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Abstract

A birth-death-move process with mutations is a Markov model for
a system of marked particles in interaction, that move over time, with
births and deaths. In addition the mark of each particle may also
change, which constitutes a mutation. Assuming a parametric form
for this model, we derive its likelihood expression and prove its local
asymptotic normality. The efficiency and asymptotic distribution of
the maximum likelihood estimator, with an explicit expression of its
covariance matrix, is deduced. The underlying technical assumptions
are showed to be satisfied by several natural parametric specifications.
As an application, we leverage this model to analyse the joint dynam-
ics of two types of proteins in a living cell, that are involved in the
exocytosis process. Our approach enables to quantify the so-called
colocalization phenomenon, answering an important question in mi-
crobiology.

Keywords: Likelihood estimation, Jump move process, Colocalization,
Microbiology.

1 Introduction

We address the parametric inference of birth-death-move processes with mu-
tations, in short BDMM. These processes model the dynamics of a system
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of particles in Rd that move through time, while some new particles may
appear and existing ones may disappear. In addition, each particle may be
marked by a label, that can change over time, which we call a mutation.
This type of dynamics is observed in epidemiology [21], in ecology [26, 24]
and in microbiology [15, 2]. For example, the application we will consider
later concerns the dynamics of proteins in a living cell, involved in the ex-
ocytosis process and observed near the plasma membrane of the cell: these
proteins move within the cell, and for biological and photochemical reasons,
some of them disappear while others appear. Moreover the motion of each
protein can be of three types, the regime of which constitutes its label, and
this regime may change over time, in line with what we call a mutation.

Formally, a BDMM process is defined through several characteristics:
first, the intensity of births, of deaths, and of mutations, that are functions
of the particle configurations and rule the waiting time before the next birth
(or death, or mutation, respectively); second, the transition kernels that
specify how a birth (or a death or a mutation) occurs when it happens;
third, a continuous Markov process that drives the motion of the system
of particles between two jumps, whether this jump is a birth, a death, or
a mutation. Assuming a parametric form for each of these characteristics,
we are interested by their inference given a single realisation of the process
on a finite time interval. In this contribution, we address this question by
maximum likelihood and we provide theoretical guarantees by proving the
local asymptotic normality (LAN) property of the model, when the time
interval increases, under some regularity conditions. The latter implies the
efficiency and asymptotic normality of the maximum likelihood estimator,
with an explicit and estimable asymptotic covariance matrix.

Birth-death-move processes (without mutations) have been introduced
in [15] and further studied in [14], with a particular focus on their ergodic
properties. These processes share close similarities with Markovian particle
systems with killing and jumps as studied in [18, 17], branching processes [1]
and spatially structured population models [3]. The introduction of possi-
ble mutations does not change much the probabilistic properties of a birth-
death-move process, as we will justify it when needed in the paper. From a
statistical point of view, non-parametric estimation of their intensity func-
tions has been considered in [15]. When there is no move and no mutation,
the process boils down to a spatial birth-death process, as introduced in [25].
Parametric maximum likelihood inference of a spatial birth-death process
when d = 1 has been considered in [22], with an applications to the analy-
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sis of the displacement of dunes. The same method has been employed in
[27] for particular cases of a spatial birth-death process in d = 2, in a view
to model openings and closures of shops in Tokyo. In these references, no
theoretical study is provided and by definition the particles do not move. In
[17], the LAN property of the closely related Markovian model of particle
systems with killing and jumps is established, under a very general, quite
abstract, setting. In our contribution, we specify the likelihood expression of
the general birth-death-move process with mutations and we similarly show
the LAN property under mild assumptions, that we prove to be satisfied for
standard parametric specifications of the model.

The article is organised as followed. In Section 2, the formal definition
of the BDMM process is provided, along with some specific examples for
each of its characteristics. In Section 3, we derive the likelihood expression
of the model and we prove its LAN property. We in particular show that
the associated technical hypotheses are satisfied for the natural examples
presented in Section 2, under mild assumptions. In Section 4, a simulation
study is carried out, showing the performances of the maximum likelihood
estimator of some parameters of the model, along with the estimation of
the associated confidence region. The setting is close to that of the dataset
analysed subsequently, in order to provide certain assurances regarding the
reliability of the conclusions concerning it. This dataset is a video sequence
showing Langerin proteins and Rab-11 proteins in a living cell, acquired by
fluorescence microscopy [4]. As detailed in Section 4.2, their dynamics are
consistent with the realisation of BDMM process. Leveraging on this model
and its estimation, we prove that Langerin proteins are colocalized with
Rab-11 proteins, and we quantify this phenomenon, answering an important
biological question. Finally, an appendix gathers the proofs of our theoretical
results.

The data, the Python code concerning the simulation study and the code
for processing the data are available in our online GitHub repository at
https://github.com/balsollier-lisa/Parametric-estimation-of-the-BDMM-process.
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2 Definition of the BDMM process

2.1 State space

We denote by (Xt)t≥0 the BDMM process. At each time t ≥ 0, Xt describes
the configuration of a set of marked particles. Each particle x ∈ Xt reads
x = (z,m) where z ∈ Λ ⊂ Rp+q encodes the spatial location of the particle in
Rp, p ≥ 1, along with its possible continuous mark in Rq, q ≥ 0, and where
m ∈M is a discrete mark (or label), M being the finite set of possible labels.
In the following, we set d = p+ q, so that Λ ⊂ Rd.

At each time t, Xt represents the set of all alive particles, where the
ordering does not matter and the cardinality may change over time. For this
reason, for any n ≥ 1, we introduce the natural projection

Πn : (x1, . . . , xn) ∈ (Λ×M)n 7→ {x1, . . . , xn} (1)

that identifies two elements (x1, . . . , xn) and (y1, . . . , yn) of (Λ×M)n if there
exists a permutation π of {1, . . . , n} such that xi = yπ(i) for any 1 ≤ i ≤ n.

We set for any n ≥ 1, En = Πn((Λ ×M)n). The state space of Xt for
t ≥ 0 is then

E =
⊔
n≥0

En,

where E0 = {Ø} consists of the empty configuration.
The cardinality of a configuration x ∈ E will be denoted by n(x), so that

x ∈ En(x), and we write

x = {x1, . . . , xn(x)} = {(z1,m1), . . . , (zn(x),mn(x))},

where zi ∈ Λ and mi ∈ M. In the following we will sometimes assimilate
(Λ × M)n with Λn × Mn for convenience, so that we may also write x =
{(z,m)} where z = (z1, . . . , zn(x)) and m = (m1, . . . ,mn(x)). Similarly, we
will write the configuration at time t of the BDMM process in either way

Xt = {x1,t, . . . , xn,t} = {(z1,t,m1,t) . . . , (zn,t,mn,t)} or Xt = {(Zt,mt)},

where n = n(Xt). Moreover, for x ∈ En and (z,m) ∈ Λ × M, we write
x ∪ (z,m) for {x1, . . . , xn, (z,m)} ∈ En+1, and for n ≥ 1 and 1 ≤ i ≤ n, we
write x\xi for {x1, . . . , xi−1, xi+1, . . . , xn} ∈ En−1.
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We equip E with the Borel σ-algebra E and we endow E with the distance
d1 defined for x and y in E such that n(x) ≤ n(y) by

d1(x,y) =
1

n(y)

 min
π∈Sn(y)

n(x)∑
i=1

(∥xi − yπ(i)∥ ∧ 1) + (n(y)− n(x))

 ,

with d1(x,Ø) = 1 and where Sn denotes the set of permutations of {1, . . . , n}.
This distance makes in particular the function x 7→ n(x) continuous on E,
and further implies some nice topological properties for (E, d1), see [28] and
[14] for details.

2.2 Dynamics of a BDMM process

The dynamics of a BDMM process alternates continuous motions and jumps.
Inter-jumps motions concern the location and/or the continuous mark of all
alive particles, that move in Λ. Jumps are of three types: either a birth (when
a new particle appears), or a death (when an existing particle disappears),
or a mutation (when an existing particle changes its label). Accordingly, the
dynamics is based on the three following elements:

1. A continuous homogeneous Markov process (Yt)t≥0 on E that drives
the motion of all particles of (Xt)t≥0 between two jumps. This process
will not affect the label of the particles, neither their cardinality. Given
an initial condition Y0 = x, (Yt)t≥0 will be defined as the solution
of a stochastic differential equation, as described and exemplified in
Section 2.3.3.

2. Three continuous non-negative functions β, δ and τ on E, that refers re-
spectively to the birth, death and mutation intensities. These functions
govern the waiting times between the jumps of (Xt)t≥0. Heuristically,
the probability that a birth occurs in the interval [t, t + dt] given that
the particles are in the configuration Xt à time t is β(Xt)dt, and simi-
larly for δ and τ . We will denote α = β+ δ+ τ the total jump intensity
of the process, that we assume to be bounded.

3. Three transition kernels Kβ, Kδ, and Kτ from E × E to [0, 1], that
specify how a jump occurs when it happens. For example, given that a
birth occurs in a configuration x, Kβ(x, A) is the probability that the

5



new configuration x ∪ (z,m) belongs to A ∈ E , where (z,m) denotes
the new particle, and similarly for Kδ and Kτ .

Details and examples about these three basic characteristics of the process
are provided in the next section.

Let us specifically describe the algorithmic definition of the process. This
iterative construction follows [15] and [14], and may serve as a simulation pro-

cedure, see [15] for details. Let (Y
(i)
t )t≥0, i ≥ 0, be a sequence of processes on

E, identically distributed as (Yt)t≥0. Starting from the initial configuration
X0 at time T0 = 0, we iteratively build the process as follows.

i) Given X0, generate the n(X0) continuous trajectories of (Y
(0)
t )t≥0.

ii) Given X0 and (Y
(0)
t )t≥0, generate the first inter-jump time T1 − T0

according to the cumulative distribution function

F1(t) = 1− exp

(
−
∫ t

0

α(Y0
u)du

)
, t > 0. (2)

The process until time T1 is given by the generated trajectories, i.e.

(Xt)T0≤t<T1 = (Y0
t−T0

)T0≤t<T1 .

iii) Given T1 and XT−
1
= Y0

T1−T0
, generate the first jump:

• it is a birth with probability β(XT−
1
)/α(XT−

1
), in which caseXT1 ∼

Kβ(XT−
1
, .);

• it is a death with probability δ(XT−
1
)/α(XT−

1
), in which caseXT1 ∼

Kδ(XT−
1
, .);

• it is a mutation with probability τ(XT−
1
)/α(XT−

1
), in which case

XT1 ∼ Kτ (XT−
1
, .).

iv) Return to step i) with T0 ← T1 and X0 ← XT1 to generate the new

trajectories (Y
(1)
t )t≥0 starting from XT1 , the next jumping time T2, and

so on.

The sequence of jumping times of the BDMM process (Xt)t≥0 is (Tn)n≥1.
For t > 0, we denote by Nt the number of jumps on [0, t], i.e.

Nt =
∑
i≥1

1Ti≤t.
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Similarly, we denote by Nβ
t , N

δ
t and N τ

t the number of births, deaths and
mutations, respectively, before t. By our assumption that the total jump
intensity α is bounded, we have that Nt < ∞ for any t ≥ 0, i.e. there is no
explosion of the process.

The BDMM process, as defined by the above iterative construction, is a
particular case of a jump-move process, as studied in [14]. We deduce that
it is a homogeneous Markov process with respect to its natural filtration
(Ft)t≥0. We refer to the latter reference for the expression of the infinitesimal
generator of the process and further probabilistic properties. In the following,
we will denote by Px and Ex all probabilities and expectations given that
X0 = x.

2.3 Elements of the model and examples

In this section, we describe more precisely each characteristics of the process,
that are the intensity functions, the transition kernels, and the move process
(Yt)t≥0. We also provide various examples.

2.3.1 Intensity functions

The birth, death and mutation intensity functions are such that, given Xt =
x, a birth (resp. a death and a mutation) occurs in (t, t+h] with probability
β(x)h+o(h) (resp. δ(x)h+o(h) and τ(x)h+o(h)) as h→ 0. These intensities
can also be seen in the following way: β(Xt−) (resp. δ(Xt−) and τ(Xt−)) is
the intensity of the associated counting processNβ

t (resp. N δ
t andN τ

t ). These
interpretations are consequences of the specific form (2) of the waiting time
before the next jump, see [15] for details.

