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Abstract
The idea of cooperative perception for navigation assistance was introduced about a decade ago with the aim to increase
safety on dangerous areas like intersections. In this context, roadside infrastructure appeared very recently to provide a new
point of view of the scene. In this paper, we propose to combine the Vehicle-To-Vehicle (V2V) and Vehicle-To-Infrastructure
(V2I) approaches in order to take advantage of the elevated points of view offered by the infrastructure and the in-scene points
of view offered by the vehicles to build a semantic grid map of the moving elements in the scene. To create this map, we
chose to use camera information and 2-Dimentional (2D) bounding boxes in order to minimize the impact on the network and
ignored possible depth information as opposed to all state-of-the art methods. We propose a framework based on two fusion
methods: one based on the Bayesian theory and the other on the Dempster-Shafer Theory (DST) to merge the information and
chose a label for each cell of the semantic grid in order to assess the best fusion method. Finally, we evaluate our approach
on a set of datasets that we generated from the CARLA simulator varying the proportion of Connected Vehicle (CV) and the
traffic density. We also show the superiority of the method based on the DST with a gain on the mean intersection over union
between the two methods of up to 23.35%.

Keywords Intelligent transportation systems · Cooperative mapping · Vehicle-to-everything · Dempster-Shafer theory

1 Introduction

Enhancing safety stands as a pivotal priority within the trans-
portation sector. One of its paramount challenges involves
mitigating unforeseen and unpredictable circumstances [1].
A viable strategy entails leveraging the collaborative efforts
of both Road Side Unit (RSU) and road users to aggregate
extensive data, enabling comprehensive situational aware-
ness and facilitating the anticipation of potential hazards.
Nonetheless, the collection of data fromvarious point of view
(PoV) may engender conflicting observations necessitating
adept management strategies.

In this paper, we propose a method using the in-the-scene
PoV of the vehicles along with the infrastructure percep-
tion to build a sematic grid map and improve its accuracy.
Since we are focusing our approach on the issues of map
construction and merging from multiple PoV, the study of
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the impact of sensor position and synchronization noise is
beyond the scope of this paper. However, thanks to the GPS
time-stamping and our choice to use considerably reduced
data size, we believe that synchronization is not a real prob-
lem. The introduced method of cooperative semantic grid
map generation is solely based on vision 1. The presented
solution contrastswith the state-of-the-artmethodswhich are
either single-view based or obtain depth information. Bayes
theory-based andDST-basedmergingmethods are compared
and evaluated on a new cooperative dataset2.

This article is an evolution of our previous work, aiming
at generating occupancy grids from multiple agents’ PoV
[2]. In the remainder of this section, we presents the related
works. In Section 2, we introduce the global architecture of
our approach. In the next section, we present the methods for
creating local semantic grids. The fusion of semantic grids
is presented in Section 4 and the decision-making in Section
5. Finally, in Section 6, we discuss the performance of our
approach before concluding in Section 7.

1 https://github.com/caillotantoine/Coop-Evidential-Semantic-Grid
2 https://github.com/caillotantoine/carla-V2X-dataset-generator
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1.1 RelatedWorks

Occupancy grids have been used for many decades in mobile
robotics and are an effective way to represent navigable areas
in an environment [3, 4]. It is certainly due to its simplicity
of design and understanding that this mapping method is still
very popular in the community today [5].

To generate these maps, the original approach consists
in equipping a robot with a range sensor and observing the
distances to the obstacles forming the environment around
the robot [3, 4, 6]. With the formalization of occupancy
grid merging methods, it became possible to generate more
complex occupancy grids using the displacements within the
environment [7]. Another approach to generate more com-
plete occupancy grids is to use multiple point of view (PoV)
[8]. This approach was then implemented in an automotive
context [5, 9]. The occupancy grid concept can be extended
to show other information such as the semantics of a cell [5,
10–12] forming semantic occupancy grids. However, so far,
occupancy grids have been generated using depth informa-
tion generated by distance sensor [9, 13–17], stereovision [5,
8] or deep learning [5]. Kim et al. [18, 19] build an occupancy
map based on a dense back projection on the ground plane
using multiple PoV, considering the ground plane to be at
Z = 0. In this paper, we are focusing on generating semantic
occupancy grids with the objective of increasing safety and
facilitating the navigation in intersections and roundabouts.
In order to limit the impact on the network performance of
the cooperative system, we have decided to rely exclusively
on bounding boxes given by on-the-shelf solutions such as
YOLO [20] or the Mobileye solution used in [21].

The fusion of occupancy grids is generally based on the
Bayesian framework as in [7, 22].However, another approach
formalized by Dempster [23] and completed by Shafer [24]
called the Dempster-Shafer Theory (DST) is also used to
perform occupancy grids fusion [5, 9]. Both frameworks,
namely the Bayesian and the DST ones, will be investigated
in this work in order to assess the best fusion approach to our
context.

On the other hand, one of today’s major challenges is to
provide information to the decision toolset in charge of driv-
ing [25, 26]. This information used to be provided by the
vehicle itself through its embedded sensors and the vehi-
cle was therefore completely in charge of the perception
task [27]. During the last decade, cooperative perception has
increasingly been used, following the two main schemes of
cooperation: the Vehicle-To-Vehicle (V2V) where vehicles
share information with each other as in [28], and the Vehicle-
To-Infrastructure (V2I) where the infrastructure shares scene
perception information as in [13]. The cooperative percep-
tion offers, indeed, a solution to extend the fields of view
beyond the limits of the embedded sensors and allows to

reduce the occlusion effect which motivated us to undertake
a cooperative perception-based approach.

