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Abstract

We propose an FFT-based iterative algorithm for solving the Lippmann-Schwinger equation in the context of periodic
homogenization of infinitely contrasted linear elastic composites. Our work initially reformulates the Moulinec-
Suquet, Eyre-Milton and Monchiet-Bonnet schemes using a residual formulation. Subsequently, we introduce an
enhanced scheme, termed Adaptive Eyre–Milton (AEM), as a natural extension of the EM scheme where we optimize
a relaxation parameter to minimize the residual. We demonstrate the unconditional linear convergence of the AEM
scheme, regardless of initialization and the chosen reference material. The paper further extends the AEM scheme to
handle composites with both pores and infinitely rigid inclusions. Practical implementation aspects and illustrative
applications in two- and three-dimensional settings are discussed, highlighting the efficiency of the proposed AEM
scheme. We particularly emphasize the scheme’s robustness for materials with infinitely large contrasts in elastic
properties.

Keywords: computational homogenization, FFT-based method, iterative scheme, linear elasticity, composite
materials

1. Introduction

Reliably up-scaling the macroscopic behavior of heterogeneous materials with complex microstructures usually
requires the full simulation of a boundary value problem (the homogenization problem) formulated over the represen-
tative volume element. Using classical approaches (e.g. finite elements), these so-called full-field simulations often
lead to a high numerical cost, both for the discretization of the BVP (meshing of the microstructure) and the solution
of the resulting discrete system of equations (large number of unknowns).

Since their first introduction in the mid-nineties by Moulinec and Suquet [1, 2], FFT-based numerical methods have
become strong competitors to these standard approaches. The initial corrector problem (a set of partial differential
equations) is reformulated as a single integral equation known as the Lippmann–Schwinger equation [3, 4, 5], which
is solved iteratively. At each iteration, the convolution kernel of the integral equation must be applied. This is done
most efficiently in the Fourier space, by means of fast Fourier transforms (FFT) in a discrete setting.

The first iterative schemes used for the numerical solution of the Lippmann–Schwinger equation were the basic
scheme of Moulinec and Suquet [1, 2] –referred to as MS in this paper– and the accelerated scheme of Eyre and
Milton [6] –referred to as EM in the present paper. Both schemes can be seen either as fixed-point iterations of
two different operators or, in the case of linear problems, as Neumann-series approximates of the inverses of these
operators. Among the “historical” numerical schemes, the augmented Lagrangian scheme of Michel, Moulinec and
Suquet [7] is also well worth mentioning.

Since these pioneering works, a wealth of new iterative schemes have been introduced, which prove more efficient
in some situations, among them the polarization-based schemes of Monchiet and Bonnet [8] –referred to as MB in the
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present paper– are important to mention. In a non-linear setting, Newton or quasi-Newton approaches, combined with
Krylov solvers [9, 10] deliver very efficient solution schemes [11]. Most notably, by observing that the basic scheme
could be seen as a gradient descent, Kabel et al. [12] allowed the introduction of accelerated-gradient methods and
other well-known optimization methods [13, 14]. The literature on the topic is very rich, and the reader is referred to
the recent and comprehensive review by Schneider [15].

Despite these recent and exciting developments, the MS, EM and MB schemes remain extremely popular. The
study [16] focuses on establishing the similarities between these schemes. Introducing the residual for these schemes,
we in fact realized that they exhibit almost the same structure: the difference between MS and EM schemes lies in
the increment that is added at each iteration to the residual (we call this increment the step). In other words, the EM
scheme selects a more efficient step direction than the MS scheme, while the MB and the augmented Lagrangian
schemes select the same step direction as the EM scheme but with a different step size. Keeping the EM step direction
unchanged, this observation naturally suggests to optimize on a relaxation parameter in order to adapt this step size.

With this idea in mind, we introduce the so-called adaptive Eyre–Milton (AEM) scheme. Our experiments indeed
confirmed that AEM had a better rate of convergence as MS, EM and MB. More strikingly, we observed that the
iterative scheme remains meaningful even in the notoriously difficult case of “doubly infinite contrast” (heterogeneous
materials with linear constitutive laws that contain both pores and rigid inclusions). This prompted us to carry out a
full mathematical analysis of the newly proposed iterative scheme. This analysis is presented in this work, which is
organized as follows.

In Section 2, the homogenization problem in the absence of pores and rigid inclusions is formulated, as well
as the corresponding Lippmann–Schwinger equation. Then, the classical formulation of the basic MS scheme, the
accelerated EM scheme and the polarization-based MB scheme [8, 17] are recalled.

These three schemes are reformulated in Section 3 in terms of the residual that we first define. Our adaptive
Eyre–Milton scheme (AEM) is then introduced as a natural extension of the EM and MB schemes where we optimize
a relaxation parameter λ so as to minimize the residual.

Observing that the AEM scheme remains meaningful for composites with both pores and rigid inclusions, it is ex-
tended to this case in Section 4. An extended homogenization problem is first introduced and regularity requirements
ensuring existence and uniqueness of a solution are stated. Finally, the AEM scheme is formulated in its most general
form.

Section 5 is dedicated to the mathematical analysis of the AEM scheme. Our most remarkable result is that this
iterative scheme is unconditionally linearly convergent. More precisely, the iterations converge to a solution to the
homogenization problem regardless of the initialization and the reference material, and the convergence is linear.

It is then shown in Section 6 that, for a simple and specific initialization of the iterations, the converged solution
can be fully characterized.

This mathematical analysis is followed in Section 7 by the discussion of a few practical issues regarding the
implementation of the method, namely: choice of the reference material, initialization, discretization and stopping
criteria.

The paper closes in Section 8 with a few illustrative applications, both in a two- and three-dimensional setting.
These examples clearly illustrate the performances of the proposed AEM scheme.

2. The homogenization problem

2.1. Presentation
We consider homogenization of a periodic, linearly elastic medium in the d-dimensional real space Rd (d = 2, 3).

The unit-cell is denoted by Ω = [0, L1] × . . . × [0, Ld] where Li > 0 are the side lengths of Ω and ⟨•⟩Ω is the volume
average operator over Ω. A field X is Ω-periodic if X(y1, . . . , yd) = X(y1 + L1, . . . , yd) = . . . = X(y1, . . . , yd + Ld) at
any point y = (y1, . . . , yd) ∈ Rd.

Let L2
sym(Ω) denote the space of symmetric second-order tensor fields y 7→ e(y) (ei j(y) = e ji(y), i, j = 1, . . . , d),

which are Ω-periodic and square integrable over Ω. Adopting Einstein’s summation convention over repeated indices,
we introduce the double contraction operator “:” defined as a : b = ai j bi j, where a and b are two second-order tensors.
The bilinear form (a, b) 7→ ⟨a : b⟩Ω then defines a scalar product over L2

sym(Ω) and the associated natural norm is

∥e∥L2
sym
=

√
⟨e : e⟩Ω, (1)
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It is well-known (see e.g. [18]) that, endowed with this natural norm and scalar product, L2
sym(Ω) can be decom-

posed into the two orthogonal sub-spaces S and D:

L2
sym(Ω) = S

⊥

⊕ D (2)

where S is the sub-space of the e ∈ L2
sym(Ω) which are divergence-free in the sense of distributions over Rd, ei j, j = 0,

and D is the sub-space of the e ∈ L2
sym(Ω) which are the symmetric part of the gradient of an Ω-periodic displacement

vector field u = (ui), ei j =
1
2 (ui, j + u j,i). Note that uniform fields in L2

sym(Ω), like the macroscopic strain E, are in S .
Actually, for any e in D the corresponding u is unique up to a translation, and it is square integrable over Ω, as well
as its gradient. Moreover, the volume-average over Ω of any e in D is null.

Within the framework of linear elasticity, we consider a periodic, heterogeneous material defined by its fourth-
order stiffness tensor C(y) = (Ci jkl(y)) (y ∈ Rd and i, j, k, l = 1, . . . , d). The stiffness tensor field C is Ω-periodic and
exhibits both minor (Ci jkl = Ci jlk = C jikl) and major (Ci jkl = Ckli j) symmetries. Let E denote a macroscopic strain
tensor (symmetric, second-order tensor which is uniform over Ω). Then, the homogenization problem reads:

Find eE ∈ D and σE ∈ S such that σE = C : (E + eE) (3)

The above problem has a unique solution, which depends linearly on E, if the following condition holds at any
point y ∈ Ω and for all symmetric second-order tensor e = (ei j):

∀y ∈ Ω, m e : e ≤ e : C(y) : e ≤ M e : e (4)

where 0 < m ≤ M are two strictly positive scalars. This condition means that both the strain energy density function
associated with C(y) and the stress energy density function associated with the compliance tensor (inverse of C(y))
are uniformly coercive in y.

Under these conditions, the unique solution to problem (3) (and in particular, the macroscopic stress ⟨σ⟩Ω) depends
linearly on the macroscopic strain E. The homogenized stiffness tensor Chom is defined as the linear operator that maps
the macroscopic strain onto the macroscopic stress:

⟨σE⟩Ω = Chom : E for all E (5)

It is convenient to introduce the fourth-order strain-localization tensor field A(y) = (Ai jkl(y)). It is defined as the
operator that maps the macroscopic strain E onto the microscopic strain εE(y) = E + eE(y):

εE(y) = A(y) : E, where εE(y) = E + eE(y). (6)

Note that A exhibits only minor symmetries (Ai jkl = A jikl = Ai jlk). Then, Eq. (5) leads to the following expression
of Chom

Chom = ⟨C : A⟩Ω (7)

and the following alternative energetic expression can also be derived

Chom = ⟨At : C : A⟩Ω (8)

where At is the transpose of A defined by At
i jkl = Akli j.

In the remainder of this paper, C0 denotes an arbitrary reference material, which is a uniform, positive-definite
(e : C0 : e > 0 for all e , 0), fourth-order tensor with both minor and major symmetries. Let m0 and M0 be
respectively the smallest and largest eigenvalues of C0 (0 < m0 ≤ M0). Then, from (4), one can easily obtain the
following equivalent uniform coercivity condition:

∀y ∈ Ω, µ−e : C0 : e ≤ e : C(y) : e ≤ µ+e : C0 : e (9)

where µ− = m/M0 > 0 and µ+ = M/m0 > 0. Moreover, the C0-norm is defined over L2
sym(Ω) as follows:

∥e∥C0 =
√
⟨e : C0 : e⟩Ω (10)
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Owing to the symmetry and positive definiteness of C0, the C0-norm ∥•∥C0 is equivalent to the natural norm ∥•∥L2
sym

.
Indeed, we have:

m0 ∥e∥2L2
sym
≤ ∥e∥2C0

≤ M0 ∥e∥2L2
sym

(11)

For any τ ∈ L2
sym(Ω), the following problem

Find eτ ∈ D such that C0 : eτ + τ ∈ S (12)

has a unique solution eτ that depends linearly on τ. The Green operator Γ0 associated to C0 is defined as the linear
operator that maps τ onto −eτ [3, 4, 5]:

eτ = −Γ0 ∗ τ (13)

The Green operator Γ0 has an analytical expression in Fourier space, and hence the convolution Γ0 ∗ τ can be
efficiently computed using FFT techniques [1, 2]. The Γ0 operator thus defined enjoys a number of properties [7]:

Γ0 ∗ τ = 0 ⇐⇒ τ ∈ S (14)

⟨e : C0 : (Γ0 ∗ τ)⟩Ω = ⟨e : τ⟩Ω for all τ ∈ L2
sym(Ω) and e ∈ D. (15)

In particular, inserting e = Γ0 ∗ τ in the above equation and using the Cauchy-Schwartz inequality shows that the
linear map τ 7→ Γ0 ∗ τ is continuous from L2

sym(Ω) to D.
It is a classical result that, under the uniform coercivity condition (4), the homogenization problem (3) is equivalent

to the following Lippmann–Schwinger equation

ε = E − Γ0 ∗ [(C − C0) : ε] (16)

where C0 and Γ0 are defined above (see also [19, 20, 2]). Indeed, the unique solution εE to the above equation is such
that εE = E + eE , where eE is the unique solution to the homogenization problem (3).

