
HAL Id: hal-04554506
https://hal.science/hal-04554506

Submitted on 22 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compression with Exact Error Distribution for
Federated Learning

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

To cite this version:
Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut. Compression with Exact Error
Distribution for Federated Learning. International Conference on Artificial Intelligence and Statistics,
May 2024, Valencia (Espagne), Spain. pp.613-621. �hal-04554506�

https://hal.science/hal-04554506
https://hal.archives-ouvertes.fr

Compression with Exact Error Distribution for Federated Learning

Mahmoud Hegazy Rémi Leluc Cheuk Ting Li Aymeric Dieuleveut
École Polytechnique

IPParis, France
École Polytechnique

IPParis, France
Chinese University of Hong Kong

Hong Kong, China
École Polytechnique

IPParis, France

Abstract

Compression schemes have been extensively
used in Federated Learning (FL) to reduce the
communication cost of distributed learning.
While most approaches rely on a bounded
variance assumption of the noise produced by
the compressor, this paper investigates the
use of compression and aggregation schemes
that produce a specific error distribution, e.g.,
Gaussian or Laplace, on the aggregated data.
We present and analyze different aggregation
schemes based on layered quantizers achieving
exact error distribution. We provide different
methods to leverage the proposed compres-
sion schemes to obtain compression-for-free
in differential privacy applications. Our gen-
eral compression methods can recover and
improve standard FL schemes with Gaussian
perturbations such as Langevin dynamics and
randomized smoothing.

1 INTRODUCTION

Machine learning has become increasingly data-hungry,
requiring vast amounts of data to train models effec-
tively. Federated learning (FL) (McMahan et al., 2017;
Karimireddy et al., 2020; Kairouz et al., 2021b) has
emerged as a promising approach for collaborative ma-
chine learning in distributed settings. In FL, multiple
parties with their local datasets participate in a joint
model training process without exchanging their raw
data. However, communication from these devices to a
central server can be slow and expensive resulting in
a bottleneck. Thus, compression schemes have been
widely used to reduce the size of the updates before
transmission. Standard compression schemes (Konečnỳ
et al., 2016; Alistarh et al., 2017; Wen et al., 2017; Lin
et al., 2018; Li et al., 2022) typically assume relatively

Preprint version.

bounded variance assumptions on the noise produced
by the compressor. These schemes do not take into ac-
count the specific error distribution of the noise, which
may depend on the input distribution. This can be
hindering in settings where control of the noise shape
can provide tighter analysis or can enable the fulfilment
of additional constraints, e.g. differential privacy.

In a wider scope, different structures of the compression
error have been extensively leveraged beyond FL such
as in: lossy data compression for audio and music
compression (Johnston, 1988; Sayood, 2017); medical
imaging (Liu et al., 2017; Ammah and Owusu, 2019);
error control in wireless communications (Costello et al.,
1998); quantization in deep learning (Rastegari et al.,
2016) with weight pruning (Han et al., 2015; Anwar
et al., 2017), low-precision weights (Jacob et al., 2018;
Jung et al., 2019) and data perturbation for privacy-
preserving machine learning (Abadi et al., 2016). In
this context, the main goal of this paper is to answer
the following research questions: (i) Can we go beyond
standard assumptions on the variance and ensure a
particular (continuous) distribution of the compression
error? (ii) What are the benefits, communication cost
and applications of such schemes?

Related work. Recently, different compression tech-
niques with a precise noise distribution have been ap-
plied to various machine learning tasks. Agustsson
and Theis (2020) apply subtractively dithered quan-
tization (Roberts, 1962; Ziv, 1985; Zamir and Feder,
1992) to ensure a uniformly distributed noise in neural
compression. Relative entropy coding (Havasi et al.,
2019; Flamich et al., 2020) aims at compressing the
model weights and latent representations to a number
of bits approximately given by their relative entropy
from a reference distribution. Differential privacy can
be achieved by ensuring a precise noise distribution, us-
ing lattice quantization (Amiri et al., 2021; Lang et al.,
2023), minimal random coding (Shah et al., 2022), or
randomized encoding (Chaudhuri et al., 2022). These
methods can be regarded as examples of channel simu-
lation (Bennett et al., 2002; Harsha et al., 2010; Li and
El Gamal, 2018), which is a point-to-point compression

ar
X

iv
:2

31
0.

20
68

2v
1

 [
cs

.L
G

]
 3

1
O

ct
 2

02
3

Compression with Exact Error Distribution for Federated Learning

scheme where the output follows a precise conditional
distribution given the input. Refer to (Yang et al.,
2023; Theis et al., 2022) for more applications of chan-
nel simulation on neural compression.

In this paper, we not only consider a point-to-point
compression setting, but also a distributed mean esti-
mation and aggregation setting (Suresh et al., 2017),
which is one of the most fundamental building blocks
of FL algorithms (Kairouz et al., 2021b). There are n
users holding the data x1, . . . , xn respectively (which
can be the gradient as in FedSGD, or the model weights
as in FedAvg (McMahan et al., 2017)), who communi-
cate with the server to allow the server to output an
estimate Y of the mean, with a precise noise distribu-
tion Y − n−1

∑
i xi ∼ Q, which can then be used to

perform model updates with a more precise behavior.

There are two approaches to this problem, namely in-
dividual mechanisms where point-to-point compression
is performed between each user and the server, and
the server simply averages the reconstructions of the
data of each user (possibly with some postprocessing);
and aggregate mechanisms where the encoding func-
tions of all users are designed as a whole to ensure a
precise noise distribution of the final estimate Y . For
individual mechanisms, we study the communication
costs of the direct and shifted layered quantizers based
on (Wilson, 2000; Hegazy and Li, 2022). For aggregate
mechanisms, we propose a novel method, called the ag-
gregate Gaussian mechanism, to ensure that the overall
noise distribution Q is exactly Gaussian, and analyze
its communication cost.

In particular, for differential privacy (DP), the above
schemes allow us to consider two trust settings. First,
for a completely trusted server, if the clients wish to
prevent the output of the server from leaking informa-
tion on their data x1, . . . , xn, a DP restriction (Dwork
et al., 2006) can be imposed on the output Y . This is
achieved by requiring the noise distribution Q to be a
privacy-preserving noise distribution. For example, a
Gaussian noise can guarantee (ε, δ)-DP (Dwork et al.,
2014) and Rényi DP (Mironov, 2017). Second, when
the server is less-trusted, the clients wish for the server
to not know their individual datapoints but trust it to
faithfully carry out some postprocessing to make the
output DP against external observers. In this case, it
is vital to ensure that the compression mechanism is
homomorphic, and the messages sent from the users
to the server can be aggregated before decoding, so
that it is compatible with secure aggregation (SecAgg)
techniques such as (Bonawitz et al., 2017) and other
homomorphic cryptosystems. The aggregate Gaus-
sian mechanism we propose is homomorphic, making
it suitable for both privacy concerns of trusted and
less-trusted servers.

Contributions. (1) We propose different quantized
aggregation schemes based on layered quantizers that
produce a specific error distribution, e.g. Gaussian or
Laplace. (2) We provide theoretical guarantees and
practical implementation of the developed aggregate
mechanisms. (3) We exhibit FL applications in which
we directly benefit from an exact Gaussian noise distri-
bution, namely compression for free with differential
privacy and compression schemes for Langevin dynam-
ics and randomized smoothing.

Notation. The term log refers to the logarithm in
base 2 while ln denotes the natural logarithm. The
floor and ceil functions are denoted by ⌊·⌋ and ⌈·⌉ re-
spectively with ⌈x⌋ := ⌊x+ 1/2⌋. For n ∈ N, we refer
to {1, . . . , n} with the notation [n]. For a discrete prob-
ability distribution pX supported on X and random
variable X ∼ pX , H(X) denotes the entropy of X, i.e.
H(X) = H(pX) = −

∑
x∈X pX(x) log pX(x). H(X|Y)

denotes the conditional entropy of X given Y , i.e.,
H(X|Y) = E[H(pX|Y (·|Y)]. For a continuous prob-
ability distribution fX supported on X and random
variable X ∼ fX , h(X) denotes the differential en-
tropy of X, i.e. h(X) = −

∫
X fX(x) log fX(x)dx. The

Lebesgue measure is denoted by λ and U(a, b) with
a < b refers to the uniform distribution on (a, b). All
proofs, additional details and experiments are available
in the appendix.

2 BACKGROUND, MOTIVATION

Quantized aggregation. Consider n clients (n ≥ 1).
In the standard FL setting, the training process relies
on locally generated randomness at individual partici-
pant devices. In this paper, we allow the clients and the
server to have shared randomness. Practically, shared
randomness can be generated by sharing a small ran-
dom seed among the clients and the server, allowing
them to generate a sequence of shared random num-
bers. We will see later that the existence of shared
randomness can greatly simplify the schemes.

Let Si ∈ S be the shared randomness between client i
and the server, and T ∈ T be the global shared random-
ness between all clients and the server. When building
an FL algorithm, one is allowed to choose the joint
distribution P(Si)i,T where these variables are usually
(but not necessarily) taken to be mutually independent.
Client i ∈ [n] holds the data xi ∈ Rd and for privacy
and communication constraints, performs encoding to
produce the description Mi = E (xi, Si, T) ∈M, where
E : Rd × S × T → M is the encoding function, and
M is the set of descriptions (usually taken to be Zd).
Given the descriptionsM1, . . . ,Mn, the server produces
the reconstruction Y = D(M1, . . . ,Mn, S1, . . . , Sn, T)
which is an estimate of the average n−1

∑n
i=1 xi, where

D :Mn × Sn × T → Rd is the overall decoding func-

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

tion. The goal is to control the distribution of the
quantization error as described in the next definition.
Definition 1. (Aggregate AINQ mechanism) A quan-
tization scheme with n clients holding data x1, . . . , xn
and a server producing Y satisfies the Additive Inde-
pendent Noise Quantization (AINQ) property if the
quantization error follows a target distribution Q re-
gardless of {xi}ni=1, i.e.,

Y −

(
1

n

n∑
i=1

xi

)
∼ Q. (1)

A special case is when n = 1, which we call point-
to-point AINQ mechanism. In this case, an AINQ
mechanism with shared randomness S ∈ S can be per-
formed in the following steps: (1) sample S ∼ PS , then
(2) encode M = E (x, S) and (3) decode Y = D(M,S).
We do not require the global shared randomness T
here since it plays the same role as S. We require the
quantization noise to follow a particular distribution
Y − x ∼ Q. The simplest point-to-point AINQ mech-
anism is subtractively dithered quantization, which
produces a uniform noise distribution.
Example 1. (Subtractive Dithering) For a given step
size w > 0 and input X, subtractive dithering works
by sampling S ∼ U(−1/2, 1/2), encoding the message
M = ⌈X/w + S⌋, and decoding Y = (M − S)w. Then
Y −X ∼ U(−w/2;w/2) and is independent of X.