2 System Architecture

In this section, we present our cooperative Vehicle-To-
Everything (V2X) approach, collecting information from
vehicles to build the map in order to broadcast the final
generated semantic map to all agents in the scene. This
approach allows the generation of semantic occupancy grids
from sparse data (bounding boxes) gathered from cameras
that are either placed on vehicles or on the infrastructure.
The redistribution of the final map is out of the scope of this
article.

2.1 MergingV2V andV2I Approaches

Today, cooperative perceptionprojects are almost exclusively
based onV2VorV2I paradigms [27]. In theV2I architecture,
the infrastructure performs the perception task only with its
sensors. This approach takes advantage of the elevated PoV
offered by the infrastructure to reduce occlusions but neglects
the in-the-scene PoV that can refine the results. Therefore,
an approach using data from both the infrastructure and the
connected vehicles navigating inside the scene is presented.

To make this system as versatile as possible, the infras-
tructure and vehicle PoV are considered as agents. All these
agents send the bounding boxes’ information along with
the camera’s one (sensor’s pose and camera matrix) to the
infrastructure. This data, encapsulated in a package, is then
received by the RSU in order to perform the mapping of the
scene and transmit the map afterward to the different users
as presented in [2].

2.2 Road Side Unit Architecture

The RSU is the central element of our proposal. It processes,
merges, and creates a semantic grid map from the data sent
by the agents. Figure 1 shows the path of the data through the
RSU and its different processing blocks up to the creation of
the final map.

There are two sets of blocks. The former is made of the
back projector, rasterizer, and BxA (Basic Probability/Belief
Assignment) blocks, which are intended to perform the first
processing on the data sent by each agent. In fact, for each
agent, an instance of this first set is created and several
instances may, therefore, be created in parallel. Since the
output of this set has, not yet, benefited from the cooperative
aspect, it is considered as local processing. This latter takes
the form of a grid and will, therefore, be referred as a local
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Fig. 1 RSU pipeline of the data received from the agent to create a
semantic grid map. The illustration shows the example with 3 agents,
and thus, 3 parallel processings before the merge of the grids

grid. The second set of blocks is intended to merge the local
grids into a global semantic grid and thus, perform global
treatments.

2.2.1 Local Processing Blocks

The local treatment consists of 3 blocks.
BackProjectorThis block uses the bounding box and sen-

sor information tomake an inverse projection of the bounding
boxes onto the ground in the world frame.

Rasterizer It allows the creation of masks in the form of
grids from the topological information of the previous block.

BxA This interchangeable block takes the format of Basic
Probability Assigment (BPA) to convert the masks into a
probabilistic occupancy grid or the format of Basic Belief
Assigment (BBA) to convert the masks into an evidential
occupancy grid.

2.2.2 Global Processing Blocks

The set performing the global treatment consists of two
blocks depending on the type of the input grid.

Merger This block merges the local grids of each user
using either a Bayesian or a DST based method.

Decision Finally, the global occupancy or evidential grid
is converted into a semantic grid. This block must therefore
make a decision about each cell belongs to which semantic
class among a finite number of available semantic classes.

At the output of this set, a semantic grid map indicating
where the objects are located is obtained. In the scope of this
paper, only semantic classes of "pedestrians" and "vehicles"
are considered. The other cells are considered as terrain, the
default class.However, the number of classes can be extended
to any number.

3 Local Grid Maps

In this section, we give details about the methods used in the
three blocks of the local processing set.

3.1 Inverse Projection

To find the position of the users in the scene from the 2D
bounding boxes, an inverse projection of the bounding boxes
on the ground is performed. Indeed, the two bottom points
of the 2D bounding box correspond approximately to the
two closest points on the ground of the 3D bounding box,
as shown in Fig. 2. The top two points of the bounding box,
when they can be projected to the ground, give an upper limit
to the span occupied by a user.

3.1.1 Plücker Coordinate System

In this section, we present a basic ray projection algorithm
built upon Plücker coordinates as described in [29]. Plücker
coordinates offer a powerful framework for representing
lines and planes and finding their intersections in three-
dimensional space. This ray projection algorithm allows us

Fig. 2 Bounding boxes for cars
and pedestrians with their two
lower points on the ground as
given from our Dataset built
from CARLA. The green frame
represents the 2D bounding
boxes extracted from the
3-Dimentional (3D) bounding
boxes (in blue) given by the
simulator
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to perform inverse projections to retrieve the footprints of the
detected vehicles on the ground plane.

PlaneLetπ a plane in homogeneous coordinates by Eq. 1.

π = (π1, π2, π3, π4)
ᵀ

π1X + π2Y + π3Z + π4 = 0
(1)

In otherwords,π1,π2,π3 are the coordinates of the normal
vector of the plane, and π4 is the distance between the origin
O and the plane π . Therefore, the vector π is built using the
normal vector of the sought plane and its distance from the
origin such that π = [N |d] where N ∈ R

3 is the normal
vector of the plane and d is the distance between the origin
O and the plane π , as defined in Eq. 2.

N = (π1, π2, π3)
ᵀ

||Oπ || = π4
(2)

Line A ray, or line, can be defined by two points in
homogeneous coordinates such that A = [x1, y1, z1, 1]ᵀ and
B = [x2, y2, z2, 1]ᵀ. The definition of the line from these two
points is defined by Eq. 3.

L = ABᵀ − BAᵀ (3)

Intersection To find the points in the 3D world that inter-
est us, we look for the points of intersection between the
ray L and the ground plane π . The coordinates of this point
Pintersection are obtained by Eq. 4 in non-normalized homo-
geneous coordinates.

