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Proofs of some technical results

Proof of Proposition 5.1. The first two inequalities are recalled from Clément and Gloter (2020), here,
we only need to prove the last one. First, we note that

𝜕𝜇𝜉1/𝑛 (𝑥, 𝜇) =
∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +

∫ 1/𝑛

0
(𝜕𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠,

𝜕2
𝜇𝜉1/𝑛 (𝑥, 𝜇) =

∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕2
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))2𝑑𝑠

+ 2
∫ 1/𝑛

0
(𝜕𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +

∫ 1/𝑛

0
(𝜕2
𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠,

𝜕3
𝜇𝜉1/𝑛 (𝑥, 𝜇) =

∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕3

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕2
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠

+
∫ 1/𝑛

0
(𝜕𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕3
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))3𝑑𝑠

+ 3
∫ 1/𝑛

0
(𝜕𝜇𝜕2

𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))2𝑑𝑠

+ 3
∫ 1/𝑛

0
(𝜕2
𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))𝑑𝑠 +

∫ 1/𝑛

0
(𝜕3
𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠.

Therefore, we get

|𝜕3
𝜇𝜉1/𝑛 (𝑥, 𝜇) −

1
𝑛
𝜕3
𝜇𝑏(𝑥, 𝜇) | ≤

∫ 1/𝑛

0
|𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) | |𝜕3

𝜇𝜉𝑠 (𝑥, 𝜇) −
1
𝑛
𝜕3
𝜇𝑏(𝑥, 𝜇) |𝑑𝑠 + |R𝑛 (𝜇) |,

where

R𝑛 (𝜇)

=
1
𝑛
𝜕3
𝜇𝑏(𝑥, 𝜇)

∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠 +

∫ 1/𝑛

0
𝜕2
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠
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+
∫ 1/𝑛

0
(𝜕𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕3
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))3𝑑𝑠

+ 3
∫ 1/𝑛

0
(𝜕𝜇𝜕2

𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))2𝑑𝑠 + 3
∫ 1/𝑛

0
(𝜕2
𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))𝑑𝑠

+
∫ 1/𝑛

0
[(𝜕3

𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) − 𝜕3
𝜇𝑏(𝑥, 𝜇)]𝑑𝑠.

Now, for some 𝑠 ∈ (0,1/𝑛), since 𝑏(.) is Lipschitz, we have

|𝜉𝑠 (𝑥, 𝜇) | =|𝑥 +
∫ 𝑠

0
𝑏(𝜉𝑣 (𝑥, 𝜇), 𝜇)𝑑𝑣 | ≤ |𝑥 | +

∫ 𝑠

0
𝐶 (1 + |𝜉𝑣 (𝑥, 𝜇) |)𝑑𝑣,

|𝜉𝑠 (𝑥, 𝜇) − 𝑥 | =|
∫ 𝑠

0
𝑏(𝜉𝑣 (𝑥, 𝜇), 𝜇)𝑑𝑣 | ≤ 𝐶 ( |𝑥 | + 1)𝑠 +

∫ 𝑠

0
𝐶 |𝜉𝑣 (𝑥, 𝜇) − 𝑥 |𝑑𝑣.

By Gronwall’s lemma

|𝜉𝑠 (𝑥, 𝜇) | ≤ (|𝑥 | +𝐶𝑠)𝑒𝐶𝑠 , and |𝜉𝑠 (𝑥, 𝜇) − 𝑥 | ≤ 𝐶 ( |𝑥 | + 1)𝑠𝑒𝐶𝑠 , 𝑠 ∈ (0,1/𝑛). (5.18)

Then, from Assumption (A) and Gronwall’s lemma again, we have

sup
𝜇∈𝑉𝜇0

sup
𝑘∈{1,2,3}

𝜕𝑘𝜇𝜉1/𝑛 (𝑥, 𝜇) ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛 (5.19)

for some 𝑝 > 0. Thus, from Assumption (A) and Jensen’s inequality for convex function 𝑥 ∈ [1,∞) ↦→
𝑥𝑚,𝑚 > 1, we easily deduce that sup𝜇∈𝑉𝜇0

|R𝑛 (𝜇) | ≤ 𝐶 (1+ |𝑥 |𝑝)/𝑛2 for some 𝑝 > 0. Finally, combined
with Gronwall’s lemma, we then obtain (5.2).