An aggregate AINQ mechanism for n users can be
constructed via a point-to-point AINQ mechanism. For
this approach to be applicable, the overall quantization
noise must have a divisible distribution that can be
expressed as a sum of n i.i.d. random variables.
Definition 2. (Individual AINQ mechanism) An indi-
vidual AINQ mechanism is an aggregate AINQ mecha-
nism built via a point-to-point AINQ mechanism where
the overall quantization noise Y −

∑
i xi is divisible, T

is empty, the shared randomness is S1, . . . , Sn which
are i.i.d. copies of S, user i produces Mi = E (xi, Si)
and the server outputs Y = n−1

∑
i D(Mi, Si).

Application 1: FL and Differential Privacy. The
inherent sensitivity of individual data raises significant
concerns about privacy breaches in the distributed
setting. To address these challenges, the integration of
differential privacy into federated learning has emerged
as a compelling approach (Abadi et al., 2016; Truex
et al., 2019; Wei et al., 2020; Noble et al., 2022).
Definition 3. (Differential-Privacy (DP)) Any algo-
rithm A is (ε, δ)-differentially private, if for all adjacent
datasets D1 and D2 and all subsets E ⊂ Im(A)

P(A(D1) ∈ E) ≤ eεP(A(D2) ∈ E) + δ, (2)

where P is over the randomness used by algorithm A.

The Gaussian mechanism injects controlled noise into
computations, allowing for a balance between privacy
protection and data utility. For a function f that
operates on a dataset D, it is defined as

G(D) = f(D) +N (0, σ2I) (3)

and it is guaranteed to be (ε, δ)-DP if the noise satis-
fies σ2 ≥ 2∆2

2 ln (1.25/δ)/ε
2 (Dwork et al., 2014) where

∆2 = supD1,D2
∥f(D1)− f(D2)∥2 for D1 and D2 differ-

ing on one element. While common privacy-preserving
approaches rely on adding a Gaussian or Laplace noise
on top of compression schemes, one can leverage AINQ
mechanisms to directly obtain privacy guarantees with
a reduced communication cost. For example, setting
the compression error to be a properly scaled Gaussian
recovers the Gaussian mechanism of Eq.(3).

Application 2: FL and Langevin dynamics.
When solving the Bayesian inference problem in the
FL setting (Vono et al., 2022), compression operators
C : Rd → Rd are commonly unbiased and have a
bounded variance. For a loss function H deriving from
a potential, the stochastic Langevin dynamics starts
from θ0 ∈ Rd and is updated as

θk+1 = θk − γH(θk) +
√

2γZk+1,

with Zk ∼ Nd(0, Id) and γ > 0. Using compression
with exact error distribution, one can precisely control
the distribution of the error (C (X)−X) and recover
the QLSD scheme of Vono et al. (2022) with a reduced
communication cost. This may be done via the quan-
tizer Cγ such that Cγ(X) − X ∼ Nd(0, 2Id/γ) along
with the update rule θk+1 = θk − γCγ(H(θk)). (See
Appendix C.2 for more details)

Application 3: FL and Randomized Smoothing.
Fast rates for non-smooth optimization problems of
the form minθ∈Rd{f(θ) =

∑n
i=1 fi(θ)} can be attained

using the smoothing approach of Duchi et al. (2012);
Scaman et al. (2018). These accelerated algorithms
such as Distributed Randomized Smoothing (DRS) rely
on a smoothed version fσ of f defined by

fσ(θ) = Eξ[f(θ + σξ)],

where ξ ∼ N (0, Id) and σ > 0. Each client approximate
the smoothed gradient with a subgradient gi evaluated
at m perturbed points gi(θ + σξj) for j ∈ [m]. In-
terestingly, the sampling steps may be replaced with
compressors that produce exact error distribution. In
the spirit of Philippenko and Dieuleveut (2021), one can
first compress the model parameter θ with a Gaussian
error distribution as E (θ) = θ + σξ and then evaluate
the subgradients at compressed point as gi(E (θ)) to
recover the classical DRS algorithm.

Compression with Exact Error Distribution for Federated Learning

3 INDIVIDUAL MECHANISMS

In order to obtain a target noise distribution exactly, we
describe two point-to-point AINQ mechanisms based
on Hegazy and Li (2022) and on the layered multi-
shift coupling in Wilson (2000), which can be used to
construct n-client individual AINQ mechanisms using
Def. 2. For geometric interpretations, we refer to them
respectively as the direct layered quantizer and the
shifted layered quantizer. They both rely on subtrac-
tive dithering with step size w to generate an error
which follows a uniform distribution U(−w/2, w/2), as
in Example 1, but with a random step size w.

3.1 Individual Mechanisms via Direct and
Shifted Layered Quantizers

Consider a random variable Z following a unimodal dis-
tribution fZ . Instead of having a deterministic value of
w, it is randomly sampled from an appropriate distribu-
tion ensuring that the marginal error follows fZ . Define
the superlevel set Lx(fZ) := {u ∈ R : fZ(u) ≥ x} for
any x ∈ R and let Z̄ := max fZ . For any x ∈

(
0, Z̄

)
,

define b−Z (x) = inf Lx(fZ) and b+Z (x) = supLx(fZ). As
illustrated in Figure 1, for a unimodal distribution,
sampling under the graph can be thought of as sam-
pling from a infinite mixture of uniform distributions
over continuous intervals.

Direct Layered Quantizer. In order to sample from
a real continuous random variable, it is sufficient to
uniformly sample in the area under its graph and then
project onto the x-axis. The construction below has
been mentioned in the special case of Gaussian noise in
Agustsson and Theis (2020), and studied in the general
unimodal case in Hegazy and Li (2022).
Definition 4. (Direct layered quantizer) Given any Z
with a unimodal p.d.f. fZ , the direct layered quantizer,
producing an error Z, is defined using the encoder E ,
the decoder D , and PS such that S = (U,DZ) with U ∼
U(0, 1) independent of DZ ∼ fD where the p.d.f. fD is
defined through the superlevel sets of fZ . For all x ∈ R,
fD(x) = λ(Lx(fZ)) =

(
b+Z (x)− b

−
Z (x)

)
1(0,Z̄)(x) and

M = E (X,S) = ⌈X/fD(DZ) + U⌋,

D(M,S) = (M − U) fD(DZ) +
b+Z (DZ) + b−Z (DZ)

2
·

Shifted Layered Quantizer. Another approach for
leveraging subtractive dithering is based on multishift
coupling, as described in Wilson (2000). It is based on
the idea of using a sequence of shifted uniform distri-
butions to generate a sequence of target distributions.
The key idea is that the sampling from an area A and
then projecting onto the x-axis is equivalent to the
sampling from any horizontal reflection of A and then

Gaussian Shifted Gaussian Laplace Shifted Laplace

Figure 1: Illustration of the sampling area for different
distribution: (shifted) Gaussian and (shifted) Laplace.

projecting onto the x-axis. Thus, one can can flip one
side of a unimodal distribution and still take samples
from the part under the flipped side (see Figure 1 with
the shifted distributions).

Definition 5. (Shifted layered quantizer) Given any
Z with a unimodal p.d.f. fZ , the layered randomized
quantizer, producing an error Z, is defined using the
encoder E , the decoder D and randomness PS such
that S = (U,WZ) with U ∼ U(0, 1) independent of
WZ ∼ fW where the p.d.f. fW is defined through the
superlevel sets of fZ . For all x ∈ R ,

fW (x) =
(
b+Z (x)− b

−
Z (Z̄ − x)

)
1(0,Z̄)(x),

E (X,S) = ⌈X/fW (WZ) + U⌋,

D(M,S) = (M−U) fW (WZ) +
b+Z (WZ) + b−Z (Z̄−WZ)

2
.

By construction, the shifted layered quantizer satisfies
the AINQ property (see details in Appendix B.1).

3.2 Communication Complexity

To transmit the integer M , we should encode it into
bits. There are two general approaches. First, if a
fixed-length code is used where M is always encoded
to the same number of bits, then ⌈log |SuppM |⌉ bits
are required. Second, if a variable-length code is used,
for example, if we encode M using the Huffman code
(Huffman, 1952) on the conditional distribution pM |S ,
then we require an expected encoding length bounded
between H(M |S) and H(M |S)+1. We will see that the
direct layered quantizer gives a better variable-length
performance, whereas the shifted layered quantizer
gives a better fixed-length performance.

For variable-length codes, it has been shown in (Hegazy
and Li, 2022, Theorem 4) that every AINQ scheme with
error distribution fZ and uniform input X ∼ U(0, t)
must satisfy

H(M |S) ≥ log(t) + h(DZ), (4)

where DZ is defined in Definition 4, and −h(DZ) is
called the layered entropy. It has also been shown in
Hegazy and Li (2022) that the direct layered quantizer

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

is almost optimal, in the sense that as long as Z has a
unimodal distribution and Supp(X) ⊆ [0, t], it achieves

H(M |S) ≤ log(t) +
8 log (e)

t

√
V [Z] + h(DZ). (5)

The gap between (4) and (5) tends to 0 as t→∞.

While the shifted layered quantizer is not asymptot-
ically optimal, the optimality gap (the gap between
the H(M |S) attained and its optimal value) is still
relatively small as shown below.
Proposition 1. (Optimality Gap) For a target uni-
modal noise distribution fZ that is symmetric, the
shifted layered quantizer achieves

H(M |S) ≤ log(t) +
8 log(e)

t

√
V [Z] + h(WZ),

and the optimality gap of using the shifted layered quan-
tizer is upper bounded by (8 log(e)/t)

√
V [Z] + 2.

Figure 2 below shows the conditional entropy H(M |S)
needed to simulate a Gaussian noise and a Laplace
noise with standard deviation σ ∈ {1; 3} according
to the support size t where X ∼ U(0, t). The gap is
smaller than 1 bit for all the values computed.

The advantage of the shifted layered quantizer is its
fixed-length performance. A fixed-length code has the
advantage that we do not have to build a Huffman code
on the conditional distribution pM |S for each S, which
may be infeasible. Since the shifted layered quantizer
has a quantization step size bounded away from 0 as
shown in Figure 1, it provides a fixed upper bound on
the number of quantization bits.

0 20 40
Support Size t

0

1

2

3

4

Co
nd

iti
on

al
 E

nt
ro

py

(M
|S

)

Shifted (= 1)
Direct (= 1)
Shifted (= 3)
Direct (= 3)

(a) Gaussian error

0 20 40
Support Size t

0

1

2

3

4

5

Co
nd

iti
on

al
 E

nt
ro

py

(M
|S

)

Shifted (= 1)
Direct (= 1)
Shifted (= 3)
Direct (= 3)

(b) Laplace error

Figure 2: Conditional entropy H(M |S) of the layered
quantizers with Gaussian/Laplace error distribution.

Proposition 2. (Minimal step size for shifted layered)
For a required fZ , denote by ηZ the minimal step size of
the shifted layer quantizer, i.e. ηZ := min fW . Assume
that the input X lies in a fixed interval of length t.
• If Z ∼ Laplace(0, σ/

√
2) then ηZ = σ

√
2 ln 2 and

|SuppM | ≤ 2 + t/(σ
√
2 ln 2).

• If Z ∼ N (0, σ2) then ηZ = 2σ
√
ln 4 and

|SuppM | ≤ 2 + t/(2σ
√
ln 4).