Pintersection = Lπ (4)

3.1.2 Inverse Projection

Now that we have a tool to perform the ray tracing task, we
need to find the rays that pass through the corners of the
bounding box and the center of the camera.

Pinhole Camera To make an inverse projection, we will
have to see first the projection model of the objects in the 2D
plane of the image. For that, the pinhole model as defined
in [29] is considered. This model, defined in Eq. 5, allows
to project a 3D point in the camera frame of coordinates
Pcam = (X , Y , Z)ᵀ on the image plane with coordinates
pimg = (u, v, w)ᵀ after normalization by the value of w.

pimg = K Pcam (5)

where K is the camera matrix defined in Eq. 6 and con-
structed from f , the focal length, cx and cy the coordinates
of the camera optical center on the image.

K =
⎛
⎝

fx 0 cx
0 fy cy
0 0 1

⎞
⎠ (6)

However, it should be noted that this model ignores the
optical deformations that the lenses can bring. In this paper,
these optical deformations are considered neglectable.

Inverse Pinhole Camera To go from a 2D point to a 3D
point in the camera frame, the inverse principle is considered.
Thus, for a point pimg = (u, v, w)ᵀ on the plane, there exists
a point Pcam = (X , Y , Z)ᵀ in the camera frame, as given in
Eq. 7.

Pcam = K−1 pimg (7)

However, since we only have the coordinates u and v of
the point in the image and the value ofw is lost, the values of
Pcam will depend on w. Therefore, instead of having a fixed
point, a line defined by all values of w passing through the
center of the camera and the real point in the world Preal is
obtained. Therefore, a ray Rp is built from the point corre-
sponding to the center of the camera, which will be named
Cworld , in the world frame, as well as a reprojected point of
pimg , Pcam , with an arbitrary value of w, in the world frame
and named Pworld , after transformation by WTC , the trans-
formation matrix from the camera frame to the world frame
according to Eq. 8.

Rreal = (Cworld Preal)

∀w, ∃Pcam, Pworld = WTC Pcam ∈ Rreal

⇒ Rp = Cworld Pcam
ᵀ − PcamCworld

ᵀ
(8)

Silhouette’s EstimationWenowhave rays R created from
the corners of the 2D bounding boxes and the center of the
camera. The silhouettes are thus formed by these rays coming
from the four corners of each of the bounding boxes and the
ground plane πsol according to Eq. 9.

Psol = Rπsol (9)

If a corner of a bounding box is above the horizon, then it will
be projected to the infinity of themap. For this, the< X , Y >

coordinates of Pworld for a w greater than the map size are
taken.

However, we observe that the silhouettes projected on
the ground are much larger than the span of the vehicle,
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especially on the axis of the depth relative to the cameras.
Therefore, this effect can be reduced by assigning a maxi-
mum length on the depth axis according to the class. In this
case, a length of 6m for vehicles and 1m for pedestrians is
chosen. The part of the original silhouette being trimmedwill
be considered hidden and therefore in an unknown state. This
strategy is notably illustrated in Fig. 3.

3.2 Rasterization

Since the silhouettes are in topological format, it will be dif-
ficult to merge them together. Therefore, let’s convert this
topological information into volumetric information. Among
other things, either occupancygrids or obvious grids are used,
depending on the desired fusion method. However, before
obtaining an occupancy grid, it is necessary to rasterize the
silhouettes. This step consists in defining for each cell if it
belongs to a silhouette, to terrain or if it has not beenobserved.

First, all the cells are considered as unobserved. Then, the
whole area covered by the camera is considered as terrain. To
define this area, the principle explained in Section 3.1 is used
with the 4 corners of the image. Finally, the cells belonging
to a silhouette inherit its label (vehicle or pedestrian).

The map resulting from this operation thus takes the for-
mat of a grid where each cell contains a label (unknown,
terrain, vehicle, or pedestrian). This grid can be denoted
M<x,y> where < x, y > are the cell coordinates. Since the
latter has a similar structure to the images, the tools offered by
the image processing library are used to perform the rasteri-
zation task. To plot the silhouettes on the occupancy grid, the
function fillPoly of the OpenCV API [30] is used. This
function is parametrized with the 8-connected lines mode,
also calledMoore’s neighborhood to draw the polygons con-
stituting the silhouettes. This mode takes into account the 8
cells bordering around a cell to draw a line, contrary to the
4-connected. In this mode, there is no antialiasing in order
to have only one label per cell. Indeed, using a method per-

Fig. 3 The rays of the bounding
boxes are projected onto the
ground. If the silhouette is too
large, it is reduced along its
length. The areas resulting from
the reduction are considered as
unknown since they are
occluded
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forming antialiasing would mean applying probabilities to
each label for each cell. However, depending on the merging
mode, the map format differs.

3.3 Basic Assignment

The task of putting the label grids into a compatible format
for merging belongs to the BxA block. If this block creates a
semantic occupancy for theBayesian-basedmergingmethod,
it is then called BPA. However, if it uses a mass system used
in DST to create an evidential grid, it is then called BBA.

3.3.1 Classes

In our work, we use three semantic classes, considered as
possibilities, namely: pedestrian, vehicle, and terrain as given
in Eq. 10,

� = {V,P, T } (10)

where V is the vehicle class, P is the pedestrian class, and
T is the terrain class. � represents the available universe of
classes. In addition, there is an internal state used to define
whether a cell has been observed or not. This will be treated
differently depending on the merge mode, Bayesian or evi-
dential.

3.3.2 Occupancy Grids

In the case of merging the different PoV by a Bayesian
method, the previously generated grid is then transformed
into a semantic occupancy grid.