Proof of Theorem 5.2. First of all, let us denote 𝜂𝑛 (𝑠) = ⌊𝑛𝑠⌋
𝑛

for any 𝑠 ∈ [0,1] and we introduce for
any 𝑞 > 0

𝐽
𝑞
𝑡 = 𝐽𝑡 −

∑︁
𝑠≤𝑡

Δ𝐽𝑠1{ |Δ𝐽𝑠 |>𝑞} ,

𝑇𝑞 = inf{𝑡 > 0 : |Δ𝐽𝑡 | ≥ 𝑞}

and 𝑋𝑞 the solution of the following SDE:

𝑋
𝑞
𝑡 = 𝑥0 +

∫ 𝑡

0
𝑏(𝑋𝑞𝑠 , 𝜇0)𝑑𝑠 +

∫ 𝑡

0
𝑎(𝑋𝑞𝑠− , 𝜎0)𝑑𝐽𝑞𝑠 , 𝑡 ∈ [0,1] . (5.20)

In a natural way, we denote by 𝑋
𝑞

the associate scheme, for any 𝑖 ∈ {0,1, . . . , 𝑛 − 1}, we denote

𝑋
𝑞

𝑡𝑛
𝑖+1

= 𝜉𝑡𝑛
𝑖+1−𝑡

𝑛
𝑖
(𝑋𝑞𝑡𝑛

𝑖
, 𝜇) + 𝑎(𝑋𝑞𝑡𝑛

𝑖
, 𝜎) (𝐽𝑞

𝑡𝑛
𝑖+1

− 𝐽𝑞
𝑡𝑛
𝑖

). (5.21)

Let 𝑞 > 1 and 𝑝 ≥ 2 be fixed. It is standard that

E( sup
𝑡∈[0,1]

|𝑋𝑞𝑡 |𝑝) < +∞. (5.22)
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Concerning the scheme, we also have for any 𝑞 > 1 and 𝑛

E( sup
𝑖∈{0,1, · · · ,𝑛}

|𝑋𝑞𝑡𝑛
𝑖
|𝑝) ≤ 𝐶𝑞,𝑝 . (5.23)

Indeed, let 𝑛 ≥ 1 and 𝑖 ∈ {1,2, · · · , 𝑛 − 1} then we have

𝑋
𝑞

𝑡𝑛
𝑖+1

= 𝑋
𝑞

𝑡𝑛
𝑖
+
∫ 1

𝑛

0
𝑏(𝜉𝑠 (𝑋

𝑞

𝑡𝑛
𝑖
, 𝜇0), 𝜇0)𝑑𝑠 + 𝑎(𝑋

𝑞

𝑡𝑛
𝑖
, 𝜎0) (𝐽𝑞𝑡𝑛

𝑖+1
− 𝐽𝑞

𝑡𝑛
𝑖

)

= 𝑥0 +
∫ 𝑡𝑛

𝑖+1

𝑡𝑛
𝑖

𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋
𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) 𝑑𝑢 +
∫ 𝑡𝑛

𝑖+1

𝑡𝑛
𝑖

𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0)𝑑𝐽𝑞𝑢

Let us now introduce the process 𝑍 defined by

∀𝑡 ∈ [0,1], 𝑍𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋

𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) 𝑑𝑢 +
∫ 𝑡

0
𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0)𝑑𝐽𝑞𝑢

so that for any 𝑖, 𝑍𝑡𝑛
𝑖
= 𝑋

𝑞

𝑡𝑛
𝑖

and so

∀𝑡 ∈ [0,1], 𝑍∗𝑡 = sup
𝑠∈[0,𝑡 ]

|𝑍𝑠 | ≥ sup
𝑖

|𝑋𝑞𝑡𝑛
𝑖
|. (5.24)

Following for example Protter (1992) Section I.4, we know that 𝐽𝑞 admits the following decomposition:

𝐽
𝑞
𝑡 = 𝑀

𝑞
𝑡 + 𝐴𝑞𝑡 , (5.25)

with 𝑀
𝑞
𝑡 =

∫ 𝑡
0

∫
|𝑧 | ≤𝑞 𝑧�̃� (𝑑𝑠, 𝑑𝑧), where �̃� is the compensated Poisson measure with Lévy measure

1
|𝑧 |1+𝛽 1[−𝑞,𝑞 ] (𝑧)𝑑𝑧. 𝑀𝑞 is a martingale belonging to all the 𝐿𝑝 spaces and 𝐴𝑞 is a finite variation
process such that its total variation satisfies

𝑑 |𝐴|𝑡 ≤
(
2
∫ 𝑞

1

𝑧

𝑧1+𝛽 𝑑𝑧

)
𝑑𝑡.

