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Abstract
Surface turbulent exchanges play a key role on sea ice dynamics, on ocean and sea ice
heat budgets and on the polar atmosphere. Uncertainties in parameterizations of surface
turbulent fluxes are mostly held by the transfer coefficients and estimates of those transfer
coefficients from field data are required for parameterization development. Measurement
errors propagate through the computation of transfer coefficients and contribute to its total
error together with the uncertainties in the empirical stability functions used to correct for
stability effects. Here we propose a methodology to assess their contributions individually to
each coefficient estimate as well as the total drag coefficient uncertainty and we apply this
methodology on the example of the SHEBA campaign. We conclude that for most common
drag coefficient values (between 1.0 × 10−3 and 2.5 × 10−3), the relative total uncertainty
ranges from 25 and 50%. For stable or unstable conditions with a stability parameter |ζ | > 1
on average, the total uncertainty in the neutral drag coefficient exceeds the neutral drag
coefficient value itself, while for |ζ | < 1 the total uncertainty is around 25% of the drag
coefficient. For closer-to-neutral conditions, this uncertainty is dominated by measurement
uncertainties in surface turbulent momentum fluxes which should therefore be the target
of efforts in uncertainty reduction. We also propose an objective data-screening procedure
for field data, which consists of retaining data for which the relative error on neutral drag
coefficient does not exceed a given threshold. This method, in addition to the commonly
used flux quality control procedure, allows for a reduction of the drag coefficient dispersion
compared to other data-screening methods, which we take as an indication of better dataset
quality.
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1 Introduction

Arctic sea ice has experienced a drastic decline over recent decades (Stroeve et al. 2012),
perceived as an emblematic sign of climate change and thought to have impactedmid-latitude
climate (Gao et al. 2015). State-of-the-art climate models fail to accurately capture the rate
of Arctic climate change (Massonnet et al. 2012) as well as their impact on the Northern
American and European climates (Jung et al. 2015). A significant source of uncertainty is
related to the surface energy budget over sea ice (Notz 2012) where turbulent heat fluxes are
key components. Heat exchange between sea ice and the atmosphere play a crucial role on
the rate of Arctic sea ice melting (Rothrock et al. 1999; Screen and Simmonds 2010; Zhang
2007; Goosse and Zunz 2014), as well as on the teleconnections between polar and non-polar
regions (Bader et al. 2011; Vihma 2014; Overland et al. 2015).

In sea-ice and climate models, turbulent fluxes at the surface-atmosphere interface—
namely the surface momentum, sensible heat and latent heat fluxes—are usually represented
using bulk flux parameterisations based on the Monin Obukhov Similarity Theory (MOST,
Monin and Obukhov 1954). The main idea of the bulk approach is—for an area with horizon-
tally homogeneous conditions of the surface and the near surface atmosphere—to estimate
fluxes from the near-surface gradient of the model-resolved (or averaged) variables (wind
speed, temperature and humidity) and transfer coefficients formomentum (CD , the drag coef-
ficient), sensible heat (CH ) and latent heat (CE ). The accuracy of these parameterizations
depends essentially on the accuracy of the transfer coefficients. The transfer coefficients rep-
resent the effects of both the surface roughness characteristics and the atmospheric surface
layer stability. The neutral version of the coefficients (CDN , CHN and CEN ) have had the
stability effect removed and therefore only depend on the surface characteristics. CHN and
CEN have a dependence on CDN (e.g. Andreas 1996), which is why this study focuses, as a
first step, on the accuracy (and uncertainties) of CDN estimates.

Transfer coefficients estimated from observational campaigns exhibit a large spread in
which the contributions from observational uncertainties and from unknown processes are
still challenging to disentangle. Even themost up-to-date parameterizations forCD above sea
ice (e.g. Lüpkes et al. 2012; Lüpkes and Gryanik 2015) still suffer from large uncertainties
linked to their dependence on tunable coefficients. The tuning of these coefficients rely
on estimates of drag coefficients from field data above sea ice (e.g. Elvidge et al. 2016,
2021; Srivastava et al. 2022). However, these estimates are not direct measurements and they
may suffer not only from the impact of instrumental errors, but also from procedural errors
in the conversion from measurements to drag coefficients, which involves, for instance, a
stability correction using theoretical-empirical stability functions (e.g. Grachev et al. 2000,
2007). The present study assesses to what extent both the instrumental errors and the stability
function errors propagate in the computation of the drag coefficients. The uncertainties on the
stability function itself is evaluated through bootstrapping methods developed for assessing
the uncertainty of experimental integrals (Cordero et al. 2008).

Only a few studies have assessed the uncertainty of CDN estimates. For instance, based
on the SHEBA dataset, Andreas et al. (2010) mention that evaluations of z0 (resp. zT or zQ)
are uncertain by a factor ranging from 1/3 to 3 (resp. from 1/200 to 200), which results in
a CDN uncertainty of ±11%. Analysing the Ice Station Weddell data and based on Foken
and Wichura (1996) and Larsen et al. (2001) arguments, Andreas et al. (2005) estimate the
individual eddy-covariance measurements of the drag coefficient to be uncertain by ±20%
and conclude that this uncertainty dominates the z0 uncertainty. These studies only provide
an averaged uncertainty for an entire experiment. In order to minimise the impact of such
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uncertainties, as the errors are expected to be random, current practice is to assemble large
collections of measurements. The present study provides a complementary approach as it
estimates the total uncertainty for each CDN estimate along with an evaluation of the dif-
ferent sources which contribute to the total uncertainty. While objective and standardized
methods across the community for field data screening are still lacking, this study proposes a
methodology which relies on those individual CDN uncertainty estimates in order to provide
an additional objective data screening criterion. Estimates of those contributions allow us to
make recommendations about their minimisation when estimating field transfer coefficients
and about optimal criteria to select data for calibration of existing parameterizations. The
SHEBA dataset is used to illustrate the benefit of such uncertainty estimation.

This article is structured as follows. Section2 summarizes the main equations describing
turbulence in the atmospheric surface layer. Section3 details the data, methods and tools
used to carry out this analysis. Results are presented in Sect. 4. An example of handling
uncertainties throughout the definition of an objective data screening criteria is proposed in
Sect. 5. Section6 provides a discussion and Sect. 7 our conclusions and recommendations.