To set some examples, let us denote by γ any of β, δ or τ . The most
simple situation is when the intensity function is a constant rate, that is
γ(x) = γ for any x ∈ E, where γ > 0. Then there is in average γ∆ new
events that occur in any time interval of size ∆, whatever the configuration
of Xt is. Another typical setting is when the intensity is proportional to the
cardinality, that is γ(x) = γn(x) for x ∈ E and γ > 0. This reflects the
situation where each particle has its own rate γ > 0 and the particles do
not interact, so that the total rate over all particles is γn(x). These two
examples are observed in the biological applications studied in [15] and [2].
More complicated examples of intensity functions are also considered in [15],
where γ(x) depends on the underlying Voronöı tessellation induced by x.
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2.3.2 Transition kernels

Denoting γ for any of β, δ or τ , we assume that for any x the transition
kernel Kγ(x, .) admits a density kγ(x,y), y ∈ E, with respect to a measure
νγ(x, .), that is for all x ∈ E and y ∈ E,

Kγ(x, dy) = kγ(x,y)νγ(x, dy).

We now specify kγ and νγ in each case, whether the transition concerns a
birth, a death or a mutation.

For a birth transition, we assume that for any F ∈ E , νβ(x, F ) = 0 except
if there exist A ⊂ Λ and I ⊂M such that

F = x ∪ (A× I) := {y ∈ E, ∃ (z,m) ∈ A× I, y = x ∪ (z,m)} .

In this case we set νβ(x,x∪ (A×I)) = |A|× |I| to be the Lebesgue measure
on Λ ×M. This choice of νβ ensures that the birth transition produces the
addition of exactly one particle to the configuration x, as expected for a
birth. For the density kβ(x,y), we assume that

kβ(x,y) =

{
pmk

m
β (x, z) if ∃(z,m) ∈ Λ×M, y = x ∪ (z,m),

0 otherwise,
(3)

where pm ∈ [0, 1] is the probability that the new particle has the labelm ∈M,
with

∑
m∈M pm = 1, and km

β (x, .) is the density for the location of the new
particle in Λ given that its label is m.

A simple example of birth transition is the uniform law for the label
and the location, which corresponds to pm = 1/|M| for all m ∈ M and
km
β (x, z) = 1/|Λ|, for all z ∈ Λ and m ∈M. More sophisticated examples are

provided below.

Example 1 (Birth kernel as a mixture of normal laws). In this ex-
ample, a new particle is more likely to appear close to existing particles. The
birth density is a mixture of isotropic normal distributions, centred at each
existing particle, with deviation σ > 0. Specifically, for any configuration
x = {(z1,m1), . . . , (zn(x),mn(x))} and any m ∈M,

km
β (x, z) =

1

n(x)

n(x)∑
i=1

1

v(zi, z)
exp

(
−∥z − zi∥2

2σ2

)
,
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where v(zi, z) =
∫
Λ
exp

(
−∥z−zi∥2

2σ2

)
dz. We may easily extend this example by

requiring that a particle with label m can only appear close to particles with
labels m′.

Example 2 (Birth kernel driven by a potential). In this example the
birth kernel is given through a function V : E → R by:

km
β (x, z) =

1

am(x)
e−(V (x∪(z,m))−V (x))

where am(x) =
∫
Λ
e−(V (x∪(z,m))−V (x))dz. Given a configuration x, a new par-

ticle is more likely to appear in the vicinity of points z ∈ Λ that make V (x∪
(z,m)) − V (x) minimal. Following the statistical physics terminology, the
function V can then be seen as a potential that the system tends to minimiz-
ing at each birth. A typical instance, for x = {(z1,m1), . . . , (zn(x),mn(x))},
is V (x) =

∑
i ̸=j Φmi,mj

(zi − zj) for some pair potential functions Φm,m′ ,
m,m′ ∈M, see [14] for some examples.

Concerning the mutation transition kernel, we set for any x = {x1, . . . , xn(x)},
where xi = (zi,mi), and any F ∈ E ,

ντ (x, F ) =

n(x)∑
i=1

∑
m∈M

1(x\(zi,mi))∪(zi,m)∈F ,

so that a transition only concerns a change of label of an existing particle.
For the density kτ , we assume that

kτ (x,y) =

{
s(xi,x)qm(xi,x) if ∃xi ∈ x,∃m ∈M, y = (x\(zi,mi)) ∪ (zi,m),
0 otherwise.

In this expression, s(xi,x) ∈ [0, 1] is the probability that the particle xi

in x changes his label and qm(xi,x) is the probability that, given that the
particle xi ∈ x mutates, its label changes from mi to m. We thus have∑n(x)

i=1 s(xi,x) = 1 and
∑

m∈M qm(xi,x) = 1 with qmi
(xi,x) = 0. An example

is provided below.

Example 3 (Mutation kernel given by a transition matrix). A
natural example is when the particle to modify is uniformly chosen among
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all particles, and then the change of label is done according to a transition
matrix with coefficients (pm,m′)m,m′∈M. This corresponds to the choices

s(xi,x) =
1

n(x)
and qm(xi,x) = pmi,m,

where pm,m = 0 and for all m ∈M,
∑

m′∈M pm,m′ = 1.

Finally, for the death transition kernel, we set for any x = {x1, . . . , xn(x)}
and any F ∈ E , νδ(x, F ) =

∑n(x)
i=1 1x\xi∈F , so that this transition only con-

cerns the death of an existing particle. For the density,

kδ(x,y) =

{
ω(xi, x) if y = x\xi,
0 otherwise,

where ω(xi,x) ∈ [0, 1] is the probability that the particle xi in x dies, with∑n(x)
i=1 ω(xi,x) = 1. A simple example is the uniform death where ω(xi,x) =

1/n(x) for any i.

2.3.3 The inter-jumps motion

Remember that between two jumps, the BDMM process (Xt)t≥0 has a con-
stant cardinality n = n(Xt) and constant labels in M. To specify the inter-
jumps motion of (Xt)t≥0, it is then enough to define the dynamics of a process

(Y
|n
t )t≥0 on each subspace En where

Y
|n
t = {(z1,t,m1), · · · , (zn,t,mn)}.

Accordingly, the position and the continuous mark of each particle may move,
that is zi,t ∈ Λ may move, but the label mi will remain constant. To define
such dynamics, we first need to come back to a standard system of n ordered
(labelled) particles in (Λ×M)n, that is

Ỹ
|n
t = ((z1,t,m1), · · · , (zn,t,mn)).

The full definition of the move process (Yt)t≥0 on E then follows the three
steps:

1. Define the dynamics of Ỹ
|n
t on (Λ×M)n thanks to a system of stochastic

differential equations, as (M |n) specified below, where the motion acts
only in Λn.
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2. Provided this system yields a solution whose distribution satisfies the
permutation equivariance property (see below), deduce Y

|n
t = Πn(Ỹ

|n
t )

on En, where Πn is given by (1).

3. Then define (Yt)t≥0 on E by Yt =
∑

n≥0Y
|n
t 1{Y0∈En}.

This construction and the following facts are detailed in [14]. The equiv-
ariance property means that for any permutation π of {1, . . . , n}, the law of

Ỹ
|n
t = ((z1,t,m1), · · · , (zn,t,mn)) given Ỹ

|n
0 = ((zπ(1),mπ(1)), · · · , (zπ(n),mπ(n)))

is the same as the distribution of ((zπ(1),t,mπ(1)), · · · , (zπ(n),t,mπ(n))) given

Ỹ
|n
0 = ((z1,m1), · · · , (zn,mn)). This property says that if we rearrange the

ordering of the coordinates of the initial state, the ordering of the solution is
rearranged in the same way, so that it makes sense to deduce Y

|n
t from Ỹ

|n
t .

Under this assumption, the Markov process Y is well-defined on E and its
transition kernel QY

t , defined for any bounded and measurable function f on
E by QY

t f(x) = E[f(Yt)|Y0 = x], reads

QY
t f(x) =

∑
n≥0

QỸ|n

t (f ◦ Πn)((x1, . . . , xn))1x∈En ,

where QỸ|n
t denotes the transition kernel of Ỹ|n in (Λ ×M)n. Moreover, Y

is continuous in (E, d1) whenever for any n, Ỹ|n is continuous in (Λ ×M)n

for the usual Euclidean distance.
As a consequence of this construction, the definition of (Yt)t≥0 boils down

to the first step above, that is the specification of the system of SDE (M |n),
provided the latter is permutation equivariant. We assume in this paper that
Ỹ

|n
t = (Zt,m), starting at t = 0 from (z,m) where z = (z1, . . . , zn), is the

solution of

M |n(z,m) :

{
dzi,t = vi,n(Zt,m)dt+ σi,n(Zt,m)dBi,t, t ≥ 0, i = 1, . . . , n,
zi,0 = zi, i = 1, . . . , n.

Here the drift functions v1,n, . . . , vn,n take their values in Rd, the diffusion co-
efficients σ1,n, . . . , σn,n are (d, d) invertible matrices and (B1,t)t≥0, . . . , (Bn,t)t≥0

are independent standard Brownian motions on Rd. We assume that the func-
tions vi,n and σi,n are globally Lipschitzian, so that a strong solution exists.
If Λ ̸= Rd, we further assume that edge conditions (reflective or periodic) are
added to ensure that the solution stays in (Λ×M)n, see for instance [7].
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The permutation equivariance property is ensured if for any i = 1, . . . , n
and any π ∈ Sn,{

vi,n((zπ(1),mπ(1)), · · · , (zπ(n),mπ(n))) = vπ(i),n((z1,m1), · · · , (zn,mn)),

σi,n((zπ(1),mπ(1)), · · · , (zπ(n),mπ(n))) = σπ(i),n((z1,m1), · · · , (zn,mn)).

This is for instance the case if vi,n(Z,m) = v(zi,mi) and σi,n(Z,m) =
σ(zi,mi) for some functions v and σ, a situation where there is no interaction
between the particles, as considered in the microbiological applications in [6]
and [2]. An example that includes interactions through a potential function
is provided in the following example.

Example 4 (Langevin diffusion). In this example the motion of each
particle depends on an interaction force with the other particles, driven by a
pair potential functions Φm,m′ , m,m′ ∈ M, as in Example 2. Specifically, in
this model σi(Z,m) = σmi

and

vi,n(Z,m) = −
∑
j ̸=i

Φmi,mj
(zi − zj).

For existence, each pair potential Φm,m′ must be smooth enough. We refer
to [7] and [14] for details and examples.

For later purposes, let us specify the likelihood of Y
|n
t constructed as

above. Let us first rewrite (M |n) so that it takes the form of a standard
stochastic differential equation. Denote by σ̄n the block diagonal matrix of
size (nd, nd) formed by the σi,n matrices, and by v̄n the vector of size nd
formed by the concatenation of the vi,n vectors. Then, by denoting Bt the
vector formed by the concatenation of the vectors Bi,t, we have

M |n(z,m) :

{
dZt = v̄n(Zt,m)dt+ σ̄n(Zt,m)dBt, t ≥ 0,
Z0 = z.

(4)

It is well known, cf [16, 13], that the Radon-Nikodym density of the solu-
tion (Zt)t≥0 of M |n(z,m) with respect to the reference process Ut = z +∫ t

0
σ̄n(Us,m)dBs, on the interval [0, t] reads

L(Z[0,t],m) = exp

(∫ t

0

v̄n(Zs,m)Ta−1
n (Zs,m)dZs

− 1

2

∫ t

0

v̄n(Zs,m)Ta−1
n (Zs,m)v̄n(Zs,m)ds

)
, (5)
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where an(z,m) = σ̄n(z,m)σ̄T
n (z,m). This gives us the density of the process

Ỹ
|n
t = (Zt,m) on [0, t[ with respect to the reference process (Ut,m)t≥0 that

belongs to (Λ ×M)n. Finally, by our construction above, if (Zt,m) is such

that Y
|n
t = Πn((Zt,m)), then the density of Y

|n
t with respect to Πn((Ut,m))

on [0, t] takes the same form and does not depend on the ordering chosen

to define Zt, z and m from Y
|n
t , thanks to the permutation equivariance

property.

3 LAN property

3.1 Likelihood of the BDMM process

As described in the previous section, the BDMM process (Xt)t≥0 depends
on the intensity functions β, δ, τ , assumed to be continuous on E, on
kernel densities for the births, the deaths and the mutations, denoted by
kβ(x,y), kδ(x,y) and kτ (x,y), as detailed in Section 2.3.2, and on a con-
tinuous Markov diffusion model on E that drives the inter-jump motion, see
Section 2.3.3.