To close this section, we introduce a decomposition of any tensor field in L2
sym(Ω); this decomposition will play a

crucial role in the developments below (see also [21]). For all e ∈ L2
sym(Ω), we define:

eD = Γ0 ∗ (C0 : e) and eS = e − eD (17)

with the following properties:

eD ∈ D, C0 : eS ∈ S and ∥e∥2C0
= ∥eD∥2C0

+ ∥eS ∥2C0
(18)

and
⟨e1 : C0 : eS

2 ⟩Ω = ⟨e
S
1 : C0 : e2⟩Ω and ⟨e1 : C0 : eD

2 ⟩Ω = ⟨e
D
1 : C0 : e2⟩Ω, (19)

for all e1, e2 ∈ L2
sym(Ω).

Hence, eD appears as the orthogonal projection of e on D with respect to the C0-norm. Using the orthogonal
decomposition (2) with respect to the L2

sym-norm, it is seen that the orthogonal of D with respect to the C0-norm is
the subspace of e′ ∈ L2

sym(Ω) such that ⟨e : C0 : e′⟩Ω = 0 for any e ∈ D, i.e. C0 : e′ ∈ S. Therefore, unless C0 is
of the form kI, with k a positive scalar and I the fourth-order identity tensor operating on symmetric second order
tensors (I : e = e for any symmetric second order tensor e), the subspaces D and S are not orthogonal with respect
to the C0-norm, eS = e − eD is not in S and it is not the orthogonal projection of e on S with respect to the C0-norm.
eS is actually the projection (with respect to the C0-norm) of e on the subspace of e′ ∈ L2

sym(Ω) such that C0 : e′ ∈ S.
Moreover, combining (14) with (17), we obtain the following characterizations of S and D:

(C−1
0 : τ)D = 0 ⇐⇒ τ ∈ S, and eS = 0 ⇐⇒ e ∈ D. (20)

As a result, the C0-norm of (C−1
0 : τ)D can be considered as a measure of the equilibrium error for the stress field τ

and the C0-norm of eS can be considered as a measure of the compatibility error for the strain field e.
It should be emphasized that multiplying C0 by a strictly positive real does not change the above introduced

decomposition.
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2.2. The Moulinec–Suquet, Eyre–Milton and Monchiet–Bonnet schemes
The Lippmann–Schwinger equation (16) is at the center of the so-called “FFT-based numerical homogenization

techniques” first introduced by Moulinec and Suquet [1, 2]. The reader is referred to the recent review [15] for a
more detailed description of this numerical technique. Regardless of the spatial discretization, this equation must be
solved iteratively. Since the early works of Moulinec and Suquet, much attention has been devoted to comparing the
merits (in particular, number of iterations to convergence) of various iterative solvers [6, 7, 8, 16, 13, 14, 17]. In the
present section, we focus on the so-called “basic” scheme [1, 2], the “accelerated” Eyre–Milton scheme [6] and the
“polarization-based” Monchiet–Bonnet scheme [8, 17] that we cast in a similar form where the residual is explicit.
Our adaptive scheme (introduced in Section 3) will then appear as a clear and natural extension to the Eyre–Milton
scheme.

In the “basic scheme”, Moulinec and Suquet make use of the following fixed-point iterations [1, 2]Initialization

ε0 = E
and

 Iterations (n ≥ 0)

εn+1 = E − Γ0 ∗
[(

C − C0
)

: εn] (21)

When all constituents (including the reference material) are isotropic, Michel et al. [7] showed that the above
iterations converge under the following sufficient condition:

0 < K(y) < 2K0 and 0 < G(y) < 2G0 for all y ∈ Ω, (22)

where K0 and G0 (resp. K(y) and G(y)) are the bulk and shear moduli of the reference material (resp. the material at
point y). The recommended bulk and shear moduli of the reference material are:

K0 =
1
2
(
Kmin + Kmax

)
and G0 =

1
2
(
Gmin +Gmax

)
, (23)

where Kmin and Kmax (resp. Gmin and Gmax) denote the minimum and maximum bulk (resp. shear) moduli over Ω.
It has been shown theoretically [7, 16] that the number of iterations to convergence grows as the mechanical

contrast χ = max{Kmax/Kmin,Gmax/Gmin}. Although the MS scheme converges for porous materials with a suitable
pore distribution, in the general case, the number of iterations to convergence becomes unacceptably large for large
contrasts.

Eyre and Milton [6] later introduced a modified scheme that converges considerably faster than the basic scheme
in some cases, see [22] for a comparison between these two schemes. This iterative scheme was recast by Moulinec
and Silva [16] as follows:Initialization

ε0 = E
and

 Iterations (n ≥ 0)

εn+1 = εn + α :
(
E − εn − Γ0 ∗

[(
C − C0

)
: εn]) (24)

where α is the fourth-order tensor field given by:

α(y) = 2
(
C(y) + C0

)−1 : C0 (25)

Note that the basic scheme is recovered upon substituting formally α(y) with I. When all constituents are isotropic,
a sufficient convergence condition was established by Michel et al. [7] and further investigated by Moulinec and
Silva [16]. The recommended bulk and shear moduli of the reference material are now:

K0 =
√

KminKmax and G0 =
√

GminGmax (26)

The EM iterations are significantly faster in some cases than the MS iterations. Indeed, the number of EM
iterations to convergence grows as

√
χ (square root of the mechanical contrast), rather than χ for the MS iterations

[7, 16, 17]. These are actually bounds and (like MS) the EM scheme does converge for porous materials. Nevertheless,
in the general case, the number of iterations increases with the contrast and may become unacceptable in some cases.

As for the polarization-based scheme, it was first proposed by Monchiet and Bonnet [8] and recast by Moulinec
and Silva, see eq. (13) in [16]. A straightforward manipulation of this equation gives the following expression of the
iterations (n ≥ 0):

εn+1 = εn + λ1α :
(
E − εn + Γ0 ∗

[
C0 : εn]) − λ2α :

(
Γ0 ∗

[
C : εn]) (27)
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where λ1 and λ2 are two constants (corresponding to, respectively, α/2 and β/2 in eq. (13) of [16]). In all existing
studies λ1 and λ2 are taken equal to a common value λ leading to the iterations (n ≥ 0):

εn+1 = εn + λα :
(
E − εn − Γ0 ∗

[(
C − C0

)
: εn]) (28)

Moreover, the above polarization-based scheme can be interpreted as a Douglas–Rachford splitting [17]. λ is
actually equal to 1 − γ where γ in [17] is the damping parameter with the condition γ ∈ [0, 1). As pointed out in [8],
[16] and [17], this scheme appears as an extension of the Eyre–Milton scheme which is recovered for γ = 0 (λ = 1).
Also, the augmented Lagrangian scheme [7] corresponds to γ = 1/2 (λ = 1/2) and Monchiet–Bonnet [8] recommend
using γ = 1/4 (λ = 3/4) based on a series of numerical experiments.

Another important feature in [17] is to adopt zero initialization leading to the following scheme:Initialization

ε0 = 0
and

 Iterations (n ≥ 0)

εn+1 = εn + (1 − γ)α :
(
E − εn − Γ0 ∗

[(
C − C0

)
: εn]) (29)

It was proved by Schneider et al. [17] that the convergence properties of all polarization-based schemes were
qualitatively the same. In particular, the number of iterations to convergence grows as

√
χ like the EM iterations. In

the following, we will refer to (29) as γ-polarization schemes. We distinguish in particular the original Eyre-Milton
scheme (EM) (24) from the γ = 0-polarization scheme as the latter involves a different initialization than the former
despite identical iteration relations.

3. The Adaptive Eyre–Milton scheme (AEM)

In order to introduce our adaptive scheme, we first rewrite the MS and EM schemes in terms of the residual Xn,
defined as follows in both cases

Xn = E − εn − Γ0 ∗ [(C − C0) : εn] (30)

It is readily verified that the MS scheme, see Eq. (21), is equivalent to


Initialization

ε0 = E

X0 = −Γ0 ∗
[(

C − C0
)

: E
] and


Iterations (n ≥ 0)

εn+1 = εn + Xn

Zn = Xn + Γ0 ∗
[(

C − C0
)

: Xn]
Xn+1 = Xn − Zn

(31)

while it is proved in Appendix A that the EM scheme, see Eq. (24), can be reformulated as follows


Initialization

ε0 = E

X0 = −Γ0 ∗
[(

C − C0
)

: E
] and


Iterations (n ≥ 0)

εn+1 = εn + α : Xn

Zn = α : Xn + Γ0 ∗
[(

C − C0
)

: α : Xn]
Xn+1 = Xn − Zn

(32)

This alternative formulation shows the striking similarities between the two schemes, where Zn appears as the
iteration step. Both MS and EM methods can therefore be seen as fixed-step iterative methods. We introduce in the
present section some adaptivity by means of the relaxation parameter λn

εn+1 = εn + λn α : Xn and Xn+1 = Xn − λn Zn (33)

where λn is selected so as to minimize the next residual Xn+1. The issue which arises naturally is the best choice for
the residual norm. After many attempts, we have found that the C0-norm guarantees the linear convergence of the
scheme for all C0 (see proof in Section 5):

λn = arg min
λ∈R

∥Xn − λ Zn∥C0 ⇐⇒ λn =
⟨Xn : C0 : Zn⟩Ω

⟨Zn : C0 : Zn⟩Ω
(34)
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We call the resulting iterative scheme the Adaptive Eyre–Milton scheme (AEM). Differing discussion of the ini-
tialization to Section 6.1, the proposed scheme reads

Iterations (n ≥ 0)

Zn = α : Xn + Γ0 ∗
[(

C − C0
)

: α : Xn]
λn =

⟨Xn : C0 : Zn⟩Ω

⟨Zn : C0 : Zn⟩Ω

εn+1 = εn + λn α : Xn

Xn+1 = Xn − λn Zn

(35)

It is extremely fruitful to rewrite the above iterations in terms of the following fourth-order tensor fields:

CD(y) = C(y) : α(y) = 2C(y) : (C(y) + C0)−1 : C0 (36)

CS (y) = C0 : α = 2C0 : (C(y) + C0)−1 : C0 (37)

Both CD(y) and CS (y) have the minor symmetries and CS (y) clearly has the major symmetry. Further observing that

CD(y) + CS (y) = 2C0 (38)

delivers the major symmetry of CD(y). Therefore, both CD(y) and CS (y) exhibit the symmetries of elasticity tensors.
The following bounds on CD(y) and CS (y) are proved in Appendix B. These bounds result from the uniform coercivity
condition (9) and hold for all symmetric second-order tensor e = (ei j) and all y ∈ Ω:

0 < e : CD− : e ≤ e : CD(y) : e ≤ e : CD+ : e < e : 2C0 : e, (39)

0 < e : CS− : e ≤ e : CS (y) : e ≤ e : CS+ : e < e : 2C0 : e (40)

where
CD± = 2C0 − CS∓, CS− =

2
1 + µ+

C0, CS+ =
2

1 + µ−
C0. (41)

Hence, upon initializing the scheme with some ε0 and its corresponding residual X0, the proposed AEM scheme
(35) becomes: 

Iterations (n ≥ 0)

Zn = α : Xn + Γ0 ∗
[(

CD
− CS ) : Xn]

λn =
⟨Xn : C0 : Zn⟩Ω

⟨Zn : C0 : Zn⟩Ω

εn+1 = εn + λn α : Xn

Xn+1 = Xn − λn Zn

(42)

It is remarkable that the above reformulation of our Adaptive Eyre–Milton scheme remains meaningful for mi-
crostructures that contain pores (C → 0) and/or rigid inclusions (C → ∞). Indeed, in these extreme cases, α and
the “pseudo elasticity tensors” CD and CS remain well-defined (and finite). This observation suggests to formally
extend the iterative scheme (42) to periodic composite materials containing several non-intersecting rigid inclusions
and pores which have sufficiently smooth boundaries.

