of Armorican sandstone.181

Although the quality of the installation is standard and made with great care, the continuous182

seismic signal is altered for different reasons: at high frequency, the proximity of the village183

and the energy of breaking waves on the cliff and at longer periods, temperature and pressure184

variations in addition to tidal modulations (e. g. Beucler et al., 2015).185

The signal filtered in the BP1 frequency domain (red in Fig. 2) is less energetic than the186

HF filtered trace (green) but contains some similarities. A diffuse extra energy is visible187

on two ∼3 h windows, centered around 2:20 and 14:45 UTC, respectively (green areas in188

Fig. 2 B). They both coincide with the high tides occurring twice a day. The seismic signal189

is then modulated in the HF range due to the breaking waves on the cliff but also to a lesser190

degree in BP1 since this frequency domain comprises the edge of the primary microseismic191

peak and a part of the infragravity wave period range (e. g. Nawa et al., 1998; Ardhuin et al.,192

2011; Stutzmann et al., 2012). In addition, the surface waves of two MW ≃ 5 earthquakes193

that occurred in Greece (epicentral distances of approximately 2,200 km) are well visible in194

BP1 trace (indicated by the two vertical arrows in A) but are less obvious for HF.195

For both BP1 and HF domains the values of the BGS mean (µG) lie between −0.89 and196
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Figure 2. Analysis of a continuous seismic signal during a full day, using a sliding window
approach. (A and B): Seismic signals from the FR.CAMF station on June 1, 2019 (BHN),
deconvolued and filtered from 20 to 80 s (A) and below 1 s (B). (C): Mean of the BGS.
(D): Logarithm of the ratio between the classical and the BGS standard deviation. (D):
Proportion of Gaussian points in the [QA, QB ] interval. (E): Misfit between ϕ̂−1 and ϕ−1

n

in [QA, QB ], using the L2-norm.
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1.18 (Fig. 2 C) and log
( σ

σG

)
is very stable around the value of 0. For the HF case (green197

crosses) two log
( σ

σG

)
deviations up to 0.15 are observed at the times of high tides (pointed198

out by the two black arrows in D) indicating that, locally, the samples that composed a199

1 h window are less Gaussian than the rest of the day. The consequence is a decrease of G200

(∼ 98.2% for both high tide windows) and large increases of ML2 (up to 32.5) which leads201

to conclude that even in the [QA, QB ] interval the fit to ϕ̂−1 is not as good as for quieter202

parts of the day.203

The BP1 frequency range analysis for the same day (red pluses in Fig. 2) shows a very stable204

behaviour all over the 24 h except during the two earthquakes. Those impulsive transient205

energies do not affect µG, which is consistent with surface wave wavetrains that make the206

ground oscillating symmetrically around an equilibrium position, but they are well visible207

on log
( σ

σG

)
with values up to 0.6. For the corresponding time windows, G decreases down208

to 0.925.209

Finally, it is important to notice that these parameters are sensitive only to amplitude210

variations and not to the level of the seismic energy. This allows to propose that such a211

study can be performed for any component of any seismic station and for different ranges of212

periods. In the following, since log
( σ

σG

)
reflects both mean translation and sample dispersion213

around this latter, we will mainly use this parameter to quantify the Gaussianity of a single214

day. This is realised using the median value of the 74 one hour windows (solid lines in215

Fig. 2) that composed a day (with an overlap of 2
3). As shown in Fig. 2 D, the median is216

not affected by transient waveforms such as earthquakes and/or spurious signals.217

3.3 Daily analyses of the seismic signal gaussianity at four perma-218

nent stations219

In order to analyse the behaviour of a permanent station in terms of deviation from gaus-220

sianity day by day, we focus hereafter on four broadband seismic stations (Fig. 3). Let us221

start with G.ECH, located in Echery (eastern France), that we consider as the reference222
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Figure 3. Locations of seismic stations used in this study. They are all belonging to the
French permanent broad-band array, from the RESIF (1995)(FR) and the GEOSCOPE (G)
(Institut de physique du globe de Paris (IPGP) and École et Observatoire des Sciences de
la Terre de Strasbourg (EOST), 1982) networks.