Remember that between two jumps Ti and Ti+1, Xt = Y
(i)
t−Ti

where Y(i)

has the same law as Y. Write Y
(i)
t = {(Z(i)

t ,m(i))} where m(i) does not
depend on t, as required for the labels of the continuous Markov process
that drives the inter-jumps motion. As assumed in Section 2.3.3, Z(i) is
the solution of M |n(z(i),m(i)) given by (4), where (z(i),m(i)) are such that
XTi

= {(z(i),m(i))} and n = n(XTi
). The likelihood of the inter-jump motion

between Ti and Ti+1, given Ti, Ti+1 and XTi
, is thus L(Z

(i)
[0,Ti+1−Tj ]

,m(i)) given

by (5). For simplicity we will simply write the latter L(X[Ti,Ti+1[) in the

following, since Xt = {(Z(i)
t−Ti

,m(i))} for all t ∈ [Ti, Ti+1[.
Assume that all features of the BDMM process depend on a parameter

ϑ ∈ Θ ⊂ Rℓ for a given ℓ > 0. To emphasize this dependence, we introduce
the argument ϑ into the notation of each of them. For example we will write
β(ϑ,x) instead of β(x), kβ(ϑ,x,y) instead of kβ(x,y), L(ϑ,X[Ti,Ti+1[) instead
of L(X[Ti,Ti+1[), and so on. Note however that in (5), ϑ only appears in the
drift coefficient v̄n, i.e. v̄n(Xs) = v̄n(ϑ,Xs), but not in the diffusion coefficient
σ̄n which is part of the reference process. This is indeed a common fact that
for continuous time observations, the diffusion coefficient can be considered
to be known [13].
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Let us denote the set of birth times up to time t by

Bt = {i ∈ N∗, Ti ≤ t and Ti is a birth time} ,

and similarly Dt and Tt for the set of death times and mutation times up to
time t.

The following theorem provides the likelihood of the BDMM process.
When there is no move and no mutation, we recover the formula given in
[22] for their applications to the dynamics of dunes. It also has a consistent
expression with the likelihood of a system of particles with killing and jumps,
as derived in [18]. The justifications, detailed in Section A, are however
different and simpler, as they only rely on successive backward applications
of conditional expectations.

Theorem 1. Let (Xt)t≥0 be a BDMM parameterized by ϑ ∈ Θ, according
to the above conditions, and observed in continuous time on [0, t], for t > 0.
Then, the likelihood Lt(ϑ) is expressed as follows:

Lt(ϑ) = LB
t (ϑ)LD

t (ϑ)LT
t (ϑ)Lmove

t (ϑ),

with

LB
t (ϑ) = exp

(
−
∫ t

0

β(ϑ,Xs)ds

)∏
i∈Bt

kβ(ϑ,XTi−
,XTi

)β(ϑ,XTi−
),

LD
t (ϑ) = exp

(
−
∫ t

0

δ(ϑ,Xs)ds

)∏
i∈Dt

kδ(ϑ,XTi−
,XTi

)δ(ϑ,XTi−
),

LT
t (ϑ) = exp

(
−
∫ t

0

τ(ϑ,Xs)ds

)∏
i∈Tt

kτ (ϑ,XTi−
,XTi

)τ(ϑ,XTi−
),

Lmove
t (ϑ) = L(ϑ,X[TNt ,t]

)
Nt−1∏
i=0

L(ϑ,X[Ti,Ti+1[).

Note that due to the Markov nature of the process, the likelihood is
a simple product. As a consequence, inference on a specific aspect of the
process can be done independently on the other characteristics, provided the
parameter is different in each characteristic. As an illustration, we will infer
the birth kernel kβ in our application in Section 4, without needing to specify
or estimate the other terms.
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3.2 LAN

Recall that all the features of the BDMM process depend on a parameter
ϑ ∈ Θ ⊂ Rℓ. In the following, for a multivariate function f , we denote by
∇if the gradient (or Jacobian matrix if f is multivariate) with respect to
the i-th variable. We will also denote by B(ϑ, ρ) the ball centred at ϑ with
radius ρ > 0.

We list below the assumptions we make to obtain the local asymptotic
normality of our model. They are of two kinds: the first one (H) ensures
that the process is non-explosive and geometric ergodic. Conditions implying
this hypothesis concern the intensity functions: it basically holds if the total
intensity function α is bounded and the death intensity function δ sufficiently
compensates for the birth intensity β. Precise conditions are given in Ap-
pendix C.1, following [14]. The other assumptions are regularity hypotheses
on the way each feature of the BDMM process is parametrised. Although
quite technical at first sight, we show in Section 3.3 that they are satisfied in
many situations, including the examples of Section 2.3.

(H) The process is non-explosive, i.e. Nt < ∞ for any t ≥ 0, and there
exists a measure µϑ

∞ on E, r > 0 and c : E → R∗
+ such that for any

t > 0, any x0 ∈ E and any measurable and bounded function g on E,∣∣∣∣1tEϑ
x0

(∫ t

0

g(Xs)ds

)
−
∫
E

g(y)µϑ
∞(dy)

∣∣∣∣ ≤ c(x0)∥g∥∞
rt

.

Concerning the intensity function γ (whether γ is β, δ or τ), we assume that
it is differentiable with respect to ϑ and the two following hypotheses.

A(γ) For all ϑ ∈ Θ, x 7→ ∥∇1γ(ϑ,x)∥2
γ(ϑ,x)

1γ(ϑ,x)>0 is bounded.

B(γ) For all ϑ ∈ Θ, ∃ ρ(ϑ) > 0 such that x 7→ fγ
ϑ (x, ρ(ϑ))γ(ϑ,x) is bounded,

where

fγ
ϑ (x, ρ) = sup

u∈B(ϑ,ρ)

(
∥∇1γ(u,x)−∇1γ(ϑ,x)∥2

) 1γ(ϑ,x)>0

(γ(ϑ,x))2
. (6)

Similarly, we assume that the transition kernel kγ is differentiable with re-
spect to ϑ and the two following hypotheses.

15



A(kγ, γ) For all ϑ ∈ Θ, x 7→ γ(ϑ,x)
∫
E

∥∇1kγ(ϑ,x,y)∥2
kγ(ϑ,x,y)

1kγ(ϑ,x,y)>0νγ(x, dy) is

bounded.

B(kγ, γ) For all ϑ ∈ Θ, ∃ ρ(ϑ) > 0 such that x 7→ f
kγ
ϑ (x, ρ(ϑ))γ(ϑ,x) is

bounded, where

f
kγ
ϑ (x, ρ) =

∫
E

sup
u∈B(ϑ,ρ)

(
∥∇1kγ(u,x,y)−∇1kγ(ϑ,x,y)∥2

) 1kγ(ϑ,x,y)>0

kγ(ϑ,x,y)
νγ(x, dy).

(7)

Finally, concerning the inter-jump motion given as a solution of (4), we
assume that its drift function v̄n is differentiable with respect to ϑ and:

Amove For all n ≥ 1, ∀ϑ ∈ Θ, x 7→ ∥σ̄n(x)
−1∇1v̄n(ϑ,x)∥ is bounded.

Bmove For all n ≥ 1, ∀ϑ ∈ Θ, ∃ ρ(ϑ) > 0 such that x 7→ ∥σ̄n(x)
−1∥2fmove

ϑ (x, ρ(ϑ))
is bounded, where

fmove
ϑ (x, ρ) = sup

u∈B(ϑ,ρ)

∥∇1v̄n(u,x)−∇1v̄n(ϑ,x)∥2 . (8)

In order to state the LAN property, we introduce, for any ϑ ∈ Θ and
N ∈ N∗, the following FtN -martingales, along with their associated angle
brackets. The fact that they are truly martingales and the expression of
their brackets are justified in the proof of the following theorem deferred to
Appendix B. We recall that an = σ̄nσ̄

T
n .

MN,ϑ
γ (t) =

1√
N

∫ tN

0

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)
dMγ

s , (9)

MN,ϑ
kγ

(t) =
1√
N

(∫ tN

0

∇1kγ(ϑ,Xs− ,Xs)

kγ(ϑ,Xs− ,Xs)
dNγ

s

−
∫ tN

0

∫
E

∇1kγ(ϑ,Xs,y)νγ(Xs, dy)γ(ϑ,Xs)ds

)
, (10)

MN,ϑ
L (t) =

1√
N

∑
i≥0

∫ tN

0

1[Ti;Ti+1[(s)(∇1v̄n(ϑ,Xs−))
Ta−1

n (Xs−)dM
(i)
s−Ti

, (11)
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whereMγ
t = Nγ

t −
∫ t

0
γ(ϑ,Xs)ds andM

(i)
s =

(
Z

(i)
s − Z

(i)
0 −

∫ s

0
v̄n(ϑ,Z

(i)
u )du

)
1s≥Ti

if we agree that Xt = {(Z(i)
t−Ti

,m(i))} when t ∈ [Ti, Ti+1[. Their associated
angle brackets are given by

⟨MN,ϑ
γ ⟩(t) = 1

N

∫ tN

0

1γ>0
(∇1γ)(∇1γ)

T

γ
(ϑ,Xs)ds, (12)

⟨MN,ϑ
kγ
⟩(t) = 1

N

∫ tN

0

∫
E

1kγ>0
∇1kγ(∇1kγ)

T

kγ
(ϑ,Xs,y)νγ(Xs, dy)γ(ϑ,Xs)ds,

(13)

⟨MN,ϑ
L ⟩(t) = 1

N

∫ tN

0

(∇1v̄n(ϑ,Xs))
Ta−1

n (Xs)∇1v̄n(ϑ,Xs)ds. (14)

Finally denoting S = {L, β, δ, τ, kβ, kδ, kτ}, we introduce

MN,ϑ(t) =
∑
i∈S

MN,ϑ
i (t), (15)

the angle brackets of which reads

⟨MN,ϑ⟩(t) =
∑
i∈S

⟨MN,ϑ
i ⟩(t). (16)

Theorem 2. Under the same conditions as in Theorem 1, suppose that (H),
A(γ), B(γ), A(kγ, γ), B(kγ, γ), Amove and Bmove are satisfied (whether γ
is β, δ or τ). Then for all ϑ ∈ Rℓ, t > 0, h ∈ Rℓ and N ∈ N∗, we have the
following decomposition:

log
LtN(ϑ+ h√

N
)

LtN(ϑ)
= hTMN,ϑ(t)− 1

2
hT ⟨MN,ϑ⟩(t)h+RemN,ϑ,h(t), (17)

where RemN,ϑ,h(t) → 0 in Pϑ
x0
-probability when N → +∞, for any x0 ∈ E,

and where MN,ϑ and ⟨MN,ϑ⟩ are given by (15) and (16). Moreover, for all
t > 0 and ϑ ∈ Θ,(

MN,ϑ(t), ⟨MN,ϑ⟩(t)
)
−−−−→
N→+∞

(N (0, tJ(ϑ)), tJ(ϑ)) , (18)

where the joint convergence takes place in distribution and where the matrix
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J(ϑ), of size (ℓ, ℓ), has for expression:

J(ϑ) = lim
N→+∞

1

t
⟨MN,ϑ⟩(t) (19)

=

∫
E

(∇1v̄n(ϑ,x))
Ta−1

n (x)∇1v̄n(ϑ,x)µ
ϑ
∞(dx)

+
∑

γ∈{β,δ,τ}

∫
E

1γ>0
(∇1γ)(∇1γ)

T

γ
(ϑ,x)µϑ

∞(dx)

+
∑

γ∈{β,δ,τ}

∫
E

∫
E

1kγ>0
∇1kγ(∇1kγ)

T

kγ
(ϑ,x,y)νγ(x, dy)γ(ϑ,x)µ

ϑ
∞(dx).

Under additional regularity assumptions on the model, as detailed for in-
stance in [9], the LAN property implies that the maximum likelihood estima-
tor is asymptotically efficient and asymptotically Gaussian with covariance
J(ϑ)−1. The following corollary summarise this consequence, the proof of
which may be found in [9].

Corollary 1. In addition to the setting of Theorem 2, assume that the regu-
larity conditions N2-N4 of [9, Chapter III] are satisfied. Then the maximum
likelihood estimator ϑ̂N , defined by LN(ϑ̂N) = supϑ LN(ϑ), where LN is given
in Theorem 1, is asymptotically efficient and satisfies

√
N(ϑ̂N − ϑ) −−−−→

N→+∞
N (0, J(ϑ)−1),

where the convergence is in distribution and J(ϑ) is given by (19).

Note that in Theorem 2, the length of the observed trajectory is Nt, and
the asymptotic regime stands for N large and any t > 0. We set in the above
corollary t = 1 for simplicity and considered a trajectory of size N .

In practice, the asymptotic covariance matrix J(ϑ)−1 is estimated by
JN(ϑ̂N)

−1, where ϑ̂N is the maximum likelihood estimator and JN is the
empirical version of J given by (19), viz.