4 AGGREGATE MECHANISMS

4.1 Homomorphic Mechanisms

For an individual AINQ mechanism, the descriptions
M1, . . . ,Mn sent from the users must all be available
to the server. The descriptions cannot be first aggre-
gated into a single number before decoding. We study
aggregate AINQ mechanisms where such “intermediate
aggregation” of descriptions is possible.
Definition 6. (Homomorphic) An aggregate AINQ
mechanism is homomorphic if there exists functions
D :M×S×T → Rd (called the homomorphic decoding
function) such that the overall decoding function is

D(m1, s1, . . . ,mn, sn, t) =
1

n
D

(
n∑

i=1

mi,

n∑
i=1

si, t

)
(6)

and for all t, D(·, ·, t) :M× S → Rd is a homomor-
phism, i.e., D(m, s, t) + D(m′, s′, t) = D(m+m′, s+
s′, t) for all m,m′, s, s′.

Here we require M and S to be abelian groups (e.g.,
M = Zd, S = Rd) so we can perform addition over
M and S. For a homomorphic scheme, the server
only requires the common randomness (Si)i, T and the
sum of the descriptions

∑n
i=1Mi, not the individual

descriptions M1, . . . ,Mn.

In federated learning, homomorphic mechanisms have
several advantages. First, the descriptions M1, . . . ,Mn

can be passed from the clients to the server through
a network for sum computation (Ramamoorthy and
Langberg, 2013; Rai and Dey, 2012; Qu et al., 2021;
Rizk and Sayed, 2021), resulting in a reduction of com-
munication cost. A simple method is to have each
node in the network add all incoming signals and pass
the sum to the next node. The internal nodes in the
network do not need to access (Si)i, T . Second, ho-
momorphic mechanisms are compatible with SecAgg
(Bonawitz et al., 2017) and other additive homomorphic
cryptosystems. We can perform SecAgg onM1, . . . ,Mn

so that the server can only know
∑n

i=1Mi, but not the
individual Mi’s so as to preserve privacy.

The layered quantizers of the previous section do not
produce homomorphic mechanisms. The reason is that
the quantization step sizes of the n users are randomly
drawn and different. Thus, the quantized data Mi’s
are at different scales and cannot be added together.
A simple and naive way to obtain an homomorphic
mechanism is to rely on subtractive dithering (Example
1) with a fixed step size w for each user.

4.2 Irwin-Hall Mechanism

When applying subtractive dithering for each of the n
users, the resultant noise of the individual AINQ mech-

Compression with Exact Error Distribution for Federated Learning

anism follows a scaled Irwin-Hall distribution. More
precisely, consider S = (S1, . . . , Sn) to be an i.i.d. se-
quence of U(−1/2, 1/2) random variables and T = 0
to be degenerate. The encoding function is Mi =
E (xi, Si) = ⌈xi/w + Si⌋ where w := 2σ

√
3n, and the

decoding function is Y = w(
∑

iMi−
∑

i Si). The noise
is a scaled Irwin-Hall distribution IH(n, 0, σ2), where
IH(n, µ, σ2) denotes the distribution of n−1

∑n
i=1 Zi+µ

with Z1, . . . , Zn
iid∼ U(−σ

√
3n, σ

√
3n). Note that

IH(n, 0, σ2) has mean 0 and variance σ2, and approx-
imates the Gaussian distribution N (0, σ2) when n is
large. We call this the Irwin-Hall mechanism.

While this mechanism is simple and homomorphic (the
decoding function only depends on

∑
iMi and

∑
i Si),

an obvious downside is that the resultant noise distri-
bution is the Irwin-Hall distribution, not the Gaussian
distribution. The Irwin-Hall distribution itself is not a
privacy-preserving noise for (ε, δ)-differential privacy
nor Rényi privacy. Moreover, specific FL applications
such as stochastic Langevin dynamics (Welling and
Teh, 2011; Vono et al., 2022) or randomized smoothing
(Duchi et al., 2012; Scaman et al., 2018) specifically
require a Gaussian distribution. This motivates the
development of advanced aggregate AINQ mechanisms.

4.3 Aggregate Q Mechanism

Let P = IH(n, 0, σ2) be the Irwin-Hall distribution. We
have seen in Section 4.2 that the Irwin-Hall mechanism
produces a noise with distribution P . The idea is now
to decompose the desired noise distribution Q (e.g.
Gaussian) into a mixture of shifted and scaled versions
of P in the form “aP + b”, use the global common
randomness T to select the shifting and scaling factors
according to the mixture probabilities, and perform
the Irwin-Hall mechanism with the input and output
shifted and scaled. In this section, we construct a
homomorphic aggregate AINQ mechanism with a noise
distributionQ, called the aggregate Q mechanism, using
this strategy.

Definition 7. (Mixture set) For probability distribu-
tions P,Q, denote by ΠA,B(P,Q) the set of joint proba-
bility distributions πA,B of the random variables A ∈ R
and B ∈ R such that if (A,B) ∼ πA,B is independent
of Z ∼ P , then AZ +B ∼ Q.

Definition 8. (Aggregate Q mechanism) Let
S1, . . . , Sn

iid∼ U(−1/2, 1/2) and T = (A,B) ∼ πA,B ∈
ΠA,B(P,Q). The aggregate Q mechanism is defined
by w := 2σ

√
3n and

E (x, s, a, b) := ⌈x/(aw) + s⌋ ,

D((mi)i, (si)i, a, b) :=
aw

n

(
n∑

i=1

mi −
n∑

i=1

si

)
+ b.

Basically, we generate A,B randomly, and then run
the Irwin-Hall mechanism scaled by A and shifted by
B. The resultant noise distribution is Q as precised in
the next Proposition.

Proposition 3. The aggregate mechanism of Def.8
satisfies the AINQ property with noise distribution Q,
and is homomorphic.1

4.4 Aggregate Gaussian Mechanism

We now study the case where Q is the Gaussian dis-
tribution, and describe the construction of πA,B which
decomposes Q into a mixture of Irwin-Hall distribu-
tions. We call this the aggregate Gaussian mechanism.

Step 1. First, we study how to decompose
U(−1/2, 1/2) (instead of Q) into a mixture of shifted
and scaled versions of the Irwin-Hall distribution P
with a pdf f . Assume f is appropriately scaled so its
support is [−1/2, 1/2]. For −1/2 ≤ x ≤ 1/2, decom-
pose U(−1/2, 1/2) into the mixture (1/f(0))f(x)+(1−
1/f(0))φ(x) where φ(x) = (f(0)− f(x))/(f(0)− 1) is
a bimodal distribution with modes {−1/2; 1/2}, and
can be decomposed into uniform distributions using
the strategy in Section 3.1. These uniform distribu-
tions can be recursively decomposed into a mixture of
a shifted/scaled f and other uniform distributions, and
so on. See Figure 3, and Algorithm DecomposeUnif
in Appendix A.2.

Step 2. To decompose the Gaussian distribution Q
with a pdf g, we first decompose g into the mixture
g(x) = λf(x) + (1 − λ)ψ(x) where λ is as large as
possible such that ψ is still unimodal. A practical
choice is λ = infx>0 dg(x)/df(x) if n ≥ 3, and λ = 0 if
n ≤ 2. We then decompose ψ into a mixture of uniform
distributions, using the strategy in Section 3.1, and
decompose those uniform distributions using the afore-
mentioned strategy. Refer to Figure 3, and Algorithm
Decompose in Appendix A.4.

4.5 Theoretical Analysis

We now study the communication cost. Assuming
the data xi is bounded by |xi| ≤ t/2 for i = 1, . . . , n,
we have |E (xi, Si, A,B)| ≤ ⌈t/(2w|A|)⌉. Therefore, Mi

can be encoded into ⌈log(t/(w|A|)+3)⌉ bits conditional
on A. The expected amount of communication per
client is upper-bounded by E(⌈log(t/(w|A|)+3)⌉) which
is approximately equal to E[− log |A|]+log(t/(2σ

√
3n))

1Technically, D is not in the form (6) due to the “+b”
term, though it can be absorbed into si. Let b′i = b/n,
and treat (si, b′i) as the common randomness between client
i and the server. We then have D((mi)i, (si, b

′
i)i, a) =

aw
n

(∑n
i=1 mi −

∑n
i=1(si − b′i)

)
, which is in the form (6) by

taking D(m, s, b′, a) = aw(m− s+ b′).

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

= +Q P

P= +

DecomposeUnif

Decompose

Uniform

Figure 3: Decomposition of Q into a mixture of scaled
Irwin-Hall P . Algorithm Decompose decomposes Q
into a mixture of P and a unimodal distribution, where
the latter is then decomposed into a mixture of uniform
distributions and passed to DecomposeUnif.

bits. Hence, we can construct an aggregate AINQ
mechanism with a small amount of communication if
we have a small E[− log |A|]. To study this quantity,
we introduce a notion called relative mixture entropy.

Definition 9 (Relative mixture entropy). Given prob-
ability distributions P,Q over R, the relative mixture
entropy is hM(Q∥P) := supΠA,B(P,Q) EΠA,B

[log |A|]
where the supremum is over ΠA,B(P,Q).2

Relative mixture entropy has several desirable prop-
erties similar to the differential entropy (see Ap-
pendix A.1). In particular, hM(Q∥P) ≤ h(Q) − h(P)
can be upper-bounded in terms of the difference of
differential entropies. We have the following bound on
the communication cost in terms of hM(Q∥P).
Theorem 1. (Complexity) Let P = IH(n, 0, σ2) be
an Irwin-Hall distribution. Assume |xi| ≤ t/2 for i =
1, . . . , n. There exists an aggregate AINQ mechanism
for simulating a noise distribution Q, with an expected
amount of communication per client upper-bounded by

−hM(Q∥P)+log
t

2σ
√
3n

+
6σ
√
3n log e

t
·EZ∼Q[|Z|]
EZ∼P [|Z|]

+1.

To give an upper bound on the expected communication
cost, it remains to give a lower bound on hM(Q∥P).
Theorem 2. (Lower bound) For two distributions P,Q
with pdfs f, g, respectively, that are unimodal, differ-
entiable and symmetric around 0 with L := 2 sup{x :
f(x) > 0} <∞ and λ := infx>0 dg(x)/df(x), we have

hM(Q∥P) ≥ −(1−λ)
(
Lf(0) + log

eL(g(0)− λf(0))
2(1− λ)

)
.

We can then combine Theorems 1, 2 to give a bound
on the communication cost of the aggregate Gaussian
mechanism. The proofs of the theorems are given in

2Take log 0 = −∞, so E[log |A|] = −∞ if P(A = 0) > 0.

5 10 15 20 25 30 35
Number of clients n

3.5

4.0

4.5

5.0

5.5

6.0

Bi
ts

 p
er

 c
lie

nt

Agg. Gaussian
Ind. Gaussian
Irwin-Hall

(a) t = 64

5 10 15 20 25 30 35
Number of clients n

8.0

8.5

9.0

9.5

10.0

10.5

Bi
ts

 p
er

 c
lie

nt

Agg. Gaussian
Ind. Gaussian
Irwin-Hall

(b) t = 2048

Figure 4: Comparison between the aggregated Gaus-
sian, individual Gaussian (direct) and Irwin-Hall mech-
anisms, σ = 1, (a) xi ∈ [−25; 25], (b) xi ∈ [−210; 210].