2 Definitions and Governing Equations

Turbulent fluxes of momentum ||−→τ || (the modulus of the flux momentum vector), sensible
heat H and latent heat LE can be obtained by direct measurement as:

||−→τ || = ρau
2∗, (1a)

H = −ρaCpa u∗θ∗, (1b)

LE = −ρa Lvu∗q∗, (1c)

with u∗ = (−u′w′)0.5, θ∗ = −w′θ ′/u∗ and q∗ = −w′q ′/u∗. u and w are the along-stream
and vertical velocities, θ is the potential temperature, q is the specific humidity, ρa is the
near-surface air density, and cpa and Lv are the specific heat of moist air and the latent heat of
vaporisation or sublimation, respectively. The Reynolds decomposition for a given x variable
is used: x = x + x ′ (where x is the Reynolds averaged value and x ′ the perturbation around
the average). High frequency measurements are required to obtain x ′ values.

When directmeasurements are not available, turbulent fluxes can be calculated via the bulk
formulas from time-averaged wind speed U , potential temperature θ and specific humidity
q (strictly speakingU , θ and q but the − symbol is not written in the rest of the paper for the
sake of clarity). In the same fashion, in atmospheric models, surface flux parameterizations
are based on the same formulas and use the resolved (or equivalently: averaged) parameters.
The bulk formulas for the momentum, sensible heat and latent heat fluxes are:

||−→τ || = ρaCDU
2, (2a)

H = −ρaCpaCHU (θa − θs) , (2b)

LE = −ρa LvCEU (qa − qs) , (2c)

where subscript a and s stand for the atmospheric and surface values, respectively. CD , CH

and CE are the transfer coefficients for momentum (drag coefficient), sensible and latent
heat, respectively, and hold a key role in turbulent flux parameterizations.

The drag coefficient is obtained by combining Eqs. (1a) and (2a):

CD = u2∗
U 2 , (3)
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According to the Monin-Obukhov Similarity Theory (MOST, Monin and Obukhov 1954),
the wind speed profile within the surface layer is given by:

U = u∗
κ

[
ln

(
z

z0

)
− ψm(ζ )

]
, (4)

where k is the Von Karman constant, z0 is the aerodynamic roughness length and ψm is
a stability function (see next paragraph) of the stability parameter ζ = z/L , with L the
Obukhov length. L is defined as:

L = u2∗
kβθv∗

= − u3∗
kβQ0v

, (5)

where Q0v = w′θ ′
v is the surface virtual temperature flux, θv∗ is a virtual temperature scaling

parameter defined by Q0v = −u∗θv∗ and β = g/θ̃v the buoyancy coefficient (with g the
acceleration due to gravity and θ̃v the layer-average virtual potential temperature).

Since ψm(ζ ) = 0 under neutral conditions (ζ = 0), combining Eqs. (3) and (4) provides
the neutral drag coefficient:

CDN =
⎛
⎝ κ

ln
(

z
z0

)
⎞
⎠

2

, (6)

and subsequently the drag coefficient CD is:

CD = CDN

[
1 − κψm(ζ )√

CDN

]−2

. (7)

The stability function ψm(ζ ) results from the integration of the flux-gradient relationship
ϕm(ζ ) as:

ψm(ζ ) =
∫ ζ

0

1 − ϕm(ζ )

ζ
dζ. (8)

Several empirical-analytical forms of the flux-gradient relationship ϕm have been proposed
in the literature (e.g. Paulson 1970; Dyer 1974; Businger 1988; Beljaars and Holtslag 1988-
2005; Fairall et al. 1996; Grachev et al. 2000, 2007) by regressing ϕm observations:

ϕm(ζ ) = κz

u∗
∂u

∂z
, (9)

onto ζ observations.
The drag coefficient CD contains the effect on the turbulence of both the stratification

(through the stability functionψm) and the surfacemorphology (through the roughness length
z0). The stratification impact is expected to be universally dependent on ζ , following MOST.
The roughness length z0 is related to the typical scale of the surface roughness elements.
As a result, z0 is the only surface property which characterizes the efficiency of transferring
momentum between the atmosphere and the surface for a given surface state. Once a stability
function is chosen from the literature, onlyCDN (or equivalently z0) has to be parameterized.
The drag coefficient is usually calculated at 10m above the surface (CDN10). All analyses in
this study use the CDN10 uncertainty (henceforth referred to as CDN ).

For parameterization development, CDN is derived from direct flux measurements from
Eq. (6) after inverting Eq. (4) in order to get a z0 estimate. For solid and static surfaces (i.e.
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rocks or vegetation over a short period), z0 (orCDN ) is constant and may be determined once
and for all through direct flux measurement. For water surfaces, the roughness length is a
composite of a smooth and a rough component (e.g. Smith 1988; Fairall et al. 2003). The
roughness elements are the waves, which themselves depend on U and u∗. As a result, z0
and u∗ are interactive and CDN parameterizations become iterative.

For estimating surface fluxes above heterogeneous ice-water surfaces, where the bulk
approach hypothesis of horizontal homogeneity is not fulfilled, an alternative approach can
beused. It consists of a contribution toCDN frombothwater and ice surface properties through
a skin drag, in addition to a contribution from a form drag component which represents the
pressure force on the floe edges and the ice ridges (e.g. Schlichting 1936; Andreas et al. 1984,
2010; Lüpkes et al. 2012; Lüpkes and Gryanik 2015; Elvidge et al. 2016). Above sea ice, z0
may not only depend on the ice morphology but also on the potential presence of snow. Note
that if water and sea-ice are both present with different surface temperature—which is easily
the case—there is no longer a single near-surface stability and the averaging of the ice and
water neutral drag coefficients, scaled to their respective areal fraction may leads to errors. In
such situations, flux averaging should be preferred (e.g.Wood andMason 1991; Raupach and
Finnigan 1995; Mahrt 2000). However, the observational constraints do not allow accurate
separation of the flux contributions from water, sea-ice and form drag in heterogeneous ice-
water surfaces. As a result, any attempt to set up a parameterization is confrontedwith the fact
that separate processes can not be independently validated with reference observational data.
In order to isolate the different flux contributions, a more feasible approach would be to run
high resolution numerical simulations and to consider a coarse-graining approach, as done
for instance in Blein et al. (2020a) for assessing the impact of the surface flux heterogeneity
in a different context (surface flux heterogeneity above oceans due to convective cells). In this
studywe use the common assumption that a horizontally-averagedCDN can be approximated
by a CDN calculated from the horizontally-averaged parameters. Quantifying the impact of
such hypothesis is beyond the scope of this paper (see e.g. Blein et al. 2020b, for a method
example). Furthermore, it is assumed that the locally-observed parameters are actually the
horizontally-averaged parameters, representing the heterogeneous sea-ice field. The time
averaging limits the consequences of this assumption.