JN(ϑ) = ⟨MN,ϑ⟩(1),

where ⟨MN,ϑ⟩ is given by (16) and involves the terms (12), (13) and (14).
All these quantities are computable from a single trajectory over [0, N ], as
implemented in Section 4.
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3.3 Examples

We show in this section that the regularity conditions A(γ), B(γ), A(kγ, γ),
B(kγ, γ), Amove and Bmove are satisfied under mild assumptions for the
examples considered in Section 2.3.

For the intensity functions, whether γ(x) = γ is constant or γ(x) = γn(x),
for γ > 0, and the parameter of interest is ϑ = γ, we have fγ

ϑ = 0 in (6),
so that B(γ) is obviously satisfied. For A(γ), it clearly holds in the first
case, while it is true in the second case if we assume that there is a maximal
number of particles, i.e. supx n(x) < n∗ for some n∗ > 0. Note that the
latter restriction is purely theoretical, but it is not a limitation in practice.
It is also an assumption made in [15] and it amounts to the specific setting
of condition (46) presented in appendix, that implies geometric ergodicity of
the process, i.e. (H).

Concerning the transition kernels, the parameters of interest are typically
involved in the birth kernel and/or the mutation kernel. For the birth kernel,
remember that it reads as in (3), i.e. kβ(x,y) = pmk

m
β (x, z) and let us

examine Examples 1 and 2 for km
β .

Example 1 (continued). In this example km
β is a mixture of Gaussian

distributions with deviation σ > 0, so that the parameters of interest for
the birth kernel are in this case pm, m ∈ M, and σ. It is not difficult
to check that if Λ is a bounded set, then all partial derivatives of kβ(x,y)
with respect to each parameter are uniformly bounded in x and y. On the
other hand kβ(x,y) itself is lower bounded in x and y under the same setting.
Consequently, A(kγ, γ) holds true whenever Λ is a bounded set and the birth
intensity β(x) is bounded in x. The latter is in particular true if β satisfies
the setting discussed in the previous paragraph. For B(kγ, γ), note that a
rough control consists in upper-bounding the squared norm of the difference
in (7) by twice the sum of each squared norm. Then the same bounds as
previously can be used to check B(kγ, γ) in the same setting.

Example 2 (continued). Assume that km
β (x, z) = e−ϑ′

mSm(x,z)/am(x),

where ϑm = (ϑm,m′)m′∈M, a
m(x) =

∫
Λ
e−ϑ′

mSm(x,z)dz and Sm is the vector

Sm(x, z) =

 ∑
xi=(zi,mi)∈x

mi=m′

Φm,m′(z − zi)


m′∈M

.
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This corresponds to a potential of the form V (x) =
∑

i ̸=j ϑmi,mj
Φmi,mj

(zi −
zj) in Example 2. The parameters of interest here are all the ϑm,m′ , m,m′ ∈
M. Assume that for all m,m′ ∈ M, Φm,m′ is bounded by L. Then if we
denote by nm′(x) the number of particles in x having label m′, we have

∥Sm(x, z)∥2 ≤
∑
m′∈M

L2n2
m′(x) ≤ L2n(x)

∑
m′∈M

nm′(x) = L2n2(x).

Assume in addition that there is a maximal number of particles n∗ and that
Λ is a bounded set, then using the previous upper-bound, we may prove by
elementary inequalities that both A(kγ, γ) and B(kγ, γ) are satisfied.

Concerning the mutation kernel, let us inspect Example 3.

Example 3 (continued). Remember that for this example we have

kτ (ϑ,x,y) =
1

n(x)
pmi,m

if there exists xi ∈ x and m ∈ M such that y = (x\(zi,mi)) ∪ (zi,m). The
parameter of interest ϑ in this example correspond to the non-null entries
pm,m′ of the transition matrix. Denote by p∗ the minimal value of these
non-null entries. We have ∥∇1kτ (ϑ,x,y)∥2 = 1/n(x)2, so that∫

E

∥∇1kτ (ϑ,x,y)∥2

kτ (ϑ,x,y)
1kτ (ϑ,x,y)>0ντ (x, dy)

=

∫
E

∥∇1kτ (ϑ,x,y)∥2

kτ (ϑ,x,y)2
kτ (ϑ,x,y)1kτ (ϑ,x,y)>0ντ (x, dy)

≤ 1

p2∗

∫
E

kτ (ϑ,x,y)ντ (x, dy) =
1

p2∗
.

Consequently A(kγ, γ) (where γ = τ) is satisfied in this setting whenever
τ(x) is bounded in x, which holds true in the setting discussed in the first
paragraph of this section. On the other hand, since ∇1kτ (ϑ,x,y) does not
depend on ϑ, fkτ

ϑ (x, ρ) = 0 in (7), so that B(kγ, γ) trivially holds.

Concerning the inter-jump motion and assumptions Amove and Bmove,
we consider as an example the Langevin diffusion introduced in Example 4.

Example 4 (continued). Assume the same kind of parametrisation of the
potential as in Example 2 above, that is vi,n(Z,m) = −

∑
j ̸=i ϑmi,mj

Φmi,mj
(zi−

zj) in (4), where the parameters of interest are again all the ϑm,m′ ,m,m′ ∈M.
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Remember that σi(Z,m) = σmi
is known. Since the drift function is linear

in the parameters, it is easily seen that Amove is satisfied if Φm,m′ is bounded
for any m,m′ ∈ M and there is a maximal number of particles n∗. As to
Bmove, we clearly have fmove

ϑ (x, ρ) = 0 in (8), so that this condition holds
trivially true.

4 Simulations and data analysis

4.1 Simulation study

We simulate in this section several trajectories of the BDMM process, for
characteristics explained below, and we evaluate the quality of estimation
of a parameter involved in the birth kernel. The chosen characteristics are
motivated by the application that we will conduct in the next section, and
are in line with previous studies by [6] and [15]. We present them below
without precisely detailing each value.

The particles do not possess continuous marks, but can be of 6 different
types, which correspond on one hand to 2 distinct particle natures (playing
the role of Rab-11 type proteins and Langerin type proteins in the subsequent
application), and on the other hand to 3 possible motion regimes: Brownian,
sub-diffusive (according to an Ornstein-Uhlenbeck process), or super-diffusive
(according to a Brownian motion with linear drift). Thus, the space M con-
tains 6 different labels, but mutations will only be possible between motion
regimes and not between the type of particles, see below.

We assume that the movement of each particle is independent of the
others and corresponds to one of the three aforementioned regimes. Birth
rates are constant and differ only according to the Langerin or Rab-11 type.
Death rates (also distinct for Langerin and Rab-11) are proportional to the
number of particles present. Mutations correspond to a change in movement
regime: their intensity is also constant. Regarding transitions, we assume
that the death kernel is uniform: each particle has the same probability of
disappearing when a death event occurs. For mutations, we follow the setting
of Example 3, i.e., these occur for any particle uniformly, according to a
fixed transition matrix. Finally, for births, we assume that they generate an
equiprobable Langerin or Rab-11 particle, with a diffusion regime respecting
predetermined proportions. The Rab-11 type particles are then generated
uniformly in Λ. For the Langerin type particles, we assume that given the
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Figure 1: Example of the density (20) for the birth of a new Langerin particle,
given the Rab-11 particles already present (shown as red dots).

pre-jump configuration x ∈ E, they are generated according to the density
kL
β (x, .) defined for all z ∈ Λ by

kL
β (x, z) =

p

nR(x)

nR(x)∑
i=1

1

2πσ2
exp

(
−∥z − zRi ∥2

2σ2

)
+

(1− p)

|Λ|
1Λ(z), (20)

where nR(x) denotes the number of existing Rab-11 particles and zRi their
spatial coordinates. This density is parametrized by p ∈ [0, 1] and σ > 0. It
is a convex combination between a mixture of normal distributions centered
around the existing Rab-11 particles, with variance σ2, like in Example 1,
and a uniform distribution over Λ. The closer the parameter p is to 1, the
more likely Langerin and Rab-11 particles will tend to be colocalized, and
the smaller the standard deviation σ is, the stronger the proximity between
the two types of particles will be. An illustration of this density is shown
in Figure 1, for a given configuration of Rab-11 particles represented by red
dots.

In line with the application of the next section, we are not interested in
the estimation of all features of the process, but only of the parameter ϑ =
(p, log σ) from the continuous time observation of a single trajectory of the
process. We performed 500 simulations of trajectories for p = 0.2 and log σ =
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Figure 2: Estimation results for (p, log σ) = (0.2, 1.34) by MLE, based on
500 simulations of the BDMM process specified in Section 4.1. In red: 95%
Gaussian confidence ellipsoid, based on the bivariate Gaussian distribution
centred at the mean of all estimations, and with covariance matrix the mean
of all estimates of the asymptotic covariance matrix J−1(ϑ).

1.34, on a time interval similar to the data studied in Section 4.2. Figure 2
represents the set of all 500 maximum likelihood estimates of ϑ obtained for
all 500 simulations, deduced from the likelihood established in Theorem 1.
In red, the mean of the 95% confidence ellipsoid is plotted, more precisely
it is the Gaussian confidence ellipsoid obtained from the bivariate Gaussian
distribution centred at the mean of the estimates, and with covariance the
mean of the 500 covariance matrices J−1

N (ϑ̂N), obtained as explained at the
end of Section 3.2. One can observe that most of the estimates provide a
consistent value of the parameter and that the mean estimated confidence
ellipsoid encodes the estimation uncertainty fairly well.

4.2 Data analysis

The dataset we consider comes from the observation by TIRF (Total Inter-
nal Reflection Fluorescence) microscopy of the intracellular traffic of some
molecules near the membrane of a living cell [4]. This provides a video se-
quence showing two types of proteins observed simultaneously in the same
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Figure 3: Left: a frame from the raw video sequence analysed in Section 4.2,
showing Langerin proteins. Right: superposition of all trajectories of Lan-
gerin proteins obtained after post-processing (i.e. segmentation and tracking)
of the whole raw video. The colors indicate the estimated motion regime.

cell: Langerin proteins and Rab-11 proteins. The image on the left of Fig-
ure 3 shows a frame obtained from the video of the Langerin proteins. After
post-processing following [23], the proteins of interest are identified, repre-
sented by a point and tracked by the U-track algorithm [10] along the video
sequence to provide trajectories, such as those visible in the right represen-
tation of Figure 3. These trajectories have been further analysed by the
method developed in [5] to classify them into three diffusion regimes (these
are the colors visible on the figure). The full dynamics is in line with a
BDMM process: in addition to their displacement, some proteins disappear
in the course of time, others appear, and finally some change their diffusion
regime, which corresponds in our model to a mutation (even if it is not a
mutation in the biological sense of the term).

An important biological question is to determine if Langerin proteins
tend to appear close to existing Rab-11 proteins. This is the phenomenon
of colocalization, indicating a strong interaction between these two types of
proteins. To answer this question we estimate by maximum likelihood the
birth kernel of the Langerin proteins, assuming that it is of the form (20), as

in our simulation study. We obtained the estimate (p̂, l̂og σ) = (0.069, 1.1),
where the unit of σ is the pixel (the image being of size 250 × 283, each
pixel representing an area of 160× 160 nm2). Figure 4 shows the likelihood
value for our dataset, with respect to p and log σ, along with the empirical
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Figure 4: Likelihood of the BDMM model for the considered dataset, as
a function of the parameters p and log σ. The estimated 95% confidence
ellipsoid, centred at the maximum likelihood, is overlaid in black.

95% confidence ellipsoid around the maximum, obtained from the estimation
of the matrix J−1(ϑ) explained at the end of Section 3.2. This estimate
suggests that, for this dataset, about 7% of Langerin proteins are colocalized
with Rab-11 ones, this proportion being significantly positive in view of the
confidence ellipsoid, and each colocalized Langerin protein appears (with
high probability) within 3σ̂ × 160 = 528 nm of a Rab-11 protein, where

σ̂ = exp(l̂og σ).