Appendix B.6 and B.7. The pseudocode is given in Al-
gorithms Encode and Decode in Appendix A.5. Fig-
ure 4 compares the communication cost per client of the
aggregate Gaussian mechanism, individual Gaussian
mechanism (direct layered quantizer) and Irwin-Hall
mechanism where the bounds are computed using The-
orem 1 and Theorem 2. We can see that the aggregate
Gaussian mechanism can have a smaller communica-
tion cost than the individual Gaussian mechanism for
a large number of clients, though not as small as the
Irwin-Hall mechanism. We also remark that aggregate
Gaussian is homomorphic (unlike individual Gaussian),
and has a noise distribution that is exactly Gaussian
(unlike the Irwin-Hall mechanism).

5 COMPRESSION AND
SUBSAMPLING FOR PRIVACY

5.1 Trusted server with subsampling strategy

Subsampling (Li et al., 2012; Balle et al., 2018) is a
technique for enhancing privacy, where only a subset
of clients or their data is selected for transmission. It
can be leveraged to reduce communication cost while
improving DP guarantees. Recently, (Chen et al., 2023)
introduced coordinate-wise subsampling to derive DP
schemes with optimal communication utility tradeoffs.
We now describe how this scheme can be improved
with an AINQ mechanism.

We are interested in the subsampled individual Gaus-
sian mechanism (SIGM) with shifted layered quan-
tizer. First consider the case in dimension d = 1 with
n clients and sampling variables B1, . . . , Bn ∼ B(γ)
(γ ∈ [0, 1]), where Bi = 1 if client i is selected and
Bi = 0 otherwise. Let ñ =

∑
iBi be the num-

ber of selected clients and let E ,D be the encod-
ing and decoding functions in Def.5 for the noise
distribution N (0, (σγn)2). The mechanism works as
follows: (1) generate the global shared randomness
B1, . . . , Bn ∼ B(γ); (2) generate the shared random-

Compression with Exact Error Distribution for Federated Learning

Quantized Aggregation Scheme Homo-
morphic

Gaussian
noise

Rényi
DP

Fixed
length

Individual - Direct (Def.4) × ✓ ✓ ×
Individual - Shifted (Def.5) × ✓ ✓ ✓
Irwin-Hall (Section 4.2) ✓ × × ✓
Aggregate Gaussian (Def.8) ✓ ✓ ✓ ×
Subsampled ind. Gaussian (Sec. 5) × ✓ ✓ ✓

Table 1: Comparison of aggregate AINQ mechanisms –
whether they are homomorphic, can produce a Gaus-
sian noise, achieve Rényi DP, and have a fixed number
of communication bits used.

ness Si if Bi = 1; (3) client i sends Mi = E (xi
√
ñ, Si)

if Bi = 1, or Mi = 0 if Bi = 0; and (4) server outputs
Y = (γn

√
ñ)−1

∑
i:Bi=1 D(Mi, Si). It can be checked

that Y − (γn)−1
∑

i:Bi=1 xi ∼ N (0, σ2). The proof,
the generalization to d dimensional data, and the algo-
rithm are included in Appendix A.6. This mechanism
achieves the same statistical behavior as CGSM (Chen
et al., 2023), with the benefit that it directly ensures an
exact Gaussian noise through quantization without the
need to first incur a compression error independently
of DP noise. Invoking (Chen et al., 2023, Theorem 4.1)
and Prop. 2, we have the following result.
Proposition 4. If x1, . . . , xn ∈ [−c, c]d, then SIGM is
(ε, δ)-DP with a noise level of order

σ2 = Θ

(
c2 ln(1/δ)

n2γ2
+
c2d(ln(d/δ) + ε) ln(d/δ)

n2ε2

)
,

where the cost per client is O
(
γd log(2 + c/(σ

√
nγ))

)
,

and the error E[
∥∥Y − n−1

∑
i xi
∥∥2
2
] is at most dc2

nγ +dσ2.

Remark 1. (Flattening and geometry) To extend this
result for data bounded in ℓ2 norm, one may rely
on flattening techniques to convert the ℓ2 geometry
into an ℓ∞ geometry and obtain tighter utility analy-
sis. Using Kashin’s representation as in Chen et al.
(2023) or some Walsh-Hadamard/Fourier transform
as in Kairouz et al. (2021a), the SIGM mechanism
enjoys the optimal utility bound of order O(d/(n2ε2)).
Observe that these flattening schemes require O(d2) or
O(d log d) depending on the operation.

Numerical comparison. We empirically evaluate
our distributed mean estimation scheme SIGM with
the method CSGM in a similar framework as in Chen
et al. (2023). The parameter configuration is: number
of clients n ∈ {1000; 2000}, dimension d ∈ {100; 500},
probability of information accidentally being leaked
δ = 10−5, privacy budget ε ∈ [0.5; 4] and subsampling
parameter γ ∈ {0.3; 0.5; 1.0}. Figure 5 displays the
mean squared errors (MSE) obtained over 100 indepen-
dent runs. The number of bits used by CSGM is kept
equal to the number of bits used by SIGM. For the
same ε, γ and the number of bits used, SIGM allows a
smaller MSE compared to the CSGM.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy ()

10 4

10 3

10 2

M
SE

CSGM (=0.3)
CSGM (=0.5)
CSGM (=1.0)

SIGM (=0.3)
SIGM (=0.5)
SIGM (=1.0)

(a) n = 1000, d = 100

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy ()

10 4

10 3

10 2

M
SE

CSGM (=0.3)
CSGM (=0.5)
CSGM (=1.0)

SIGM (=0.3)
SIGM (=0.5)
SIGM (=1.0)

(b) n = 2000, d = 500

Figure 5: Mean Squared Error for CSGM and SIGM.

5.2 Less-trusted with SecAgg

The Distributed Discrete Gaussian (DDG) mechanism
(Kairouz et al., 2021a) can leverage SecAgg to achieve
differential privacy guarantees against the server, which
is a stronger setting than that of the less-trusted server.
However, in practical implementation, it often requires
a much higher number of bits per coordinate.

We adapt the experiments from Kairouz et al. (2021a)
which show the utility of the DDG mechanism with
different number of bits against the standard Gaussian
mechanism. On the other hand, using Elias gamma
coding, we calculate the number of bits needed for
the aggregate Gaussian mechanism and the individual
mechanism using shifted layered quantizer to match
a Gaussian mechanism. The results3 of Figure 6 are
obtained over 30 runs with n = 500 and d = 75 and
highlight the great performance of aggregate Gaussian.
While DDG offers stronger privacy guarantees, i.e., DP
against the server, it comes at a heavy cost in terms
of bits in comparison to aggregate Gaussian, which is
also compatible with SecAgg.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy()

10 3

10 2

10 1

M
SE

DDG (b=10)
DDG (b=12)
DDG (b=14)

DDG (b=16)
DDG (b=18)
Agg. Gaussian

1 2 3 4 5 6
Privacy()

2.0

2.5

3.0

3.5

4.0

Bi
ts

 p
er

 c
lie

nt

Shifted (fixed)
Shifted (variable)
Agg. Gaussian

Figure 6: MSE (left) and bits per client (right) against
ε. The DDG mechanism can require up to b = 18
bits to match the privacy-utility tradeoff of aggregate
Gaussian, where the latter only requires ≤ 2.5 bits on
average. We also plot the bits per client for shifted
layered quantizer (using a fixed or variable-length code)
on the right figure for comparison (we remark that
shifted layered quantizer is incompatible with SecAgg).

3The MSE curves for the DDG experiments are obtained
with the original code of Kairouz et al. (2021a).

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

Acknowledgements

The work of M. Hegazy, R. Leluc and A. Dieuleveut was
partially supported by Hi!Paris FLAG project. The
work of Cheuk Ting Li was partially supported by
an ECS grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China
[Project No.: CUHK 24205621].

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep Learning with Differential Privacy.
In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS ’16, pages 308–318, Vienna, Austria, October
2016. Association for Computing Machinery. ISBN
978-1-4503-4139-4. doi: 10.1145/2976749.2978318.

Eirikur Agustsson and Lucas Theis. Universally quan-
tized neural compression. In Advances in Neural
Information Processing Systems 34, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. Advances
in neural information processing systems, 30:1709–
1720, 2017.

Saba Amiri, Adam Belloum, Sander Klous, and Leon
Gommans. Compressive differentially private feder-
ated learning through universal vector quantization.
In AAAI Workshop on Privacy-Preserving Artificial
Intelligence, 2021.

Paul Nii Tackie Ammah and Ebenezer Owusu. Ro-
bust medical image compression based on wavelet
transform and vector quantization. Informatics in
medicine unlocked, 15:100183, 2019.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
Structured pruning of deep convolutional neural net-
works. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 13(3):1–18, 2017.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Pri-
vacy amplification by subsampling: Tight analyses
via couplings and divergences. Advances in neural
information processing systems, 31, 2018.

Charles H Bennett, Peter W Shor, John A Smolin, and
Ashish V Thapliyal. Entanglement-assisted capacity
of a quantum channel and the reverse shannon theo-
rem. IEEE transactions on Information Theory, 48
(10):2637–2655, 2002.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practi-
cal secure aggregation for privacy-preserving machine

learning. In proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 1175–1191, 2017.

Clément L Canonne, Gautam Kamath, and Thomas
Steinke. The discrete gaussian for differential privacy.
Advances in Neural Information Processing Systems,
33:15676–15688, 2020.

Kamalika Chaudhuri, Chuan Guo, and Mike Rabbat.
Privacy-aware compression for federated data analy-
sis. In Uncertainty in Artificial Intelligence, pages
296–306. PMLR, 2022.

Wei-Ning Chen, Christopher A Choquette Choo, Peter
Kairouz, and Ananda Theertha Suresh. The funda-
mental price of secure aggregation in differentially
private federated learning. In International Confer-
ence on Machine Learning, pages 3056–3089. PMLR,
2022.

Wei-Ning Chen, Dan Song, Ayfer Ozgur, and Pe-
ter Kairouz. Privacy amplification via compres-
sion: Achieving the optimal privacy-accuracy-
communication trade-off in distributed mean esti-
mation. arXiv preprint arXiv:2304.01541, 2023.

Daniel J Costello, Joachim Hagenauer, Hideki Imai,
and Stephen B Wicker. Applications of error-control
coding. IEEE Transactions on Information Theory,
44(6):2531–2560, 1998.

John C. Duchi, Peter L. Bartlett, and Martin J. Wain-
wright. Randomized Smoothing for Stochastic Op-
timization. SIAM Journal on Optimization, 22
(2):674–701, January 2012. ISSN 1052-6234. doi:
10.1137/110831659. Publisher: Society for Industrial
and Applied Mathematics.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in pri-
vate data analysis. In Theory of Cryptography: Third
Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006. Proceedings 3,
pages 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):
211–407, 2014.

Gergely Flamich, Marton Havasi, and José Miguel
Hernández-Lobato. Compressing images by encod-
ing their latent representations with relative entropy
coding. Advances in Neural Information Processing
Systems, 33:16131–16141, 2020.