station in terms of signal quality.223

3.3.1 ECH224

The sensor (STS1) is installed on a concrete pavement in a 250 m long tunnel inside an aban-225

doned silver mine. The site geology is mostly composed of gneiss. This station is running226

for more than 22 years and is known for the stability of its quality over the years. In a few227

words, this station is of high quality at short periods (PSD lower than 150 dB for T < 1 s)228

and exhibits a vertical component energy close to the low noise model (Peterson, 1993) be-229

tween 20 and 200 s period. The horizontal components are noisier for periods greater than230

40 s and the North component is more affected than the East one.231

The analysis of G.ECH in terms of log
( σ

σG

)
variations, in four frequency ranges (see sec-232

tion 3.1), and for the whole year 2019 is presented in Fig. 4. For each day, the medians233
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Figure 4. Analysis of the continuous seismic signal recorded at G.ECH in 2019. The
medians of the daily log

( σ

σG

)
are displayed for the three components (plusses, crosses and

dots for the vertical, north and east, respectively) and the four frequency bands (LF, BP1,
BP2 and HF), defined in section 3.1.

of log
( σ

σG

)
, computed for the 74 time windows, are displayed for the three components.234

Compared to other station analyses (Figs. 5, 6 and 7), the values are so close to 0 that we235

propose a vertical scale between 0.01 and 0.06. For the HF and BP2 frequency ranges, the236

values are very stable around 0 for the whole year and reach maxima of 0.014 and 0.001,237

respectively. This implies that, the continuous seismic signal at periods lower than 20 s238

are in very good agreement with a Gaussian distribution. This is particularly true for BP2239

which comprised the frequency band of the microseismic peaks (e. g. Ebeling, 2012).240

In contrast, for BP1 and LF, we observe a greater dispersion, for instance, it is 10 times241
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larger for BP1 than for HF. For the BP1 frequency range (Fig. 4 C), the mean of all North242

log
( σ

σG

)
(red crosses) is 0.015 whereas they are of 0.06 for the two other components. This243

could indicate that the extra energy which makes this component noisier (as indicated by244

power spectral densities that can be computed for this station) with respect to others, also245

alters the gaussianity of the signal. This phenomenon can be observed to a lesser degree in246

the LF domain (Fig. 4 D), for which the three components exhibit however a more stable247

behaviour over the year. One can notice that the mean of the log
( σ

σG

)
oscillates here around248

of 0.01, ant not exactly 0, which is only a side effect due to the length of 1 h for all analysed249

windows, allowing less oscillations of the signal than for the highest frequencies. To avoid250

any misinterpretation, only values greater than 0.1 are considered as noticeable deviations251

from the Gaussian case (BGS). One can notice a log
( σ

σG

)
variation during November, 5 on252

the HF frequency bands (Fig. 4 A), which is caused by a surprisingly large occurrence of253

earthquakes and quarry blasts (more than 50 events).254

Finally, since we are interested mostly in the time variations of log
( σ

σG

)
, we consider here-255

after that the maximum values at ECH (for each frequency range) can be used as reference256

thresholds for other stations (orange lines in Fig. 5).257

3.3.2 CAMF258

The site conditions of FR.CAMF are already detailed in section 3.2. As for G.ECH, the259

analysis of log
( σ

σG

)
variations of the continuous seismic signal recorded at FR.CAMF in260

2019 are displayed in the four frequency ranges in Fig. 5. For each frequency band, horizon-261

tal orange line is shown to indicate the maximum value of all medians (of all components)262

measured at G.ECH. They can be considered as threshold references to point out any alter-263

ation of the signal.264

We choose the year 2019 because the recording conditions of FR.CAMF have been modified265

between the beginning of July and mid-October (period highlighted by the grey and magenta266

vertical dashed lines, respectively in Fig. 5). Due to high humidity at this time, the sand267

that insulates the sensor gradually became waterlogged. This led to a deterioration of the268