3 Uncertainties Assessment and PropagationMethods

Estimating neutral drag coefficients from measurements and by using empirical stability
functions comes with uncertainties from instrumental and procedural origins. This section
describes the methods used to assess their magnitudes and contributions to the total uncer-
tainty in the drag coefficient.

The proposed procedure is applied, as an illustrative example, to the data from the Surface
Heat Budget of the Arctic Ocean field campaign (SHEBA, Uttal et al. 2002; Persson 2002).
The SHEBA ice campdrifted approximately 2700km in theBeaufortGyre between 2October
1997 and 11 October 1998. It started in the Beaufort Sea, drifted westward into the Chukchi
Sea, then turned north into the Arctic Ocean near the date line. Only the tower data are used
as they allow for flux-gradient relationship estimation.

These data are pre-screened according to a standard flux quality control (Foken and
Wichura 1996) and a non-negative-ustar screening criterion (e.g. Eq. 4.1a in Andreas et al.
2010), as these are prerequisites for handling turbulent fluxes and using MOST. The sam-
ples from the entire SHEBA time period are used for statistics. However, only the samples
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from the aerodynamic summer time period are used (Andreas et al. 2010) whenever the drag
coefficients are analysed as a function of the the ice concentration in this paper (see Sect. 5).
The ice concentration estimates are provided through the study of Perovich (2002) which
assesses the ice concentration from aerial photographs taken during periodic, 200km long
helicopter surveys around the SHEBA ice camp.

3.1 Propagation of Initial Uncertainties

The neutral drag coefficient CDN is estimated from Eqs. (4) to (6). Each of the variables vi
used for the CDN calculation is considered along with its associated random error, expressed
as a standard deviation σvi around the nominal (or measured for measured variables) value.
These initial variable randomerrors propagate up theCDN value and lead to theCDN random-
error, following:

σ 2
CDN

=
N∑
i=1

(
∂CDN

∂vi

)2

σ 2
vi

. (10)

The vi variable is either a physical variable (e.g. U , θ̃v , z, u∗ and θv∗), a parameter (e.g. k or
g), or the value of the stability function (see Sect. 3.3). i is an integer as 1 < i < N where
N is the number of variables entering the equation for CDN . The correlation between the
uncertainties of different variables are negligible (not shown) and therefore not accounted
for in this study for the sake of clarity.

3.2 Physical Variable Uncertainties and Parameter Uncertainties

Each of the physical variables entering the CDN equation (U , θ̃v , z, u∗ and θv∗) originate
either from a direct sensor measurement (e.g. z or U if the wind speed is measured through
a wind propeller-type sensor), a physical equation (e.g. θ̃v or U if the wind components
are measured separately) or a statistical product (e.g. u∗ and θv∗). The errors in physical
constants are addressed as follow: we use in this study a von Kármán constant estimate in
the atmospheric surface layer of k = 0.387 ± 0.003, as proposed by Andreas et al. (2006)
and the uncertainty of the gravitational acceleration g is neglected.

For the direct sensor measurements, the sensor accuracy (from the manufacturers) is
directly used as the measurement uncertainty. However, in the present context, a time aver-
aging is necessary which minimises the considered measurement uncertainty by dividing the
sensor accuracy by the square root of the sample size. The random error is then propagated
according to Eq. (10) with vi being direct sensor measurements.

For considering the non-direct measurement uncertainties (such as σθ̃v
), the random error

from the sensor accuracy (potentially hourly averaged) of the corresponding dependent vari-
ables (e.g. the air temperature Ta , the surface temperature Ts , the pressure P and the relative
humidity Hu in the case of θ̃v) is propagated up to σCDN by considering directly the depen-
dence of CDN on these dependent variables. In other words, it is done by calculating the
∂CDN
∂vi

term in Eq. (10), with vi the dependent variables which are directly measured (e.g. Ta ,

Ts , P and Hu instead of θ̃v).
The turbulent fluxes do not originate from physical equations but from statistical products

which represent averaged characteristics of the turbulence. Observations of turbulent fluxes
result from the time averaging of a covariance over the Reynolds average time period and
therefore contain random errors due to (i) the random instrumental noise around measure-
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Table 1 Initial measurement
random error (MRE) for the
SHEBA data

Variable vi Hourly random error (std) σvi

u∗ ± 0.05 m s−1

H ± 4.1 W m−2

U ± 0.01 m s−1

Ta ± 0.05 deg C

Ts ± 0.6 deg C

P ± 0.1 hPa

RH ± 1%

z ± 4.5 cm

ments (e.g. Lenschow and Kristensen 1985; Billesbach 2011; Rannik et al. 2016); (ii) poor
statistical sampling of larger eddies (e.g.Mann and Lenschow 1994; Vickers andMahrt 1997;
Finkelstein and Sims 2001; Litt et al. 2015) and (iii) the stochastic nature of the turbulence
(e.g. Lenschow et al. 1993; Rannik et al. 2006). Rannik et al. (2016) shows that the random
instrumental noise is small enough to be neglected relative to the random error due to the
stochastic nature of turbulence. For dealing with the second source of errors, quality con-
trol procedures for estimating the flux quality have been proposed (e.g. Foken and Wichura
1996; Vickers and Mahrt 1997) and are usually applied in order to screen data samples (e.g.
Andreas et al. 2010, etc.). As a result, the latter random error is filtered out in post-processed
experiment datasets. Therefore, only the stochastic nature of turbulence should be considered
as a source of errors for turbulent fluxes; uncertainty which propagate up to σCDN according
to Eq. (10) with vi representing directly u∗ or θv∗. As a result, random flux errors have to be
computed prior to the use of the flux value in the CDN calculation. Various approaches have
been developed for its evaluation (see Rannik et al. 2016, for a review) and lead to estimates
which reach 10 to 20 % under typical observation conditions. Under stable conditions and
heterogeneous surfaces such as isolated floes, this random error may be wider (Rannik et al.
2016). In any case, the random flux error has to be calculated based on the high-frequency
data. Generally, reference campaign articles provide a single average value of the random
errors for the fluxes over the whole campaign (e.g. Foken and Wichura 1996; Larsen et al.
2001; Andreas et al. 2005). This is the case for the SHEBA experiment (Andreas et al. 2010).
Systematic errors can also arise in flux estimates (e.g. Vickers and Mahrt 1997; Massman
2000; Frank et al. 2013), but such potential bias estimations are beyond the scope of this
paper and no estimate is available for the SHEBA dataset.