Song Han, Jeff Pool, John Tran, and William Dally.
Learning both weights and connections for efficient
neural network. Advances in neural information
processing systems, 28, 2015.

Compression with Exact Error Distribution for Federated Learning

P. Harsha, R. Jain, D. McAllester, and J. Radhakrish-
nan. The communication complexity of correlation.
IEEE Trans. Inf. Theory, 56(1):438–449, Jan 2010.

Marton Havasi, Robert Peharz, and José Miguel
Hernández-Lobato. Minimal random code learning:
Getting bits back from compressed model parame-
ters. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

Mahmoud Hegazy and Cheuk Ting Li. Randomized
quantization with exact error distribution. In 2022
IEEE Information Theory Workshop (ITW), pages
350–355. IEEE, 2022.

David A Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 2704–2713, 2018.

James D Johnston. Transform coding of audio signals
using perceptual noise criteria. IEEE Journal on
selected areas in communications, 6(2):314–323, 1988.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo
Son, Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang,
and Changkyu Choi. Learning to quantize deep net-
works by optimizing quantization intervals with task
loss. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4350–4359, 2019.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. The dis-
tributed discrete Gaussian mechanism for federated
learning with secure aggregation. In International
Conference on Machine Learning, pages 5201–5212.
PMLR, 2021a.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. Advances and
open problems in federated learning. Foundations
and Trends® in Machine Learning, 14(1–2):1–210,
2021b.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic con-
trolled averaging for federated learning. In Inter-
national Conference on Machine Learning, pages
5132–5143. PMLR, 2020.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu,
Peter Richtárik, Ananda Theertha Suresh, and

Dave Bacon. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Natalie Lang, Elad Sofer, Tomer Shaked, and Nir
Shlezinger. Joint privacy enhancement and quan-
tization in federated learning. IEEE Transactions on
Signal Processing, 71:295–310, 2023. doi: 10.1109/
TSP.2023.3244092.

C. T. Li and A. El Gamal. Strong functional repre-
sentation lemma and applications to coding theo-
rems. IEEE Trans. Inf. Theory, 64(11):6967–6978,
Nov 2018. ISSN 0018-9448. doi: 10.1109/TIT.2018.
2865570.

Junyi Li, Jian Pei, and Heng Huang. Communication-
efficient robust federated learning with noisy labels.
In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 914–
924, 2022.

Ninghui Li, Wahbeh Qardaji, and Dong Su. On sam-
pling, anonymization, and differential privacy or,
k-anonymization meets differential privacy. In Pro-
ceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, pages 32–
33, 2012.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training.
In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings, 2018.

Feng Liu, Miguel Hernandez-Cabronero, Victor
Sanchez, Michael W Marcellin, and Ali Bilgin. The
current role of image compression standards in med-
ical imaging. Information, 8(4):131, 2017.

Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence
and statistics, pages 1273–1282. PMLR, 2017.

Ilya Mironov. Rényi differential privacy. In 2017
IEEE 30th computer security foundations symposium
(CSF), pages 263–275. IEEE, 2017.

Maxence Noble, Aurélien Bellet, and Aymeric
Dieuleveut. Differentially private federated learn-
ing on heterogeneous data. In International Confer-
ence on Artificial Intelligence and Statistics, pages
10110–10145. PMLR, 2022.

Constantin Philippenko and Aymeric Dieuleveut. Pre-
served central model for faster bidirectional com-
pression in distributed settings. Advances in Neural
Information Processing Systems, 34:2387–2399, 2021.

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

Yuben Qu, Haipeng Dai, Yan Zhuang, Jiafa Chen,
Chao Dong, Fan Wu, and Song Guo. Decentralized
federated learning for uav networks: Architecture,
challenges, and opportunities. IEEE Network, 35(6):
156–162, 2021.

Brijesh Kumar Rai and Bikash Kumar Dey. On network
coding for sum-networks. IEEE Transactions on
Information Theory, 58(1):50–63, 2012.

Aditya Ramamoorthy and Michael Langberg. Commu-
nicating the sum of sources over a network. IEEE
Journal on Selected Areas in Communications, 31(4):
655–665, 2013.

Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks.
In European conference on computer vision, pages
525–542. Springer, 2016.

Elsa Rizk and Ali H Sayed. A graph federated architec-
ture with privacy preserving learning. In 2021 IEEE
22nd International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC),
pages 131–135. IEEE, 2021.

Lawrence G. Roberts. Picture coding using pseudo-
random noise. IRE Trans. Inf. Theory, 8(2):145–154,
1962. doi: 10.1109/TIT.1962.1057702.

Khalid Sayood. Introduction to data compression. Mor-
gan Kaufmann, 2017.

Kevin Scaman, Francis Bach, Sebastien Bubeck, Lau-
rent Massoulié, and Yin Tat Lee. Optimal Algorithms
for Non-Smooth Distributed Optimization in Net-
works. Advances in Neural Information Processing
Systems, 31:2740–2749, 2018.

Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter
Kairouz, and Lucas Theis. Optimal compression of
locally differentially private mechanisms. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 7680–7723. PMLR, 2022.

Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar,
and H Brendan McMahan. Distributed mean estima-
tion with limited communication. In International
conference on machine learning, pages 3329–3337.
PMLR, 2017.

Lucas Theis, Tim Salimans, Matthew D Hoffman, and
Fabian Mentzer. Lossy compression with Gaussian
diffusion. arXiv preprint arXiv:2206.08889, 2022.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas
Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A
Hybrid Approach to Privacy-Preserving Federated
Learning. In Proceedings of the 12th ACM Work-
shop on Artificial Intelligence and Security, AISec’19,
pages 1–11, London, United Kingdom, November
2019. Association for Computing Machinery. ISBN
978-1-4503-6833-9. doi: 10.1145/3338501.3357370.

Maxime Vono, Vincent Plassier, Alain Durmus,
Aymeric Dieuleveut, and Eric Moulines. Qlsd: Quan-
tised langevin stochastic dynamics for bayesian fed-
erated learning. In International Conference on Ar-
tificial Intelligence and Statistics, pages 6459–6500.
PMLR, 2022.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H
Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and
H Vincent Poor. Federated learning with differential
privacy: Algorithms and performance analysis. IEEE
Transactions on Information Forensics and Security,
15:3454–3469, 2020.

Max Welling and Yee W Teh. Bayesian learning via
stochastic gradient langevin dynamics. In Proceed-
ings of the 28th international conference on machine
learning (ICML-11), pages 681–688, 2011.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed
deep learning. Advances in neural information pro-
cessing systems, 30, 2017.

David Bruce Wilson. Layered multishift coupling for
use in perfect sampling algorithms (with a primer
on cftp). Monte Carlo Methods, 26:141–176, 2000.

Yibo Yang, Stephan Mandt, Lucas Theis, et al. An in-
troduction to neural data compression. Foundations
and Trends® in Computer Graphics and Vision, 15
(2):113–200, 2023.

Ram Zamir and Meir Feder. On universal quantization
by randomized uniform/lattice quantizers. IEEE
Trans. Inf. Theory, 38(2):428–436, 1992. doi: 10.
1109/18.119699.

Jacob Ziv. On universal quantization. IEEE Trans.
Inf. Theory, 31(3):344–347, 1985. doi: 10.1109/TIT.
1985.1057034.

Compression with Exact Error Distribution for Federated Learning

Appendix:
Compression with Exact Error Distribution for Federated Learning

Appendix A is dedicated to additional results on aggregated mechanisms with a focus on the relative mixture
entropy and the details of the algorithms used in Section 4. Appendix B gathers all the proofs of the theoretical
results. Appendix C presents additional details and results for the numerical experiments. Appendix D presents
how the proposed quantizers with exact error distribution can be applied to obtain optimal algorithms for
non-smooth distributed optimization problems.

A Additional results on aggregated mechanisms 13

A.1 Properties of relative mixture entropy . 13

A.2 Algorithm DecomposeUnif . 13

A.3 Theoretical analysis of Algorithm DecomposeUnif . 14

A.4 Algorithm Decompose . 15

A.5 Algorithms for Aggregate Gaussian Mechanism . 15

A.6 Algorithm SIGM for Differential Privacy Applications . 16

B Proofs of technical results 17

B.1 Shifted Layered Quantizer satisfies AINQ . 17

B.2 Proof of Proposition 1 . 17

B.3 Proof of Proposition 2 . 18

B.4 Proof of Proposition 3 . 18

B.5 Proof of Proposition 4 . 19

B.6 Proof of Theorem 1 . 19

B.7 Proof of Theorem 2 . 19

C Additional Numerical Experiments 20

C.1 Compression for free in Differential Privacy . 20

C.2 Langevin Dynamics . 22

D Compression for Randomized Smoothing in Federated Learning 23

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

A Additional results on aggregated mechanisms

A.1 Properties of relative mixture entropy

Proposition 5. The relative mixture entropy satisfies:

1. (Shifting and scaling) Let X,Y be random variables, and denote the distribution of X as PX . For constants
a, c ̸= 0 and b, d ∈ R,

hM(PcY+d∥PaX+b) = hM(PY ∥PX) + log
|c|
|a|
.

2. (Concavity in Q) For a fixed P , hM(Q∥P) is concave in Q.

3. (Chain rule) For distributions P,Q,R,

hM(R∥P) ≥ hM(R∥Q) + hM(Q∥P).

4. (Bound via differential entropy) If P,Q are continuous distributions,

hM(Q∥P) ≤ h(Q)− h(P),

where h(P) is the differential entropy of P .

Proof. Property (1) is straightforward. To show concavity (2), consider λ ∈ [0, 1] and two distributions Q1, Q2,
and consider (A1, B1) independent of (A2, B2) independent of Z ∼ P such that A1Z +B1 ∼ Q1, A2Z +B2 ∼ Q2.
Take (A,B) = (A1, B1) with probability λ, and (A,B) = (A2, B2) with probability 1− λ. We have

AZ +B ∼ λQ1 + (1− λ)Q2, E[log |A|] = λE[log |A1|] + (1− λ)E[log |A2|].

Taking supremum gives us the desired result. To show the chain rule (3), consider (A1, B1) independent of (A2, B2)
independent of Z ∼ P such that Y = A1Z +B1 ∼ Q, and A2Y +B2 ∼ R. We have A1A2Z +A2B1 +B2 ∼ R,
and E[log |A1A2|] = E[log |A1|] + E[log |A2|]. Taking supremum gives us the desired result. To show the bound
via differential entropy (4), if (A,B) is independent of Z ∼ P , then AZ +B ∼ Q and

h(Q) = h(AZ +B) ≥ h(AZ +B |A,B) = h(Z) + E[log |A|].

A.2 Algorithm DecomposeUnif

As an intermediate step, we study how we can simulate U(−1/2, 1/2) using a noise with p.d.f. function f that is
unimodal, symmetric around 0, and supported over [−1/2, 1/2] (e.g. a scaled version of Irwin-Hall). The idea is
to recursively express uniform distributions as mixtures of shifted and scaled versions of f and other uniform
distributions, and repeat ad infinitum.