A Proof of Theorem 1

To simplify notation in the proof, we drop the dependence in ϑ of all terms.
To get the likelihood, we view (Xt)t≥0 as a jump-move process, a more general
Markov process than the BDMM process. A jump-move process alternates
motions and jumps in E, see [14]. It is defined through an intensity function
α, a jump kernelK(x, .) and a continuous Markov processY on E that drives
the motion of the process. For a BDMM, we have α(x) = β(x)+ δ(x)+ τ(x)
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and

K(x, .) =
β(x)

α(x)
Kβ(x, .) +

δ(x)

α(x)
Kδ(x, .) +

τ(x)

α(x)
Kτ (x, .). (21)

By our assumptions

K(x, dy) = k(x,y)ν(x, dy), (22)

where for any F ∈ E , ν(x, F ) = νβ(x, F ) if there exist A ⊂ Λ and I ⊂ M
such that F = x ∪ (A × I), ν(x, F ) = νδ(x, F ) if x \ xi ∈ F for some i,
and ν(x, F ) = ντ (x, F ) if there exist m ∈ M and i such that (x\(zi,mi)) ∪
(zi,m) ∈ F . In turn, k(x,y) = kβ(x,y)β(x)/α(x) if there exists (z,m) such
that y = x ∪ (z,m), k(x,y) = kδ(x,y)δ(x)/α(x) if y = x \ xi for some
i, and k(x,y) = kτ (x,y)τ(x)/α(x) if there exist m ∈ M and i such that
y = (x\(zi,mi)) ∪ (zi,m).

Note that a jump-move process observed continuously on [0, t] has by
definition a cadlag trajectory on E and can equivalently be described by the
vector X defined by:

X =
∑
n∈N

(X0,X]0,T1[, T1,XT1 ,X]T1,T2[, . . . , Tn − Tn−1,XTn ,X]Tn,t[)1{Nt=n}.

(23)

We set for any i ≥ 1, Si = Ti − Ti−1, Vi = XTi
, and we recall that

(Xt)Ti≤t<Ti+1
= (Y

(i)
t )0≤t≤Si+1

, where Y(i) is a continuous Markov process
on E, identically distributed as Y. With these notations X is equivalent to
X̃ with:

X̃ =
∑
n∈N

(V0,Y
(0)
[0,S1]

, S1,V1,Y
(1)
[0,S2]

, . . . , Sn,Vn,Y
(n)

[0,t−
∑n

j=1 Sj ]
)1{Nt=n}. (24)

Note that with this formalism, Y
(i)
0 = Vi for all i, and X̃ takes values in the

space
⋃

n≥0Wn where

Wn =
n⊗

i=0

(E × C[Si] × R+)× E × C[t−∑n
i=0 Si],

and where C[s] denotes the space of continuous functions from [0, s] to E.

As detailed in Section 2.3.3, the continuous Markov processY
|n
s = Πn((Zs,m))

defined on En and observed on [0, t], given that Z0 = z, admits the den-
sity L(Z[0,t],m) with respect to the reference process Πn((Ut,m)) where
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Ut = z +
∫ t

0
σ̄n(Us,m)dBs. Let us denote by P z

[t] the distribution of this

reference process observed on [0, t]. For any measurable and bounded func-

tion h defined on En, we thus have E(h(Y|n
[0,t])) =

∫
C[t]

h(y)L(y[t])dP
Y

|n
0

[t] (y),

where L(y[t]) is a short notation for L(z[0,t],m) and where yt = (zt,m) for

any t ≥ 0. Similarly, for (Yt)t≥0 on E defined by Yt =
∑

n≥0Y
|n
t 1{Y0∈En},

we will write without ambiguity

E(h(Y[0,t])) =

∫
C[t]

h(y)L(y[t])dP
Y0

[t] (y),

where the cardinality n defining PY0

[t] is implicitly given by n = n(Y0).
Let h be a measurable and bounded function. For n ∈ N, we use the

conditional law of Sn+1 given (Xt)t≤Tn , Tn and Y(n), see (2), to compute:

E[h(X̃)1{Nt=n}]

= E
[
h(X̃)1{Sn+1>t−

∑n
j=1 Sj}1{∑n

j=1 Sj≤t}
]

= E
[
E
[
h(X̃)1{Sn+1>t−

∑n
j=1 Sj}1{∑n

j=1 Sj≤t}
∣∣(Xt)t≤Tn , Tn,Y

(n)
]]

= E

[
h(X̃)1{∑n

j=1 Sj≤t} exp

(
−
∫ t−

∑n
j=1 Sj

0

α(Y(n)
u )du

)]

= E

[
E

[
h(X̃)1{∑n

j=1 Sj≤t} exp

(
−
∫ t−

∑n
j=1 Sj

0

α(Y(n)
u )du

)∣∣(Xt)t≤Tn , Tn

]]
.

Since given S1, . . . , Sn and Y
(n)
0 = Vn, the Markov process Y(n) observed

on the time interval [0, t −
∑n

j=1 Sj] admits the density L(y[t−
∑n

j=1 Sj ]) with

respect to PVn

[t−
∑n

j=1 Sj ]
, we have

E[h(X̃)1{Nt=n}]

= E

[∫
C[t−∑n

i=1
Sj ]

h(V0,Y
(0)
[0,S1]

, . . . , Sn,Vn,y
(n)

[t−
∑n

i=1 Sj ]
)1{∑n

j=1 Sj≤t}

× exp

(
−
∫ t−

∑n
j=1 Sj

0

α(y(n)
u )du

)
L
(
y
(n)

[t−
∑n

i=1 Sj ]

)
dPVn

[t−
∑n

i=1 Sj ]
(y(n))

]
.

Now, if we condition on (Xt)t≤Tn−1 , Tn and Y(n−1) we know that the post-

jump location Vn admits the density k(XT−
n
,v) = k(Y

(n−1)
Sn

,v) with respect
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to the measure ν(XT−
n
, .) = ν(Y

(n−1)
Sn

, .) on E. Hence

E[h(X̃)1{Nt=n}]

= E
[ ∫

E

∫
C[t−∑n

i=1
Sj ]

h(V0,Y
(0)
[0,S1[

, . . . , Sn,vn,y
(n)

[t−
∑n

i=1 Sj ]
)1{∑n

j=1 Sj≤t}

× exp

(
−
∫ t−

∑n
j=1 Sj

0

α(y(n)
u )du

)
L
(
y
(n)

[t−
∑n

i=1 Sj ]

)
dP vn

[t−
∑n

i=1 Sj ]
(y(n))

× k(Y
(n−1)
Sn

,vn)ν(Y
(n−1)
Sn

, dvn)

]
.

Conditioning on (Xt)t≤Tn−1 , Tn−1 and Y(n−1), we use again the law of Sn

given by (2) to get

E[h(X̃)1{Nt=n}]

=E

∫
R+

∫
E

∫
C
[t−

∑n−1
i=1

Sj−sn]

h(V0,Y
(0)
[0,S1[

, . . . , sn,vn,y
(n)

[t−
∑n−1

i=1 Sj−sn]
)1{∑n−1

j=1 Sj+sn≤t}

× exp

(
−
∫ t−

∑n−1
j=1 Sj+sn

0

α(y(n)
u )du

)
L
(
y
(n)

[t−
∑n−1

i=1 Sj−sn]

)
dP vn

[t−
∑n−1

i=1 Sj−sn]
(y(n))

× k(Y(n−1)
sn ,vn)ν(Y

(n−1)
sn , dvn)α(Y

(n−1)
sn ) exp

(
−
∫ sn

0

α(Y(n−1)
u )du

)
dsn

]
.

We can continue successively this process, using the (conditional) density of
each move process Y(i) on [0, Si], of each post-jump location Vi, and of each
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inter-jump time Si, and we obtain

E[h(X̃)1{Nt=n}]

=

∫
Wn

h(v0,y
(0)
[s1]

, . . . , sn,vn,y
(n)

[t−
∑n

i=1 sj ]
)1{∑n

j=1 sj≤t}

× exp

(
−
∫ t−

∑n
j=1 sj

0

α(y(n)
u )du

)
× L(y

(n)

[t−
∑n

i=1 sj ]
)dP vn

[t−
∑n

i=1 sj ]
(y(n))

× k(y(n−1)
sn ,vn)ν(y

(n−1)
sn , dvn)α(y

(n−1)
sn ) exp

(
−
∫ sn

0

α(y(n−1)
u )du

)
dsn

×
n−1∏
i=1

[
L(y

(i)
[si+1]

)dP vi

[si+1]
(y(i))k(y(i−1)

si
,vi)ν(y

(i−1)
si

, dvi)α(y
(i−1)
si

)

× exp

(
−
∫ si

0

α(y(i−1)
u )du

)
dsi

]
L(y

(0)
[s1]

)dP v0

[s1]
(y(0))p(dv0),

where p denotes the distribution of the initial state on E. If we come back to
the initial expression (23) of X from that of X̃, using the shortcut L(x[ti,ti+1[)

for L(y
(i)
[si+1]

) = L(z
(i)
[0,ti+1−ti]

,m(i)) in view of xt = {(z(i)t−Ti
,m(i))} for all t ∈

[ti, ti+1[, we obtain

E[h(X)1{Nt=n}] =

∫
Wn

h(x0,x[0,t1[, . . . , tn − tn−1,xtn ,x[tn,t])1t1≤···≤tn≤t

× exp

(
−
∫ t

0

α(xu)du

)
L(x[tn,t])

n∏
i=1

(
L(x[ti−1,ti[)k(xt−i

,xti)α(xt−i
)
)
η(n)(dx),

where η(n) is the measure given for x = (x0,x[0,t1[, . . . , tn − tn−1,xtn ,x[tn,t])
by

η(n)(dx) = 1t1≤···≤tn≤tdP
xtn

[tn,t]
(x)ν(xt−n

, dxtn)dtn

×
n−1∏
i=1

(
dP

xti

[ti,ti+1[
(x)ν(xt−i

,xti)dti

)
dP x0

[0,t1[
(x)p(dx0).

Here, just as we have used the natural notation L(x[ti,ti+1[) for L(y
(i)
[si+1]

), we

use dP
xTi

[ti,ti+1[
(x) for dP

xTi

[si+1]
(y(i)).

Since for any h, E(h(X)) =
∑

n≥0 E(h(X)1{Nt=n}), we have proven that
the likelihood of X given by (23), with respect to the underlying measure
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η(.) =
∑
n∈N

η(n)(. ∩Wn) is given by

L(X) = exp

(
−
∫ t

0

α(Xu)du

)
L(X[tNt ,t]

)
Nt∏
i=1

(
L(X[Ti−1,Ti[)k(XT−

i
,XTi

)α(XT−
i
)
)
.

If we replace α and k by their specific expression in (22), we obtain the
result in the case of a BDMM process. Given that there is a one to one
correspondance between the representation (23) and the trajectory (Xs)0≤s≤t,
we can view the above likelihood as the likelihood of (Xs)0≤s≤t, where η
translates to a measure on the space of cadlag function from [0, t] to E.

B Proof of Theorem 2

Let us fix N ≥ 1 and h ∈ Rℓ. We let ϑN = ϑ+ h/
√
N and we denote

ΛϑN/ϑ(t) = log
Lt(ϑ+ h√

N
)

Lt(ϑ)
.

By Theorem 1 the log-likelihood ratio process is given by:

ΛϑN/ϑ(t) = Λ
ϑN/ϑ
L (t) + Λ

ϑN/ϑ
β (t) + Λ

ϑN/ϑ
δ (t) + ΛϑN/ϑ

τ (t)

+ Λ
ϑN/ϑ
kβ

(t) + Λ
ϑN/ϑ
kδ

(t) + Λ
ϑN/ϑ
kτ

(t), (25)

where

ΛϑN/ϑ
γ (t) =

∫ t

0

log

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)

)
dNγ

s −
∫ t

0

(γ(ϑN ,Xs)− γ(ϑ,Xs))ds,

(26)

Λ
ϑN/ϑ
kγ

(t) =

∫ t

0

log

(
kγ (ϑN ,Xs− ,Xs) ,

kγ (ϑ,Xs− ,Xs)

)
dNγ

s , (27)

Λ
ϑN/ϑ
L (t) = log

L(ϑN ,X[TNt ,t]
)

L(ϑ,X[TNt ,t]
)

+
Nt−1∑
i=0

log
L(ϑN ,X[Ti,Ti+1[)

L(ϑ,X[Ti,Ti+1[)
. (28)

The proof of Theorem 2 follows a standard scheme as in [19] and [17].
The main step consists in proving the LAN decomposition for each of the
three terms (26), (27) and (28) above, which is the statement of the three
following lemmas. Then (17) is deduced by combining these decompositions,
as carried out next.
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Lemma 1. Under the same assumptions as in Theorem 2, we have for any
t > 0, h ∈ Rℓ and ϑ ∈ Θ,

ΛϑN/ϑ
γ (tN) = hTMN,ϑ

γ (t)− 1

2
hT ⟨MN,ϑ

γ ⟩(t)h+Remγ
N,ϑ,h(t), (29)

where Remγ
N,ϑ,h(t) tends to 0 in Pϑ

x0
-probability when N → +∞, and (MN,ϑ

γ (t))t>0

is a martingale with respect to FtN given by (9).