All these physical variable uncertainties and parameter uncertainties are used to compute
the σCDN ,MRE (for Measurement Random Error) according to Eq. (10) with vi representing
all variables but the stability function. The impact of the stability function uncertainty is
addressed in the next Section. Table 1 gathers the SHEBA initial measurement random errors
(Persson 2002).

3.3 Assessing the Stability Function Uncertainty

The stability function ψm(ζ ) is an empirical function which results from the analytical inte-
gration of a flux-gradient relationshipϕm(ζ ) (see Sect. 2, Eq.8) that best fits observations (e.g.
Grachev et al. 2007). Observational estimates of ϕm and ζ used to propose a flux-gradient
relationship usually exhibit a large spread (see the yellow crosses around the red and blue
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lines in Fig. 1a) and result in the main source of uncertainty of the stability function ψm(ζ ).
ϕm and ζ also contain their own errors which originate from measurement errors that prop-
agate up to ϕm and ζ estimates and from errors in the wind speed vertical gradient estimate.
This additional error tends to increase the spread on the ϕm versus ζ plot (Fig. 1a, each yellow
cross could be replaced by a yellow rectangle to represent those additional uncertainties on
both the horizontal and the vertical axis) but these errors arising from measurement random
errors can be neglected (not shown) with respect to the spread of the nominal values of (ϕm ,
ζ ) measurement couples.

The uncertainty in the ψm(ζ ) function therefore relies on the uncertainty propagation
through the calculation of the integral from theϕm(ζ ) function and is based on a bootstrapping
method (inspired by the work of Cordero et al. 2008) detailed hereafter. K folds of N couples
of (ϕm ,ζ ) availablemeasurements (e.g. yellow crosses in Fig. 1a)with replacement are carried
out. From each of those K folds, a discrete ϕi

m(ζ ) function (i = 1, ..., K ) is defined as the
averaged ϕm per ζ bin (grey solid lines in Fig. 1a), with a regular ζ bin spacing in logarithmic
space. Each of these K ϕi

m(ζ ) discrete functions is then used to calculate one discrete estimate
ofψ i

m function geometrically followingEq. (8) (grey solid lines in Fig. 1b). Theψm variability
per ζ bin provides the ψm uncertainty. This uncertainty can be viewed through two different
lenses: (i) as a ψm mean squared error and (ii) as the combination of a ψm standard deviation
and bias.

For the ψm mean squared error approach, the ψm variability per ζ bin can be used to
define the ψm mean squared error MSEψm . This arises from the choice of a given ψm(ζ )

function whereas the actual ψ i
m(ζ ) function can take any of the potential values within the

spread of all the lines illustrated in Fig. 1b. The ψm mean squared error for a given ζ bin is:

MSEψm (ζ ) = 1

K

K∑
i=1

(
ψm(ζ ) − ψ i

m(ζ )
)2

. (11)

Since all published ψm(ζ ) functions are close one to another compared with the spread of all
the grey lines, we consider the specific choice of ψm(ζ ) function to have a negligible impact
on the overall MSEψm estimated for each ζ bin. This approach still considers the published
ψm(ζ ) function to be a reasonable truth and the particular SHEBA sampling to be biased
for not sampling a large enough range of conditions. The MSEψm computed as given above
considers that the ψm values could be as far above the theoretical-empirical values (red line)
as we can see them below in Fig. 1b. The MSEψm then generates a CDN random error as:

σ 2
CDN ,MSEψm

=
(

∂CDN

∂ψm

)2

MSEψm (ζ ). (12)

Note that MSEψm (ζ ) presented here depends only on the ζ value. The MSEψm (ζ ) values for
the SHEBA dataset are provided in Table 2, Appendix I. This CDN uncertainty contributes
to the total CDN random error as:

σ 2
CDN ,tot = σ 2

CDN ,MRE + σ 2
CDN ,MSEψm

. (13)

For the combination of a ψm standard deviation and bias approach, the K discrete ψ i
m(ζ )

(for i = 1, ..., K ) functions provide an actual mean discrete ψm(ζ ) function (black solid line
in Fig. 1b) which differs from the published ψm(ζ ) functions. Assuming this ψm(ζ ) function
as the truth for the targeted dataset, a systematic bias Δψm(ζ ) therefore arises when using
the published ψm(ζ ) functions. This ψm bias generates in turn a bias on CDN defined as:

ΔCDN = CDN − Cψm
DN , (14)
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whereCψm
DN (ζ ) is the drag coefficient calculated with the actual meanψm(ζ ) function. In this

case, the variability around the mean ψm is interpreted as a ψm random error, calculated as:

σ 2
ψm

(ζ ) = 1

K

K∑
i=1

(
ψ i
m(ζ ) − ψm(ζ )

)2
, (15)

which generates a CDN random error as:

σ 2
CDN ,σ 2

ψm
=

(
∂CDN

∂ψm

)2

σ 2
ψm

(ζ ), (16)

and the total CDN uncertainty when using the actual ψm(ζ ) therefore reads:

σ 2

Cψm
DN ,tot

= σ 2
CDN ,MRE + σ 2

CDN ,σ 2
ψm

, (17)

where σ 2
CDN ,MRE is calculated here using the observed ψm(ζ ) function. This approach sug-

gests a systematic bias in the published functions, especially for the unstable range. This
would indicate, for example, that stability functions developed in the tropics for unstable
conditions might not be suitable for polar conditions. However, this analysis should be con-
ducted on a wider dataset in order to confirm this statement. See the discussion Sect. 6.1.