14



Figure 5. Same legend as Fig. 4, but for FR.CAMF. Horizontal orange lines are indicating
the maximum log

( σ

σG

)
value (for all components), computed for G.ECH in each frequency

band (see section 3.3.1). Due to the high level of humidity, the recording conditions are
degraded during the time window defined by the two vertical dashed lines.

long period signal quality of horizontal components that can be seen on the spectrograms269

in Fig. 9.270

Considering the signal before July 7, 2019, all components in the HF frequency bands271

are much more dispersed than for BP2, BP1 and LF. The variations of log
( σ

σG

)
are of the272

same order of magnitude as the single day analysis presented in Fig. 2. They are due to the273

seismic extra energy, caused by breaking waves on the cliff. Since the degradation of the274

recording conditions does not affect HF (Fig. 9), it is not possible to detect any noticeable275

modification in this frequency range. For the same reason and because the microseismic276
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peak energy is obviously very large at FR.CAMF, log
( σ

σG

)
is always close to 0 in BP2 (with277

mean equals to 0.0004). This contrasts with the values observed in BP1 and LF bands278

(Fig. 5 C, and D), where the daily log
( σ

σG

)
reach 0.38 and 0.23, respectively. These large279

deviations are only visible for the horizontal components which is consistent with Fig. 9.280

However, while a classical energy analysis, such as PPSD or spectrograms, do not yet show281

any significant changes, the log
( σ

σG

)
turns to anomalous values (up to 0.21 for the East282

component) as early as the July, 7 (grey dashed line). This deteriorated recorded conditions283

ended on October, 17 (magenta dashed line) when the wet sand has been replaced by dry one.284

This intervention brought back the sensor into the normal operating conditions, resulting in285

log
( σ

σG

)
values that rapidly return to 0.286

One can notice few anomalous values of log
( σ

σG

)
for both BP1 and LF (Fig. 5 C, and D)287

between November, 21 to December, 5. After visual inspection, it appears that three days288

have been perturbed by long period glitches that mostly affect the north component.289

3.3.3 CARF and VIEF290

FR.CARF and FR.VIEF are both located in the Pyrénées mountains (France) at altitudes of291

1,200 and 1,000 m, respectively. The geology of FR.CARF is composed of limestones while292

FR.VIEF is installed in a shale massif. Their sensors (T120QA for FR.CARF and T120PA293

for FR.VIEF) are installed in a ∼ 1 m depth vault and insulated with sand. FR.VIEF is294

located about 30 m of a village, making it theoretically more exposed to anthropic activity295

than FR.CARF, although this is not that obvious in the HF frequency band of Figs. 6 and 7296

neither in the spectrograms shown in Fig. 9. The choice of these two stations is motivated297

because both of their recorded signals have been suddenly deteriorated by humidity that298

corroded connections. The insulation was realised using sandbags arranged around the299

sensors and the water that seeped in was guided to the connectors. This appears between300

September 13–30, 2021 for FR.CARF and between February 9–17, 2022 for FR.VIEF, as301

indicated by the grey and magenta vertical dashed lines in Figs. 6 and 7.302

For both stations and before degradation, the signals of the three components have a high303
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Figure 6. Same legend as Fig. 4, but for FR.CARF. Due to the high level of humidity,
the recording conditions are degraded during the time window defined by the two vertical
dashed lines.

degree of gaussianity characterised by values of log
( σ

σG

)
very close to 0. This is particularly304

true at high frequency and in the microseismic bandwidth (BP2) while few variations are305

observed for the signal at long periods (BP1 and LF), mostly on the East component for306

FR.CARF and on the North component for FR.VIEF (although it is not obvious in Fig. 7 C307

due to the vertical scale). These descriptions can be linked to the fact that FR.CARF and308

FR.VIEF are located on the eastern and southern flanks of mountains, respectively.309

The two stations have encountered a degradation of their operating conditions when310

large modifications of log
( σ

σG

)
are observed. In both cases, the log

( σ

σG

)
signatures differ311
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Figure 7. Same legend as Fig. 6, but for FR.VIEF.