Then since coefficients 𝑎 and 𝑏 are Lipschitz w.r.t. variable 𝑥 and thanks to estimates (5.18) and (5.24),
we have:

|𝑍∗𝑡 |𝑝 ≤𝐶
(
|𝑥0 |𝑝 +

(∫ 𝑡

0
(𝑍∗𝑢 +𝐶/𝑛)𝑒𝐶/𝑛 𝑑𝑢

) 𝑝
+

(∫ 𝑡

0
(1 + 𝑍∗𝑢) 𝑑𝑢

) 𝑝
+ sup
𝑠∈[0,𝑡 ]

����∫ 𝑠

0
𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0)𝑑𝑀𝑞

𝑢

����𝑝) , (5.26)

where constant 𝐶 above but also below denotes a constant which may vary from line to line but does
not depend on 𝑛. Using (Jacod and Protter, 2012, Inequality (2.1.36) in Lemma 2.1.5) (see also (Kunita,
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2004, Theorem A.3)) we have:

E𝜃0

(
sup

𝑠∈[0,𝑡 ]

����∫ 𝑠

0
𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 )𝑑𝑀
𝑞
𝑢

����𝑝)

≤ 𝐶 ©«E𝜃0


(∫ 𝑡

0

∫
|𝑧 | ≤𝑞

|𝑎 (𝑋𝑞
𝜂𝑛 (𝑢) , 𝜎0 ) |2

𝑧2

|𝑧 |1+𝛽
𝑑𝑧𝑑𝑠

) 𝑝/2 + E𝜃0

[∫ 𝑡

0

∫
|𝑧 | ≤𝑞

|𝑎 (𝑋𝑞
𝜂𝑛 (𝑢) , 𝜎0 ) | 𝑝

𝑧𝑝

|𝑧 |1+𝛽
𝑑𝑧𝑑𝑠

]ª®¬
≤ 𝐶

(
E𝜃0

[(∫ 𝑡

0
|𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 ) |2𝑑𝑠
) 𝑝/2

]
+ E𝜃0

[∫ 𝑡

0
|𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 ) | 𝑝𝑑𝑠
])

≤ 𝐶E𝜃0

[∫ 𝑡

0
|𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 ) | 𝑝𝑑𝑢
]
≤ 𝐶

(
1 + E𝜃0

[∫ 𝑡

0
(𝑍∗
𝑢 ) 𝑝𝑑𝑢

] )
(5.27)

From this we easily get that

∀𝑡 ∈ [0,1], E𝜃0 [(𝑍∗𝑡 )𝑝] ≤ 𝐶 (1 +
∫ 𝑡

0
E𝜃0 [(𝑍∗𝑠 )𝑝] 𝑑𝑠)

which ensures by Gronwall’s Lemma that E𝜃0 [(𝑍∗1)
𝑝] ≤ 𝐶𝑞,𝑝 .

Clearly, on 𝑁𝑞 = {𝑇𝑞 > 1}, 𝑋𝑡 = 𝑋𝑞𝑡 a.s. for all 𝑡 ∈ [0,1] and 𝑋 = 𝑋
𝑞

. As lim𝑞→+∞ P𝜃0 (𝑇𝑞 ≤ 1) = 0,
we only need to prove that for any 𝑞 > 0,

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

�����1𝑛 𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞𝑡𝑛
𝑖
, 𝜇, 𝜎)𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) −

∫ 1

0
𝑓 (𝑋𝑞𝑠 , 𝜇0, 𝜎0)𝑑𝑠E𝜃0 (𝑔𝛽0 (𝐽1))

�����1𝑁𝑞
−→
𝑛→∞

0, (5.28)

in probability under P𝜃0 . This is implied by the following convergences in probability,

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

[ 𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇, 𝜎) − 𝑓 (𝑋𝑞

𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) ]𝑔𝛽 (𝑧𝑖𝑛 (𝜃 ) )

�����1𝑁𝑞

P𝜃0−→
𝑛→∞ 0, (5.29)

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) [𝑔𝛽 (𝑧𝑖𝑛 (𝜃 ) ) − 𝑔𝛽0 (𝑧

𝑖
𝑛 (𝜃0 ) ) ]

�����1𝑁𝑞

P𝜃0−→
𝑛→∞ 0, (5.30)

𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) [𝑔𝛽0 (𝑧

𝑖
𝑛 (𝜃0 ) ) − E𝜃0 (𝑔𝛽0 (𝐽1 ) ) ]

����� P𝜃0−→
𝑛→∞ 0, (5.31)

𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) −

1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖

, 𝜇0, 𝜎0 )
����� P𝜃0−→
𝑛→∞ 0. (5.32)

𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖

, 𝜇0, 𝜎0 ) −
∫ 1

0
𝑓 (𝑋𝑞𝑠 , 𝜇0, 𝜎0 )𝑑𝑠

����� P𝜃0−→
𝑛→∞ 0. (5.33)

We remark then that

𝑧𝑖𝑛 (𝜃0) =𝑛1/𝛽0 (𝐽𝑡𝑛
𝑖+1

− 𝐽𝑡𝑛
𝑖
),

𝑧𝑖𝑛 (𝜃) =
𝑛1/𝛽

𝑎(𝑋 𝑡𝑛
𝑖
, 𝜎)