4. AEM scheme for composites containing pores and rigid inclusions

Let Ωr, Ωp and Ωm denote the open domains of Ω occupied by, respectively, the rigid inclusions, the pores and the
heterogeneous matrix. The Ω-periodic stiffness tensor field C(y) is defined only for y ∈ Ωm. Whereas, the Ω-periodic
tensor fields α(y), CS (y) and CD(y) are defined over the whole unit cell as follows:

∀y ∈ Ωr : α(y) = 0, CS (y) = 0, CD(y) = 2C0, (43)

∀y ∈ Ωp : α(y) = 2I, CS (y) = 2C0, CD(y) = 0, (44)

∀y ∈ Ωm : α(y) = 2(C(y) + C0)−1 : C0, CS (y) = 2C0 : (C(y) + C0)−1 : C0, CD(y) = C(y) : α(y). (45)
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The tensors α, CD and CS being defined over the whole unit-cell Ω, the iterations (42) can be performed. Two
questions then arise: (1) does the iterative scheme converge and, if yes, (2) what is the converged field limn→∞ ε

n.
It is proved in Section 5, that, under mild conditions on the coercivity of C and the regularity of the domains Ωr,

and Ωp, the iterative scheme (42) is indeed linearly convergent. Besides, the sequence of εn converges to the solution
to a well-posed homogenization problem that extends (3) and which is introduced in the following.

4.1. The extended homogenization problem
For heterogeneous materials containing pores and rigid inclusions, it is expected that the stress is null in the pores

and the strain is null in the rigid inclusions, while stresses and strains are associated by the heterogeneous elasticity
tensor C anywhere else in the unit cell. Hence, in such materials, the constitutive equations must be modified as
follows. We say that a pair of strain-stress fields, (ε,σ) ∈ L2

sym(Ω) × L2
sym(Ω), complies to the constitutive equations

if the following equations hold true:

ε = 0 in Ωr, σ = 0 in Ωp and σ = C : ε in Ωm. (46)

Then, the homogenization problem (3) must be modified as follows:

Find (eE ,σE) ∈ D × S such that (εE = E + eE ,σE) complies to (46) (47)

It is shown that under the assumptions stated in Section 4.2, that the above problem has a unique solution, (εE ,σE),
up to a pair (e,σ) ∈ D × S with (e,σ) = (0, 0) in Ωm. In other words, the localization tensor A introduced in (6) is
uniquely defined in Ωm. Hence, the homogenized stiffness tensor becomes:

Chom =
|Ωm|

|Ω|
⟨At : C : A⟩Ωm (48)

The definition of the residual must be slightly modified as follows: for any pair of strain-stress fields (ε,σ) ∈
L2

sym(Ω) × L2
sym(Ω) complying to the constitutive equations (46), the corresponding residual field X(y) is defined by:

X = E − ε − Γ0 ∗ [(σ − C0 : ε], (49)

Actually, X = 0 if, and only if, (ε,σ) is a solution of the homogenization problem. Indeed, by definition, we have
εD = Γ0 ∗ [C0 : ε], and X can be decomposed as:

X = XS + XD with XS = E − εS = (E − ε)S and XD = −Γ0 ∗ σ = −
(
C−1

0 : σ
)D
. (50)

The conclusion is obtained by noticing that X = 0 is equivalent to XD = 0 and XS = 0, and that XD = 0 is equivalent
to σ ∈ S and XS = 0 is equivalent to ε = E + εD.

The fact that the strain field is null over Ωr and the stress field is null over Ωp leads to remarkable properties of XS

and XD which are described in the following.

Characterizing XS in the rigid inclusions. Note that, by definition, C0 : XS is divergence-free in the whole Ω.
Moreover, the restriction of XS to Ωr is given by XS = E − εS = E + εD because ε = εS + εD = 0 in Ωr from (46).
Hence, the restriction of XS to Ωr is kinematically compatible, which means that it is equal to the symmetric part of
the gradient of some displacement vector field on Ωr. It appears that the restriction of XS to Ωr solve a Neumann
boundary elasticity problem on this domain when occupied by the reference material C0 with free body force and
prescribed stress vector (C0 : XS ) · n at the boundary ∂Ωr of Ωr, where n is the outer normal to ∂Ωr. In particular, if
Ωr is regular as defined below then the above described Neumann boundary elasticity problem has a unique solution.
This means that the restriction of XS to Ωr appears as an unambiguously defined extension of its values on Ω \Ωr.

Characterizing XD in the pores. Note that, since σ is null in Ωp, then C0 : XD is divergence-free in Ωp. By definition
of XD, there exists a uniqueΩ-periodic displacement field in H1(Ω)d, u, with ⟨u⟩Ω = 0 such that the symmetric part of
its gradient is equal to XD. It appears that the restriction of u to Ωp solves a Dirichlet-type elasticity problem with free
body force on this domain when occupied by the reference material C0. In particular, if Ωp is regular as defined below
then the above described Dirichlet boundary elasticity problem has a unique solution. This means that the restriction
of XD to Ωp appears as an unambiguously defined extension of its values on Ω \Ωp.
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4.2. Regularity requirements

In the present section, we state the mathematical restrictions that apply to C, Ωr and Ωp for the existence and
uniqueness of a solution of the homogenization problem (47) and for the AEM scheme to be convergent. For this
purpose, it is useful to introduce the following definitions which derive from the remarkable properties of XS and XD

described in the previous section.

Definition 1 (Subspace Sr). Sr is the subspace of stress fields σ in S such that C−1
0 : σ is kinematically compatible

in Ωr (equal to the symmetric part of the gradient of some displacement vector field on Ωr). We say that such stress
fields are C0-extended in the rigid inclusions.

Owing to the theorem of J.-J. Moreau on the compatibility conditions [23], it is seen that Sr is a closed subset of
S.

Definition 2 (Subspace Dp). Dp is the closed subspace of strain fields e in D such that C0 : e is divergence-free in
Ωp. We say that such strain fields are C0-extended in the pores.

Definition 3 (Subspace L2
ext(Ω)). L2

ext(Ω) is the closed subset of e in L2
sym(Ω) such that: eD ∈ Dp and C0 : eS ∈ Sr. It

is seen from the previous section that any residual field X corresponding to a pair of strain-stress fields complying to
the constitutive equations (46) is in L2

ext(Ω). Moreover, under the S - and D-regularity conditions defined below, there
exists a constant c > 1, independent of X, such that:∫

Ω

X : C0 : X =
∫
Ω

XS : C0 : XS +

∫
Ω

XD : C0 : XD ≤ c
(∫
Ω\Ωr

XS : C0 : XS +

∫
Ω\Ωp

XD : C0 : XD
)

(51)

Definition 4 (S -regularity). The domain Ωr occupied by the rigid inclusions is S -regular if there exists a constant
c > 0 such that: ∫

Ω

e : C0 : e ≤ c
∫
Ω\Ωr

e : C0 : e, (52)

for all e ∈ L2
sym(Ω) such that C0 : e ∈ Sr.

Definition 5 (D-regularity). The domain Ωp occupied by the pores is D-regular if there exists a constant c > 0 such
that: ∫

Ω

e : C0 : e ≤ c
∫
Ω\Ωp

e : C0 : e, (53)

for all e ∈ Dp.

It is shown in Appendix C (resp. Appendix D) that if Ωr (resp. Ωp) is the union of Ω-periodic non-intersecting
Lipschitz domains 1 (which guarantees that the microstructure is mechanically stable and deformable), then it is
S -regular (resp. D-regular).

In the remainder of this paper, we assume that: (i) C is uniformly coercive (in the sense of Equation (4) over
Ωm, (ii) Ωr is S -regular and (iii) Ωp is D-regular.

In [24], the author considered porous media in which he extended the displacement field in the pores by imposing
the displacement at the pores boundaries and solving inside the pores a homogeneous Dirichlet-type elasticity problem
with stiffness equal to the identity. This regularization actually corresponds to our D-regularity where the reference
material is set to identity. So, D-regularity and S -regularity can be seen as natural extensions of the regularization
proposed in [24].

1A Lipschitz domain is a non-empty connected open set with Lipschitz boundary

9



4.3. The proposed scheme
We now state the AEM scheme in the case of regular pores and regular rigid inclusions embedded in a hetero-

geneous matrix. The algorithm is started with a chosen pair of strain-stress fields in the unit-cell (ε0,σ0) verifying
(46) and its corresponding residual X0 is computed with formula (49). For n ≥ 0, if Xn = 0 then the pair (εn,σn) is
a solution of the homogenization problem, and the iteration is stopped. Otherwise, compute Xn+1, εn+1 and σn+1 as
follows:

Zn = α : Xn + Γ0 ∗ [(CD
− CS ) : Xn] (54)

λn =
⟨Xn : C0 : Zn⟩Ω

⟨Zn : C0 : Zn⟩Ω
(55)

Xn+1 = Xn − λnZn = X0 −

n∑
k=0

λk Zk, (56)

εn+1 = εn + λnα : Xn = ε0 + α :
n∑

k=0

λk Xk, (57)

σn+1 = σn + λnCD : Xn = σ0 + CD :
n∑

k=0

λk Xk. (58)

Assuming that the pair (εn,σn) verifies the constitutive equations (46) and Xn being its corresponding residual
(which is in L2

ext(Ω) according to Section 4.1 and Definition 3), let us check that the pair (εn+1,σn+1) defined above
verifies the constitutive equations (46) and that its corresponding residual Xn+1 (also in L2

ext(Ω)) is actually given by
(56). Indeed, from the definition of α and CD, we see that: εn+1 is null in Ωr, σn+1 is null in Ωp and σn+1 = C : εn+1

in Ωm. Finally, inserting (εn+1,σn+1) in (49) leads to (56).
It results from Section 4.1 that (εn,σn) is a solution to the homogenization problem (47) if, and only if Xn = 0. It

is therefore natural to stop the iterations when Xn is “small enough”, as discussed in Section 7.2.