as a function of the frequency. For instance, the LF domain although largely affected in312

terms of the signal energy (see FR.VIEF spectrograms in Fig. 9) is not obvious in Fig. 6(D)313

and 7(D).314

In the HF and BP2 frequency domains at FR.CARF, the daily log
( σ

σG

)
values are remark-315

ably stable and never exceeds 0.01, before and after the degradation time (Fig. 6 A and B).316

A contrario, as soon as the recording conditions are degraded, they become very large (up317

to 0.98 and never lower than 0.25). At longer periods, a modification of log
( σ

σG

)
is also318

observed but to a lesser degree, except for the 1st day (September 14, 2021), where it reaches319

values of 0.57 and 0.31 for BP1 and LF, respectively. The station operators removed the320

corroded sensor on September 30 and installed a new one on October, 27 (explaining the321
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data gap). The gaussianity in the different frequency domains returns to the same level as322

before the degradation.323

Figure 8. Gaussianity analysis of FR.VIEF during the same time period than in Fig. 7.
For both frequency bands, G and ML2 are the Gaussian point ratio and the misfit at the
least-squares sense, respectively. ∆µG is the difference between the 9th and the 1st deciles
of all daily µG values.

A more detailed study is realised for FR.VIEF (Figs. 7, 8 and 9). The same HF and324

BP2 log
( σ

σG

)
signatures as for FR.CARF are observed during the degradation time, but in325
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this case with values larger than 1.4 for HF and 2 for BP2 (Fig. 7 A and B).326

Supplementary information are given in Fig. 8, where three other parameters are shown for327

HF and BP1. G and ML2 are detailed in section 3.1 and ∆µG represent here the difference328

between the 9th and the 1st deciles of the set of all one hour µG values computed every329

day (as indicated for instance by the horizontal dashed lines in Fig. 2 C). This parameter330

quantifies the stability of µG for a given day and, for the sake of comparison, low values are331

bounded to 10−4.332

As for log
( σ

σG

)
, in the HF domain, G, ∆µG and ML2 exhibit large variations during the333

degradation time. One can notice that G reaches values of 0.15, indicating that only 15%334

of samples are selected to belong to [QA, QB ], which is consistent with the large values of335

log
( σ

σG

)
shown in Fig. 7 A. Such G values are very close to the minimal proportion of Gaus-336

sian samples that is authorized in our method (G = 0.1). In addition, ML2 values are the337

largest, telling that even the 15% of selected samples are much less Gaussian than outside338

the degradation time. Plus, very large values of ∆µG (∼ 43,000) are observed, confirming339

that huge µG variations are occurring within a day. Finally, all these parameters are con-340

verging toward the same diagnostic of an ill-sensor with very large energy fluctuations and341

dramatically different signal quality compared to before, as also shown by the spectrograms342

(Fig. 9).343

At longer periods (BP1 and LF in Fig. 7), the log
( σ

σG

)
values are less affected by344

the signal degradation. This can be due to a long period feedback deterioration which345

could decrease the sensor sensitivity as shown by a slightly different behaviour of all other346

parameters (Fig. 8 D, E and F).347

One can notice a sudden return of log
( σ

σG

)
to 0, just after the end of the degradation348

(magenta line), for all the components and frequency bands. It is simply due to the numerical349

noise of the digitizer, which continued to operate even once the sensor have been removed.350

The channels have been officially closed three days after sensor removal producing the data351

gap.352
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Figure 9. Spectrograms for FR.CAMF (left) and FR.VIEF (right). They are computed
using 3600 s length windows with no overlap. The grey and magenta vertical lines correspond
to the edges of the signal degradation time windows and plotted as dashed lines in Figs. 5,
7 and 8. For each spectrogram, the horizontal black dashed lines bound the four frequency
domains.