[𝜉1/𝑛 (𝑋 𝑡𝑛
𝑖
, 𝜇0) + 𝑎(𝑋 𝑡𝑛

𝑖
, 𝜎0) (𝐽𝑡𝑛

𝑖+1
− 𝐽𝑡𝑛

𝑖
) − 𝜉1/𝑛 (𝑋 𝑡𝑛

𝑖
, 𝜇)]
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and that if 𝜃 ∈ 𝑉 (𝜂)
𝑛 (𝜃0), then

|𝜇 − 𝜇0 | ≤ 𝜂 𝑛1/2−1/𝛽0 (log𝑛)2, |𝜎 − 𝜎0 | ≤ 𝐶 𝜂 𝑛−1/2 log𝑛 and |𝛽 − 𝛽0 | ≤ 𝐶 𝜂 𝑛−1/2 log𝑛. (5.34)

For (5.29) we remark that

E𝜃0
©« sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

�����1𝑛 𝑛−1∑︁
𝑖=0

[ 𝑓 (𝑋𝑞𝑡𝑛
𝑖
, 𝜇, 𝜎) − 𝑓 (𝑋𝑞𝑡𝑛

𝑖
, 𝜇0, 𝜎0)]𝑔𝛽 (𝑧𝑖𝑛 (𝜃))

�����1𝑁𝑞

ª®¬
≤ E𝜃0

(
𝐶 (1 + sup

𝑖

|𝑋𝑞𝑡𝑛
𝑖
|𝑝) (log𝑛)2 (𝑛1/2−1/𝛽0+𝜀 + 𝑛−1/2+𝜀) |𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) |1𝑁𝑞

)
≤ 𝐶 (1 + E𝜃0 (sup

𝑖

|𝑋𝑞𝑡𝑛
𝑖
|2𝑝))1/2 (1 + E𝜃0 ( sup

𝜃∈𝑉 (𝜂)
𝑛 (𝜃0 )

|𝑧𝑖𝑛 (𝜃) |2𝜅1𝑁𝑞
))1/2 (log𝑛)2 (𝑛1/2−1/𝛽0+𝜀 + 𝑛−1/2+𝜀)

≤ 𝐶 (log𝑛)2 (𝑛1/2−1/𝛽0+𝜀 + 𝑛−1/2+𝜀) −→
𝑛→+∞

0,

where 𝜅 may be chosen in ]0, 𝛽/2[ thanks to the assumptions made on 𝑔𝛽 . The last line follows by
adapting (Clément and Gloter, 2020, the proof of (4.11)) which ensures that E𝜃0 ( |𝑧𝑖𝑛 (𝜃0) |𝑘 |F𝑡𝑛

𝑖
) ≤ 𝐶,

for any 𝑘 < 𝛽0 and sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
|𝑧𝑖𝑛 (𝜃) − 𝑧𝑖𝑛 (𝜃0) |1𝑁𝑞

≤ 𝐶 (1+ |𝑋𝑞𝑡𝑛
𝑖
| 𝑗 ) (1+ |𝑧𝑖𝑛 (𝜃0) |) (log𝑛)2/

√
𝑛, for some

𝑗 > 0. To prove (5.30), we proceed similarly by splitting the difference 𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) − 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃0)) into
two parts: 𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) − 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃)) and 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃)) − 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃0)) using the fact that 𝑓 is Lipschitz
w.r.t. variable 𝑥. For (5.31), let 𝜉𝑛

𝑖
= 𝑛𝜀−1 𝑓 (𝑋𝑞𝑡𝑛

𝑖
, 𝜇0, 𝜎0) [𝑔𝛽0 (𝑧𝑖𝑛 (𝜃0)) − E𝜃0 (𝑔𝛽0 (𝐽1))], we simply use

the fact that 𝑧𝑖𝑛 (𝜃0) = 𝑛1/𝛽0 (𝐽𝑡𝑛
𝑖+1

− 𝐽𝑡𝑛
𝑖
) L
= 𝐽1, using one more time the fact that 𝑓 is Lipschitz we have:

𝑛E𝜃0 (𝜉𝑛𝑖 |F𝑡𝑛𝑖 ) = 0, 𝑛E𝜃0 ((𝜉𝑛𝑖 )
2 |F𝑡𝑛

𝑖
) = 𝑛2𝜀−1 𝑓 (𝑋𝑞𝑡𝑛

𝑖
, 𝜇0, 𝜎0)2𝑉𝑎𝑟𝜃0 (𝑔𝛽0 (𝐽1)) → 0

in probability. We then conclude that
∑𝑛
𝑖=1 𝜉

𝑛
𝑖

tends to 0 in probability using the results in Jacod and
Protter (2012), Section (2.2.4) for triangular array. For (5.32), we note that

𝑋
𝑞

𝑡𝑛
𝑖
− 𝑋𝑞

𝑡𝑛
𝑖

=𝑍𝑡𝑛
𝑖
− 𝑋𝑞

𝑡𝑛
𝑖

=

∫ 𝑡𝑛
𝑖

0
(𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋

𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) − 𝑏(𝑋𝑞𝑢 , 𝜇0)) 𝑑𝑢

+
∫ 𝑡𝑛

𝑖

0
(𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0) − 𝑎(𝑋𝑞𝑢− , 𝜎0))𝑑𝐽𝑞𝑢 .