5. Proof of convergence

5.1. Statement of the convergence result and outline of the proof
Under the regularity conditions stated in Section 4.2, the iterative scheme described in Section 4.3 is linearly

convergent. Besides, the sequence of pairs (εn,σn) converges to a solution of the extended homogenization problem
(47). This problem has a unique solution up to a pair (e,σ) ∈ D × S with (e,σ) = (0, 0) in Ωm. Finally, these results
hold for any choices of initial pair (ε0,σ0) verifying (46) and reference medium C0.

It is emphasized that the iterations are unconditionally convergent, regardless of the actual choice of the reference
medium C0.

Proof. Using simple algebra:

∥Xn+1∥2C0
= ∥Xn∥2C0

−
⟨Xn : C0 : Zn⟩2

Ω

⟨Zn : C0 : Zn⟩Ω
(59)

It will be shown in Section 5.2 that there exist two real constants 0 < a < 1 and 0 < b such that for any n ≥ 0:

∥Xn+1∥C0 ≤ a∥Xn∥C0 and 0 < λn ≤ b, (60)

from which it results that ∥Xn∥C0 ≤ an∥X0∥C0 and hence the sequence ∥Xn∥C0 converges to zero as n goes to infinity.
Moreover, the λk being uniformly bounded, the series

∑n
k=0 λ

k Xk in (57) and (58) converges normally. Hence,
(εn,σn) converge in L2

sym(Ω) × L2
sym(Ω) to a limit (ε∞,σ∞). Owing to the continuity in L2

sym(Ω) of the linear map
(ε,σ) 7−→ X we find that the residual X∞ associated to (ε∞,σ∞) is null, which ensures that (ε∞,σ∞) is a solution to
the homogenization problem (47).

Finally, we show that this solution is unique up to a pair (e,σ) ∈ D × S with (e,σ) = (0, 0) in Ωm. Indeed, let
(∆eE ,∆σE) represent the difference between two solutions of the above homogenization problem. Then, (∆eE ,∆σE) ∈
D × S complies with (46). We have, < ∆σE : ∆eE >Ω= 0 and hence < ∆eE : C : ∆eE >Ωm= 0. Finally, using (4) in
the matrix domain Ωm leads to (∆eE ,∆σE) = (0, 0) in Ωm.
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5.2. Detailed proof of the convergence result
The proof of the convergence result stated in the previous section will be complete when (60) is proved. To this

end, it is useful to introduce the linear map X 7−→ Z(X) which maps X ∈ L2
sym(Ω) to its AEM-scheme optimization

direction Z(X) given by:
Z(X) = α : X + Γ0 ∗ [(CD

− CS ) : X]. (61)

We also define the functional λ(X) corresponding to the step-size in the Z(X) direction. We will respectively write Z
and λ instead of Z(X) and λ(X) for the sake and simplicity. If Z , 0, then λ is given by:

λ =
⟨X : C0 : Z⟩Ω
⟨Z : C0 : Z⟩Ω

(62)

Recalling that Xn is the residual of the strain-stress pair (εn,σn) complying to the constitutive equations (46), it is
seen that Xn is actually in L2

ext(Ω) according to Section 4.1 and Definition 3. In order to prove (60), we will show that
there exist two real constants 0 < a < 1 and 0 < b such that for any X , 0 in L2

ext(Ω), we have:

∥X − λZ∥C0 ≤ a∥X∥C0 and 0 < λ ≤ b. (63)

The proof proceeds in four steps.

First step. The linear map X 7−→ Z(X) defined by (61) is continuous in L2
sym(Ω) due to the continuity of the Green

operator Γ0 and the fact that CS (y) and CD(y) are uniformly bounded by 2C0. Indeed, since C−1
0 : CS = α and

C−1
0 : CD = 2I − α, one can rewrite Z as:

Z = α : X + (C−1
0 : (CD

− CS ) : X)D = (C−1
0 : CS : X)S + (C−1

0 : CD : X)D = (α : X)S + ((2I − α) : X)D (64)

Using the above orthogonal decomposition, we have:

∀X ∈ L2
sym(Ω), ⟨Z : C0 : Z⟩Ω = ∥(C−1

0 : CS : X)S ∥2C0
+ ∥(C−1

0 : CD : X)D∥2C0
(65)

Hence, recalling that the S− and D-projections are contracting linear operators, we have:

∀X ∈ L2
sym(Ω), ⟨Z : C0 : Z⟩Ω ≤ ⟨X : CS : C−1

0 : CS : X⟩Ω + ⟨X : CD : C−1
0 : CD : X⟩Ω ≤ 8⟨X : C0 : X⟩Ω (66)

where the last inequality is proved in Appendix B. It should be emphasized that (66) still holds true even in the absence
of the uniform coercivity condition (9).

Second step: the key equation. We have the following key equation:

∀X ∈ L2
sym(Ω), ⟨X : C0 : Z⟩Ω = ⟨XS : CS : XS ⟩Ω + ⟨XD : CD : XD⟩Ω (67)

Using (64), we have:

⟨X : C0 : Z⟩Ω = ⟨X : C0 : (C−1
0 : CS : X)S ⟩Ω + ⟨X : C0 : (C−1

0 : CD : X)D⟩Ω

= ⟨XS : C0 : C−1
0 : CS : X⟩Ω + ⟨XD : C0 : C−1

0 : CD : X⟩Ω
= ⟨XS : CS : X⟩Ω + ⟨XD : CD : X⟩Ω
= ⟨XS : CS : XS ⟩Ω + ⟨XD : CD : XD⟩Ω + ⟨XS : CS : XD⟩Ω + ⟨XD : CD : XS ⟩Ω

= ⟨XS : CS : XS ⟩Ω + ⟨XD : CD : XD⟩Ω + ⟨XD : (CD + CS ) : XS ⟩Ω

= ⟨XS : CS : XS ⟩Ω + ⟨XD : CD : XD⟩Ω + ⟨XD : 2C0 : XS ⟩Ω

= ⟨XS : CS : XS ⟩Ω + ⟨XD : CD : XD⟩Ω,

where properties (19) and (38) have been used. CS and CD being positive, the key equation (67) shows that X 7−→
⟨X : C0 : Z⟩Ω is a positive quadratic form on L2

sym(Ω).
In the next step, we will establish (63) under the following assumption: there exists a C0-dependent constant

0 < κ0 < 1 such that:
∀X ∈ L2

ext(Ω), ⟨X : C0 : Z⟩Ω ≥ κ0⟨X : C0 : X⟩Ω (68)
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Third step. From the Cauchy-Schwartz inequality and (68), we obtain:

∀X ∈ L2
ext(Ω),

√
⟨Z : C0 : Z⟩Ω

√
⟨X : C0 : X⟩Ω ≥ ⟨X : C0 : Z⟩Ω ≥ κ0⟨X : C0 : X⟩Ω. (69)

If X , 0, we get √
⟨Z : C0 : Z⟩Ω ≥ κ0

√
⟨X : C0 : X⟩Ω. (70)

If X = 0, we have trivially Z = 0 (see (61)) and the above inequality also holds. Conversely, (70) implies that Z , 0
for any X , 0 in L2

ext(Ω), hence λ is well-defined by (62). Now, inserting (70) in the left-hand part of (69), we obtain:

∀X ∈ L2
ext(Ω), 8κ−1

0 ⟨X : C0 : X⟩Ω ≥ κ−1
0 ⟨Z : C0 : Z⟩Ω ≥ ⟨X : C0 : Z⟩Ω ≥ κ0⟨X : C0 : X⟩Ω. (71)

This means that the functionals X 7−→
√
⟨X : C0 : Z⟩Ω and X 7−→

√
⟨Z : C0 : Z⟩Ω are actually norms over L2

ext(Ω)
and these norms are equivalent to the C0-norm. Moreover, for any X , 0 in L2

ext(Ω) the corresponding λ is uniformly
bounded:

0 <
κ0
8
≤ λ =

⟨X : C0 : Z⟩Ω
⟨Z : C0 : Z⟩Ω

≤ κ−1
0 , (72)

and, combining (66), (69) and (71), we obtain:

1 ≥
⟨X : C0 : Z⟩2

Ω

⟨Z : C0 : Z⟩Ω⟨X : C0 : X⟩Ω
≥
κ20
8
, (73)

Finally, using the following equation:

∥X − λZ∥2C0
= ∥X∥2C0

−
⟨X : C0 : Z⟩2

Ω

⟨Z : C0 : Z⟩Ω
, (74)

we see that (63) holds for a equal to
√

1 − κ
2
0
8 and b equal to κ−1

0 .
It should be pointed out that the minimum possible values for a and b in (63), respectively noted a−0 and b−0 with

0 < a−0 ≤
√

1 − κ
2
0
8 < 1 and 0 < b−0 ≤ κ

−1
0 , are such that:

√
1 − (a−0 )2 = inf

⟨X : C0 : Z⟩2
Ω

⟨Z : C0 : Z⟩Ω⟨X : C0 : X⟩Ω
, (75)

and
b−0 = sup

⟨X : C0 : Z⟩Ω
⟨Z : C0 : Z⟩Ω

, (76)

where the above infinimum and supremum are taken over all X , 0 in L2
ext(Ω).

Clearly, a−0 and b−0 are C0-dependent. And hence, the rate of convergence of the AEM-scheme is C0-dependent.

Fourth step. It is important to note that (63) holds true, and hence the AEM scheme linearly converges, for any
periodic elasticity tensor fields satisfying (68). Indeed, we have not yet used any of the regularity requirements stated
in Section 4.2. We will prove now that these requirements are sufficient to satisfy (68) for any choice of the reference
material C0.

Owing to the regularity assumptions on C in the heterogeneous matrix, we know that (39)–(41) holds in Ωm.
Further remembering that CS = 0 in the rigid inclusions and CD = 0 in the pores, we get:∫
Ω

X : C0 : Z ≥
∫
Ω\Ωr

XS : CS− : XS +

∫
Ω\Ωp

XD : CD− : XD ≥ d
(∫
Ω\Ωr

XS : C0 : XS +

∫
Ω\Ωp

XD : C0 : XD
)

(77)

where the constant 0 < d ≤ 1 is given by:

d = min
{

2
1 + µ+

,
2µ−

1 + µ−

}
. (78)
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Finally, for any X is in L2
ext(Ω), one can combine (51) with (77) to obtain (68) with

κ0 =
d
c

(79)

where c > 1 is the constant in (51) and the bounds:

a−0 ≤

√
1 −

d2

8c2 < 1, b−0 ≤
c
d
. (80)

6. Characterization of the limit of the AEM iterations

We have just shown that the AEM iterations converge to a solution of the homogenization problem. Indeed, it is
recalled that the mechanical fields are unique in the matrix only. From the point of view of homogenization, this is
of no importance, since the homogenized stiffness only depends on the mechanical fields in the matrix. However, it
is interesting to determine which of these solutions is selected by the AEM iterations, if only to understand how the
iterative scheme works. We will show that for a natural choice of initialization of these iterations, their limit is the
unique C0-extended solution of the Lippmann–Schwinger equation.