The first approach (ψm mean squared error approach) is used in the core of this paper,
whereas the second approach (ψm standard deviation and bias approach) is discussed in
Sect. 6. By using the first approach, we hypothesise that the stability functions developed
for unstable conditions are valid even in polar regions, but the SHEBA datasets does not
sample large enough a range of conditions to see a representative spread around the empirical
functions proposed in the literature. This method is applied to the SHEBA dataset (Fig. 1a
and 1b) with K = 100 and N = 500 for each of the stable and unstable ranges. The
data processing follows Grachev et al. (2007). Note that the measurement random errors
propagating up to the ζ value, do generate a ψm error as ψm is a function of ζ . However, this
random error is negligible compared to the ψm function uncertainty itself (not shown).

3.4 Other Sources of CDN Uncertainty

As detailed in Sect. 2, surface temperature can vary significantly between water and ice,
leading to a different stability. This effect certainly increases the stability function error
(through a ζ error) as the surface temperature used for calculating ζ is the ice temperature
(at the mast base). Furthermore, this horizontal heterogeneity of stability may lead the flow
to never achieve equilibrium with local surface, situation for which the MOST would not
apply and for which additional uncertainty may arise. While it is clear that the surface
heterogeneity increases the uncertainty in the real CDN estimates, its precise quantification
remains beyond the scope of this paper. Current research, such as ongoing works about the
MOSAIC expedition (Shupe et al. 2022), addresses this scientific question. Accurate CDN

estimates are also conditioned to the fact of the measurements being actually realised within
the surface layer. For the SHEBA dataset, this hypothesis has been verified (e.g. Grachev
et al. 2007). In the case of measurement being collected above or near the surface layer upper
limit, where surface fluxes start to vary significantly, the MOST would breakdown. However
an additional CDN random error could be estimated in order quantify the relevancy of the
associated CDN estimates. These points are beyond the scope of this paper.
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Fig. 1 Bootstrapping procedure for assessing the uncertainty of the (a) ϕm (ζ ) and (b) ψm functions. (a) Flux-
gradient relationship ϕm as a function of the stability parameter ζ for the SHEBA data: individual hourly
observations (yellow crosses); discrete ϕim (ζ ) for each of the K = 100 folds (ϕm averaged per ζ bins, grey
solid lines) and empirical-theoretical interpolations for the unstable conditions (red solid line, Grachev et al.
2000) and the stable conditions (blue solid line, Grachev et al. 2007). (b) Stability function ψm as a function
of the stability parameter ζ for the SHEBA data: discrete ψ i

m (ζ ) (geometrical integral of the discrete ϕim (ζ )

following Equation (8) for each of the K = 100 folds (grey solid lines), average of all discrete ψ i
m (ζ ) per ζ

bin (black solid line) and empirical-theoretical function from previous studies (red lines and blue lines for the
unstable and stable regimes, respectively)

4 Application to the SHEBA Dataset

This section presents the results of the proposed procedure for quantifying the uncertainty
of the CDN estimates from the SHEBA dataset.
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Fig. 2 Histograms (grey shading, left axis) of (a) the neutral drag coefficient at 10m CDN and (b) the stability
parameter ζ . Superimposed: boxplots (black, right axis; whiskers: 5th and 95th percentiles, box: interquartile
range, line: median, dot: mean) of the distribution of the relative total uncertainty σCDN /CDN per (a) CDN
bins and (b) ζ bins

4.1 Total Estimates of CDN Random Error

The relative totalCDN randomerror (
σCDN
CDN

) as a function ofCDN (Fig. 2a, boxplots) looks like

a parabolawith an averageminimumvalue of approximately 25%aroundCDN ≈ 1.8×10−3,
a value for which a large amount of CDN measurements are available. For CDN between
about 1.0 × 10−3 and 2.5 × 10−3 (the most common range), the average relative random
error is between 25 and 50%, which are larger values than the uncertainty values usually
estimated (between 11 and 20%, e.g. Andreas et al. 2005, 2010). When CDN decreases, the
relative random error increases and the CDN uncertainty begins to exceed the CDN value for
CDN ≤ 0.001. Even though the relative totalCDN random error seems to increase withCDN ,
too few data withCDN ≥ 0.003 are available to allow a robust conclusion on the behaviour of
the relative total uncertainty for large CDN . The relative total CDN uncertainty as a function
of log(ζ ) also looks like a parabola with an average minimum value of approximately 25%
for close-to-neutral conditions, (Fig. 2b, boxplots). The total error begins to exceed the CDN

value for approximately |ζ | > 1. This analysis suggests that for CDN and ζ ranges for
which, on average, the relative CDN random error is greater than 1 may not be used as
reliable reference for tuning CDN parameterization.

4.2 Measurements Random Error andÃm Error Contributions

CDN random errors are partitioned into two potential main sources: themeasurement random
errors and the uncertainty of the stability function used to obtain neutral transfer coefficients
from non-neutral conditions.

The total CDN random error (σCDN ,tot, dark grey solid line with squares in Fig. 3) is dom-
inated by the total CDN MRE (σCDN ,MRE, light grey solid line with squares). The difference
between the two curves provides the random error on CDN resulting only from the mean
square error in the ψm estimate (σCDN ,MSEψm

) which is negligible under unstable conditions,
but increases with ζ under stable conditions up to about 30% of the total CDN random error
around ζ = 1.

The fact that the total random error on CDN (σCDN ,tot) exceeds the CDN value itself for
moderately stable or unstable conditions, i.e. for |ζ | larger than 1, is mainly due to theMREs.
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Fig. 3 CDN value and random error (as standard deviation) as a function of the stability parameter ζ (per ζ

bin). Grey dotted line with circles: CDN value; light grey solid line with squares: total CDN measurement
random error σCDN ,MRE(ζ ) (Eq.10) and grey solid line with squares: total CDN random error σCDN ,tot
(including both the total CDN MRE and the CDN random error arising from MSEψm , i.e. σCDN ,MSEψm
Eq.13)

4.3 Parameters Driving the CDN Measurement Random Error

As did the relative CDN error (Fig. 2), the absolute total CDN MRE shows a dependency
on the stability parameter ζ (Fig. 4), with a minimum for neutral stability and an increase
with increasing stability and instability. The u∗ uncertainty is the main contributor over
the whole range of negative ζ as well as up to ζ ≈ 0.2. For more stable conditions, the
contributions from the MRE of the sensible heat and momentum fluxes both increase and
the MRE of the sensible heat flux becomes the driving contribution. Too few samples show
ζ > 10 to conclude for this extreme stability range. On average over the entire stability range
(available here), the total CDN measurement random error σCDN ,MRE is largely driven by the
contribution from u∗ MRE. On average, 98.7% of the total CDN MRE variance is due to the
u∗ contribution. The measurement altitude z is included in the residual contribution and the
previous results are still valid for other z values (not shown, for instance for calculating the
drag coefficient at surface altitudes other than 10m).