4 Discussion and conclusion353

The method presented in this article aims to point out anomalous features in the continuous354

seismic signals using different gaussianity estimators. As shown in the previous figures, we355

focus mainly on one of them, which is the ratio of the classical standard deviation σ and the356

BGS standard deviation σG. It can be compared to a method which aims to monitor the357

seismic signal quality using the ratio of the classical standard deviations for two components358

(Pedersen et al., 2020).359
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4.1 Comparison to a component ratio approach360

In their approach, Pedersen et al. (2020) compute, for each component and 8 frequency361

bands, the classical standard deviation in 5-minute time windows of the continuous seismic362

signal, recorded at various Geoscope stations, with no overlap. For all the short time windows363

of a given day, the energy ratio is quantified by the ratio of the standard deviations for each364

pair of the three components (E/N, E/Z and N/Z). The estimate of the component daily365

energy is then defined using the median of all ratios.366

In order to illustrate the difference between this method and the one presented in this paper,367

we present in Fig. 10 a focus on the HF domain around the degradation time for FR.VIEF368

as already studied in Figs. 7, 8 and 9. In addition to the log
( σ

σG

)
median values shown in369

Fig. 7, we display in Fig. 10 the decile interval comprised between the 1st and the 9th deciles370

of all daily log
( σ

σG

)
values (using the same colors as their median: blue for Z, red for N and371

green for E). For a given day and a given component, when all log
( σ

σG

)
values are very close,372

the dispersion is so small that it cannot be seen on Fig. 10 A. It is nevertheless possible to373

obtain a median value close to 0 with a large decile interval such as for January 26, 2022. On374

this day, all components are particularly affected by 60 local earthquakes (0.4 ≤ Ml ≤ 2.8)375

occurring around FR.VIEF and within an epicentral distance range of 100 km.376

As soon as the sensor is corroded enough to affect the recording conditions at 2022-02-377

09T17:29 UTC (grey vertical dashed line), the decile interval suddenly increases up to 2.2378

while the median is not yet modified. This is due to the fact that more than 50% of this379

day recorded a clean and Gaussian signal, as shown in the daily seismogram (Z component,380

HF filter) inserted in Fig. 10 A. The following days are characterized by both large values381

of the median of log
( σ

σG

)
and large width of the decile intervals. Finally, when the sensor382

has been disconnected at 2022-02-18T09:56 UTC (magenta dashed line) while the digitizer383

continued to operate, the recorded signal (pure numeric noise) has very low values in terms384

of median and deciles.385

The same methodology as in Pedersen et al. (2020) is followed for this station. The three386
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energy ratios for each pair of components are displayed in Fig. 10 B. Before the beginning387

of the signal degradation they are all characterised by a quite large discrepancy. Values388

are ranging between 0.8 and 1.16 although the daily signal is very clean. Indeed, visual389

inspection of the whole signal during these 25 days did not allow to spot any precursor of390

the alteration of the sensor connection which is a contrario well reflected by the very low391

log
( σ

σG

)
values that do not exceed 0.03 (A).392

After the vertical grey dashed line, the variations of the daily energy ratios suddenly decrease393

to converge towards values of 0.47 for N/Z and E/Z and 1.02 for E/N which attest of the394

seismic signal modification. These values testify that, once the recording conditions have395

been degraded, the vertical component is about twice more energetic than the two others396

which are similar. The comparison of one component with respect to another (B) can thus397

bring fruitful information on the actions to be taken (even if it is not the case here) although398

the estimator of the signal quality before the degradation is more stable in (A) than in (B).399

Figure 10. Comparison between our approach and a method based on energy ratios for each
pair of components (Pedersen et al., 2020). The period of interest focuses on the FR.VIEF
sensor degradation as previously shown in Figs. 7, 8 and 9. (A) For each component, the
values of the 1st and the 9th deciles of all daily log

( σ

σG

)
are displayed with the same color

as the associated median. (B) For each pair of components, the energy ratio (represented
by colored pentagons) are given by the median of all daily ratio of standard deviation of the
two considered components.
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4.2 Concluding remarks400