We now describe the operation of decomposing U(−1/2, 1/2) into a mixture of shifted and scaled versions of
f(x). For the sake of simplicity, assume f(x) is unimodal, symmetric around 0, and supported over [−1/2, 1/2]
(e.g. a scaled version of Irwin-Hall). First, we can express the uniform distribution U(−1/2, 1/2) as a mixture
of f(x) and other uniform distributions as follows. Generate U ∼ U(−1/2, 1/2) independent of V ∼ U(0, 1).
If V ≤ f(U)/f(0), then generate X ∼ f . If V > f(U)/f(0) and U > 0, then take S = f−1(V f(0)) (where
f−1(y) := inf{x ≥ 0 : f(x) ≤ y}), and generate X ∼ U(S, 1/2). If V > f(U)/f(0) and U < 0, then take
S = f−1(V f(0)), X ∼ U(−1/2,−S). Then we can show that X ∼ U(−1/2, 1/2). We can then recursively express
these uniform distributions in the mixture as mixtures of shifted and scaled versions of f(x) and other uniform
distributions, and repeat ad infinitum.

Algorithm DecomposeUnif takes f and a random number generator P as input (where we can invoke P() to
obtain a U(0, 1) random number), and outputs two random variables A,B such that if we generate X ∼ f , then
AX +B ∼ U(−1/2, 1/2).

Compression with Exact Error Distribution for Federated Learning

Algorithm 1 DecomposeUnif(f,P)

Input: pdf f , random number generator P
Output: scale a ∈ (0,∞) and shift b ∈ R

1: a← 1, b← 0
2: while True do
3: u← P()− 1/2
4: v ← P()
5: if v ≤ f(u)/f(0) then
6: return (a, b)
7: else
8: s← f−1(vf(0))

9: b← b+ a · sgn(u)
(

s+1/2
2

)
10: a← a(1/2− s)
11: end if
12: end while

A.3 Theoretical analysis of Algorithm DecomposeUnif

We now analyze the value of E[logA] given by Algorithm DecomposeUnif, which will give a bound on
hM(U(−1/2, 1/2)∥P). We invoke the following result which follows from (Hegazy and Li, 2022, Theorem 1).
Theorem 3. For any probability density function f , we have

hM(f ∥U(−1/2, 1/2)) ≤ hL(f)

and equality holds if f is a unimodal distribution4 with a finite mean, where hL(f) :=
∫∞
0
λ(L+

τ (f)) log λ(L
+
τ (f))dτ

is called the layered entropy of f , where L+
τ (f) := {x ∈ R : f(x) ≥ τ} is the superlevel set, and λ(L+

τ (f)) is the
Lebesgue measure.

If (X,Y) ∼ U{(x, y) : 0 ≤ y ≤ f(x)}, then hL(f) = −h(Y) (Hegazy and Li, 2022). Therefore, hL(f) ≥
− log supx∈R f(x) is lower bounded by the differential min-entropy of f . We have the following bound.
Corollary 1. For any unimodal p.d.f. f with a finite mean: hM(f ∥U(−1/2, 1/2) ≥ − log supx∈R f(x).

We can now bound hM(U(−1/2, 1/2)∥P). The following lemma will be useful in the proof of Theorem 2.
Lemma 1. For any unimodal probability density function f with f∗ := supx f(x), with a bounded support
L := sup{x : f(x) > 0} − inf{x : f(x) > 0}, we have hM(U(−1/2; 1/2) ∥ f) ≥ −Lf∗ − log(eL/2).

Proof. Write U := Unif(−1/2, 1/2). By the shifting and scaling property in Proposition 5, we can assume L = 1
and f is supported over [−1/2, 1/2] without loss of generality. Assume the maximum of f is attained at x0. We
can express Unif(−1/2, 1/2) as a mixture

1

f∗
f(x) + ν1g1(x) + ν2g2(x), where ν1 :=

∫ x0

−1/2

(
1− f(x)

f∗

)
dx, ν2 :=

∫ 1/2

x0

(
1− f(x)

f∗

)
dx,

and
g1(x) :=

1− f(x)/f∗

ν1
for − 1

2
≤ x ≤ x0, g2(x) :=

1− f(x)/f∗

ν2
for x0 ≤ x ≤

1

2
.

Note that both g1(x) and g2(x) are unimodal, and ν1 + ν2 = 1− 1/f∗. We have

hM(U∥f)
(a)

≥ ν1hM(g1∥f) + ν2hM(g2∥f)
(b)

≥ ν1 (hM(g1∥U) + hM(U∥f)) + ν2 (hM(g2∥U) + hM(U∥f))

= ν1hM(g1∥U) + ν2hM(g2∥U) +

(
1− 1

f∗

)
hM(U∥f).

4A probability density function f is unimodal if there exists x0 ∈ R such that f(x) is nondecreasing for x ≤ x0, and
nonincreasing for x ≥ x0.

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

where (a) is by concavity, and (b) is by the chain rule (Proposition 5). Hence,

hM(U∥f) ≥ f∗ν1hM(g1∥U) + f∗ν2hM(g2∥U)

(c)

≥ f∗ν1 log ν1 + f∗ν2 log ν2

≥ f∗2
(
1− 1/f∗

2

)
log

1− 1/f∗

2

= (f∗ − 1) log
f∗ − 1

2f∗

= −(f∗ − 1)− (f∗ − 1) log

(
1 +

1

f∗ − 1

)
≥ −(f∗ − 1)− (f∗ − 1)

log e

f∗ − 1

= −f∗ − log
e

2
,

where (c) is by Corollary 1.

A.4 Algorithm Decompose

The goal is to simulate an additive noise channel with a noise p.d.f. g that is unimodal, symmetric around
0 and differentiable knowing that we can simulate an additive noise channel with a noise p.d.f. f with same
properties. The naive and quite inefficient way is to decompose g into a mixture of uniform distributions, and run
the DecomposeUnif algorithm on those uniform distributions. Instead, we first decompose g into the mixture

g(x) = λf(x) + (1− λ)ψ(x)

where λ is as large as possible such that ψ is still unimodal. A practical choice is λ = infx>0 dg(x)/df(x) if n ≥ 3,
and λ = 0 if n ≤ 2. We then decompose ψ into a mixture of uniform distributions, and run DecomposeUnif.
Algorithm Decompose below computes the decomposition of g into a mixture of shifted and scaled versions of f .
It takes f, g and a random number generator P as input, and outputs two random variables A,B such that if we
generate X ∼ f , then AX +B ∼ g.

Algorithm 2 Decompose(f, g,P)

Input: pdfs f, g, random number generator P
Output: scale a ∈ (0,∞) and shift b ∈ R

1: λ← infx>0
dg(x)
df(x)

2: Sample x ∼ g using P
3: v ← g(x) ·P()
4: if v > g(x)− λf(x) then
5: return (1, 0)
6: else
7: s← sup{x′ ≥ 0 : v ≤ g(x′)− λf(x′)}
8: L← 2 sup{x : f(x) > 0}
9: f̃ ← (x 7→ f(x/L)/L) (support of f̃ is [−1/2, 1/2])

10: (a, b)← DecomposeUnif(f̃ ,P)
11: return (2as/L, 2bs)
12: end if

A.5 Algorithms for Aggregate Gaussian Mechanism

We describe the encoding and decoding algorithms for the aggregate Gaussian mechanism. We assume the
server and all the clients share a common random seed, which they use to initialize their pseudorandom number
generators (PRNG) P. Since each PRNG is initialized with the same seed, they are guaranteed to produce the
same common randomness (Si)i, A,B at the clients and server.

Compression with Exact Error Distribution for Federated Learning

Algorithm 3 Encode(x, n, i, σ,P)

1: Input: data x ∈ R, number of clients n, client id i,
standard deviation σ, RNG P

2: Output: description m ∈ Z
3: (a, b)← Decompose(IH(n, 0, 1),N (0, 1),P)
4: for j = 1, . . . , n do
5: sj ← P()− 1/2
6: end for
7: w ← 2σ

√
3n

8: return
⌈

x
aw + si

⌋

Algorithm 4 Decode(Σm, n, σ,P)

1: Input: sum of descriptions Σm =
∑n

i=1mi ∈ Z,
number of clients n, standard deviation σ, RNG P

2: Output: estimated mean y ∈ R
3: (a, b)← Decompose(IH(n, 0, 1),N (0, 1),P)
4: for j = 1, . . . , n do
5: sj ← P()− 1/2
6: end for
7: w ← 2σ

√
3n

8: return aw
n (Σm −

∑n
i=1 si) + bσ

A.6 Algorithm SIGM for Differential Privacy Applications

Condition on any B1, . . . , Bn. Definition 5 ensures that D(Mi, Si)− xi
√
ñ ∼ N (0, (σγn)2). Therefore

Y − (γn)−1
∑

i:Bi=1

xi = (γn
√
ñ)−1

∑
i:Bi=1

(
D(Mi, Si)− xi

√
ñ
)

∼ N
(
0, (σγn)2(γn

√
ñ)−2ñ

)
= N (0, σ2).

To generalize to d dimensional data x1, . . . , xn ∈ Rd, we can simply apply SIGM on each coordinate individually.
Note that each coordinate j ∈ [d] has B1(j), . . . , Bn(j) sampled independently, indicating whether client i =
1, . . . , n should send the coordinate xi(j), similar to the coordinate subsampling strategy in (Chen et al., 2023).
The algorithm is given below.

Algorithm 5 Subsampled Individual Gaussian Mechanism (SIGM)
Parameters: Noise variance σ2 > 0, Subsampling Bernoulli parameter γ ∈ [0, 1]

(Shared Randomness)
B1, . . . , Bn ∈ {0, 1}d with Bi(j) ∼ B(γ)
S1, . . . , Sn : Si(1, j) ∼ U (0, 1) , Si(2, j) ∼WN (0,(σγn)2)

ñ(j)←
∑n

i=1Bi(j) for j ∈ [d]

(Client side)
input: private xi ∈ Rd with ∥xi∥2 ≤ c
Encode: For j ∈ [d]

If Bi(j) = 1 then Mi(j)← E (xi(j)
√
ñ(j), Si(· , j))

else Mi(j)← 0
Send: Mi to the server

(Server side)
input: M1, . . . ,Mn ∈ Zd

Decode: For j ∈ [d]
µ̄(j)← (γn

√
ñ)−1

∑
i:Bi(j)=1 D(Mi(j), Si(·, j))

Return: µ̄

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

B Proofs of technical results

B.1 Shifted Layered Quantizer satisfies AINQ

Let us show that the shifted layered quantizer yields the same distribution of error scheme as the direct layered
quantizer (Definition 4). Let ∆ = Y −X, then ∆|V ∼ U

(
b−Z (Z̄ − V), b+Z (V)

)
. Denote M = argmax fZ(x) and

m = median(M). It follows that

f∆(x) =

∫
R

1
{
x ∈

(
b−Z (Z̄ − v), b

+
Z (v)

)}
WZ(v)

WZ(v)dv

(a)
=

∫
R
1
{
x ∈

(
b−Z (Z̄ − v),m

)}
dv +

∫
R
1
{
x ∈

(
m, b+Z (v)

)}
dv

(b)
=

∫
R
1
{
x ∈

(
b−Z (v),m

)}
dv +

∫
R
1
{
x ∈

(
m, b+Z (v)

)}
dv

=

∫
R
1
{
x ∈

(
b−Z (v), b

+
Z (v)

)}
dv

(c)
=

∫
R
1{x ∈ Lv(fZ)}dv = fZ(x)

where (a) is due to the fact that m ∈ Lτ (fZ) for any τ , (b) by the change of variable v = Z̄ − v, and (c) by
unimodality of fZ .