The total CDN measurement uncertainty exhibits a non-negligible dependency only on
three of the parameters used to estimate CDN : the larger the U (Fig. 5a), the u∗ (Fig. 5b) or
the |w′θ ′| (Fig. 5c), the weaker the totalCDN MRE. On average over theU , u∗ orw′θ ′ range,
the u∗ MRE largely dominates the total CDN MRE except forU ≤ 3 ms−1, u∗ ≤ 0.07 ms−1

and −0.005 Kms−1 ≤ w′θ ′ ≤ 0 Kms−1, approximately, where the contribution from the
MRE of the sensible heat flux dominates. Under weak wind conditions, for which the CDN

value decreases, the relative CDN MRE become even larger (not shown) and the use of
the corresponding CDN estimates, as reference for parameterization development, could be
problematic. The large CDN MRE values for near to zero w′θ ′ support the data screening
which is usually done by discarding samples with a too weak sensible heat flux (e.g. Andreas
et al. 2010)
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Fig. 4 Budget of the CDN measurement random error (σ 2
CDN ,MRE) as a function of the stability parameter

ζ from all random errors of initial measured variables. The grey solid line with squares shows the total CDN
MRE.Other lines show the contributions from the parameters dominating the totalCDN uncertainty: u∗ (black
solid line), w′θ ′ (black dashed line). Residual contributions (U , P , RH , T , w′q ′ and z are shown in dotted
black line

Fig. 5 Same as Fig. 4 but as a function of: (a) the wind speed, (b) the friction velocity u∗ and (c) the sensible
heat flux w′θ ′

5 Using Uncertainties for Data Screening

5.1 Objective Data Screening Procedure

Data screening is a key step in order to get relevant data used for conducting physical analysis.
For turbulence studies, data are first selected following a flux quality control procedure (e.g.
Foken andWichura 1996) in order to remove data which do not fulfil the assumed conditions
for Monin-Obukhov similarity theory, such as criteria on the homogeneity and steadiness
of turbulence. In addition to the flux quality control procedure which is widely used and
approved, other criteria, more subjective or even heuristic, are also often applied with the
objective of getting a cleaner dataset. For instance, based on the SHEBA dataset, Andreas
et al. (2010) discard samples for which the latent or sensible heat fluxes (and the temperature
or humidity gradient) are considered too weak. They also discard samples for which the
roughness lengths are seen as extreme values. While these criteria can be partially justified,
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Fig. 6 Histogram of relative CDN error for different data screening. Orange: data screening based on flux
quality control (flags provided by observers so that the MOST is verified). Cyan contour: data screening used
in Andreas et al. (2010). Black: data screening based on the flux quality control and the threshold of relative
CDN error equal to 1

there is no objective procedure to set precisely any of the imposed thresholds. Data screening
procedures should aim at finding the best trade-off, balancing on one side the discarding
of a large proportion of samples with large errors that will subsequently propagate in the
data analysis and on the other side, the maximisation of the selected samples for the most
robust data analysis possible. In this section, various data screening criteria are analysed by
comparing the corresponding relative error onCDN , which is used as a quality metric of each
data point. Applying the flux quality control data screening removes samples which are non-
relevant for turbulence analysis. However, amongst the remaining data, a wide proportion
still has large CDN relative random error (orange distribution in Fig. 6). As an objective way
of carrying out this selection and based on the relative CDN random error estimates, we
propose a criterion which consists of retaining data for which the relative CDN error does
not exceed a threshold of 1 (black distribution) after estimating the CDN error following the
method proposed in the present study. A threshold of 1 ensures the random error to be smaller
than the CDN value. This threshold can be adapted if necessary. More data are retained with
this approach (5304 samples) than with the one from Andreas et al. (2010) (blue distribution,
1761 samples), thus improving both the data quality (some of the Andreas et al. 2010, data
sample show large relative random errors) and the sample number. This indicates that weak
sensible or latent heat flux do not necessarily lead to excessively large CDN errors, at least
when using the threshold values used in Andreas et al. (2010). This simple procedure allows
for an objective selection of data based on the final criteria that directly impact the analysis,
namely the CDN error. However, we still need to make an informed choice on the acceptable
level of relative CDN error. This choice should ideally be based on an independent estimate
of the total CDN error left in the sample after applying the proposed data-screening criteria.
Assessing an independent estimate of the total error is discussed in the next section.

The data screening also impacts themeanCDN value, for instancewhen collecting samples
in time bins (for example in 10-day bins, Fig. 7). The data screening is therefore crucial as,
for a given time period, the CDN value can be biased if the data set does contain samples
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Fig. 7 Time series (from October 1997 to August 1998) of the CDN mean (markers) and standard error of the
mean (SEM, error bars) calculated for each 10-days time bin for different data screening. Red: data screened
through the flux quality control procedure; blue: data screened as in Andreas et al. (2010) and black: data
screened through the flux quality control procedure and the threshold on the relative random error (fixed to 1)

with a relative random error greater than 1. As a result, any trial of explaining the underlying
processes would be also affected.

Several studies consider the sea ice concentration as a largely dominant factor explaining
the neutral drag coefficient changes in the marginal ice zone (e.g. Lüpkes et al. 2012; Andreas
et al. 2010; Elvidge et al. 2016). When collecting CDN samples in ice concentration bins
(Fig. 8a), the data screening can have a strong impact on the CDN mean values and there is a
risk of providing a biased reference for parameterization development if the relative random
error is not taken into account.

5.2 Assessing Independently the Actual Total Drag Coefficient Uncertainty

As mentioned in Sect. 3.4, other uncertainty sources than the main ones detailed in this study
can play a role on the CDN estimates and are, to the best of our knowledge, not possible
to quantify yet. As a result, the actual total CDN uncertainty value for each estimate is not
available and we cannot quantify the proportion of the actual total uncertainty represented
by the uncertainty estimated in the present study.