GridDefinitionThis type of grid has already been defined,
as in [12] where the authors propose an augmentation of the
classical occupancy grid by appending the presumed class
to the occupancy value. Nevertheless, this format is not suit-
able for grid fusion. Therefore, the format presented in [10]
is chosen which, for each position, proposes |�| sub-cells,
containing the probability of each class. We will note this
map B<x,y,c> with < x, y > the coordinates of the cell, c
the index of the sub-cell (one per class).

Basic Probability Assignment Function The probability
value assignment is done based on the observed cell label
and the detection confusion estimate. This task is here called
the function BPA and can be defined according to Eq. 11.

BPA : M<x,y> → M<x,y,z>, z ∈ � (11)

To perform this task, we use a lookup table that allows us to
know the probability value of each class for each observed
label. Table 1 shows the Look-Up Table (LUT) used for
observations from vehicles. In this example, when a vehi-
cle has been detected, we estimate the fact that it is really a

Table 1 LUT to assign
probability values to each
sub-cell based on the observed
class of the original cell when
observed from a vehicle. X
stands for unobserved cases

Obs. V P T

X 0.33 0.33 0.33

V 1.00 0.00 0.00

P 0.00 1.00 0.00

T 0.20 0.20 0.60

vehicle at 85, that it is finally a pedestrian at 10 and that it
is a land at 5. Table 2 shows the LUT used for observation
from the infrastructure.

3.3.3 Evidential Grids

To perform a merge in the framework of the DST, it is nec-
essary to create evidential maps.

Grid Definition The map takes a format very similar to
the semantic occupancy grids presented in Section 3.3.2 but
has more sub-cells than |�|. In fact, in DST theory, the set
of classes presented in Eg. 10 is augmented by considering
the 2� which is defined in Eq. 12. Thus, the cells are made
of |2�| sub-cells. This evidential grid format was notably
used by Richter et al. in [5]. This map is noted E<x,y,c> with
< x, y > the coordinates of the cell, c the index of the sub-
cell (one per element of the power set).

2� = {∅, {V}, {P}, {T },
{{V}, {P}}, {{V}, {T }}, {{P}, {T }},�} (12)

The advantage of using a power set is that we can take
into account states of doubt. For instance, in the case where
a motorcycle is seen from the front, it could be classified
as a pedestrian while seen from the side it would be more
easily classified as a vehicle. It is thus possible to compute
specifically the confusion factor between these two classes
to assign a mass value to the set {{V}, {P}}.

MassesThemass values as presented in the previous para-
graph, quantify evidence for each set of the power set. The
mass function that attributesmass values to each set is defined
in Eq. 13.

m : 2� → [0, 1]
m(∅) = 0

(13)

Table 2 LUT to assign
probability values to each
sub-cell based on the observed
class of the original cell when
observed from the infrastructure.
X stands for unobserved cases

Obs. V P T

X 0.33 0.33 0.33

V 1.00 0.00 0.00

P 0.00 1.00 0.00

T 0.00 0.00 1.00

123

64   Page 6 of 17 Journal of Intelligent & Robotic Systems (2024) 110:64



Table 3 LUT to assign mass values to each sub-cell from the observed
class of the original cell when observed from a vehicle

Obs. ∅ {V} {P} {T } �\ �\ �\ �

{T } {P} {V }
X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

V 0.00 0.30 0.00 0.00 0.10 0.10 0.00 0.50

P 0.00 0.00 0.30 0.00 0.10 0.10 0.00 0.50

T 0.00 0.10 0.10 0.30 0.00 0.00 0.00 0.50

X stands for unobserved cases

When associating values with masses, it is necessary to fol-
low the property of Eq. 14.

∑

A∈2�

m(A) = 1 (14)

These are the masses that are stored in the sub-cells of the
evidential grids.

BasicBelief AssignmentFunction In the sameway, as for
the function of BPA, the function of BBAallows to determine
values for each of the masses of the power set and can be
formalized in the form of Eq. 15:

BBA : M<x,y> → M<x,y,z>, z ∈ 2� (15)

Similarly to the occupancy grids, we also use a LUT sim-
ilar to that of Table 3 to assign values to the masses of the
power set depending on the observation of the cell when
observed from a vehicle. We observe, however, that when a
cell has not been observed, the mass of � is assigned to 1
to account for this state of unknown, unlike the BPA func-
tion. Table 4 shows the LUT used for observations from the
infrastructure.

Today, the functions of BBA still form contributions since
no method is yet agreed upon. Thus, we have defined the val-
ues of our LUTwith a heuristic method using qualitative and
quantitative studies. Another good indicator is the conflict
value used in the Dempster fusion rule given in Eq. 21 which
should be minimal. However, since these values are influ-
enced by the performances of the agents’ classifiers, but also

Table 4 LUT to assign mass values to each sub-cell from the observed
class of the original cell when observed from the infrastructure

Obs. ∅ {V} {P} {T } �\ �\ �\ �

{T } {P} {V }
X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

V 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.60

P 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.60

T 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.60

X stands for unobserved cases

by their pose, their number or by the layout of the terrain in
the scene, it is necessary to frequently reevaluate the LUT’s
values.

4 MergingMethods

In this section, we come back to themerger block by detailing
its functioning and the different approaches evaluated. In fact,
we consider two main approaches: one based on Bayesian
theory and the other on DST. Figure 4 illustrates these two
approaches and the rules considered for merging the maps
input to this block. For the Bayesian method, we used joint
probabilities and thus a succession of multiplications, as well
as themethod based on the SumOver the Log-Odds (SOLO).
In the DST case, we considered two combination rules: the
conjunctive rule and Dempster’s rule. We firstly describe the
method based on the Bayesian theory then the method based
on the DST one.