6.1. The zero-initialization of the AEM iterations

The AEM scheme imposes no requirement on the initial strain field ε0. In particular, there is no need for ε0 to be
compatible (i.e. the sum of E and a strain field in D). Therefore, one could take advantage of this by selecting an
initial strain different from the usual initialization ε0 = E, which is not suitable for composites containing infinitely
rigid inclusions.

Actually, the simplest initialization in the AEM scheme is to set to zero both initial strain and initial stress:

ε0(y) = 0, σ0(y) = 0, X0(y) = E. (81)

With this zero-initialization, the AEM scheme converges to a solution to the homogenization problem which writes:

εE = α(y) : ε∗E(y), σE = CD(y) : ε∗E(y), (82)

where the auxiliary strain field ε∗E is given by:

ε∗E(y) =
∑
k≥0

λk Xk(y), (83)

see Eqs. (57) and (58) with ε0 = 0 and σ0 = 0. Moreover, inserting equation CD = 2C0 −CS = 2C0 −C0 : α in (82),
and using simple algebra leads to the following expression of ε∗E :

ε∗E =
1
2

(
(C0)−1 : σE + εE

)
(84)

which can be decomposed as ε∗E = ε
∗S
E + ε

∗D
E with:

ε∗SE =
1
2

(
(C0)−1 : σE + E

)
, ε∗DE =

1
2
εD

E . (85)

Notice that the auxiliary strain ε∗E is related to the so-called P-polarization PE by the following equation (see [17]):

PE = σE + C0 : εE = 2C0 : ε∗E (86)
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6.2. Characterization of the solution defined by the zero-initialisation

With the previous choice of initialization, we select a solution, which we show to be the only one that is C0-
extended. Indeed, ε∗E is actually in L2

ext(Ω) as the limit of linear combination of elements of L2
ext(Ω). Therefore, by

definition of L2
ext(Ω), we can write:

C0 : ε∗SE =
1
2

(σE + C0 : E) ∈ Sr, ε∗DE =
1
2
εD

E ∈ Dp, (87)

and C0 : E being obviously in Sr, the above properties imply:

σE ∈ Sr, εD
E ∈ Dp, (88)

which means that σE is C0-extended in the rigid inclusions and εD
E is C0-extended in the pores.

6.3. The modified Lippmann–Schwinger equation

It is remarkable to observe that the new variable is the only solution to a problem that resembles a homogenization
problem, for a material of finite fictitious stiffness (no pores, no rigid inclusions). In this subsection, we set out the
modified Lippmann–Schwinger whose unique C0-extended solution is the auxiliary strain field ε∗E .

Recall that the solution (82) is such that its residual (49) is null. Hence, ε∗E is a solution to the following modified
Lippmann–Schwinger equation:

Z(ε∗) = E, (89)

where the Z-operator is given by (61) and the residual writes:

X(ε∗) = E − Z(ε∗). (90)

Actually, ε∗E is the unique solution of the above modified Lippmann–Schwinger equation which is in L2
ext(Ω)

because it has been proved in Section 5.2 that Z(ε∗) = 0 with ε∗ ∈ L2
ext(Ω) if, and only if, ε∗ = 0.

We see that the pair (εE ,σE) defined by equations (82)-(83) is the unique solution of the homogenization problem
(47) which is C0-extended. And the equations (82) and (84) can be seen as a suitable change of variables in the initial
Lippmann–Schwinger equation leading to the use of the uniformly bounded tensor fields α, CD and CS in the modified
Lippmann–Schwinger equation.

6.4. The AEM algorithm

Therefore, the AEM scheme can be reformulated to solve the modified Lippmann–Schwinger equation (89) instead
of the initial one. It is initialized with (ε∗)0 = 0, X0 = E and the iteration for n ≥ 0 is to compute Xn+1 and (ε∗)n+1 as
follows, until a stopping criterion is reached:

Zn = Z(Xn) (91)

λn =
⟨Xn : C0 : Zn⟩Ω

⟨Zn : C0 : Zn⟩Ω
(92)

Xn+1 = Xn − λnZn, (93)

(ε∗)n+1 = (ε∗)n + λnXn (94)

The main steps are summarized in Algorithm 1.
One can see that the AEM scheme necessitates the storage of one additional variable, namely the residual X, when

compared to the algorithm dedicated to the polarization scheme with damping parameter γ ∈ [0, 1) described in [17],
and actually two additional variables, namely X and Z, in the special case γ = 0. Details concerning the choice of the
reference and of the stopping criterion are discussed in Section 7.
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Algorithm 1 The AEM algorithm
1: ε← 0
2: X← E
3: repeat
4: Z ← (CD

− CS ) : X
5: Z ← Γ0 ∗ Z use standard FFT and the analytical expression of Γ0 in Fourier space.
6: Z ← α : X +Z
7: λ← ⟨X : C0 : Z⟩Ω/⟨Z : C0 : Z⟩Ω
8: X← X − λZ
9: ε← ε + λX

10: until Convergence criterion met
11: ε← α : ε
12: return ε

6.5. Link with gradient-descent methods

It is important to emphasize that the Z-operator is not symmetric and that its symmetric part can be identified with
a positive definite quadratic form on L2

ext(Ω) as shown by the key equation (67). Let us define the potential J for any
ε∗ in L2

sym(Ω) by:

J(ε∗) =
1
2
⟨X(ε∗) : C0 : X(ε∗)⟩Ω (95)

where X(ε∗) is given by (90), (89) and (61). Then the AEM iteration writes: (ε∗)n+1 = (ε∗)n + λnX((ε∗)n) where λn

minimizes J((ε∗)n+1).
Hence, the proposed AEM-scheme is not a gradient-descent method. For n ≥ 0, (ε∗)n+1 is actually a linear combi-

nation of the fields K0, K1, ..., Kn where K0 = E and Ki+1 = Z(Ki) for i ≥ 0. So, it is a kind of Generalized Minimal
RESsidual method (GMRES), but without any orthogonalization of the Krylov subspace generated by K0, K1, ..., Kn.

In the spirit of [21], the solution of (89) could be found by minimizing J using some gradient method. Indeed,
the minimizers of J, which are not necessarily in L2

ext(Ω), are such that X(ε∗) = 0 and ∇J(ε∗) = 0, where ∇J denotes
the gradient of J. So, we have used a conjugate gradient method with zero initialization to solve ∇J(ε∗) = 0. The
reader can find the expression of ∇J in Appendix E. The numerical simulations with this scheme were disappointing
compared with those conducted with the AEM scheme. Indeed, unlike AEM, for some choices of reference material
this scheme fails to converge, probably because the solution is not unique in the pores nor in the rigid inclusions (one
of the main features of AEM is to select the unique solution in L2

ext(Ω)) . In addition, two convolutions are required for
each iteration instead of one for the AEM scheme. In conclusion, there is no advantage in using this scheme instead
of AEM.

6.6. Useful expressions of Chom

It is also convenient to introduce the modified fourth-order strain-localization tensor field A∗(y) = (A∗i jkl(y)) that
maps E onto ε∗E(y):

ε∗E(y) = A∗(y) : E. (96)

Recall that the localization tensor A of the initial homogenization problem is defined only in the matrix. Then, one can
write A = α : A∗ in the matrix, and using this equation one can extend A to the whole unit cell. Moreover, inserting
(82) into equation ⟨σE : εE⟩Ω = ⟨σE⟩Ω : ⟨εE⟩Ω = ⟨σE⟩Ω : E which is true for any E, one obtains the following
expressions of Chom:

Chom = ⟨CD : A∗⟩Ω = ⟨(A∗)t : C∗ : A∗⟩Ω (97)

where C∗ = 0 in the pores and in the rigid inclusions and

C∗ = αt : C : α = 4C0 : (C + C0)−1 : C : (C + C0)−1 : C0 (98)

in the matrix.
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Now, taking the average of ε∗E and using (84), we have:

⟨ε∗E⟩Ω = ⟨A
∗⟩Ω : E =

1
2

(
(C0)−1 : Chom + I

)
: E. (99)

Remarkably, if the reference medium, C0, coincides with the homogenized one, Chom, then we will have ⟨A∗⟩Ω = I,
which means that the average of ε∗E is equal to E for any E.

It is also interesting to compute the average of ε∗E over the pores, ⟨ε∗E⟩Ωp , and its average over the rigid inclusions,
⟨ε∗E⟩Ωr . Using equations (82) and (84), we have:

⟨εE⟩Ωp = ⟨α : ε∗E⟩Ωp = 2⟨ε∗E⟩Ωp , ⟨σE⟩Ωr = 2C0 : ⟨ε∗E⟩Ωr . (100)

Since ⟨εE⟩Ωp and ⟨σE⟩Ωr are independent of the choice of the reference medium, C0, it is found that ⟨ε∗E⟩Ωp is inde-
pendent of C0 and ⟨ε∗E⟩Ωr behaves like the inverse of C0.

7. Implementation of the AEM iterations

We have shown that the zero-initialization proposed above leads to the selection of a solution with a certain
regularity. In our implementation of the method, we have systematically used this initialization, which allows some
optimizations, discussed in this paragraph.

7.1. Choosing the reference medium

We have already proved that the AEM scheme is unconditionally linearly convergent for any choice of the ref-
erence medium and we have interpreted this algorithm as a variable change which allows to use uniformly bounded
tensors in the modified Lippmann–Schwinger equation.

Moreover, the previous analysis shows that if one wants to minimize auxiliary strain variations on the unit cell,
then the reference medium should be of the same order as the unknown homogenized medium. That is why it is
reasonable to choose a reference medium of the same order of the expected homogenized medium.

Another way of dealing with the issue is to remember that the rate of convergence of the AEM scheme is governed
by the C0-dependent value of a−0 introduced by equation (75). An alternative idea is therefore to choose C0 in such
a way as to minimize a−0 . However, a−0 is not explicitly known. We have only the upper bound in (80) involving
the constants c and d, and we are reduced to optimizing this bound. Therefore, we should keep in mind that this
optimization will only give an indication of the rate of convergence.

We consider C0 of the form C0 = k0C∗ where C∗ is a fixed given stiffness tensor and k0 is a positive multiplying
constant which must be optimized. It can be seen that the constant c which appears in (51) and (80) is not k0-dependent.
On the other hand, assume that the uniform coercivity condition holds true for C∗, µ−∗ and µ+∗ in (9) instead of C0, µ−

and µ+, respectively. Then, the constant d in (78) and (80) has the following form for C0 = k0C∗ :

d = min
{

2

1 + µ
+
∗

k0

,
2 µ
−
∗

k0

1 + µ
−
∗

k0

}
. (101)

Its maximum value

d+ =
2
√
µ−∗√

µ+∗ +
√
µ−∗

(102)

is reached for the optimum value of k0, kopt
0 , given by:

kopt
0 =

√
µ+∗ µ

−
∗ . (103)

In the case of a homogeneous matrix, C(y) = C∗ for all y in Ωm, then kopt
0 = 1, which means that the optimum

reference medium is the matrix itself. Moreover, if k0/k
opt
0 ≪ 1 or k0/k

opt
0 ≫ 1, then d ≪ 1 which indicates that the

convergence rate could deteriorate a lot in these cases.
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To better characterize these limit cases, consider C0 of the form C0 = k0C∗ and a pair of strain-stress fields,
(ε,σ) ∈ L2

sym(Ω) × L2
sym(Ω), complying to the constitutive equations (46). Let λ be the corresponding relaxation

parameter according to the AEM scheme (62), where the residual, X, and the direction, Z, are respectively given by
(49) and (61) where we assume that Z , 0. For k0 → +∞ or k0 → 0 and (ε,σ) being fixed, we find that λ goes to the
same limit:

λ→
1
2
, (104)

from which we see that λ staying close to 1
2 for many successive iterations is an indication that the reference medium

is too soft or too stiff.