The experimental uncertainty of a variable (more specifically of a sensor) can usually
be assessed by quantifying the variability of this variable when repeating never exactly the
same experiment (type A uncertainty in metrology). This corresponds to what is done for
sensor calibration and uncertainty assessment. Strictly speaking, repeating the exact same
experiment for assessing aCDN above a given solid surface would only require repeating the
experiment above the same surface. In this specific case of a solid surface, the total actual
CDN random error is therefore directly the total variability of the estimates ensemble.
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Fig. 8 Impact of the data screening on the mean and standard error of the mean when collecting CDN data in
ice concentration bins. Red: data screening based on the flux quality control procedure; blue: data screening
based on Andreas et al. (2010) and black: data screening based on both the flux quality control procedure and
the threshold on the relative random error (fixed to 1). (a) CDN ice concentration bin average (markers) and
standard error of the mean (SEM or σ̂CDN

, error bars) as a function of the ice concentration and (b) σ̂CDN
as

a function of the ice concentration

123



Sea Ice Drag Coefficient Uncertainty from Field Data Page 17 of 25 11

In the case of a sea-ice surface, where the sea and ice fraction can change and for which
the skin drag above both water and potential snow cover are interactive with the surface
fluxes, as well as the form drag, the experiment can not be exactly repeated, as the fluxes are
intrinsically turbulent and are never the exact same from a time period to an other one. As a
result, the variability of the CDN estimates at the same place will integrate both the random
error of the estimates and the physical variability. Thus the total actual CDN uncertainty can
not be assessed as long as an exact formulation for describing the air-surface fluxes above
sea ice is unavailable. An alternative solution could be to duplicate local observations at the
same time.

Alternatively, following the approach of, for instance (Lüpkes et al. 2012; Andreas et al.
2010; Elvidge et al. 2016), which considers that the sea ice concentration is a largely dominant
factor explaining the neutral drag coefficient changes in the marginal ice zone, the following
criterion can be considered in order to assess the total random error. Considering the ice
concentration as the governing parameter, whatever the function explaining the dependence
of CDN on the ice concentration, the CDN variability for a given ice concentration value is
considered as CDN random error. Here the standard deviation per ice concentration bin is
therefore used as an estimate for the total drag coefficient uncertainty.

Of course, other factors may play a role on the variability of CDN , if these factors indeed
explain part of theCDN physical variability. Such factors can be for instance the ice morphol-
ogy, the spatial organisation of the floes, the presence of blowing snow, etc. As a limitation
of experiments above sea ice, such factors are very difficult to quantify precisely, and con-
sequently their impact on the CDN variability is also tricky to assess. Our estimate of total
CDN uncertainty as the standard error per ice concentration bin can only be applied on the
summer season from the SHEBA campaign, whenever sea ice concentration does vary and
the associated data were available.

The CDN standard error per ice concentration bin is quantified through the CDN standard
error of the mean (SEM) σCDN

which is approximated as:

σCDN
≈ σ̂CDN

= σCDN√
N

, (18)

where the σ̂CDN
is the standard error of the CDN estimates on the N samples available per

ice concentration bin. This formulation compensates for the sample number heterogeneity
between ice bins.

The standard error of the mean σCDN
as a function of the ice concentration for the QC-

screened data (based only on the screening using the flux quality control, red curve in Fig. 8b)
shows some variations which are amplified when considering the screened dataset based on
the (Andreas et al. 2010) criteria (blue curve), for which maximum values reach twice the
initial maximum values. Even if the metric which is chosen here tends to compensate the
sample number heterogeneity, the (Andreas et al. 2010) criteria discard a large number of
samples, which affects the dispersion estimates. The objectivemethod proposed in the present
study of selecting CDN values depending on their relative error reduces σCDN

on the entire
ice concentration range available here (black curve). We consider the larger reduction in
CDN dispersion for our proposed screen procedure than for that of Andreas et al. (2010) to
be a sign of better overall data quality. Furthermore, the amplitude of the reduction in CDN

dispersion can be used to refine the choice of acceptable level of relative CDN error (the
threshold fixed to 1 in Sect. 5.1).
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6 Discussion

6.1 Considering theÃm Error as the Combination of a Standard Deviation and a Bias

This section proposes an alternative estimate of theCDN uncertainty arising from the stability
function uncertainty, as done in 4.2, but considering the total error on the stability function
to be the combination of a standard deviation and a bias (see Sect. 3.3). As a reminder, this
approach considers the mean observed discrete ψm function estimated in Sect. 4.2, as the
truth for the targeted dataset here, namely SHEBA. In this case, the total CDN random error
σ
Cψm
DN ,tot.

(ζ ) (Eq.17) does not significantly vary from the totalCDN random error foundwhen

using the published ψm(ζ ) functions σCDN ,tot.(ζ ) (Eq.13), as can be seen by comparing
the grey and black solid lines with squares in Fig. 9. Since σ 2

ψm
< MSEψm , σ

Cψm
DN ,tot.

(ζ )

tends to be marginally lower than σCDN ,tot.(ζ ) but the total random CDN error is dominated
in both cases by the MREs. However, using the observed discrete ψm function instead of
the published ψm(ζ ) function significantly modifies the CDN values. The resulting bias
ΔCDN (ζ ) (Eq.14, blue and red lines with triangles in Fig. 9) tends to zero toward neutral
conditions as expected due to the fact that both published and observed ψm(ζ ) functions
tend to zero toward neutrality (Fig. 1b). The CDN bias becomes significantly negative when
|ζ | increases, roughly symmetrically around ζ = 0, except for extremely stable or unstable
conditions.

Under stable conditions, the pragmatic estimate of the ψm function proposed here differs
substantially from the Grachev et al. (2007) analytical function (see Fig. 1b), despite both
being based on the same dataset. This results in a small CDN negative bias when estimates
are made by using the analytical stability functions (Fig. 9). However, the proposed method

Fig. 9 CDN random errors, bias and values as a function of the stability parameter ζ . Grey solid line with
squares: total CDN random error using the published ψm (ζ ) function (standard deviation σCDN ,tot.(ζ )),

Eq.13); black solid line with squares: total CDN random error using the effective ψm (ζ ) function (standard
deviation,σ

Cψm
DN ,tot.