4.1 Bayes-BasedMerging

Thefirstmethod implemented is theBayesian fusionmethod,
as proposed by the authors of [7, 22]. This method consists in
using probability theory to estimate the probability that two
images are similar.

Agents perform perception independently, i.e., they do
not take into account the observations of other agents to
define the bounding boxes to be detected and they do not
take into account past observations. Hence, we can make the
assumption that there is no dependency between different
observations of a given cell. The joint probability of a cell
belonging to a given semantic class that is being observed by

Fig. 4 Investigated merging approaches for occupancy and evidential
grids. For both Bayesian theory and DST based approaches, two merg-
ing rules have been considered
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two agents where agent 1 performs an observation denoted
as o1 and agent 2 as o2 is expressed in Eq. 16.

P(o1 ∩ o2) = P(o1) × P(o2) (16)

Since this operation is associative, for N agents, the probabil-
ity associated with a sub-cell of the global map MB<x,y,c>
can be computed from the maps issued from the agents
B<x,y,c>i according to Eq. 17, i being the index of the agent,
and knowing that the cell contains the probability of the pres-
ence of its associated label.

∀x ∈ [0,m], y ∈ [0, n], c ∈ �

MB<x,y,c> =
N∏
i

B<x,y,c>i
(17)

Therefore, for each subcell at a given < x, y, c > coordi-
nates, the observations can finally be merged by successive
multiplications. Another method, notably used to reduce the
approximation in floating point representation in the case of
successive operations, is the use of the SOLO as given in
[31]. Nevertheless, none of these methods handle observa-
tion conflicts.

4.2 Evidential Merging

A method based on DST as used in [5, 9] provides a better
understanding of conflicting observations. Several combina-
tion rules are available.

4.2.1 Conjonctive’s Combination Rule

The first combination rule, called the conjunctive combina-
tion rule, is defined by Eq. 18,

m1(A) ∩ m2(A) =
∑

B∩C=A∈2�

m1(B)m2(C) (18)

where m1 and m2 are mass functions defined over the uni-
verse �. Since the combination rule is associative, we can
apply it to the E<x,y,c> maps of each of the N agents to form
a global evidential gridME<x,y,c> according to Eq. 19:

∀x ∈ [0,m], y ∈ [0, n], c ∈ �

ME<x,y,c> =
N⋂

i=0

E<x,y,c>i
(19)

Following the association of the local grids, a global grid is
obtained with the particularity of having m(∅) �= 0 in some
cells. This value is generated by conflicts between the differ-
ent agents observing the same cell. Several interpretations of
the conflict are possible [32] such as the non-exhaustiveness

of the discernment framework (lack of available classes),
lack of reliability in the observations, or bad modeling of
the perception capacities (BBA). Therefore it can be a good
indication of the weaknesses of our modeling of the scene
and of the perception that we will try to correct in order to
reduce the conflict. Nevertheless, it is sometimes impossible
to reduce this conflict and it will have to be managed either
by coefficients of collapse in the BBA or in the phase of
combination.

4.2.2 Dempster’s Combination Rule

To handle the conflict in the combination phase, a normaliza-
tion factor can be added to the conjunctive combination rule
to form the Dempster combination rule. This is formalized
in Eq. 20,

m1(A) ⊕ m2(A) = 1

1 − K

∑
B∩C=A �=∅

m1(B)m2(C) (20)

where K , defined in Eq. 21 gives the conflict value.

K =
∑

B∩C=∅

m1(B)m2(C) (21)

Thus, using Dempster’s combination rule, the conflict is
distributed among all masses but respectsm(∅) = 0, a prop-
erty that must be respected in the closed world proposed by
Shafer.

Moreover, this rule is also associative. Hence, it is possible
to create a map from N observing agents providing local
evidential grids E<x,y,c> in order to obtain a global evidential
one ME<x,y,c> according to Eq. 22.

∀x ∈ [0,m], y ∈ [0, n], c ∈ �

ME<x,y,c> =
N⊕
i=0

E<x,y,c>i
(22)

At this point, either a semantic occupancygridMB<x,y,c>
or an evidential semantic grid ME<x,y,c> can be obtained.
These maps contain the information for each class, but it is
necessary to interpret them to obtain a semantic grid repre-
senting the scene.

5 DecisionMethods

In this section, we discuss the decision block which, starting
from a map in occupancy grid or semantic evidential format,
generates a semantic grid. Figure 5 illustrates the method
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Fig. 5 Description of the transformation of semantic evidential or
occupancy grid maps into a semantic grid. When the input map is an
evidential map, it is transformed into a pignistic probability map. The
semantic map then constructed is made up of cells stamped with the
element with the highest probability

used toobtain the semanticmap. In the following subsections,
we formalize the transition from a semantic occupancy grid
to a semantic grid. We then formalize the transformation of
the semantic evidential grid into a semantic grid.

5.1 FromOccupancy Grids To Semantic Grids

As defined in Section 3.3.2, the occupancy gridMB<x,y,c>
consists of subcells containing the probability associated
with each label. Thus, it is possible to transform the occu-
pancy grid into the semantic grid S<x,y> by selecting the
label with the highest probability as formalized in Eq. 23.

∀x, y ∈ [0,m], [0, n]
S<x,y> = argmax

c∈�

MB<x,y,c>
(23)

S<x,y> thus consists, for each location cell < x, y >, of
the label with the maximum estimated probability.