B.2 Proof of Proposition 1

The conditional entropy H(Ms|Ss) may be decomposed as follows

H(Ms|Ss)− log(t) = − log(t) +

∫ 1

0

∫ Z̄

0

H(Ms|Ss = (u, τ))fW (τ)dτds

≤ − log(t) +

∫ 1

0

∫ Z̄

0

log

(
t

fW (τ)
+ 2

)
fW (τ)dτ

= h(WZ) +

∫ Z̄

0

log

(
1 +

2fW (τ)

t

)
fW (τ)dτ

≤ h(WZ) +
2 log(e)

t

∫ Z̄

0

fW (τ)2dτ.

The last integral on the right-hand side may be upper bounded by considering the random variables (Z, S) ∼
U{(z, s)|s ∈ [a(z), b(z)]} with γ ∈ argmax fZ and

a(x) = 1{x < γ}(Z̄ − fZ(x))
b(x) = 1{x < γ}fZ(x) + 1{x ≥ γ}Z̄

This coupling satisfies S ∼WZ , Z ∼ fZ , Z|S ∼ U [b−Z (Z̄ − S), b
+
Z (S)]. Then if follows that∫ Z̄

0

fW (τ)2dτ =4

∫ Z̄

0

E
[∣∣∣∣Z − b+Z (τ) + b−Z (Z̄ − τ)

2

∣∣∣∣ |S = τ

]
fW (τ)dτ.

Since Z is uniformly distributed over an interval conditional on S = τ , we have that E[|Z−m||S = τ] is minimized
when m is the midpoint of the interval so it holds that∫ Z̄

0

fW (τ)2dτ ≤ 4

∫ Z̄

0

E [|Z −median(Z)| |S = τ] fW (τ)dτ

= 4E [|Z −median(Z)|]

Compression with Exact Error Distribution for Federated Learning

and the last term may be upper bounded using that E [|Z −median(Z)|] ≤ E [|Z|] combined with Jensen inequality
to finally obtain

∫ Z̄

0
fW (τ)2dτ ≤ 4

√
V[Z] which gives the final bound

H(M |S) ≤ log(t) +
8 log(e)

t

√
V [Z] + h(WZ).

Observe that the optimality gap is

8 log(e)

t

√
V[Z] + h(WZ)− h(DZ).

Thus it is sufficient to bound h(WZ)− h(DZ). As fW and fD are translation invariant, then we assume without
loss of generality that the mode of fZ is 0. Using the symmetry of fZ , we have b+Z (x) = −b

−
Z (x). Then we recover

h(DZ) = −
∫ Z̄

0

2b+Z (x) log
(
2b+Z (x)

)
dx,

h(WZ) = −
∫ Z̄

0

2b+Z (x) log
(
b+Z (x) + b+Z (Z̄ − x)

)
dx.

As b+Z (x) ≥ 0, then

h(WZ)− h(DZ) ≤
∫ Z̄

0

2b+Z (x) log

(
2b+Z (x)

b+Z (x) + b+Z (Z̄ − x)

)
dx

= 2

∫ Z̄

0

DZ(X)dx = 2

Similarly as fW (X) ≥ ηZ ,

h(WZ) ≤
∫ Z̄

0

2b+Z (x) log

(
1

ηZ

)
dx

= − log(ηZ)

B.3 Proof of Proposition 2

For the Gaussian case, refer to Wilson (2000, Page 22). We prove the case for Laplace random variable with
a similar strategy. Note that fW is translation invariant w.r.t to fZ , so we consider zero mean Laplace. For
Z ∼ Laplace (0, b), we have fW (x) = −b ln(2bx)− b ln(1− 2bx). Solving dfW (x⋆)/dx = 0 gives x⋆ = 1/4b so that
fW (x⋆) = 2b ln 2 and plug the value b = σ/

√
2 to conclude.

B.4 Proof of Proposition 3

Condition on A = a,B = b. Subtractive dithering gives

aw

n

(⌈ xi
aw

+ Si

⌋
− Si

)
− xi
n
∼ U

(
−aw
2n

,
aw

2n

)
.

Hence,

Y − 1

n

n∑
i=1

xi =
aw

n

(
n∑

i=1

⌈ xi
aw

+ Si

⌋
−

n∑
i=1

Si

)
− 1

n

n∑
i=1

xi + b

∼ IH

(
n, b,

n

12

(aw
n

)2)
= IH

(
n, b, a2σ2

)
has the same distribution as aZ + b where Z ∼ P = IH(n, 0, σ2). If we randomize over A,B, since (A,B) ∼
πA,B ∈ ΠA,B(P,Q), we have Y − 1

n

∑n
i=1 xi ∼ Q by the definition of mixture set.

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

We then demonstrate that the mechanism is homomorphic. Since D only depends on m1, . . . ,mn through
∑

imi,
it allows the server to decode using only

∑
imi and the shared randomness. While D is technically not in the form

(6) due to the “+b” term, that term it can be absorbed into si. Let b′i = b/n, and treat (si, b
′
i) as the common

randomness between client i and the server. We then have D((mi)i, (si, b
′
i)i, a) =

aw
n (
∑n

i=1mi −
∑n

i=1(si − b′i)),
which is in the form (6) by taking D(m, (s, b′), a) = aw(m− s+ b′).

B.5 Proof of Proposition 4

The SIGM algorithm returns the mean estimate µ̄ = (µ̄1, . . . , µ̄d) where for j ∈ [d] we have

µ̄(j) = (γn
√
ñ)−1

∑
i:Bi(j)=1

D(Mi(j), Si(·, j)).

Similarly to the proof in A.6, we have µ̄j − (nγ)−1
∑

i:Bi(j)=1 xi(j) ∼ N (0, σ2) and conclude by invoking the
proof of (Chen et al., 2023, Theorem 4.1) to obtain the bound on σ2.

For the communication cost per client, Proposition 2 gives

|SuppM | ≤ 2 +
t

2σ
√
nγ
√
ln 4

.

Since the data x1, . . . , xn belong to [−c; c]d and the clients encode xi
√
ñ, we have t = 2c

√
ñ. Since E[ñ] = γn and

only γd coordinates are selected on average, taking the log on both sides gives the desired result.

B.6 Proof of Theorem 1

We have

E
[⌈

log

(
t

|A|d
+ 3

)⌉]
< E

[
log

(
1 +

3d|A|
t

)]
+ log

t

d
+ E[− log |A|] + 1

≤ −E[log |A|] + 3d log e

t
E [|A|] + log

t

d
+ 1. (7)

Recall that if Z ∼ P is independent of A,B, then AZ +B ∼ Q. We have

E [|AZ +B|] = E
[
E
[
|AZ +B|

∣∣∣A,B]]
(a)

≥ E
[
E
[
|AZ|

∣∣∣A,B]]
= E [|A|]E [|Z|] ,

where (a) is because the median of aZ is 0 for any a ∈ R, so E[|aZ + b|] is minimized when b = 0. Combining this
with (7) gives the desired result.

B.7 Proof of Theorem 2

Write U := U(−1/2, 1/2). Express g(x) as a mixture g(x) = λf(x) + (1− λ)ψ(x). We have

hM(g∥f)
(a)

≥ (1− λ)hM(ψ∥f)
(b)

≥ (1− λ) (hM(ψ∥U) + hM(U∥f))
(c)

≥ −(1− λ)
(
log

g(0)− λf(0)
1− λ

+ Lf(0) + log
eL

2

)
,

where (a) is by concavity, (b) is by the chain rule (Proposition 5), and (c) is by Corollary 1 and Lemma 1.

Compression with Exact Error Distribution for Federated Learning

C Additional Numerical Experiments

Comparing AINQ mechanism with Quantization. Applying the shifted layered quantizer with a required
compression error N (0, σ2Id) coordinate-wise to an input x ∈ Rd that is unbounded does not necessarily lead to a
bounded encoding M (alternatively bounded number of bits to send M). However, a classical implementation of
quantization starts by specifying the number of bits, then normalizing x by ∥x∥p to scale it to the ℓp unit sphere
and finally perform quantization on each coordinate using b bits. For decompression, ∥x∥p is shared with the
decoder to rescale the quantized vector. The communication cost of sharing ∥x∥p may be ignored as it is often
negligible after normalizing by the dimension d. To have a fair comparison with classical quantization schemes,
in DP experiments, shifted layered quantization is used to reproduce the desired error distribution. Then, the
number of bits used by the shifted layered quantizer is measured on the one hand and the number of bits for
quantization is adjusted on the other hand such that it is always equal or higher than the number of bits used for
shifted layered quantizer.

For Langevin dynamics, the number of bits b is specified first. Each client i ∈ [n] scales its vector xi by ∥xi∥∞.
The variance σ2

b used for the compression is calculated using Proposition 2 with t = 2. Finally, decoding achieves
a compression error of variance σ2

b ∥x∥
2
∞. As σ2

b is known and the different norms {∥xi∥∞}i∈[n]
are shared, the

server does some accounting to calculate the error variance of the distributed mean operation and adjusts the
added error to reproduce the desired Markov chain. Refer to Algorithm 6 for more details.

Software/Hardware details. The code to reproduce the curves in the Figures below is available upon request.
Other experiments were reproduced through the original implementation of Kairouz et al. (2021b) and Vono et al.
(2022). The experiments on differential privacy applications (see Appendix C.1) were performed on a laptop Intel
Core i7-10510U CPU 1.80GHz × 8. The experiments on stochastic Langevin dynamics (see Appendix C.2) with
toy gaussian data were performed on 4 cores of slurm-based cluster with 2.1 Ghz frequency. The computations
for Langevin experiments required around 72 hours.

C.1 Compression for free in Differential Privacy

Subsampling and Trusted Server. The parameter configuration for the experiments in Section 5 are: number
of clients n ∈ {1000; 2000}, dimension d ∈ {100; 500}. The numerical results of Figure 7 below consider the setting
d = 500 and n ∈ {250; 500; 1000}. For a subsampling parameter γ ∈ {0.3; 0.5; 1.0}, we set δ = 10−5 and privacy
budget ε ∈ [0.5; 4]. The data is generated in a similar spirit to Chen et al. (2023). Denote by Xi(j) the j-th
coordinate of the i-th client data. Then, for i ∈ [n] and for j ∈ [d], Xi(j) ∼ (2B(p)− 1)U/

√
d where B(p) is a

Bernoulli variable with parameter p = 0.8 and U ∼ U(0, 1) is a standard uniform variable. The multiplication by
this uniform variable allows to work on continuous data X whereas the experiments in (Chen et al., 2023) consider
discrete values. Figure 7 below reports the results of additional experiments obtained over 100 independent runs,
where we plot the mean squared error curves against the privacy budget ε in dimension d = 500 with different
number of clients n ∈ {250; 500; 1000}.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy ()

10 2

10 1

M
SE

CSGM (=0.3)
CSGM (=0.5)
CSGM (=1.0)

SIGM (=0.3)
SIGM (=0.5)
SIGM (=1.0)

(a) n = 250

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy ()

10 2

10 1

M
SE

CSGM (=0.3)
CSGM (=0.5)
CSGM (=1.0)

SIGM (=0.3)
SIGM (=0.5)
SIGM (=1.0)

(b) n = 500

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy ()

10 3

10 2

M
SE

CSGM (=0.3)
CSGM (=0.5)
CSGM (=1.0)

SIGM (=0.3)
SIGM (=0.5)
SIGM (=1.0)

(c) n = 1000

Figure 7: Mean Squared Error for CSGM and SIGM with n ∈ {250; 500; 1000} and d = 500.