7.2. Stopping criteria
Let (ε,σ) ∈ L2

sym(Ω) × L2
sym(Ω) be a pair of strain-stress fields which complies with the constitutive equations

(46). It can be considered as a good approximation of the solution to the homogenization problem if its residual (49)
is small enough. Thanks to the orthogonal decomposition of this residual (50), one can write:

∥X∥2C0
= ∥ (E − ε)S ∥2C0

+ ∥
(
C−1

0 : σ
)D
∥2C0
. (105)

There are two contributions to the residual: the error in compatibility, ∥ (E − ε)S ∥C0 , and the error in equilibrium,

∥
(
C−1

0 : σ
)D
∥C0 . When these errors are not zero, their relative importance depends on the choice of the reference

medium C0: as C0 increases, the relative contribution of the error in equilibrium to the residual decreases, and as C0
decreases, the relative contribution of the error in equilibrium to the residual increases. Since in the AEM scheme the
strain is not compatible, nor the stress is in equilibrium, one has to ensure that both the projection of E − ε , 0 on S
and the projection of C−1

0 : σ , 0 on D are small enough. We therefore introduce:

∆S =
∥ (E − ε)S ∥C0

∥E − ε∥C0

(106)

∆D =
∥
(
C−1

0 : σ
)D
∥C0

∥C−1
0 : σ∥C0

(107)

as the normalized compatibility and equilibrium errors, respectively. Clearly, if C0 is of the form C0 = k0C∗, then
0 ≤ ∆S ≤ 1 and 0 ≤ ∆D ≤ 1 are not k0-dependent. Concerning the equilibrium error, we avoid using the L2-norm of
the divergence of σ because, in the general case, there is no guarantee that this divergence is in L2.

A possible stopping criterion of the AEM scheme can therefore be ∆ = max{∆S ,∆D} ≤ tol where tol is a
user-prescribed relative tolerance.

At first sight, the computation of ∆S ,∆D should require the use of additional convolutions at each iteration. In
reality, this is not the case if we organize the algorithm as described in Appendix F. In this alternative version of
the algorithm, ∆S ,∆D can be computed from the intermediate results of the algorithm steps. The AEM algorithm,
including the compatibility/equilibrium errors computation, still requires one single convolution per iteration.

It should be mentioned that the discretization of the Green operator has a huge influence on whether a particular
solution scheme converges or not in case of infinite contrast. Actually, there are discretizations which do not inherit
the salient properties of the continuous case. In the next section, we are also going to numerically test the robustness
of our scheme in relation to the discretization.

8. Illustrative applications

The AEM scheme has been implemented in the Janus Python library2. For the Green operator discretization
scheme, unless stated otherwise, we use the finite differences scheme proposed in [25] which results in improved
accuracy of the local fields over more classical discretization strategies.

2Available at https://github.com/sbrisard/janus
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8.1. 2D matrix-inclusion microstructure

In this section, we consider a 2D microstructure consisting of a stiff circular inclusion of radius 0.25 (phase 2)
embedded in a matrix (phase 1). Both media have zero Poisson ratio ν1 = ν2 = 0 and the matrix has a shear modulus
G1 = 1. The RVE is discretized with a N × N grid with N = 128 unless stated otherwise and the loading consists of a
uniaxial unit strain E = ex ⊗ ex. Finally, we choose G0 = G1 and ν0 = 0 for the reference medium.

We first investigate the performance of the AEM algorithm when varying the inclusion stiffness G2. We test in
particular the perfectly rigid case where G2 = ∞ since AEM is perfectly able to handle such a limit case. Convergence
results are reported in Figure 1 in terms of the average energy ⟨σ : ε⟩Ω, the total residual:

residual =
∥X∥C0

∥E∥C0

(108)

and the normalized compatibility and equilibrium residuals ∆S ,∆D (106)-(107).
Results first indicate that AEM succeeds in converging in all cases. In particular, the convergence of the energy

is extremely fast since a stabilized value is reached in roughly 10 iterations, even in the challenging case of infinite
contrast. When inspecting the various residual measures, we find that convergence is extremely fast for moderate
values of the stiffness contrast where machine precision is reached within only a few tens of iterations. For larger
stiffness contrasts, convergence to machine precision is reached for a few hundred of iterations. However, we must
highlight that we still maintain a very good convergence rate even in the infinite case. Indeed, due to the specific
scaling used in the AEM iterations, the algorithm behavior for a contrast between 100 and +∞ is essentially the same.

To further assess the robustness of the AEM algorithm, we report in Figure 2 the evolution of the compatibility
and equilibrium residuals for the two cases G2 = 2G1 and G2 = 1000G1 for varying grid sizes N. We can observe
that both residuals decrease in a very similar manner irrespective of the chosen grid size, the convergence rate being
essentially driven by the contrast ratio as discussed before.

8.2. 3-phase 2D medium with double contrast

In order to have a better understanding of the origin of the efficiency of the AEM algorithm, Figure 3 shows the
evolution of the physical strain field ε and its auxiliary counterpart ε∗ during the first iterations in the following double
contrast case: a square microstructure consisting of a rigid circular inclusion of radius 0.25 (phase 2) located at the
center of the domain and softer inclusions of radius 0.25 (phase 3) centered at the vertices of the square domain. The
matrix (phase 1) has a Poisson ratio ν1 = 0.3 and a shear modulus G1 = 1. The inclusions have the same Poisson ratio
ν1 = ν2 = ν3 and different shear moduli G2 and G3. For simplicity, we take in the following G2 = χG1 and G3 = G1/χ
where χ denotes the double contrast ratio between the stiff inclusions and the matrix and between the matrix and the
soft inclusions. A 3D variant of this microstructure will be considered in the next section. The RVE is discretized
with a 512 × 512 grid size, the loading consists of a uniaxial unit strain E = ex ⊗ ex, the contrast is infinite, χ = ∞,
and the reference material is the matrix.

First, we observe that ε∗ exhibits a similar strain level in both the inclusion and the pore due to the re-scaling
procedure. Indeed, we have chosen the reference material corresponding to the matrix properties. The latter are then
relatively close to that of the homogenized medium, which implies that the average auxiliary strain in the pore and the
rigid inclusions are of similar level as suggested by (100).

Second, we see that, after the very first iteration, the auxiliary strain is constant (ε∗ = λE) which corresponds to a
physical strain being exactly zero in the rigid inclusion and being larger than the total average strain in the pore. This
first step may be seen as a very efficient initialization procedure for the real physical strain. After the second iteration,
intraphase heterogeneities are already well captured. The subsequent iterations then slightly update the strain field to
satisfy both equilibrium and compatibility. After iteration 10, changes of the strain field become imperceptible to the
naked eye.

8.3. 3-phase 3D medium with double contrast

In the following, we consider the 3D variant of the previous double inclusion setting with the same geometric and
elastic parameters, see Figure 4. The RVE is discretized with a 32× 32× 32 grid and the loading consists of a uniaxial
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Figure 1: Convergence of AEM for various inclusion stiffness moduli in the 2D matrix-inclusion microstructure.
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(a) Equilibrium residual (b) Compatibility residual

Figure 2: Convergence of AEM for various grid size N in the 2D matrix-inclusion microstructure.

unit strain E = ex ⊗ ex.
In this section, we aim to assess the performance of the AEM algorithm compared to several classical schemes

such as the basic Moulinec-Suquet (MS) scheme, the standard Eyre-Milton (EM) scheme and the Conjugate-Gradient
(CG) scheme. For the CG scheme, we use the version introduced by Zeman et al. [9], that is independent of the
choice of reference medium. In all above mentioned schemes, the strain field is initialized with ε = E. On the
other hand, zero initialization of the strain field is adopted in the polarization schemes, parametrized with different
values of γ = 1 − λ: γ = 1/4 (Monchiet-Bonnet), γ = 1/2 (augmented Lagrangian) and γ = 0 (Eyre-Milton with
zero initialization). All schemes are implemented in the same framework as AEM using the Janus library. Finally,
we adopt for the reference medium the following values which are usually suggested in the literature for the various
schemes:

• the arithmetic average moduli (23) for MS

• the geometric average moduli (26) for EM and the polarization schemes. In this particular case of double inverse
contrast, this amounts to choosing G0 = 1 and ν0 = 0.3, that is the matrix elastic moduli.

• the matrix elastic moduli for CG and AEM.

In summary, the reference medium coincides with the matrix in all schemes, except MS. In each case, we compute
the average energy and the following common normalized residual (even for MS):

residual =

√
∥ (E − ε)S ∥2Cm

+ ∥
(
C−1

m : σ
)D
∥2Cm

∥E∥Cm

(109)

where Cm is the elasticity tensor of the matrix, and ∥.∥Cm its corresponding norm. In this way, we avoid introducing
any bias in the evaluation of the convergence between schemes with different reference medium or different E.

8.3.1. Comparison against classical schemes
For a moderate contrast χ = 10, Figure 5 shows that all of the considered schemes converge quite rapidly to the

solution with a relatively similar speed, except for the MS scheme which is slower than the other methods.
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(a) Iteration 1

(b) Iteration 2

(c) Iteration 10 and beyond

Figure 3: Horizontal strain εxx (left) and auxiliary strain ε∗xx (right) for the infinite contrast case in the 3-phase 2D microstructure with double
contrast.
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Figure 4: 3-phase 3D medium with double contrast. The pore is in light blue, the inclusion in grey and the matrix is hidden.
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Figure 5: Convergence of MS, EM, CG, γ and AEM schemes in the double contrast 3D microstructure with χ = 10
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Figure 6: Convergence of MS, EM, CG , γ and AEM schemes in the double contrast 3D microstructure with χ = 1000

The case of a stronger contrast χ = 1000 is reported in Figure 6. In terms of energy, the convergence of AEM
and γ = 0-scheme is faster than all of the other considered schemes, and also smoother than CG and EM for instance.
When looking at the total residual, we can see that MS fails to substantially reduce the residual in this large contrast
case. Moreover, AEM starts with a smaller value of the residual than EM due to a different choice for the initialization.
Indeed, all the γ-schemes (for which the step-size is fixed) behave like AEM. As a result, the difference between EM
and γ = 0-scheme is related to the initialization of the algorithm.

We now investigate the case of an infinite contrast χ = ∞ with AEM and the polarization schemes since only
these schemes are able to handle the exact infinite-contrast case as discussed in Section 4.1. Figure 7 shows that all
these schemes converge. Clearly, the convergence of γ = 0 and AEM is very similar and it is a little better than the
convergence of γ = 1/4 and γ = 1/2.