Then, we separate the first integral in the r.h.s. into three parts concerning the differences

𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋
𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) − 𝑏(𝑋
𝑞

𝜂𝑛 (𝑢) , 𝜇0)

𝑏(𝑋𝑞𝜂𝑛 (𝑢) , 𝜇0) − 𝑏(𝑋𝑞𝜂𝑛 (𝑢) , 𝜇0)

𝑏(𝑋𝑞
𝜂𝑛 (𝑢) , 𝜇0) − 𝑏(𝑋𝑞𝑢 , 𝜇0)

and we shall do similarly for the second integral. Now, thanks to the Lipschitz property of the coefficient
functions 𝑥 ↦→ 𝑎(𝑥, 𝜎0) and 𝑥 ↦→ 𝑏(𝑥, 𝜇0), we can easily recycle the arguments from (5.26) to obtain

E𝜃0 ( sup
𝑠∈[0,1]

|𝑋𝑞𝜂𝑛 (𝑠) − 𝑋
𝑞
𝑠 |2) = O(𝑛−1).
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Finally, using Lipschitz assumption on 𝑓 and Cauchy-Schwarz inequality, we have

E

(
𝑛𝜀

�����1𝑛 𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞𝑡𝑛
𝑖
, 𝜇0, 𝜎0) −

1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖

, 𝜇0, 𝜎0)
�����
)

−→
𝑛→+∞

0.

For (5.33), we rewrite the considering error as follows

𝑛𝜀
����∫ 1

0
( 𝑓 (𝑋𝑞

𝜂𝑛 (𝑠) , 𝜇0, 𝜎0) − 𝑓 (𝑋𝑞𝑠 , 𝜇0, 𝜎0))𝑑𝑠
����

and its convergence to zero in probability is directly using a part of the arguments for (5.32).
Finally, for (5.4), it is deduced from (5.3) when 𝛽0 ≤ 1 and by same arguments above similar to (Clé-
ment and Gloter, 2019, the proof of Theorem 3.1 ii)) when 𝛽0 > 1.

Proof of Lemma 3.8. To begin with, let us denote 𝜂𝑛 (𝑠) = ⌊𝑛𝑠⌋
𝑛

for any 𝑠 ∈ [0,1] and

𝐹𝑛 (𝜎) = 𝑛𝛽
0
𝑛−1𝑉1

𝑛 (𝑝, 𝑋) − 𝜇𝑝 (𝛽0
𝑛)

∫ 1

0
|𝑎(𝑋𝜂𝑛 (𝑠) , 𝜎) |

𝑝𝑑𝑠.

Let us first prove that (
√
𝑛/log𝑛)𝐹𝑛 (𝜎0) is tight. Indeed, we know that sup

𝑠∈[0,1]

√
𝑛|𝑋𝜂𝑛 (𝑠) − 𝑋𝑠 |

P𝜃0→ 0

and we rewrite

𝐹𝑛 (𝜎) = 𝑛𝛽
0
𝑛−1𝑉1

𝑛 (𝑝, 𝑋) − 𝜇𝑝 (𝛽0
𝑛)

∫ 1

0
|𝑎(𝑋𝑠 , 𝜎) |𝑝𝑑𝑠 + 𝑜𝑃 (1)

and we conclude thanks to (Todorov, 2013, (21)) its tightness with the rate
√
𝑛/log𝑛. Then, we prove

that any sequence (�̂�0
𝑛 , 𝑛 ≥ 1) belonging to 𝑉𝜎0 (a neighborhood of 𝜎0 defined in assumption (A))

that solves 𝐹𝑛 (𝜎) = 0 is consistent and eventually unique. To do so, using (Jacod and Sorensen, 2017,
Theorem 2.7.a), since 𝐹𝑛 (𝜎0) converges to zero in probability, we need to verify the following two
conditions:

(i) There exists 𝐹 defined on 𝐴 compact subset of𝑉𝜎0 , continuously differentiable, such that 𝐹 (𝜎0) =
0 and 𝜎0 is the unique root of 𝐹 (𝜎) = 0.

(ii) The following convergence in probability holds

sup
𝜎∈𝐴

|𝜕𝜎𝐹𝑛 (𝜎) − 𝜕𝜎𝐹 (𝜎) | → 0,

and 𝜕𝜎𝐹 (𝜎) is non-singular with probability one.

For this proof, we choose

𝐹 (𝜎) = −𝑝𝜇𝑝 (𝛽0)
∫ 𝜎

𝜎0

∫ 1

0

𝜕𝜎𝑎

𝑎1−𝑝 (𝑋𝑠 , 𝑢)𝑑𝑠𝑑𝑢.