Lemma 2. Under the same assumptions as in Theorem 2, we have for any
t > 0, h ∈ Rℓ and ϑ ∈ Θ,

Λ
ϑN/ϑ
kγ

(tN) = hTMN,ϑ
kγ

(t)− 1

2
hT ⟨MN,ϑ

kγ
⟩(t)h+Rem

kγ
N,ϑ,h(t), (30)

where Rem
kγ
N,ϑ,h(t) tends to 0 in Pϑ

x0
-probability when N → +∞, and (MN,ϑ

kγ
(t))t>0

is a martingale with respect to FtN given by (10).

Lemma 3. Under the same assumptions as in Theorem 2, we have for any
t > 0, h ∈ Rℓ and ϑ ∈ Θ,

Λ
ϑN/ϑ
L (tN) = hTMN,ϑ

L (t)− 1

2
hT ⟨MN,ϑ

L ⟩(t)h+RemL
N,ϑ,h(t), (31)

where RemL
N,ϑ,h(t) tends to 0 in Pϑ

x0
-probability when N → +∞, and (MN,ϑ

L (t))t>0

is a martingale with respect to FtN given by (11).

The proofs of these three lemmas are postponed to the end of this section.
Let us deduce (17). From their statements and (25), we have

ΛϑN/ϑ(tN) = hTMN,ϑ(t)− 1

2
hT
∑
i∈S

⟨MN,ϑ
i ⟩(t)h+RemN,ϑ,h(t),

where S = {L, β, δ, τ, kβ, kδ, kτ}, MN,ϑ(t) =
∑

i∈S M
N,ϑ
i and RemN,ϑ,h(t) =∑

i∈S Remi
N,ϑ,h(t). By Lemmas 1, 2 and 3, we know that RemN,ϑ,h(t) tends

to 0 in Pϑ
x0
-probability. To show the decomposition (17), it remains to prove

that
⟨MN,ϑ⟩(t) =

∑
i∈S

⟨MN,ϑ
i ⟩(t),

which, given the definition of MN,ϑ(t), boils down to proving that

∀i, j ∈ S, i ̸= j, ⟨MN,ϑ
i ,MN,ϑ

j ⟩(t) = 0. (32)
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First, for i = L, since MN,ϑ
L (t) is a continuous martingale with finite

variations, we have that ⟨MN,ϑ
L ,MN,ϑ

j ⟩(t) = 0 for any j ̸= L, see [12]. Second,
for all i, j ∈ S \ {L}, i ̸= j, we have

[MN,ϑ
i ,MN,ϑ

j ](t) =
∑
s≤t

∆MN,ϑ
i (s)∆MN,ϑ

j (s),

where ∆MN,ϑ
i (s) = MN,ϑ

i (s) −MN,ϑ
i (s−). For γ ̸= γ′, MN,ϑ

γ (t) and MN,ϑ
γ′ (t)

do not have any jump in common, and similarly for MN,ϑ
γ (t) and MN,ϑ

kγ′
(t),

since a birth, a death or a mutation cannot occur at the same moment almost
surely. Consequently [MN,ϑ

γ ,MN,ϑ
γ′ ](t) = [MN,ϑ

γ ,MN,ϑ
k′γ

](t) = 0 for any γ ̸= γ′.

This implies (32) for i = γ and j ∈ {γ′, k′
γ}, γ ̸= γ′. To complete the proof

of (32), it remains to show that ⟨MN,ϑ
γ ,MN,ϑ

kγ
⟩(t) = 0. We have that

[MN,ϑ
γ ,MN,ϑ

kγ
](t) =

1

N

∫ tN

0

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

(∇1kγ(ϑ,Xs− ,Xs))
T

kγ(ϑ,Xs− ,Xs)
dNγ

s ,

so that by Lemma 4, the associated angle bracket (corresponding to the
compensator of the square bracket, see [12]) is given by

⟨MN,ϑ
γ ,MN,ϑ

kγ
⟩(t) = 1

N

∫ tN

0

∇1γ(ϑ,Xs)

∫
E

(∇1kγ(ϑ,Xs,y))
T νγ(Xs, dy)ds.

Remember that for any ϑ ∈ Θ and any x ∈ E,
∫
E
kγ(ϑ,x,y)ν(x, dy) = 1.

This implies
∫
E
∇1kγ(ϑ,x,y)νγ(x, dy) = 0 if interchange of integration and

differentation is valid. In particular, it can be showed that the latter holds
under Condition B(kγ, γ). Consequently, ⟨MN,ϑ

γ ,MN,ϑ
kγ
⟩(t) = 0 and (32) is

proven, which completes the proof of (17).
The last statement of Theorem 2, that is the convergence (18), is a direct

consequence of Theorems 4.12 and 4.22 of [8], thanks to our hypothesis (H)
that implies that Ø is a recurrent atom for (Xt)t>0.

B.1 Proof of Lemma 1

Let us prove that Remγ
N,ϑ,h(t) converges to 0 in Pϑ

x0
-probability, where

Remγ
N,ϑ,h(t) = ΛϑN/ϑ

γ (tN)− hTMN,ϑ
γ (t) +

1

2
hT ⟨MN,ϑ

γ ⟩(t)h,
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and MN,ϑ
γ (t) is given by (9). From (26), we get

ΛϑN/ϑ
γ (tN) =

∫ tN

0

[
log

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)

)
− γ(ϑN ,Xs−)

γ(ϑ,Xs−)
+ 1

]
dNγ

s

+

∫ tN

0

[
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1

]
dMγ

s ,

where Mγ
t = Nγ

t −
∫ t

0

γ(ϑ,Xs)ds is a Ft-martingale. We have in particular

[Mγ]t = Nt and ⟨Mγ⟩t =
∫ t

0
γ(ϑ,Xs)ds, see for instance [12]. We deduce that

[MN,ϑ
γ ](t) =

1

N

∫ tN

0

(∇1γ)(∇1γ)
T

γ2
(ϑ,Xs−)d[M

γ]s

=
1

N

∫ tN

0

(∇1γ)(∇1γ)
T

γ2
(ϑ,Xs−)dN

γ
s .

Note that γ(ϑ,XT−
i
) > 0 for all γ-jump time Ti, so that the previous formula

remains true with the addition of 1γ(ϑ,Xs− )>0 in the integrand. So we get

⟨MN,ϑ
γ ⟩(t) = 1

N

∫ tN

0

1γ>0
(∇1γ)(∇1γ)

T

γ
(ϑ,Xs)ds,

as claimed in (12), which well satisfies the property that [MN,ϑ
γ ](t)−⟨MN,ϑ

γ ⟩(t)
is a martingale. Using these representations, we may write

Remγ
N,ϑ,h(t)

= ΛϑN/ϑ
γ (tN)− hTMN,ϑ

γ (t) +
1

2
hT
(
⟨MN,ϑ

γ ⟩(t)− [MN,ϑ
γ ](t)

)
h+

1

2
hT [MN,ϑ

γ ](t)h

= SN
t + AN

t +RN
t ,

where

SN
t =

∫ tN

0

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1− hT

√
N

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

)
dMγ

s ,

AN
t =

1

2N

∫ tN

0

1γ>0
(hT∇1γ)

2

γ
(ϑ,Xs)ds−

1

2N

∫ tN

0

(hT∇1γ)
2

γ2
(ϑ,Xs−)dN

γ
s ,

RN
t =

∫ tN

0

(
log

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)

)
− γ(ϑN ,Xs−)

γ(ϑ,Xs−)
+ 1 +

1

2N

(hT∇1γ)
2

γ2
(ϑ,Xs−)

)
dNγ

s .
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To complete the proof, we show below that each of these three terms tends
to 0 in Pϑ

x0
-probability.

First step: Convergence of SN
t to 0 in probability.

By the Markov inequality, we have for any a > 0,

Pϑ
x0

(
|SN

t | > a
)
≤ 1

a2
Eϑ

x0

(
(SN

t )2
)
=

1

a2
Eϑ

x0

(
⟨SN⟩t

)
,

where the last equality comes from the fact that (SN
t )2−⟨SN⟩t is by definition

a centred martingale (see [12]). We prove in the following that Eϑ
x0

(
⟨SN⟩t

)
tends to 0. We have

[SN ]t =

∫ tN

0

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1− hT

√
N

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

)2

dNγ
s

=

∫ tN

0

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1− hT

√
N

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

)2

1γ(ϑ,Xs− )>0dN
γ
s ,

so that

⟨SN⟩t =
∫ tN

0

(
γ(ϑN ,Xs)

γ(ϑ,Xs)
− 1− hT

√
N

∇1γ(ϑ,Xs)

γ(ϑ,Xs)

)2

1γ(ϑ,Xs)>0γ(ϑ,Xs)ds.

(33)

Note that for any ϑ, ϑ′ ∈ Θ and any x,

γ(ϑ′,x)− γ(ϑ,x) =

∫ 1

0

(∇1γ(ϑ+ t(ϑ′ − ϑ),x))
T
(ϑ′ − ϑ)dt.

Thus we have for all x ∈ E and ϑ, ϑ′ ∈ Θ such that γ(ϑ,x) > 0:(
γ(ϑ′,x)

γ(ϑ,x)
− 1−(∇1γ(ϑ,x))

T (ϑ′ − ϑ)

γ(ϑ,x)

)2

=

(∫ 1

0

(∇1γ(ϑ+ t(ϑ′ − ϑ),x)−∇1γ(ϑ,x))
T (ϑ′ − ϑ)

γ(ϑ,x)
dt

)2

≤ ∥ϑ′ − ϑ∥2 fγ
ϑ (x, ∥ϑ

′ − ϑ∥), (34)

where fγ
ϑ (x, ρ) is given by (6). Applying this inequality in (33) with ϑ′ =

ϑN = ϑ+ h/
√
N , we obtain

⟨SN⟩t ≤
∥h∥2

N

∫ tN

0

fγ
ϑ

(
Xs,
∥h∥√
N

)
γ(ϑ,Xs)ds. (35)
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Since fγ
ϑ (x, .) is increasing, we have by condition B(γ) that for any ϑ ∈ Θ

and N large enough,

sup
x∈E

∣∣∣∣fγ
ϑ

(
x,
∥h∥√
N

)
γ(ϑ,x)

∣∣∣∣ < d(ϑ), (36)

for some d(ϑ) > 0. We can thus apply the ergodic assumption (H) to the
right-hand side of (35) to get

Eϑ
x0

(∣∣⟨SN⟩t
∣∣) ≤ ∥h∥2c(x0)d(ϑ)

rN
+ ∥h∥2t

∫
E

∣∣∣∣fγ
ϑ

(
x,
∥h∥√
N

)
γ(ϑ,x)

∣∣∣∣µϑ
∞(dx).

In view of (36), and since for any x ∈ E, fγ
ϑ (x, ∥h∥/

√
N)→ 0 when N → 0,

we can conclude by the dominated convergence theorem.

Second step: Convergence of AN
t to 0 in probability.

Let ϵ > 0. We have 2AN
t = A1 − A2 − A3 where

A1 =
1

N

∫ tN

0

1γ>0
(hT∇1γ)

2

γ
(ϑ,Xs)1{∣∣∣∣hT∇1γ

γ
(ϑ,Xs)

∣∣∣∣>ϵ
√
N

}ds,

A2 =
1

N

∫ tN

0

(hT∇1γ)
2

γ2
(ϑ,Xs−)1{∣∣∣∣hT∇1γ

γ
(ϑ,Xs− )

∣∣∣∣>ϵ
√
N

}dNγ
s , (37)

A3 =
1

N

∫ tN

0

1γ>0
(hT∇1γ)

2

γ2
(ϑ,Xs−)1{∣∣∣∣hT∇1γ

γ
(ϑ,Xs− )

∣∣∣∣≤ϵ
√
N

}dMγ
s .

Note that Eϑ
x0
(|A1|) = Eϑ

x0
(A1) = Eϑ

x0
(A2) = Eϑ

x0
(|A2|). We prove below

that for any ϵ > 0, Eϑ
x0
(|A1|) → 0 as N → ∞ and then we deal with the

convergence in probability of A3.
By condition A(γ), we know that given ϑ ∈ Θ, the integrand in A1 is

uniformly bounded in Xs by some d(ϑ) > 0. We can then apply (H) to get

Eϑ
x0
(|A1|) ≤

c(x0)d(ϑ)

N
+t

∫
E

∣∣∣∣∣1γ>0
(hT∇1γ)

2

γ
(ϑ,x)1{∣∣∣∣hT∇1γ

γ
(ϑ,x)

∣∣∣∣>ϵ
√
N

}
∣∣∣∣∣µϑ

∞(dx).