8.3.2. Influence of the discretization scheme
It is worth noting that the convergence behavior of the different schemes can also be strongly influenced by the

choice made for discretizing the Green operator. For instance, Figure 8 shows the results for the double contrast with
χ = 1000 when using the original discretization introduced by Moulinec and Suquet [1, 2]. This so-called truncated
Green operator is known to introduce parasitic oscillations around material interfaces. By comparison with Figure 6
obtained with the Willot discretization [25], the convergence worsens in all schemes when using instead the truncated
Green operator. However, AEM and polarization schemes seem more robust than the other schemes.
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Figure 7: Convergence of γ and AEM schemes in the double contrast 3D microstructure with χ = ∞
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Figure 8: Convergence of MS, EM, CG , γ and AEM schemes in the double contrast 3D microstructure with χ = 1000 using a truncated Green
operator
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8.3.3. Influence of the reference medium C0

Finally, we assess the influence of the choice of the reference medium C0 on the convergence behavior. For this
purpose, we use the analysis and notations of Section 7.1. We consider C0 of the form C0 = k0Cm where Cm is the
stiffness of the matrix. We have already established that the optimal choice is kopt

0 = 1, i.e. to take the matrix as the
reference medium. We want to assess the robustness of AEM and γ = 0 schemes as k0 varies away from its optimal
value for which both AEM and γ = 0 have similar convergence.

For this purpose, we consider first the double infinite contrast 3D case χ = ∞ and vary k0 for the AEM scheme.
Figure 9 shows the convergence of AEM for k0 = 0.1 and k0 = 10. Here, the residual given by (109) is not k0-
dependent. It is observed that the convergence for k0 = 0.1 and k0 = 10 is slower than for the optimal choice k0 =

kopt
0 = 1 which further supports the theoretical convergence analysis of Section 5. Second, although the convergence

for k0 = 0.1 and k0 = 10 are similar for the residuals, we observe that increasing k0 worsens the convergence of
the energy only slightly, whereas decreasing k0 induce a larger deterioration of the convergence. We also observe
that choosing a soft reference medium results in a slow evolution of the energy during the first iterations. Third, the
evolution of the relaxation parameter λ is interesting. We observe oscillations of the relaxation parameter λ around
1 for k0 = kopt

0 . We attribute this behavior to the fact that the convergence is reached very quickly and that the exact
value of λ becomes meaningless. Remarkably, for k0 = 10kopt

0 , λ is close to 1/2 for the first iterations before reaching
a value close to 1. Finally, for k0 = 0.1kopt

0 , λ is close to 1.
In Figure 10 we compare the convergence of the AEM and γ = 0 schemes for a reference medium softer than

the optimum one. We take k0 = 0.1kopt
0 and k0 = 0.01kopt

0 . It is observed that both AEM and γ = 0 schemes predict
the same energy. As for the corresponding normalized error ∆ defined in Section 7.2, both schemes converge with a
slightly better convergence for AEM scheme in the case k0 = 0.01kopt

0 .
In Figure 11 we compare the convergence of the AEM and γ = 0 schemes for a reference medium stiffer than the

optimum one. We take k0 = 10kopt
0 and k0 = 100kopt

0 . It is observed that the energy predicted by the γ = 0 scheme
strongly oscillates for the first iterations, and that these oscillations are amplified as k0 increases. Moreover, the
corresponding normalized error ∆ defined in Section 7.2 seems constant (over the first 500 iterations) for k0 = 100kopt

0 ,
which indicates that the convergence of the γ = 0 scheme is lost in this case. On the other hand AEM is still convergent
and regular, even for such extreme choice of the reference medium.

Finally, we report in Figure 12 the evolution of the relaxation parameter λ for k0 = 0.001kopt
0 , 0.01kopt

0 , 100kopt
0 , 1000kopt

0 .
It is observed that, as predicted by the theoretical analysis, λ is close to 1/2 for the first iterations, then it increases
and stabilizes close to 1.

Let’s summarize the findings of our numerical study in a few words. Polarization-based schemes are more suitable
for highly contrasted microstrucures than MS, CG and EM schemes if the reference medium is correctly chosen.
Among them, γ = 0 and AEM schemes are very comparable and they are the ’best’. However, the γ = 0 scheme loses
convergence if the reference medium is chosen incorrectly, whereas AEM scheme linearly converges unconditionally
for any choice of reference medium.

9. Conclusions

We proposed the so-called Adaptive Eyre–Milton scheme (AEM), a novel iterative method for the numerical so-
lution of the Lippmann–Schwinger equation with periodic boundary conditions for the case of linear constitutive
equations. This scheme is derived from the classical Eyre–Milton scheme [6] and the polarization-based schemes
[8], where at each iteration, the direction of the increment is preserved, while its amplitude is optimized. The main
contributions of the present paper are summarized below.

1. The AEM, as well as the classical Eyre-Milton and the polarization-based schemes, have all been formulated in
terms of the residual X rather than the strain field or the polarization.

2. This reformulation relies on rescaled auxiliary quantities which remain well-defined in the limit case of infinitely
soft and infinitely stiff materials.

3. This translates numerically to exceptional robustness to large contrast of material properties with the ability to
handle exactly zero (pores) and infinite (rigid inclusions) elastic moduli. This is the case for both the AEM and
the polarization, thus including in particular the EM scheme (γ = 0) with a zero initialization.

25



100 101 102

Iterations

0

1

2

3

4

en
er

gy

k0 = 10kopt0

k0 = kopt0

k0 = 0.1kopt0

(a) Energy

100 101 102

Iterations

10−10

10−8

10−6

10−4

10−2

100

re
si

d
u

al

k0 = 10kopt0

k0 = kopt0

k0 = 0.1kopt0

(b) Total residual norm

100 101 102

Iterations

10−10

10−8

10−6

10−4

10−2

100

E
qu

ili
b

ri
u

m
re

si
d

u
al

∆
D

k0 = 10kopt0

k0 = kopt0

k0 = 0.1kopt0

(c) Equilibrium residual

100 101 102

Iterations

10−10

10−8

10−6

10−4

10−2

100

C
om

p
at

ib
ili

ty
re

si
d

u
al

∆
S

k0 = 10kopt0

k0 = kopt0

k0 = 0.1kopt0

(d) Compatibility residual

100 101 102

Iterations

0.0

0.5

1.0

1.5

2.0

λ

k0 = 10kopt0

k0 = kopt0

k0 = 0.1kopt0

(e) Relaxation parameter λ

Figure 9: Influence of the choice of the reference medium on the convergence of AEM scheme for the 3D double-contrast microstructure with
χ = ∞.
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Figure 10: Comparison of the convergence of AEM and γ = 0 schemes for very soft reference media in the 3D double-contrast microstructure with
χ = ∞.
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Figure 11: Comparison of the convergence of AEM and γ = 0 schemes for very stiff reference media in the 3D double-contrast microstructure with
χ = ∞.
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Figure 12: Evolution of the relaxation parameter λ in the AEM scheme for very stiff or very soft reference medium in the 3D double-contrast
microstructure with χ = ∞.
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Focusing more particularly on the properties of the proposed AEM scheme, our main findings are as follows:

1. Intermediate steps of the algorithm provide, at no additional time cost, equilibrium and compatibility residual
which can be used to check convergence.

2. Our simulations have shown weaker sensitivity of the AEM scheme’s convergence to the spatial discretization
(discrete Green operator) than other methods and almost insensitivity to the grid size.

3. Linear convergence is guaranteed for any value of the reference medium.
4. Optimal convergence rates seem to be associated with reference properties close to that of the connected phase

or to that of the homogenized medium.
5. Initialization can be arbitrary. The proposed zero-initialization is both simple and allows to handle all the limit

cases of porous and/or infinitely stiff materials.

This work opens a number of perspectives: we identified in particular two possible extensions. First, the AEM will
be applied to nonlinear materials, where its robustness with respect to the material contrast will be particularly helpful.
Second, we will work on an automatic or adaptive selection of the reference medium in the future. The preliminary
observations stated in the present paper indeed point at optimal values that differ from that of the traditional MS and
EM schemes.
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343 (3) (2015) 232–245.
[26] K. Sab, J. Bleyer, S. Brisard, M. Dolbeau, Supplementary material to ”An FFT-based adaptive polarization method for infinitely contrasted

media with guaranteed convergence” (Mar. 2024). doi:10.5281/zenodo.10852953.
URL https://doi.org/10.5281/zenodo.10852953

A. On the formulation of the accelerated scheme of Eyre and Milton

In this section, we prove that formulations (24) and (32) are equivalent. We first recognize in the iterations (24)
the residual Xn defined by Eq. (30) and get the following formulation, equivalent to (24)

Initialization

ε0 = E
and


Iterations (n ≥ 0)

Xn = E − εn − Γ0 ∗
[(

C − C0
)

: εn]
εn+1 = εn + α : Xn

(A.1)

Definition (30) reads, for Xn+1

Xn+1 = E − εn+1 − Γ0 ∗
[(

C − C0
)

: εn+1] (A.2)

and plugging εn+1 = εn + α : Xn

Xn+1 = E − εn − α : Xn − Γ0 ∗
[(

C − C0
)

: εn +
(
C − C0

)
: α : Xn]

= E − εn − Γ0 ∗
[(

C − C0
)

: εn] − α : Xn − Γ0 ∗
[(

C − C0
)

: α : Xn] (A.3)

finally, recognizing the definition (30) of Xn

Xn+1 = Xn − α : Xn − Γ0 ∗
[(

C − C0
)

: α : Xn] (A.4)

we get the following equivalent formulation of the accelerated scheme (24)
Initialization

ε0 = E

X0 = −Γ0 ∗
[(

C − C0
)

: E
] and


Iterations (n ≥ 0)

εn+1 = εn + α : Xn

Xn+1 = Xn − α : Xn − Γ0 ∗
[(

C − C0
)

: α : Xn] (A.5)

and formulation (32) is finally retrieved.
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B. Proof of Eqs. (39), (40) and (66)

In this appendix, a proof of the bounds (39) and (40) on e : CD(y) : e and e : CS (y) : e is proposed. It will be
convenient to introduce the following partial order relation ≼ over the space of fourth-order, positive definite tensors
with major and minor symmetries

T ≼ T ⇐⇒ e : T : e ≤ e : T′ : e, (B.1)

for all second-order, symmetric tensors e. Then, the uniform coercivity condition reads

µ− C0 ≼ C(y) ≼ µ+ C0, (B.2)

for all y ∈ Ω. The partial order relation ≼ has the following properties3

1. T ≼ T ⇒ λT ≤ λT′ for all λ > 0,
2.

(
T1 ≼ T′1 and T2 ≼ T′2

)
⇒ T1 + T2 ≼ T′1 + T′2,

3. T ≼ T′ ⇒ T′−1 ≼ T−1,

from which it results

µ− C0 ≼ C(y) ≼ µ+ C0,

⇒ µ− C0 + C0 ≼ C(y) + C0 ≼ µ+ C0 + C0,

⇒
(
µ+ + 1

)−1C−1
0 ≼

(
C(y) + C0

)−1 ≼
(
µ− + 1

)−1C−1
0 ,

⇒ 2
(
µ+ + 1

)−1C0 ≼ CS (y) ≼ 2
(
µ− + 1

)−1C0, (B.3)

Inequality (39) is a consequence of the identity (38).
In order to prove the last inequality in (66), we will establish CS : C−1

0 : CS ≼ 4C0 and CD : C−1
0 : CD ≼ 4C0.