For this choice, the criteria (ii) is straightforward from the fact that 𝛽0
𝑛

P𝜃0→ 𝛽0. Considering (i), it is
obvious that 𝐹 (𝜎0) = 0 and 𝜎0 is the unique solution of 𝐹 (𝜎) = 0 since from those assumptions on the
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function 𝑎, ∫ 𝜎

𝜎0

∫ 1

0

𝜕𝜎𝑎

𝑎1−𝑝 (𝑋𝑠 , 𝑢)𝑑𝑠𝑑𝑢 = 0 ⇔ 𝜎 = 𝜎0.

Moreover, we prove that 𝑛
1/2

log𝑛 (�̂�
0
𝑛 − 𝜎0) is tight. From Taylor’s formula and 𝐹𝑛 (�̂�0

𝑛) = 0, we have

𝐹𝑛 (𝜎0) = −𝑝𝜇𝑝 (𝛽0
𝑛)

∫ 1

0

𝜕𝜎𝑎

𝑎1−𝑝 (𝑋𝜂𝑛 (𝑠) , �̃�𝑛)𝑑𝑠 (�̂�
0
𝑛 − 𝜎0)

where �̃�𝑛 lies between �̂�0
𝑛 and 𝜎0. Then, using the consistency of �̂�0

𝑛 proven above and the tightness of
(
√
𝑛/log𝑛)𝐹𝑛 (𝜎0), we complete the proof.

Proof of Theorem 3.9. Inspired by the work in Bayraktar and Clément (2024), using (Jacod and
Sorensen, 2017, Theorem 2.7.a)), for the consistency and uniqueness, we need to verify the follow-
ing two conditions:

(i) There exists 𝐺 defined on 𝐴, continuously differentiable, such that 𝐺𝑛 (𝜇0) converges to zero in
probability, 𝐺 (𝜇0) = 0 and 𝜇0 is the unique root of 𝐺 (𝜇) = 0.

(ii) The following convergence in probability holds

sup
𝜇∈𝐴

|𝜕𝜇𝐺𝑛 (𝜇) − 𝜕𝜇𝐺 (𝜇) | → 0,

and 𝜕𝜇𝐺 (𝜇) is non-singular with probability one.

For some 𝜂 > 0, we set

𝑊
(𝜂)
𝑛 =

{
(𝜎, 𝛽) :

 √
𝑛

log𝑛

(
𝜎 − 𝜎0
𝛽 − 𝛽0

) ≤ 𝜂} .
First, we prove the second assertion (𝑖𝑖) by setting

𝐺 (𝜇) =
∫ 𝜇

𝜇0

∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝑧)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠𝑑𝑧 E(ℎ
2
𝛽0
(𝐽1)).

Here, we denote

𝑧𝑖𝑛 (𝜃) = 𝑧𝑛 (𝑋𝑡𝑛𝑖 , 𝑋𝑡𝑛𝑖+1
, 𝜃) and Ĩ𝑛 (𝜃) = −𝜕2

𝜃ℓ𝑛 (𝜃; 𝑋).

Since (�̂�0
𝑛 , 𝛽

0
𝑛) ∈ 𝑊

(𝜂)
𝑛 , we know that 𝛽0

𝑛 > 1 a.s. for any 𝑛 large enough. We have 𝜕𝜇𝐺𝑛 (𝜇) =
−𝑛1−2/𝛽0

𝑛 Ĩ1,1
𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛) where

Ĩ1,1
𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)

=𝑛1/𝛽0
𝑛

𝑛−1∑︁
𝑖=0

𝜕2
𝜇𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝑛2/𝛽0

𝑛

𝑛−1∑︁
𝑖=0

(𝜕𝜇𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)).
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We rewrite 𝜕𝜇𝐺𝑛 (𝜇) − 𝜕𝜇𝐺 (𝜇) = 𝐴𝑛 (𝜇) + 𝐵𝑛 (𝜇), where

𝐴𝑛 (𝜇) =𝑛
𝑛−1∑︁
𝑖=0

(𝜕𝜇𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) −

∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝜇)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠 E(ℎ2
𝛽0
(𝐽1)),

𝐵𝑛 (𝜇) = − 𝑛1−1/𝛽0
𝑛

𝑛−1∑︁
𝑖=0

𝜕2
𝜇𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)).

Our aim is to prove that sup𝜇∈𝐴 |𝐴𝑛 (𝜇) |
P𝜃0→ 0 and sup𝜇∈𝐴 |𝐵𝑛 (𝜇) |

P𝜃0→ 0. To do so, we first prove that

sup
𝜇∈𝐴

|𝜕𝜇𝜉1/𝑛 (𝑥, 𝜇) −
1
𝑛
𝜕𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛2,

sup
𝜇∈𝐴

|𝜕2
𝜇𝜉1/𝑛 (𝑥, 𝜇) −

1
𝑛
𝜕2
𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛2.