This integrand is bounded thanks to condition A(γ) and converges to 0
as N → ∞ for any given x and ϑ. We thus conclude by the dominated
convergence theorem that Eϑ

x0
(|A1|)→ 0 as N → 0.

35



Concerning A3, since it is a centred martingale, we have for any a > 0,

Pϑ
x0
(|A3| > a) ≤ 1

a2
Eϑ

x0
(|A3|2) =

1

a2
Eϑ

x0
(⟨A3⟩)

where

⟨A3⟩ =
1

N2

∫ tN

0

1γ>0
(hT∇1γ)

4

γ3
(ϑ,Xs)1{∣∣∣∣hT∇1γ

γ
(ϑ,Xs)

∣∣∣∣≤ϵ
√
N

}ds

≤ ϵ2

N

∫ tN

0

1γ>0
(hT∇1γ)

2

γ
(ϑ,Xs)ds.

We can again apply (H) to the latest integral, thanks to condition A(γ),
and we obtain

Eϑ
x0
(⟨A3⟩) ≤ ϵ2C(x0, ϑ, h)

where C(x0, ϑ, h) > 0. So for any a > 0 and any η > 0, we can choose ϵ so
that Pϑ

x0
(|A3| > a) ≤ η. For these choices, we can further choose N large

enough so that Pϑ
x0
(|A1| > a) ≤ η and Pϑ

x0
(|A2| > a) ≤ η, because for any

ϵ > 0, Eϑ
x0
(|A1|) = Eϑ

x0
(|A2|) → 0 as N → ∞. This entails the convergence

of AN
t to 0 in Pϑ

x0
-probability.

Third step: Convergence of RN
t to 0 in probability.

Denoting by φ : x > −1 7→ log(1 + x)− x+ x2/2, we have RN
t = R1 −R2/2

with

R1 =

∫ tN

0

φ

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1

)
dNγ

s ,

R2 =

∫ tN

0

([
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1

]2
−
[
hT

√
N

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

]2)
dNγ

s . (38)

We start by proving that R2 tends to 0 in probability. Write R2 =
∫
(f 2 −

g2)dNγ
s with obvious notations. We have by the Cauchy-Schwartz inequality

and the fact that (f + g)2 = (f − g + 2g)2 ≤ 2(f − g)2 + 8g2,

R2
2 ≤

∫
(f − g)2dNγ

s

∫
(f + g)2dNγ

s

≤
(∫

(f − g)2dNγ
s

)(
8

∫
(f − g)2dNγ

s + 8

∫
g2dNγ

s

)
.
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To prove the convergence of R2, it is then sufficient to show that
∫
(f −

g)2dNγ
s = oPϑ

x0
(1) and

∫
g2dNγ

s = OPϑ
x0
(1). We have

Eϑ
x0

∫
(f − g)2dNγ

s

= Eϑ
x0

∫ tN

0

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1− hT

√
N

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

)2

dNγ
s (39)

= Eϑ
x0

∫ tN

0

(
γ(ϑN ,Xs)

γ(ϑ,Xs)
− 1− hT

√
N

∇1γ(ϑ,Xs)

γ(ϑ,Xs)

)2

1γ(ϑ,Xs)>0γ(ϑ,Xs)ds,

which is exactly Eϑ
x0
(⟨SN⟩t), see (33). We have already proven that this term

tends to 0, so
∫
(f − g)2dNγ

s = oPϑ
x0
(1). Now, for any η > 0, by the Markov’s

inequality, we can choose M > 0 such that

Pϑ
x0

(∫
g2dNγ

s > M

)
≤ 1

M
Eϑ

x0

(
1

N

∫ tN

0

(hT∇1γ(ϑ,Xs))
2

γ(ϑ,Xs)
ds

)
≤ t

M
C(ϑ, h) < η,

where C(ϑ, h) is a positive upper-bound deduced from condition A(γ). This
proves that

∫
g2dNγ

s = OPϑ
x0
(1) and completes the proof that R2 tends to 0

in probability.
It remains to address the convergence of R1. For any ϵ > 0, we have

R1 = R11 +R12 with

R11 =

∫ tN

0

φ

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1

)
1{∣∣∣∣ γ(ϑN ,X

s− )

γ(ϑ,X
s− )

−1

∣∣∣∣>ϵ

}dNγ
s , (40)

R12 =

∫ tN

0

φ

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1

)
1{∣∣∣∣ γ(ϑN ,X

s− )

γ(ϑ,X
s− )

−1

∣∣∣∣≤ϵ

}dNγ
s . (41)

For R11, note that for any a > 0,

Pϑ
x0
(R11 > a) ≤ Pϑ

x0

(∫ tN

0

1{∣∣∣∣ γ(ϑN ,X
s− )

γ(ϑ,X
s− )

−1

∣∣∣∣>ϵ

}dNγ
s > b

)
, (42)

for any b < 1. This is because when b < 1,(∫ tN

0

1{∣∣∣∣ γ(ϑN ,X
s− )

γ(ϑ,X
s− )

−1

∣∣∣∣>ϵ

}dNγ
s ≤ b

)

=⇒

for all γ-jump time Ti ≤ tN ,1{∣∣∣∣∣
γ(ϑN ,X

T−
i

)

γ(ϑ,X
T−
i

)
−1

∣∣∣∣∣>ϵ

} = 0


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which implies that R11 = 0 ≤ a. Moreover

1{∣∣∣ γ(ϑN ,x)

γ(ϑ,x)
−1

∣∣∣>ϵ
} ≤ 1{∣∣∣ γ(ϑN ,x)

γ(ϑ,x)
−1− hT√

N

∇1γ(ϑ,x)
γ(ϑ,x)

∣∣∣> ϵ
2

} + 1{∣∣∣ hT√
N

∇1γ(ϑ,x)
γ(ϑ,x)

∣∣∣> ϵ
2

}.
Using this and the fact that for any z, 1{|z|> ϵ

2} ≤ 4ϵ−2z21{|z|> ϵ
2}, we get

∫ tN

0

1{∣∣∣∣ γ(ϑN ,X
s− )

γ(ϑ,X
s− )

−1

∣∣∣∣>ϵ

}dNγ
s

≤ 4ϵ−2

∫ tN

0

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1− hT

√
N

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

)2

dNγ
s

+ 4ϵ−2

∫ tN

0

(
hT

√
N

∇1γ(ϑ,Xs−)

γ(ϑ,Xs−)

)2

1{∣∣∣∣ hT√
N

∇1γ(ϑ,X
s− )

γ(ϑ,X
s− )

∣∣∣∣> ϵ
2

}dNγ
s .

The first term is exactly 4ϵ−2
∫
(f − g)2dNγ

s , as already studied in (39), and
the second term is 4ϵ−2A2 (up to ϵ/2 instead of ϵ), see (37). Both terms
tend to 0 in Pϑ

x0
-probability whatever the value of ϵ > 0. This proves that

the right-hand side term in (42) tends to 0 for any b < 1, which yields the
convergence of R11 in Pϑ

x0
-probability to 0.

For R12 given by (41), we choose ϵ < 1
2
and since |φ(x)| ≤ 2|x|3 for

|x| ≤ 1
2
, we have

R12 ≤
∫ tN

0

2

∣∣∣∣γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1

∣∣∣∣3 1{∣∣∣∣ γ(ϑN ,X
s− )

γ(ϑ,X
s− )

−1

∣∣∣∣≤ϵ

}dNγ
s

≤ 2ϵ

∫ tN

0

(
γ(ϑN ,Xs−)

γ(ϑ,Xs−)
− 1

)2

dNγ
s .

This last term is 2ϵ(R2 +
∫
g2dNγ

s ) if we use as previously the notation
R2 =

∫
(f 2 − g2)dNγ

s for R2 given by (38). We already know that U :=
2(R2+

∫
g2dNγ

s ) is a OPϑ
x0
(1) asN →∞. This means that for any η > 0, there

exists M such that for N sufficiently large Pϑ
x0
(U > M) < η. This implies

that for any a > 0 and η > 0, we can choose ϵ small enough (ϵ < a/M) so
that Pϑ

x0
(ϵU > a) < Px0(U > M) < η. So for any a > 0 and η > 0, we can

choose ϵ so that Pϑ
x0
(R12 > a) < η for N large enough. The same inequality

holds true for R11 since we have proven that R11 tends to 0 in probability for
any ϵ > 0. So R1 = R11 +R12 tends to 0 in Pϑ

x0
-probability, which concludes

the proof.
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B.2 Proof of Lemma 2

The proof follows the same scheme as the proof of Lemma 1. Consider

Rem
kγ
N,ϑ,h(t) = Λ

ϑN/ϑ
kγ

(tN)− hTMN,ϑ
kγ

(t) +
1

2
hT ⟨MN,ϑ

kγ
⟩(t)h,

where MN,ϑ
kγ

(t) is given by (10). The fact that MN,ϑ
kγ

is a FtN -martingale is a
consequence of Lemma 4. We deduce that

[MN,ϑ
kγ

](t) =
1

N

∫ tN

0

∇1kγ(∇1kγ)
T

k2
γ

(ϑ,Xs− ,Xs)dN
γ
s ,

⟨MN,ϑ
kγ
⟩(t) = 1

N

∫ tN

0

∫
E

1kγ>0
∇1kγ(∇1kγ)

T

kγ
(ϑ,Xs,y)νγ(Xs, dy)γ(ϑ,Xs)ds.

Starting from (27) and using the above representations we can decompose

Rem
kγ
N,ϑ,h(t) as in the proof of Lemma 1, that is Rem

kγ
N,ϑ,h(t) = SN

t +AN
t +RN

t ,
where

SN
t =

∫ tN

0

(
kγ(ϑN ,Xs− ,Xs)

kγ(ϑ,Xs− ,Xs)
− 1− hT

√
N

∇1kγ(ϑ,Xs− ,Xs)

kγ(ϑ,Xs− ,Xs)

)
dNγ

s

+
1√
N

∫ tN

0

∫
E

hT∇1kγ(ϑ,Xs,y)νγ(Xs, dy)γ(ϑ,Xs)ds,

AN
t =

1

2N

∫ tN

0

∫
E

1kγ>0

(
hT∇1kγ

)2
kγ

(ϑ,Xs,y)νγ(Xs, dy)γ(ϑ,Xs)ds

− 1

2N

∫ tN

0

(
hT∇1kγ

)2
k2
γ

(ϑ,Xs− ,Xs)dN
γ
s ,

RN
t =

∫ tN

0

(
log

(
kγ(ϑN ,Xs− ,Xs)

kγ(ϑ,Xs− ,Xs)

)
− kγ(ϑN ,Xs− ,Xs)

kγ(ϑ,Xs− ,Xs)
+ 1

+
1

2N

(
hT∇1kγ

)2
k2
γ

(ϑ,Xs− ,Xs)

)
dNγ

s .

We show that each of these three terms tends to 0 in Pϑ
x0
-probability as in

the proof of Lemma 1.
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First step: We have

[SN
t ] =

∫ tN

0

(
kγ(ϑN ,Xs− ,Xs)

kγ(ϑ,Xs− ,Xs)
− 1− hT

√
N

∇1kγ(ϑ,Xs− ,Xs)

kγ(ϑ,Xs− ,Xs)

)2

dNγ
s

so that by Lemma 4 in Appendix C.2,

⟨SN⟩t =
∫ tN

0

∫
E

(
kγ(ϑN ,Xs,y)

kγ(ϑ,Xs,y)
− 1− hT

√
N

∇1kγ(ϑ,Xs,y)

kγ(ϑ,Xs,y)

)2

× kγ(ϑ,Xs,y)νγ(Xs, dy)γ(ϑ,Xs)ds.

Using the same inequalities as in (34) we obtain that

⟨SN⟩t ≤
∥h∥2

N

∫ tN

0

f
kγ
ϑ

(
Xs,
∥h∥√
N

)
γ(ϑ,Xs)ds

where f
kγ
ϑ is given by (7). We can then deduce that Eϑ

x0
(⟨SN⟩t) tends to 0 by

use of Conditions B(kγ, γ), (H) and the dominated convergence theorem, as
in the proof of Lemma 1.

Second step: The proof is identical to the second step of the proof of Lemma 1.

It consists in splitting the integrals inAN
t according to whether

∣∣∣hT∇1kγ
kγ

(ϑ,Xs− ,Xs)
∣∣∣ >

ϵ
√
N or not. The convergence of AN

t is then proved similarly, by use of Con-
ditions A(kγ, γ), (H) and the dominated convergence theorem.