5.2 From Evidential Grids To Semantic Grids

It is possible to determine the pignistic probability noted
Bet P of a label A ∈ � using Eq. 24.

Bet P(A) =
∑

∅�=B⊆�

m(B)

1 − m(∅)

|A ∩ B|
|B| , ∀A ⊆ � (24)

The advantage of calculating the pignistic probability resides
in its consideration of the conflict estimation, defined in the
Section 4.2.1, in the decision-making.

The method to define the map is based on the maximum
pignistic probability among the elements of�, such asEq. 25.

∀x, y ∈ [0,m], [0, n]
∀c ∈ 2�, m(c) = ME<x,y,c>

SBet P<x,y> = argmax
C∈�

Bet P(C)

(25)

6 Results

In this section, we evaluate our approach. We first present
the data used for the evaluation, then the metrics allowing a
quantitative evaluation. Finally, we discuss the performance
of our cooperative semantic map creation approach.

6.1 Datasets

In order to evaluate our algorithm, it is necessary to put it
in situations which is possible via the use of datasets. In [5],
the authors based their evaluation on the KITTI dataset [33].
Nevertheless, the KITTI dataset is not a cooperative dataset
and, to the best of our knowledge, no cooperative dataset was
available.

6.1.1 CARLA

Since cooperative datasets are difficult to realize due to the
synchronization and the pose estimation of all the actors’
requirements, we have chosen to realize a cooperative dataset
from CARLA [34]. We noticed in parallel to our work that
other teams have also realized cooperative datasets based
on CARLA. This is notably the case of the authors of [35]
who propose OPV2V, a cooperative dataset to test V2V
approaches. Nevertheless, our approach also requires views
from infrastructures.
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Fig. 6 Capture of 3 situations
generated with the CARLA
simulator [34]

6.1.2 Our Dataset

To evaluate our approach, a dataset with PoV from vehicles
and roadside infrastructure has been made. These PoV are
instrumented identically with an RGB camera and a seman-
tic camera. The position of the sensors and the position of the
bounding boxes of the actors are also recorded for each sim-
ulation step. The actors are vehicles and pedestrians using
the CARLA autopilot.

SinceCARLAprovides only the 3Dbounding boxes of the
object,weprojected the 3Dboundingboxes to the image [29].
Some of the 2D bounding boxes should not appear because
occluded by other objects. We use the semantic segmented
images associatedwith theRGB images to figure out the ratio
of correct labels within a bounding box in order to define if
the object is occluded and the bounding box is erased. A
shortcoming of this solution is that objects occluded by a
same-label object are not erased as visible in Fig. 2. Finally,
an adjustable noise can be added to the retained bounding
boxes.

To observe different behaviors, we generated several
datasets with different traffic densities at a roundabout such
as illustrated in Fig. 6b and in Fig. 6c. We also generated

another dataset at a crossroads, illustrated in Fig. 6a. Our
goal is to test the performance of our approach in several sit-
uations where there may be occlusions or confusion among
agents. Our dataset can be augmented by enabling or dis-
abling agents. By default, all vehicles are considered agents
and provide a stream of images. It is, therefore, possible to
ignore image streams to simulate vehicles that are not con-
tributing.

6.2 Qualitative Study

To ensure that our system could generate coherent and usable
maps, we conducted a qualitative study. We also used this
qualitative assessment to roughly adjust the parameters used
in the BBA and BPA. Figure 7 illustrates a visual comparison
between the ground truth Fig. 7b, themap generated using the
DST Fig. 7a, and the map generated using a Bayesian fusion-
based approach Fig. 7c. The Bayesian theory-based method
succeeds in placing all vehicles on the map, as does the DST
basedmethod. However, themethod based on theDST seems
to have fewer false positives. As for the pedestrian, they are
mostly correctly placed on the map.
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In order to compare our results, we tried to reconstruct
a scene using a Multi-View Stereo approach as proposed in
COLMAP [36] to find obstacles and build a map. However,
despite the fact that we gave the true positions of the cam-
eras in the a priori, more margin of error to the algorithm
or pairs of initial images, we could not get any results. The
reason is the lack of common features between the elements
which underlines that a feature matching based approach is
not adapted for perception systems featuring large baselines.
We do not know any other method to create an occupancy
grid from images without depth information from multiple
POVs with freely available code. In contrast, our pragmatic
and efficient approach is robust to large baselines.

6.3 Metrics

To provide a quantitative study, we used several metrics com-
monly found in the literature. Thus, we chose to use the
Intersection over Union (IoU) as well as the F1-score to mea-
sure the performance on the size and the detection of objects.
To measure the semantic performance, we used the Correct
Ratio (CR).

6.3.1 Intersection over Union

The IoU is based on the number of True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN).
They are generated by comparing the cells of the ground truth
map with the obtained semantic map. In this case, for a label
ω ∈ �, if a cell of the semantic map obtained is equal to ω

and is the same on the cell of the same position on the ground
truth map, then this cell is regarded as a TP. If a cell of the
obtained semantic map is equal to ω but it is not equal to
ω on the cell of the same position on the ground truth map,
then this cell is considered as an FP. If a cell of the obtained
semantic map is not equal to ω but is equal to ω on the cell of
the same position on the ground truth map, then this cell is
considered as anFN. Finally, if a cell of the obtained semantic

map is not equal to ω and it is not equal to ω on the cell of
the same position on the ground truth map, then this cell is
considered as an TN. Thus, the IoU for a chosen ω label is
given by Eq. 26.