(ζ ), Eq. 17); grey dotted linewith bullets:CDN values using the publishedψm (ζ ) function;

black dotted line with bullets: Cψm
DN values using the effective ψm (ζ ); blue and red solid lines with triangles:

CDN bias (negative and positive, respectively) when using the publishedψm (ζ ) instead of the effectiveψm (ζ )

functions
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of setting the stability function should be tested on a larger amount of data in order to conduct
a fair comparison with the analytical functions.

Under polar unstable conditions, a substantial negative bias appears in our mean estimate
of the stability correction ψm , even reversing the sign of the ψm correction (see Fig. 1b).
Published stability correction functions (e.g. Fairall et al. 1996; Grachev et al. 2000, ) have
been developed based on a wealth of observations, mainly from the tropics, where unstable
conditions are much more frequent. Even though based on large datasets, those stability
correction function could be unsuitable to polar specific conditions. What remains unclear
is whether the polar conditions that have been sampled during SHEBA are too narrow to
cover all conditions sampled in the tropics, which would falsely indicate that those functions
for unstable conditions need to be reviewed for polar conditions, or whether those functions
should really behave differently under polar or tropical conditions. To conclude on that point,
a better sampling of unstable polar conditions would be required.

6.2 Refining Turbulent Momentum Flux Error Estimates

We have shown, in this study, that uncertainties in turbulent momentum flux estimates are
the main contributor to the uncertainty on neutral drag coefficients. However, we have used
as uncertainty estimates for the momentum flux, a percentage of the momentum flux value
as given by the observers. This rough estimate could be refined by using statistics during the
temporal window chosen to compute those momentum fluxes (e.g. Rannik et al. 2016). This
would provide an accurate estimate of momentum flux uncertainty for each individual data
point, and in turn allow for more accurate estimates of individual neutral drag coefficient
uncertainty. Those refinements would benefit the data-screening procedure proposed in this
article.

7 Conclusions and Recommendations

The Arctic sea ice decline has captured public attention in the recent past as an emblematic
sign of climate change. Refining our projections of sea ice cover evolution for the coming
decades requires improved estimates of sea ice heat budget. A substantial part of its uncer-
tainties originates from surface-atmosphere turbulent exchanges. Reducing uncertainties in
surface turbulent exchanges implies reducing uncertainties on the transfer coefficients on
which their parameterization relies. As a starting point, we focus here on the neutral drag
coefficient from which can be derived other transfer coefficients. Developing or validating
momentum flux parameterization requires deriving transfer coefficients from field data.

This article proposes a methodology to evaluate as thoroughly as possible the different
contributions to the field-derived neutral drag coefficient errors. We list as contributors the
instrumental/measurement errors that propagate through the computation of transfer coef-
ficients as well as the uncertainties in the empirical stability functions used to correct for
stability effects. This methodology is applied to data from the SHEBA (Surface Heat Budget
of the Arctic Ocean) campaign carried out in the Arctic Ocean from October 1997 to Octo-
ber 1998. We conclude that for CDN between about 1.0 × 10−3 and 2.5 × 10−3 (the most
common range), the average relative random error is between 25 and 50%. For highly stable
or highly unstable conditions (|ζ | > 1), the total uncertainty in the neutral drag coefficient
exceeds on average the neutral drag coefficient value itself. For closer-to-neutral conditions,
the total uncertainty is around 25% of the drag coefficient and is dominated by measurement
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uncertainties in surface turbulent momentum fluxes which should therefore be the target of
our efforts in uncertainty reduction. This article also proposes an objective data-screening
procedure for field data, which consists of retaining data for which the relative error on neu-
tral drag coefficient does not exceed a threshold of 1. This method allows for a reduction of
the drag coefficient dispersion compared to other data-screening methods, which we take as
an indication of better performance.

The methodology we proposed here was applied exclusively on data collected above sea
ice. However, this approach could be applied to assess the neutral drag coefficient uncertainty
and for data selection above any surface. The impact of the horizontal heterogeneity is
discussed but not assessed in this study and remains an open scientific question. Dedicated
field or numerical experiment design are necessary to answer this question. As a follow-up
study, the uncertainties estimated in this article will be used to define weights for the field-
derived neutral drag coefficients when used to calibrate turbulent flux parameterizations such
as the one from Lüpkes et al. (2012).
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Appendix: MSEÃm(�)

See Table 2.
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Table 2 Numerical value of
MSEψm per ζ bin (central ζ
values are indicated)

ζ MSEψm

(a)Unstable range (ζ < 0)

− 8.15E1 2.76E1

− 5.15E1 3.94E0

− 3.25E1 1.54E0

− 2.05E1 3.78E0

− 1.29E1 1.96E0

− 8.15E0 2.22E0

− 5.15E0 2.13E0

− 3.25E0 1.35E0

− 2.05E0 1.65E0

− 1.29E0 1.37E0

− 8.15E−1 9.66E− 1

− 5.15−1 7.90E−1

− 3.25E−1 6.99E−1

− 2.05E−1 3.37E−1

− 1.29E−1 1.59E−1

− 8.15E−2 7.03E−2

− 5.15E−2 2.75E−2

− 3.25E−2 1.13E−2

− 2.05E−2 8.15E−3

− 1.29E−2 6.35E−3

− 8.15E−3 5.00E−3

− 5.15E−3 3.52E−3

− 3.25E−3 2.34E−3

− 2.05E−3 1.99E−3

− 1.29E−3 2.64E−5

(b) Stable range (ζ > 0)

1.29E−3 4.17E−5

2.05E−3 1.08E−3

3.25E−3 3.74E−3

5.15E−3 3.13E−3

8.15E−3 5.24E−3

1.29E−2 7.51E−3

2.05E−2 2.35E−2

3.25E−2 4.36E−2

5.15E−2 7.20E−2

8.15E−2 1.24E−1

1.29E−1 2.10E−1
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Table 2 continued
ζ MSEψm

2.05E−1 3.80E−1

3.25E−1 4.83E−1

5.15E−1 6.92E−1

8.15E−1 7.45E−1

1.29E0 4.94E−1

2.05E0 6.19E−1

3.25E0 5.62E−1

5.15E0 2.42E0

8.15E0 1.28E1

1.29E1 3.41E1

2.05E1 6.85E1

3.25E1 8.62E1

5.15E1 1.65E2

8.15E1 2.77E2
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