Simple algebraic calculations lead to to the following expression of CS : C−1
0 : CS and CD : C−1

0 : CD in the matrix:

CS (y) : C−1
0 : CS (y) = 4C0 :

(
C(y) : C−1

0 : C(y) + 2C(y) + C0
)−1 : C0 (B.4)

and
CD(y) : C−1

0 : CD(y) = 4C0 :
(
C0 : C−1(y) : C0 : C−1(y) : C0 + 2C0 : C−1(y) : C0 + C0

)−1 : C0. (B.5)

From the positivity of C(y) and C0 it results

C0 ≼ C(y) : C−1
0 : C(y) + 2C(y) + C0,

⇒
(
C(y) : C−1

0 : C(y) + 2C(y) + C0
)−1 ≼ C−1

0

⇒ CS (y) : C−1
0 : CS (y) ≼ 4C0 (B.6)

and
C0 ≼ C0 : C−1(y) : C0 : C−1(y) : C0 + 2C0 : C−1(y) : C0 + C0,

⇒
(
C0 : C−1(y) : C0 : C−1(y) : C0 + 2C0 : C−1(y) : C0 + C0

)−1 ≼ C−1
0

⇒ CD(y) : C−1
0 : CD(y) ≼ 4C0 (B.7)

Finally, we have CS : C−1
0 : CS = 0 and CD : C−1

0 : CD = 4C0 in the rigid inclusions, while CS : C−1
0 : CS = 4C0 and

CD : C−1
0 : CD = 0 in the pores.

3Note that the proof of the last property results from the fact that 1
2 σ : T : σ = maxe

{
σ : e − 1

2 e : T : e
}
.
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C. On the regularity of Ωr

The case of several rigid inclusions occupyingΩ-periodic non-intersection Lipschitz domains is a simple extension
of the case we consider here of one single inclusion occupying a Lipschitz domain Ωr ⊂ Ω and such that its boundary
∂Ωr is in the interior of Ω.

Let e be in L2
sym(Ω) such that C0 : e ∈ Sr. This means that the divergence of C0 : e is null and that e in Ωr is

equal to the symmetric part of the gradient of some displacement vector field on Ωr. The divergence of C0 : e being
null, its normal trace on ∂Ωr, noted γn(C0 : e), where n is the outer normal to ∂Ωr, is well-defined in H−

1
2 (∂Ωr).

The displacement field in Ωr that generates the restriction of e to Ωr as the symmetric part of its gradient is uniquely
defined up to a rigid-body-like displacement, and it is in H1(Ωr)d. We choose among all these possible displacement
fields the one which minimizes the H1-norm in Ωr, which we note u. Then, the trace of u on ∂Ωr, noted γ0(u), is also
well-defined and it is in H+

1
2 (∂Ωr). Using the Stokes formula, we have:∫

Ωr
e : C0 : e = (γn(C0 : e), γ0(u)) ≤ ∥γn(C0 : e)∥

H−
1
2 (∂Ωr)

∥γ0(u)∥
H+

1
2 (∂Ωr)

(C.1)

Here, (., .) denotes the duality operator between the dual spaces H−
1
2 (∂Ωr) and H+

1
2 (∂Ωr) and if e and u are regular

enough, we have:

(γn(C0 : e), γ0(u)) =
∫
∂Ωr

[(C0 : e) · n] · u (C.2)

From the continuity of the trace operator from H1(Ωr)d into H+
1
2 (∂Ωr), and from the Korn inequality which states

that the H1-norm of the displacement field u in Ωr is equivalent to the L2-norm of its corresponding strain field in Ωr,
e, we conclude that there is a constant c1 > 0, independent of e, such that:

∥γ0(u)∥2
H+

1
2 (∂Ωr)

≤ c1

∫
Ωr

e : C0 : e (C.3)

Hence, we have: ∫
Ωr

e : C0 : e ≤ c1∥γn(C0 : e)∥2
H−

1
2 (∂Ωr)

(C.4)

Now we consider the restriction of C0 : e to Ω \ Ωr. It is in L2
sym(Ω \ Ωr) and divergence-free. Hence, its normal

trace is well-defined on the boundary of Ω \ Ωr, ∂Ωr ∪ ∂Ω. Then, noticing that the outer normal m to the boundary
of Ω \ Ωr coincides with −n on ∂Ωr and by the continuity of the trace operator from the subspace of divergence-free
elements in L2

sym(Ω \Ωr) into H−
1
2 (∂Ωr ∪ ∂Ω), we have:

∥γn(C0 : e)∥2
H−

1
2 (∂Ωr)

≤ ∥γm(C0 : e)∥2
H−

1
2 (∂Ωr∪∂Ω)

≤ c2

∫
Ω\Ωr

e : C0 : e (C.5)

where c2 > 0 is a positive constant independent of e. Hence, the claimed property is proved with c = 1 + c1c2 > 0.

D. On the regularity of Ωp

The case of pores occupying Ω-periodic non-intersection Lipschitz domains is a simple extension of the case we
consider here of one single pore occupying a Lipschitz domain Ωp ⊂ Ω and such that its boundary ∂Ωp is in the
interior of Ω.

Let e be in Dp, which means that it is in D and C0 : e is divergence-free in Ωp. Similarly to the previous appendix,
using an appropriate Stokes formula on this Dirichlet elasticity problem inΩp, and the continuity of the trace operators
on its boundary, enables us to show that: ∫

Ωp
e : C0 : e ≤ c1∥γ0(u)∥2

H+
1
2 (∂Ωp)

(D.1)

The proof is ended thanks to the Korn’s inequality in Ω \ Ωp and the continuity of the trace operator on the boundary
of this domain.
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E. The gradient of potential J

Let ε∗ and δε∗ be in L2
sym(Ω). Then, ∇J(ε∗) is by definition such that:

lim
λ→0

J(ε∗ + λδε∗) − J(ε∗)
λ

= ⟨∇J(ε∗) : C0 : δε∗⟩Ω (E.1)

From equations (95), (90) and (64), we can rewrite J as following:

J(ε∗) =
1
2
⟨(E − α : ε∗)S : C0 : (E − α : ε∗)S ⟩Ω +

1
2
⟨((2I − α) : ε∗)D : C0 : ((2I − α) : ε∗)D⟩Ω (E.2)

From the definition (E.1), we obtain:

⟨∇J(ε∗) : C0 : δε∗⟩Ω = ⟨(E − α : ε∗)S : C0 : (−α : δε∗)S ⟩Ω + ⟨((2I − α) : ε∗)D : C0 : ((2I − α) : δε∗)D⟩Ω (E.3)

and thanks to orthogonality:

⟨∇J(ε∗) : C0 : δε∗⟩Ω = ⟨(E − α : ε∗)S : C0 : (−α : δε∗)⟩Ω + ⟨((2I − α) : ε∗)D : C0 : ((2I − α) : δε∗)⟩Ω (E.4)

Now, using the symmetry of CS , CS = C0 : α = αt : C0, we can identify ∇J(ε∗) as:

∇J(ε∗) = −α : (E − α : ε∗)S + (2I − α) : ((2I − α) : ε∗)D (E.5)

and
∇J(ε∗) = −α : E + α : (α : ε∗)S + (2I − α) : ((2ε∗)D − (α : ε∗)D) (E.6)

Using the orthogonal decomposition (α : ε∗)S + (α : ε∗)D = α : ε∗ in the above equation finally leads to the following
expression of ∇J(ε∗): We have the following expression:

∇J(ε∗) = α2 : ε∗ + (4I − 2α) : (ε∗)D − 2(α : ε∗)D − α : E. (E.7)

Actually, we can express ∇J in terms of the operator Z defined by equation (61) and its transpose Zt defined by:

⟨X1 : C0 : Z(X2)⟩Ω = ⟨X2 : C0 : Zt(X1)⟩Ω (E.8)

for any X1 and X2 be in L2
sym(Ω). Then, we have:

Zt(X) = α : X + 2(I − α) : XD, (E.9)

and
∇J(ε∗) = Zt(Z(ε∗)) − Zt(E) = Zt(Z(ε∗) − E). (E.10)

F. Another version of the AEM scheme

The computation of the compatibility and equilibrium residuals ∆S and ∆D introduced in (106) and (107) requires
to compute the projections εS and

(
C−1

0 : σ
)D

. From the residual decomposition (50), we have
(
C−1

0 : σ
)D
= −XD.

The algorithm is started with a chosen pair of strain-stress fields in the unit-cell (ε0,σ0) verifying (46). Its corre-
sponding residual X0, as well as the projections (ε0)S and (X0)D are computed. For instance, the zero initialization is
given by: ε0 = 0, σ0 = 0, X0 = E, (ε0)S = 0 and (X0)D = 0.
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For n ≥ 0, if Xn = 0 then the pair (εn,σn) is a solution of the homogenization problem and the iteration is stopped.
Otherwise, compute εn+1, σn+1, Xn+1, (εn+1)S and

(
Xn+1

)D
, as follows:

Yn = α : Xn (F.1)

(Yn)D
= Γ0 ∗ (C0 : Yn) (F.2)

(Yn)S
= Yn − (Yn)D (F.3)

(Zn)D
= 2 (Xn)D

− (Yn)D (F.4)

Zn = (Yn)S
+ (Zn)D (F.5)

λn =
⟨Xn : C0 : Zn⟩Ω

⟨Zn : C0 : Zn⟩Ω
(F.6)

Xn+1 = Xn − λnZn (F.7)

εn+1 = εn + λnYn (F.8)

σn+1 = σn + λnCD : Xn. (F.9)

(εn+1)S = (εn)S + λn (Yn)S (F.10)(
Xn+1

)D
= (Xn)D

− λn (Zn)D . (F.11)

Indeed, this scheme is equivalent to the original one and it enables us to compute both residuals ∆S and ∆D from XD

and XS . To see this, one can notice from the Z-decomposition (61) and the property (38) that Z = Y + 2XD − 2YD =

YS + 2XD − YD where Y = α : X.

34


	Introduction
	The homogenization problem
	Presentation
	 The Moulinec–Suquet, Eyre–Milton and Monchiet–Bonnet schemes

	The Adaptive Eyre–Milton scheme (AEM)
	AEM scheme for composites containing pores and rigid inclusions
	The extended homogenization problem
	Regularity requirements
	The proposed scheme

	Proof of convergence
	Statement of the convergence result and outline of the proof
	Detailed proof of the convergence result

	Characterization of the limit of the AEM iterations
	The zero-initialization of the AEM iterations
	Characterization of the solution defined by the zero-initialisation
	The modified Lippmann–Schwinger equation
	The AEM algorithm
	Link with gradient-descent methods
	Useful expressions of bChomo

	Implementation of the AEM iterations
	Choosing the reference medium
	Stopping criteria

	Illustrative applications
	2D matrix-inclusion microstructure
	3-phase 2D medium with double contrast
	3-phase 3D medium with double contrast
	Comparison against classical schemes
	Influence of the discretization scheme
	Influence of the reference medium bold0mu mumu CCsubsubsectionCCCC0


	Conclusions
	On the formulation of the accelerated scheme of Eyre and Milton
	Proof of equations
	On the regularity of Omega-r
	On the regularity of Omega-p
	The gradient of potential J
	Another version of the AEM scheme