The method presented in this article introduces a new approach to point out all samples of401

a given data set that do not agree the dominant gaussianity, referred to as BGS. For a given402

time window, means a set of n samples (and we estimate that n must be greater than 1,000,403

as shown in Fig. A1), our approach relies on four parameters to characterize the gaussianity:404

ML2 , G, µG and σG. Using the classical definition of the standard deviation, log
( σ

σG

)
there-405

fore measures the non gaussianity of a given data set. Although the ML2 , G and µG bring406

useful information, log
( σ

σG

)
alone can efficiently estimate whether the considered data set407

follows a normal distribution. At the scale of a single day, since many time windows can408

be processed following a sliding strategy, the median of all log
( σ

σG

)
gives a good quantifica-409

tion of the daily overall gaussianity without giving too much weight to transient waveforms410

such as earthquakes. Thus, it could be used as a new estimator to reliably monitor the411

continuous seismic signal assuming that any modification in the recording conditions affects412

the gaussianity of the signal. As shown in this article, log
( σ

σG

)
is sensitive to both subtle413

changes on one or two components (Fig. 5) but also major degradations of sensors altering414

all of them (Figs. 6 and 7). It appears that to seize any kind of temporal modification, it is415

necessary to process various frequency ranges.416

Although spectrogram analyses bring fruitful information they face two difficulties for mon-417

itoring purposes: i) for a given frequency range, the seismic energy vary a lot as function418

of days/months/years and ii) the detection of anomalous behaviour of the station needs419

long time series. A contrario, log
( σ

σG

)
includes in few values any statistical deviation from420

normal seismograph operation and does not depend on the signal energy. We consider there-421

fore log
( σ

σG

)
as a simple and meaningful parameter to monitor seismic station quality. We422

propose that, for a given frequency range, any daily log
( σ

σG

)
value greater than 0.1 requires423

a visual inspection of the signal since it corresponds to a σ value greater than 30% of σG.424

Finally, we think that this approach can bring useful information for seismic station moni-425

toring purposes and then can be in line with methods that already exist. It can be used for426
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permanent stations transmitting data in real time, as well as for identifying problems that427

occurred in the past.428

Data and Resources429

The Python code underlying this article will be shared on reasonable request to arthur.cuvier@etu.univ-430

nantes.fr. In this study we used data from networks with FDSN code FR (RESIF, 1995a)431

and G (Institut De Physique Du Globe De Paris (IPGP) and Ecole Et Observatoire Des432

Sciences De La Terre De Strasbourg (EOST), 1982). The seismic data set used in this study433

can be accessed at https://service.iris.edu/.434
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A The Probit function537

The so-called Probit function was first introduced by Bliss (1934). This probabilistic func-538

tion was originally developped to measure the effectiveness of a poison used in the fight of539

insect pests. However, it turns out that the Probit function goes beyond the scope of Biol-540

ogy and concerns many fields (e.g. Hoffman and Low, 1981; Kockelman and Kweon, 2002;541

Pourhoseingholi et al., 2008). The wide range of applications is logically due to the fact that542

the distribution of any standard Gaussian law converges toward the Probit function. More-543

over, the mathematical progress during the past decades allowed a better understanding of544

the Probit function and its properties (Finney, 1971; Alu, 2011). We present hereafter the545

mathematical theory of the Probit function. We focus on the analytical expression of the546

Probit function and prove the link between any sorted standard Gaussian set of samples and547

the Probit function through a convergence theorem.548

A.1 Definitions549

The cumulative distributive function (CDF) of a random real-value variable X is a function550

(not necessarily continuous), defined as551

F (t) = P(X ≤ t), ∀t ∈ R. (A1)

For any CDF named F , we can define its related quantile function,552

Q(u) = inf{x ∈ R ; F (x) ≥ u}, ∀u ∈ [0, 1]. (A2)

Hence, Q is the left inverse of F . In the special case of a continuous CDF, we have then553

Q = F −1.554
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A.2 The Probit function555

We denote as ϕ the CDF in the special case of the standard Gaussian law (µ = 0 and σ = 1).556

The related quantile function Q is now called the Probit function, and since ϕ is continous,557