I oUω = T Pω

T Pω + FPω + FNω

(26)

To estimate the overall performance, it is possible to cal-
culate the average between all labels, as given in Eq. 27.

mIoU = 1

|�|
∑
ω∈�

I oUω (27)

However, we have noted a limitation of the average score.
When the detection gives a failure rate of 100% and, there-
fore, the wholemap is considered as terrain, the default label,
then the average IoU is about 30%. Another solution is to
transform the semantic grids into an occupancy grid and to
compute the IoU on the occupancy rather than on the labels.

6.3.2 F1-Score

The F1-Score is very similar to the IoU since it is also based
on the number of TP, TN, FP and FN. It can be calculated as
shown in Eq. 28.

F1ω = T Pω

T Pω + FPω+FNω

2

(28)

In the same way, as for the average F1-score, it is possible
to obtain an overall value by calculating the averageF1-score,
as in Eq. 29. It should be noted that the average F1-score
shares the same shortcomings as the average IoU.

mF1 = 1

|�|
∑
ω∈�

F1ω (29)

Fig. 7 Comparison of the
ground truth maps and the
semantic map generated by our
solution. In purple: ground cells,
in yellow: pedestrians, and in
turquoise and red vehicles. Red
vehicles show the connected
vehicle distribution of 50%
among the fleet
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Table 5 Detail of the IoU,
F1-Score and CR (in %) for an
infrastructure hosting 6 PoV, 30
vehicles (all contributing) and 6
pedestrians

Fusion Class IoU F1-Score CR

Ours (Bayes) Product

V 26.21 36.46 96.50

P 22.33 41.52 99.95

T 96.40 98.17 96.45

Mean 48.31 58.71 N/A

Ours (Bayes) SOLO

V 26.73 42.16 96.81

P 22.79 37.06 99.95

T 96.72 98.33 96.76

Mean 48.75 59.18 N/A

Ours (DST) V 50.55 67.07 98.87

P 28.03 43.49 99.98

T 98.84 99.41 98.85

Mean 59.14 69.99 N/A

6.3.3 Correct Ratio

In order to measure the performance on assigning correct
labels to cells, we used the CRwhich we calculated as shown
in Eq. 30.

CRω = T Pω + T Nω

T Pω + T Nω + FNω + FPω

(30)

Usually, the CR is calculated by comparing corresponding
label cells on the ground truth map and the final map divided
by the total number of cells in the map. However, the cells
having a correct label are constituted by the sum of TP and
TN. The limitation of this metric in our use case is that the
majority of the cells are considered as terrain in the map
to be evaluated and in the ground truth map. Therefore, the
results are always very high and it is difficult to distinguish
the variations.

6.4 Quantitative Study

In this section, we observe our approach in terms of sev-
eral parameters using the metrics designated above. All the
results presented in the remainder of this section have been
obtained on a grid map of 120m with square cells with a size
of 0.2m size, centered at the barycenter of the infrastructure
PoV positions.

6.4.1 Bayes-based Method vs. DST-based Method

Since we have tried two approaches, one based on Bayesian
theory and the other based on the DST, we want to observe
the differences in performance between the two approaches.
Similarly with Fig. 7 displaying the maps generated by the

two methods, Table 5 aims precisely at showing the perfor-
mance differences between the two approaches for each of
the metrics stated earlier which can be used as a reference
point for the remainder of this article. Figure 8 shows the
difference between the two approaches on the same dataset,
based on a sample of 300 frames.

The results highlighted in Table 5 express an average
improvement of 22.42% on the average IoU and 19.21% on
themean F1-Score in favor of theDST based approach. Vehi-
cles benefit the most from this approach with a gain on the
IoU of 92.87%. Pedestrians also benefit from a better rep-
resentation on the map thanks to the approach based on the
DST. However, we notice that the pedestrian IoU is low com-
pared to the other classes. This is due to the fact that the areas
of the cells are significant compared to the areas occupied by
pedestrians. Thus, the number of cells occupied by pedes-
trians is low and artificially increases the impact of errors
in the metrics. Conversely, for the terrain class which occu-
pies the majority of the cells of the map and on which the
impact of errors is particularly low in themetrics. Table 5 also
displays the results given for the Bayesian approach using

Fig. 8 Evolution of the mean IoU through 300 frames for our three
fusion methods
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Table 6 Evolution of the mIoU
(in %) for the dense traffic scene
(roundabout) of our dataset,
varying the proportion of agents
in the users fleet

Infrastructure: Connected Ours (Bayes) Ours (DST) Gain
N# PoV Vehicles mIoU (%) mIoU (%) (%)

Single-view

0 (0%) 1 (3%) 53.22 53.28 0.11

2 (33%) 0 (0%) 54.43 55.69 2.31

1 (3%) 54.85 56.00 2.10

8 (27%) 51.97 56.77 9.24

15 (50%) 50.54 57.64 14.05

23 (77%) 50.30 57.58 14.47

30 (100%) 49.87 57.29 14.88

6 (100%) 0 (0%) 50.67 58.41 15.28

1 (3%) 51.24 58.53 14.23

8 (27%) 49.91 59.23 18.67

15 (50%) 48.74 60.12 23.35

23 (77%) 48.58 59.87 23.24

Full dataset (6 Infra.
PoV + 30 CVs)

48.31 59.14 22.42

Bold-faced numbers highlight the highest value and, thus, the configuration that brought the best result for
the given measure

the SOLO [31]. However, compared to the results obtained
with products, the improvement is not significant. Figure 8
reinforces these conclusions, highlighting a significant dif-
ference between the performance of the DST-based approach
and that of the Bayesian-based approach. It also shows the
similar output of the product and SOLOmethods Thus, in the
remainder of this article, we use the product methods which
is less compute-intensive.