Indeed, under our assumption (A) and our additional assumptions on the regularity of the coefficient
function 𝑏, the proof is classic and can be obtained by Gronwall’s lemma, similarly to the proof of
Proposition 5.1. Thanks to these results, we can replace 𝜕𝑘𝜇𝜉1/𝑛 (𝑥, 𝜇) by 1

𝑛
𝜕𝑘𝜇𝑏(𝑥, 𝜇) for 𝑘 ∈ {1,2} in

the expressions of 𝐴𝑛 (𝜇) and 𝐵𝑛 (𝜇), the error for this replacement is negligible.
For 𝐴𝑛 (𝜇): We rewrite this term as the sum of the two following terms

𝐴𝑛,1 (𝜇) =
1
𝑛

𝑛−1∑︁
𝑖=0

(𝜕𝜇𝑏(𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

(𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0))),

𝐴𝑛,2 (𝜇) =
1
𝑛

𝑛−1∑︁
𝑖=0

(𝜕𝜇𝑏(𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0)) −
∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝜇)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠 E(ℎ2
𝛽0
(𝐽1)).

The convergence to zero of sup𝜇∈𝐴 |𝐴𝑛,2 (𝜇) | can be deduced using the assumptions on the regular-
ity of functions 𝑎 and 𝑏 and similar arguments as for (5.29) and (5.31). Here, we only take into ac-
count the term 𝐴𝑛,1 (𝜇). For this, we separate the difference into two parts: 𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)) −

𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) and 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0)). First, since 𝜕𝛽𝜕𝑧ℎ𝛽 (𝑧) is bounded

for any values of 𝛽 and 𝑧 large enough, by intermediate value theorem, we have

|𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)) | ≤ 𝐶

log𝑛
√
𝑛
. (5.35)

Second, since 𝜕2
𝑧 ℎ𝛽 (𝑧) is bounded for any values of 𝛽 and 𝑧, again by intermediate value theorem,

𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛) − 𝑧𝑖𝑛 (𝜃0) =

(
𝑛1/𝛽0

𝑛−1/𝛽0
𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

− 1

)
𝑧𝑖𝑛 (𝜃0) + 𝑛1/𝛽0

𝑛

𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇0) − 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)
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and assumption (A), we have

|𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0)) | ≤ 𝐶 |𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛) − 𝑧𝑖𝑛 (𝜃0) |

≤ 𝐶
(�����𝑛1/𝛽0

𝑛−1/𝛽0
𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

− 1

����� |𝑧𝑖𝑛 (𝜃0) | + 𝑛1/𝛽0
𝑛

�����𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇0) − 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

�����
)

≤ 𝐶

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

(���(𝑛1/𝛽0
𝑛−1/𝛽0 − 1)𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0) + 𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0) − 𝑎(𝑋𝑡𝑛

𝑖
, �̂�0
𝑛)

��� |𝑧𝑖𝑛 (𝜃0) |

+𝑛1/𝛽0
𝑛

�����𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇0) − 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

�����
)

≤ 𝐶 (1 + |𝑋𝑡𝑛
𝑖
|𝑝)

(
(log𝑛)2
√
𝑛

|𝑧𝑖𝑛 (𝜃0) | + 𝑛1/𝛽0
𝑛−1

)
,

(5.36)

for some 𝑝 > 0. The last inequality is obtained by 𝑛1/𝛽0
𝑛−1/𝛽0 − 1 ∼ |𝛽0

𝑛−𝛽0 |
𝛽0𝛽

0
𝑛

, the assumption (A), the
intermediate value theorem using the Lipchitz property of 𝑎 and an adapting result from (5.19) with
our additional assumptions on the function 𝑏. Therefore, under our assumptions on the regularity of 𝑎
and 𝑏, for triangular array combined with the fact that E𝜃0 ( |𝑧𝑖𝑛 (𝜃0) | 𝛿 |F𝑡𝑛

𝑖
) ≤ 𝐶 for 𝛿 < 𝛽0 by (Clément

and Gloter, 2020, the proof of (4.11)), the convergence to zero of sup𝜇∈𝐴 |𝐴𝑛,1 (𝜇) | is guaranteed from
(5.35) and (5.36).

For 𝐵𝑛 (𝜇): Since ℎ𝛽 (𝑧) is bounded for any values of 𝛽 and 𝑧 big enough, from our assumptions on
the regularity of the coefficient functions, we have

sup
𝜇∈𝐴

|𝐵𝑛 (𝜇) | ≤ 𝐶𝑛−1−1/𝛽0
𝑛

𝑛−1∑︁
𝑖=0

(1 + |𝑋𝑡𝑛
𝑖
|𝑝′ )

P𝜃0→ 0.