Q = ϕ−1.558

It is well known that ϕ can be expressed as559

ϕ(x) = 1
2

(
1 + erf

( x√
2

))
, (A3)

where erf denotes the error function. Consequently, computing the inverse function of ϕ,560

the analytic expression of the Probit function is thus given by561

ϕ−1(u) =
√

2 erf−1(2u − 1), (A4)

where erf−1 could be, in practical, approximated by a Mac Laurin expansion (e.g., Blair562

et al., 1976). The representative curve of the Probit function is plotted in green in Fig. A1.563

A.3 Empirical quantile function564

This section is devoted to the link between the discrete equivalents of the CDF and the565

quantile functions, obtained from a given statistical sample (X1, .., Xn). This leads to the566

definition of both empirical CDF and empirical quantile function.567

For any set of n samples (X1, .., Xn), we define the empirical CDF,568

Fn(t) = 1
n

Card
(
{Xi ; Xi ≤ t}

)
, (A5)

where Card(X) represents the cardinal function. Among the n values, Fn(t) thus represents569

the proportion of points lower than t in a given set of samples.570

Following eq. (A2), the empirical quantile function can be defined as571

Qn(u) = inf{x ∈ (X1, .., Xn) ; Fn(x) ≥ u}, ∀u ∈ [0, 1]. (A6)
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The empirical quantile function represents, for a given sample (X1, ..., Xn), its values572

sorted by increasing order of amplitudes. Indeed, Qn(u) represents the u-th quantile of a573

dataset (X1, .., Xn) as its smallest value for which the empirical CDF Fn(x) is greater than574

or equal to u, effectively sorting the samples by increasing order of amplitudes.575

For a set of random values, the convergence between the CDF and the empirical CDF can576

be found in the Glivenko-Cantelli theorem (Glivenko, 1933).577

Theorem 1 Glivenko-Cantelli theorem578

Assuming that (X1, ..., Xn) are independent and identically-distributed random variables in579

R with common cumulative distribution function F . Then, we have an uniform convergence580

almost surely of Fn toward F , i.e.581

∥Fn − F∥∞ = sup
x∈R

|Fn(x) − F (x)| −−−−−→
n→+∞

0 almost surely. (A7)

Theorem 2582

Assume that (X1, ..., Xn) are independent and identically-distributed random variables in R583

with common cumulative distribution function F and quantile function Q. Noting Fn the584

empirical CDF and Qn the empirical quantile function, we have the following equivalence:585

|Fn − F | −−−−−→
n→+∞

0 ⇐⇒ |Qn − Q| −−−−−→
n→+∞

0. (A8)

Plus, in the special case of the the standard normal distribution, this convergence is uniform.586

The proof is detailed in (Van der Vaart, 2000, chapter 21, lemma 21.2) and the uniform587

convergence in the particular case of the standard normal distribution is deduce by the588

Dini’s theorem (Francinou et al., 2013). In the special case of the standard Gaussian law,589

the theorem 1 demonstrates the convergence of Fn towards ϕ, where Fn is the empirical CDF590

obtained from a random draw. Consequently, the theorem 2 ensures as well the convergence591

between ϕ−1
n and ϕ−1, where ϕ−1

n denotes the empirical discrete Probit function. In order592

to illustrate this convergence, the result of a numerical experiment is presented in Fig. A1.593
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Figure A1. Illustration of the convergence of the empirical discrete Probit functions ϕ−1
n

towards the Probit function ϕ−1 (theorem 2). Examples for n = 10 (blue), 100 (orange) and
1, 000 (red).

Three random draws of n elements (n = 10, n = 100 and n = 1, 000) are realised to obtain594

(X1, ...Xn), where Xi ∼ N (0, 1), ∀i ∈ [1, n]. Once data sets are sorted by increasing order595

of amplitude, they can be compared to the Probit function defined by eq. (A4), displayed596

in green. Each sorted data set thus is an empirical discrete Probit function, and we observe597

a reliable convergence since n is sufficently large.598
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