Third step: The proof follows exactly the same lines as the proof of the third
step of Lemma 1 where γ(., .) is replaced by kγ(., ., .) and Condition A(kγ, γ)
is used instead of Condition A(γ).

B.3 Proof of Lemma 3

Remember thatXt = {(Z(i)
t−Ti

,m(i))} for all t ∈ [Ti, Ti+1[, and that L(ϑ,X[Ti,Ti+1[)

is a shortcut for L(Z
(i)
[0,Ti+1−Ti]

,m(i)) given by (5). Accordingly, we have

logL(ϑ,X[Ti,Ti+1[) =

∫ Ti+1

Ti

v̄n(ϑ,Xs)
Ta−1

n (Xs)dZ
(i)
s−Ti

− 1

2

∫ Ti+1

Ti

v̄n(ϑ,Xs)
Ta−1

n (Xs)v̄n(ϑ,Xs)ds,
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where v̄n(ϑ,Xs) stands for v̄n(ϑ,Z
(i)
s−Ti

,m(i)), with n = n(Xs), and similarly
for a−1

n (Xs). Then we have

log
L(ϑN ,X[Ti,Ti+1[)

L(ϑ,X[Ti,Ti+1[)

=

∫ Ti+1

Ti

(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))
Ta−1

n (Xs)(dZ
(i)
s−Ti
− v̄n(ϑ,Xs)ds)

− 1

2

∫ Ti+1

Ti

(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))
Ta−1

n (Xs)(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs)ds.

Consequently, we may rewrite (28) as

Λ
ϑN/ϑ
L (t) =

∑
i≥0

∫ t

0

1[Ti;Ti+1[(s)(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))
Ta−1

n (Xs)dM
(i)
s−Ti

− 1

2

∫ t

0

(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))
Ta−1

n (Xs)(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))ds. (43)

where M
(i)
s = 0 if s < 0 and

M (i)
s = Z(i)

s − Z
(i)
0 −

∫ s

0

v̄n(ϑ,Z
(i)
u )du, s ≥ 0. (44)

We know that Z(i) is the solution of M |n(z(i),m(i)) given by (4), where
(z(i),m(i)) are such that XTi

= {(z(i),m(i))} and n = n(XTi
). This implies

that (M
(i)
s ) is a martingale with respect to FZ(i)

t , the natural filtration as-

sociated to Z(i). Note that (M
(i)
s ) is independent from Ti and that Ft is

generated by
{
TNt ,XTNt

,Z
(Nt)
[0,t−TNs ]

, (Ti,XTi
,Z

(i)
[0,Ti+1−Ti]

)i=1,...,Nt−1

}
. This im-

plies that for Ti ≤ t < Ti+1, if s ∈ [Ti, t],

E(M (i)
t−Ti
|Fs) = E(M (i)

t−Ti
|Ti,FZ(i)

s−Ti
) = M

(i)
s−Ti

,

while if s < Ti, E(M (i)
t−Ti
|Fs) = 0.

Using these properties, we can easily verified that MN,ϑ
L given by (11) is
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a FtN -martingale. Similarly, since ⟨M (i)⟩s =
∫ s

0
an(Z

(i)
u )du, we have

⟨MN,ϑ
L ⟩(t) = 1

N

∑
i≥0

∫ tN

0

1[Ti;Ti+1[(s)(∇1v̄n(ϑ,Xs))
Ta−1

n (Xs)

× an(Xs)a
−1
n (Xs)(Xs)∇1v̄n(ϑ,Xs)ds

=
1

N

∫ tN

0

(∇1v̄n(ϑ,Xs))
Ta−1

n (Xs)∇1v̄n(ϑ,Xs)ds.

From this representation, (11) and (43), we have

RemL
N,ϑ,h(t) = Λ

ϑN/ϑ
L (tN)− hTMN,ϑ

L (t) +
1

2
hT ⟨MN,ϑ

L ⟩(t)h = SN
t −

1

2
RN

t ,

where

SN
t =

∑
i≥0

∫ tN

0

1[Ti;Ti+1[(s)

(
v̄n(ϑN ,Xs)− v̄n(ϑ,Xs)

−∇1v̄n(ϑ,Xs)
h√
N

)T

a−1
n (Xs)dM

(i)
s−Ti

,

and

RN
t =

∫ tN

0

(
(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))

Ta−1
n (Xs)(v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))

− 1

N
hT (∇1v̄n(ϑ,Xs))

Ta−1
n (Xs)∇1v̄n(ϑ,Xs)h

)
ds.

Let us prove that both SN
t and RN

t tend to 0 in Pϑ
x0
-probability. For SN

t ,
using the Markov inequality and the fact that Eϑ

x0
((SN

t )2) = Eϑ
x0
(⟨SN

t ⟩), this
boils down to proving that Eϑ

x0
(⟨SN

t ⟩) tends to 0. We have, since an = σ̄nσ̄
T
n ,

⟨SN
t ⟩ =

∫ tN

0

(
v̄n(ϑN ,Xs)− v̄n(ϑ,Xs)−∇1v̄n(ϑ,Xs)

h√
N

)T

a−1
n (Xs)

×
(
v̄n(ϑN ,Xs)− v̄n(ϑ,Xs)−∇1v̄n(ϑ,Xs)

h√
N

)
ds

=

∫ tN

0

∥∥∥∥σ̄n(Xs)
−1

(
v̄n(ϑN ,Xs)− v̄n(ϑ,Xs)−∇1v̄n(ϑ,Xs)

h√
N

)∥∥∥∥2 ds.
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Using the same argument as for (34), we get

⟨SN
t ⟩ ≤

∥h∥2

N

∫ tN

0

∥∥σ̄n(Xs)
−1
∥∥2 fmove

ϑ

(
Xs,
∥h∥√
N

)
ds.

where fmove
ϑ is given by (8). We then deduce that Eϑ

x0
(⟨SN⟩t) tends to 0

thanks to the dominated convergence theorem, using Conditions Bmove and
(H) as in the first step of the proof of Lemma 1.

Concerning RN
t , note that

RN
t =

∫ tN

0

∥∥σ̄n(Xs)
−1 (v̄n(ϑN ,Xs)− v̄n(ϑ,Xs))

∥∥2
− 1

N

∥∥σ̄n(Xs)
−1∇1v̄n(ϑ,Xs)h

∥∥2 ds,
that reads

∫
(∥f∥2 − ∥g∥2)ds with obvious notation, so that using the same

argument as in the third step of the proof of Lemma 1 (term R2), it suffices to
show that

∫
∥f − g∥2ds = o(1) and

∫
∥g∥2ds = O(1) in Pϑ

x0
-probability. But

the former is exactly ⟨SN
t ⟩ studied above, that has been proven to converge

to 0 in probability. And the expectation of the latter is bounded by use of
Condition Amove, proving that it is O(1) in Pϑ

x0
-probability. This concludes

the proof.

C Ancillary results

C.1 Conditions for geometric ergodicity

The following proposition provides some conditions ensuring the hypothe-
sis (H), namely non-explosion and geometric ergodicity of the BDMM pro-
cess. It is based on the study conducted in [14] for birth-death-move processes
(without mutations). The arguments in presence of mutations are similar and
sketched below. The conditions include the technical assumption that the
process is Feller. This property is discussed in [14] and proved for several ex-
amples of transition kernels that include all examples of this paper, provided
the underlying spatial state Λ is compact. The other conditions deal with
the intensity functions of the jumps. First, the total intensity function α is
assumed to be bounded, to avoid explosion of the process. Second, the death
intensity function δ must compensate in a proper way the birth intensity
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function β. Notably, the ergodic properties do not depend on the inter-jump
move process, neither on the mutation dynamics. We introduce the following
notation:

βn = sup
x∈En

β(x), δn = inf
x∈En

δ(x) and αn = βn + δn. (45)

In fact the conditions of geometric ergodicity below are exactly the same as
the conditions of ergodicity for a simple birth-death process (ηt)t≥0 on N with
birth rate (βn) and death rate (δn), as established in [11]. This is because to
address the ergodic properties of a BDMM (Xt)t≥0, we construct a coupling
between (Xt)t≥0 and (ηt)t≥0, in such a way that ηt = 0 implies Xt = Ø.
Consequently Ø becomes a positive recurrent state for (Xt)t≥0 whenever 0 is
a positive recurrent state for (ηt)t≥0, which implies the geometric ergodicity
of (Xt)t≥0.

Proposition 1. Let (Xt)t≥0 be a Feller BDMM process with a bounded in-
tensity function α. Suppose that δn > 0 for all n ≥ 1 and one of the following
condition holds:

(i) there exists n0 ≥ 1 such that βn = 0 for any n ≥ n0, (46)

(ii) βn > 0 for all n ≥ 1,
∞∑
n=2

β1 . . . βn−1

δ1 . . . δn
<∞ and

∞∑
n=1

δ1 . . . δn
β1 . . . βn

=∞,

(47)

where βn and δn are defined by (45). Assume moreover that

∞∑
n=2

√
β1 . . . βn−1

δ1 . . . δn
<∞ and ∃N ≥ 0, s.t. ∀n ≥ N, βn ≤ δn+1.

Then (H) is satisfied.

As mentioned above, following [25] and [14], the proof of this proposition
is based on a coupling between (Xt)t≥0 and (ηt)t≥0, where the latter is a
simple birth-death process with birth and death rates given by (45). We
detail below how we construct the coupled process Čt = (Xt, ηt). This is a
straightforward generalisation of the construction in [14], where we account
for the presence of mutations. Specifically, Č is a jump move process on

44



E × N with intensity function α̌ and transition kernel Ǩ defined as follows.
The intensity function α̌ : E × N→ R+ is given by

α̌(x, n) =

{
α(x) + αn if x ∈ Em, m ̸= n,
βn + δ(x) + τ(x) if x ∈ En.

LettingK be the kernel given by (21), the transition kernel Ǩ takes the form,
for any A ⊂ E:

1. If x ∈ Em, m ̸= n :

Ǩ((x, n);A× {n}) = α(x)

α̌(x, n)
K(x, A);

Ǩ((x, n); {x} × {n+ 1}) = βn

α̌(x, n)
;

Ǩ((x, n); {x} × {n− 1}) = δn
α̌(x, n)

.

2. If x ∈ En :

Ǩ((x, n);A× {n+ 1}) = β(x)

α̌(x, n)
Kβ(x, A);

Ǩ((x, n); {x} × {n+ 1}) = βn − β(x)

α̌(x, n)
;

Ǩ((x, n);A× {n− 1}) = δn
α̌(x, n)

Kδ(x, A);

Ǩ((x, n);A× {n}) = δ(x)− δn
α̌(x, n)

Kδ(x, A);

Ǩ((x, n);A× {n}) = τ(x)

α̌(x, n)
Kτ (x, A).

The inter-jump move process of Č is in turn a simple independent coupling
between the move Y of X and a constant move on N (i.e. yt = y0 for all
t ≥ 0).

The fact that the above construction is a proper coupling, in the sense
that X and η do constitute the marginal distributions of Č, can be proven
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exactly as in [14] for the case without mutations. On the other hand, the
key point is that if at some point, Ct = (Xt, ηt) is such that n(Xt) ≤ ηt, then
by the above construction, n(Xs) ≤ ηs for all s ≥ t, almost surely. By this
property, ηt = 0 implies Xt = Ø and the geometric ergodic conditions for η
stated in the proposition, coming from [11], are sufficient for the geometric
ergodicity of X. The rigorous proof of these claims can be found in [14].

C.2 A useful martingale

The following result is useful in the proof of Theorem 2 in Section B. It is
proven in Lemma 54 of [20], the BDMM being a particular case of a jump-
move process (see the proof of Theorem 1 in Section A). It is also stated
under a slightly different setting in Proposition 3.3 (b) of [18].

Lemma 4. Let (Xt)t≥0 be a BDMM process on E, let g be a measurable
bounded function defined on E × E and introduce for any t > 0

M∗
t =

∫ t

0

g(Xs− ,Xs)dN
γ
s −

∫ t

0

γ(Xs)

∫
E

g(Xs,y)kγ(Xs,y)νγ(Xs, dy)ds.

If Nγ
t <∞ for any t ≥ 0, then (M∗

t )t≥0 is a Ft-martingale.
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2, 2023.

[21] Masuda, N., and Holme, P. Temporal network epidemiology.
Springer, 2017.

[22] Møller, J., and Sørensen, M. Statistical analysis of a spatial birth-
and-death process model with a view to modelling linear dune fields.
Scandinavian journal of statistics 21, 1 (1994), 1–19.
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