6.4.2 Connected Vehicles Ratio Evolution in a Scene

Now that we have seen the performance between the two
approaches of our solution, we can test, on the same scene
of our dataset, to vary the proportion of CV and PoV of
the infrastructure. We, therefore, performed several sub-
scenarios. The first one consists of a single vehicle observing
the scene, as an instrumented vehicle alone. The second sce-
nario consists of infrastructure alone in themanner of projects
like [13]. A third scenario is to have the infrastructure with
only 1 CV corresponding to the approach of MEC-View3.
Finally, other scenarios are created by changing the pro-
portion of CV up to the all connected. Figure 7b show the
distribution of connected and unconnected vehicle in a scene
for a proportion of 50% of connected vehicles.

Table 6 shows that the approach based on the Bayesian
theory maintains a IoU of 50% and seems to suffer from the
multiplication of the points of view whereas the approach
based on the DST benefits more from the multiplication of
the points of views. Indeed, in the scene of dense traffic

3 http://www.mec-view.de/

in a roundabout, occlusions are frequent and can produce
conflicting observations between the agents. However, the
approach based on the DST manages the conflicting obser-
vations and thus shows its advantage in such scenarios, unlike
the approach based on the Bayesian theory. Thus, as the num-
ber of PoV increases, the gap between the DST approach and
the Bayesian approach widens, up to a maximum of 23.35%
of mean IoU (mIoU) gain.

We also observe that with an infrastructure reduced to the
strict minimum and a fleet with a proportion of about 50% of
CV, it is possible to generate a map with good results. This
observation is, therefore, encouraging in the transition that
we will see until we have 100% of CV instrumented on the
roads.

6.4.3 Traffic Density Evolution

Finally, another important variable at intersections is traffic
density. Indeed, the denser the traffic is, the more the phe-
nomenon of occlusions is accentuated and the more difficult
the scene is to understand and map. We have three scenar-
ios with several varying the number of agents at the same
roundabout as shown in Table 7.

As in Tables 6 and 7 points out that the more observers
there are, the larger the gap between the DST based approach
and the Bayesian theory-based method. However, we also
observe that even the DST approach is affected by the
complexity of the scene due to occlusions and conflicting
observations.
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Table 7 Comparison of the IoU varying the number of vehicles in the
roundabout (in %)

Number of agents 4 12 36

Ours (Bayes) V 36.82 32.10 26.21

P N/A 26.70 22.33

T 99.39 98.98 96.40

Mean 45.40 52.59 48.31

Ours(DST) V 42.21 53.99 50.55

P N/A 32.57 28.03

T 99.55 99.59 98.84

Mean 47.25 62.05 59.14

Gain (%) Mean 4.07 18.00 22.42

Bold-faced numbers highlight the highest mean IoU as well as the high-
est gain

Nonetheless, we observe that the values of mIoU are fair
and that our solution provides usable maps regardless of the
traffic density in the scene.

7 Conclusion

In this paper, we presented a new method to generate seman-
tic grids from sparse and light information coming from both
vehicle’s embedded sensors and roadside infrastructure sen-
sors. This approach is designed to be highly cooperative and
exploits the in-scene PoV of the vehicles to refine the gener-
ated map.

Our pragmatic and efficient approach succeeded to gener-
ate maps regardless of the appearance of the objects from the
multiple PoV and overtook other state-of-the-art tools such
as COLMAP [36] which were unable to bring results due
to the limitations of its algorithms based on depth and 3D
reconstruction.

The presented method is based on two approaches: one
based on Bayesian theory and the other based on the DST.
The performances of our approach have been tested on a
dataset composed of several scenes, generated with CARLA
[34]. For a common road traffic scene, ourmethod proposed a
mIoU of 48.38% for the Bayesian-basedmethod and 59.14%
for the DST-based method, whereas in the same scenario,
COLMAP failed to deliver any results demonstrating the
value of our method for understanding a scene from mul-
tiple PoV and sparse information. Since a transition between
our current world and a world where all vehicles are con-
nected is inevitable, we simulated this transition by varying
the ratio number of CVs in the scene. We observed an mIoU
of 60.12% with the DST-based method when the scene is
covered by 6 roadside PoV and 50% of connected vehicles.

This represents a gain of 12.84% compared with the case
where only one vehicle observes the scene with its on-board
sensors. This gain of mIoU corresponds to the previously
occluded cells where previously hidden road users are now
observed by other PoV. This brings possible contributions
of our method to road safety, by enabling the anticipation
of other road users not yet visible to a driver. Finally, we
tested the robustness of our approach in three scenarios with
different traffic densities. We obtained a maximum mIoU of
62% for just 12 agents in the round-about; when the num-
ber of agents is lower, not all occluded areas are covered.
As the number of agents increases, we observe a plateau
phenomenon and a slight drop in mIoU due to conflicting
observations, which explains the difference in performance
between the Bayesian-basedmethod and theDST-based one,
which is more resilient when there are conflicting observa-
tions.

In future work, we will seek to develop a method to opti-
mize the values of the LUT used in the BPA and the BBA as
well as a method to measure the effectiveness of the LUT to
trigger an automated recalibration.Wewill also run a study of
the impact of the position and synchronization noise between
the agents. In addition, a method for a better estimation of
the agents pose using only bounding boxes without the depth
information can be explored [37]. The temporal integration
of the observation can also be explored and might bring finer
results. Finally, the integration of other local semantic map
building methods such as [38] to build the masks can be eval-
uated in order to determine if there is a significant impact on
the performances compared to the network impact.
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