Thus, we obtain (ii). Considering the assertion (𝑖), by the definition of 𝐺, we see immediately that
𝐺 (𝜇0) = 0. In addition, 𝜇0 is the unique solution of 𝐺 (𝜇) = 0 thanks to the assumption non degeneracy

that there exists 𝑠 ∈ [0,1] such that 𝜕𝜇𝑏(𝑋𝑠 , 𝜇) ≠ 0. Now, it rests to prove that 𝐺𝑛 (𝜇0)
P𝜃0→ 0. To do so,

by Taylor’s expansion, we have

𝐺𝑛 (𝜇0) = 𝑛1−2/𝛽0𝜕𝜇ℓ𝑛 (𝜇0, 𝜎0, 𝛽0; 𝑋)

+ 𝑛1−2/𝛽0

∫ 1

0

(
Ĩ1,2
𝑛 (𝜇0, 𝜎0 + 𝑡 (�̂�0

𝑛 − 𝜎0), 𝛽0 + 𝑡 (𝛽0
𝑛 − 𝛽0))

Ĩ1,3
𝑛 (𝜇0, 𝜎0 + 𝑡 (�̂�0

𝑛 − 𝜎0), 𝛽0 + 𝑡 (𝛽0
𝑛 − 𝛽0))

)⊤ (
�̂�0
𝑛 − 𝜎0

𝛽0
𝑛 − 𝛽0

)
𝑑𝑡.

(5.37)

From this, on the one hand, from (Clément and Gloter, 2020, section 3.2.1.), 𝑛1−2/𝛽0𝜕𝜇ℓ𝑛 (𝜇0, 𝜎0, 𝛽0; 𝑋)
is tight and converges to zero in probability. On the other hand, from (Clément and Gloter, 2020, section
3.2.2.), we have

sup
(𝜎,𝛽) ∈𝑊 (𝜂)

𝑛

 1
𝑛1/𝛽 log𝑛

(
Ĩ1,2
𝑛 (𝜇0, 𝜎, 𝛽)
Ĩ1,3
𝑛 (𝜇0, 𝜎, 𝛽)

)
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is tight and since

sup
(𝜎,𝛽) ∈𝑊 (𝜂)

𝑛

𝑛1/𝛽 log𝑛
𝑛2/𝛽−1

(
𝜎 − 𝜎0
𝛽 − 𝛽0

) ≤𝐶 (log𝑛)2

𝑛1/𝛽0−1/2
sup

(𝜎,𝛽) ∈𝑊 (𝜂)
𝑛

𝑛
1
𝛽0

− 1
𝛽

≤𝐶 (log𝑛)2

𝑛1/𝛽0−1/2
exp ((log𝑛)2/

√
𝑛) −→
𝑛→∞

0,

the second term in the Taylor’s expansion above converges to zero.
Now, for the tightness of 𝑛

1/𝛽0−1/2

(log𝑛)2 (𝜇0
𝑛 − 𝜇0), we proceed as follows. Since 𝐺𝑛 (𝜇0

𝑛) = 0, by Taylor’s
expansion, we get

𝐺𝑛 (𝜇0) = −𝑛1−2/𝛽0
𝑛

∫ 1

0
𝜕2
𝜇ℓ𝑛 (𝜇0 + 𝑡 (𝜇0

𝑛 − 𝜇0), �̂�0
𝑛 , 𝛽

0
𝑛; 𝑋)𝑑𝑡 (𝜇0

𝑛 − 𝜇0).

Then, reusing the decomposition of𝐺𝑛 (𝜇0) in (5.37) and its arguments for its convergence above, com-
bined with 𝜇0-consistency of 𝜇0

𝑛 proven above and the fact that 𝑛1−2/𝛽0𝜕2
𝜇ℓ𝑛 (𝜇0+ 𝑡 (𝜇0

𝑛−𝜇0), �̂�0
𝑛 , 𝛽

0
𝑛; 𝑋)

converges to non-singular I1,1 (𝜃0) in probability uniformly from (Clément and Gloter, 2020, section
3.2.2.), the proof is completed.

Some more numerical results

Here, we give additional histograms for the same numerical tests discussed in Section 4 on the model
(SR) (4.2) and the model (4.4).
For the square root model (SR):
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Figure 5: Distributions of the re-scaled errors of moment estimation (ME) and comparison with the
asymptotic normal distribution with efficient variance given by (4.3)
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Figure 6: Distributions of the re-scaled errors of one-step estimation (OS) and comparison with their
theoretical Gaussian limits
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Figure 7: Distributions of the re-scaled errors ofthe maximum likelihood estimation (MLE) and com-
parison with their theoretical Gaussian limits

For the model (4.4):
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Figure 8: Histograms of the re-scaled errors of moment estimation (ME) and comparison with the
asymptotic normal distribution with efficient variance
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Figure 9: Histograms of the re-scaled errors of maximum-likelihood estimation (MLE) and comparison
with their theoretical Gaussian limits