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

Less-Trusted Server. The Distributed Discrete Gaussian (DDG) mechanism (Kairouz et al., 2021a) can leverage
SecAgg to achieve DP guarantees against the server, which is a stronger setting than that of the less-trusted
server. However, in practical implementation, it often requires a much higher number of bits per coordinate. The
DDG mechanism relies on the discrete Gaussian distribution (Canonne et al., 2020) NZ(µ, σ

2) with µ, σ ∈ R and
σ > 0. For any x ∈ Z, PNZ(X = x) is proportional to exp(−(x− µ)2/(2σ2)). Using this discrete Gaussian noise,
the DDG mechanism works as follows. The input parameters are: scaling factor γ; clipping threshold c > 0; bias
β ≥ 0; modulus m ∈ N and noise scale σ2. The shared randomness is composed of a random unitary matrix
U ∈ Cd×d. Each client i ∈ [n] first scales and clips the data as x

′

i = γ−1 min
{
1, c/

∥∥xi∥∥
2

}
· xi then rotate x

′′

i =
Ux

′

i and quantize x
′′

i to Mi such that ∥Mi∥2 ≤ C(γ, β, c). The worker finally sends to the server M̃i =Mi +Gi

mod m, where Gi ∼ NZ(0, σ
2) using SecAgg. The server receives the results of SecAgg M̃ =

∑n
i M̃i mod m and

outputs (γ/n)U∗M (rescale and inverse the rotation). For more details, refer to Algorithms 1 and 2 in Kairouz
et al. (2021a). Note that some recent work of Chen et al. (2022) aims at improving communication efficiency of
DDG by applying projections to reduce the dimension of the data transmitted. However, it still uses DDG as a
subroutine so we restrict our comparison to DDG.

To compare with the utility-communication trade-off of DDG, we adapt the experiments from Kairouz et al.
(2021a). On the one hand, we reproduce the figures comparing the utility of DDG with different number of bits
against the standard Gaussian mechanism. On the other hand, using Elias gamma coding, we measure over 50
runs the average number of bits needed for the aggregate Gaussian mechanism and the shifted layered quantizer
to match the Gaussian mechanism. Note that only the aggregate Gaussian mechanism is compatible with SecAgg.
Figures 8 and 9 below presents the mean squared error curves for different number of clients n ∈ {100; 500; 1000}
and highlights that AINQ mechanisms requires much lower number of bits to realize the Gaussian mechanism.
The graphs in Figure 9 compare the number of bits per client for the shifted layered quantizer (fixed or variable
length) and the aggregate Gaussian mechanism, for a privacy budget ε ∈ [1, 10].

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy()

10 2

10 1

M
SE

DDG (b=10)
DDG (b=12)
DDG (b=14)

DDG (b=16)
DDG (b=18)
Agg. Gaussian

(a) n = 100

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy()

10 3

10 2

10 1

M
SE

DDG (b=10)
DDG (b=12)
DDG (b=14)

DDG (b=16)
DDG (b=18)
Agg. Gaussian

(b) n = 500

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Privacy()

10 4

10 3

10 2

10 1

M
SE

DDG (b=10)
DDG (b=12)
DDG (b=14)

DDG (b=16)
DDG (b=18)
Agg. Gaussian

(c) n = 1000

Figure 8: Mean Squared Error for the DDG mechanism and Aggregate Gaussian mechanism for n ∈
{100; 500; 1000}, δ = 10−5 and d = 75. Data samples drawn from the ℓ2 sphere with radius c = 10.

2 4 6 8 10
Privacy()

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Bi
ts

 p
er

 c
lie

nt

n=20
n=100
n=500
n=2000
n=5000

(a) Aggregate Gaussian

2 4 6 8 10
Privacy()

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Bi
ts

 p
er

 c
lie

nt

n=20
n=100
n=500
n=2000
n=5000

(b) Shifted Layered - Upper Bound

2 4 6 8 10
Privacy()

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Bi
ts

 p
er

 c
lie

nt

n=20
n=100
n=500
n=2000
n=5000

(c) Shifted Layered

Figure 9: Number of bits per clients for the Aggregation Gaussian mechanism (left), shifted layered quantizer
with fixed (center) or variable (right) length and different client size n ∈ {20; 100; 500; 2000; 5000}.

Compression with Exact Error Distribution for Federated Learning

C.2 Langevin Dynamics

C.2.1 Quantized Langevin Stochastic Dynamics

We consider the same FL framework as Vono et al. (2022) where the goal is to perform Bayesian inference on a
parameter θ ∈ Rd with respect to a dataset D. The posterior distribution is assumed to admit a product-form
density with respect to the d-dimensional Lebesgue measure in the form

π(θ|D) = C−1
π

n∏
i=1

e−Ui(θ), Cπ =

∫
Rd

n∏
i=1

e−Ui(θ)dθ

where Ui are clients’ potential functions. Using a sequence (Hk)k∈N of unbiased estimates of ∇U =
∑n

i=1 Ui, the
Langevin dynamics with stochastic gradient aims at sampling from a target distribution with density π. Starting
from θ0 ∈ Rd, it is a Markov chain defined by the update rule: θk+1 = θk − γHk+1(θk) +

√
2γZk+1 where γ > 0

is a discretization stepsize and (Zk)k∈N is a sequence of i.i.d. standard Gaussian random variables.

In the framework of Vono et al. (2022), at iteration k, a subset Ak+1 ⊂ [n] of clients is selected. Each client
i ∈ Ak+1 computes an estimate of Hk+1,i and sends C (Hk+1,i − H̃k+1,i) to the server where C is a compression
operator and H̃k+1,i is a variance reduction term. The server aggregates the clients gradients estimators, potentially
compensates for the variance reduction, and updates the process. Throughout the remaining of this subsection,
we consider C to be a shifted layered quantizer with a fixed number of bits as described at the beginning of
Appendix C and returning x+N (0, σ2

b ∥x∥
2
∞), σ2

b ∥x∥
2
∞ ← C (x).

C.2.2 Experiments on Gaussian

We adapt this experiment from Vono et al. (2022). We use n = 20 clients with data dimension d = 50 and local
potentials Ui(θ) =

∑Ni

j=1 ∥θ− yi,j∥2/2 where (yi,j) is a set of synthetic independent but not identically distributed
observations across clients and Ni = 50. The data is generated by sampling yi,j ∼ N (µi, Id) with µi ∼ N (0, 25Id).
We set the discretization stepsize γ = 5× 10−4 and use full participation and full batch. We adapt the QLSD⋆

algorithm from Vono et al. (2022) to leverage the error of compression in the Langevin dynamics. If the error of
compression is smaller than the required error, then the server adds additional noise. Otherwise, the server adds
no additional noise to the dynamics. The theoretical analysis in Vono et al. (2022) still holds with this adaptation
as it still satisfies the required assumptions on the compression operator (refer to their assumption H3).

4.5 4.6 4.7 4.8 4.9 5.0
Iterations (x1e5)

10 5

10 4

10 3

M
ea

n
Sq

ua
re

d
Er

ro
r

QLSD* (b=4)
QLSD* (b=8)
QLSD* (b=16)
LSD

QLSD*-MS (b=4)
QLSD*-MS (b=8)
QLSD*-MS (b=16)

Figure 10: MSE of different methods, b refers to the number of bits, QLSD∗ to QLSD⋆ with unbiased quantization,
QLSD∗-MS to the algorithm with shifted layered quantization, LSD to the algorithm with no compression

Figure 10 above shows the behavior of the mean squared error (MSE) between the true parameter and the
sampling based estimation. We start sampling after 4.5 × 105 iteration to be sure the chain converge to a
stationary distribution. The results were computed using 30 independent runs of each algorithm. Observe the
great performance of shifted layered quantizers schemes. Indeed, all schemes using standard unbiased quantization
performs worse than all schemes with shifted layered quantizers.

Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut

Algorithm 6 QLSD⋆ with Shifted Layered Quantizer
Input: minibatch sizes {ni}i∈[b], number of iterations K, compression operators C , step-size γ ∈ (0, γ̄] with
γ̄ > 0 and initial point θ0.
for k = 0 to K − 1 do

for i ∈ Ak+1 ▷ On active clients do
Draw S(i)k+1 ∼ Uniform (℘Ni,ni

).
Set H

(i)
k+1(θk) = (Ni/ni)

∑
j∈S(i)

k+1

[∇Ui,j(θk)−∇Ui,j(θ
⋆)].

Compute gi,k+1, vi,k+1 ← C
(
H

(i)
k+1(θk)

)
.

Send gi,k+1, vi,k+1 to the central server.
end for

▷ On the central server
Compute gk+1 = b

|Ak+1|
∑

i∈Ak+1
gi,k+1.

Draw Zk+1 ∼ N(0d, Id).
Compute β2 = max

(
0, 2γ − b2γ2

|Ak+1|2
∑

i∈Ak+1
vi,k+1

)
Compute θk+1 = θk − γgk+1 + βZk+1.
Send θk+1 to the b clients.

end for
Output: samples {θk}Kk=0.

D Compression for Randomized Smoothing in Federated Learning

In this section, we show how the proposed quantizers with exact error distribution can be applied to obtain
optimal algorithms for non-smooth distributed optimization problems (Scaman et al., 2018). In particular, we
highlight the link between compression and randomized smoothing (Duchi et al., 2012). In the framework of
federated learning with bi-directional compression (Philippenko and Dieuleveut, 2021), it allows us to derive fast
convergence rates for non-smooth objectives. To the best of found knowledge, such rates for federated learning
with client compression on non-smooth objectives are novel.

Federated Learning with double compression. Consider some optimization problems of the form

min
θ∈Rd

{
f(θ) =

1

n

n∑
i=1

fi(θ)

}
where fi are local losses and f is a convex and potentially non-smooth objective function. This distributed
setting includes FL problems with ℓ1 norms used as regularizers to ensure sparsity, e.g. f(θ) = 1

n∥Aθ − b∥1 =
1
n

∑n
i=1 |a⊤i θ − bi| with A ∈ Rn×d, b ∈ Rn but also neural networks with ReLU activation function.

In the standard setting of Federated Averaging with bi-directional compression, the model parameter θk at time
step k ∈ N is updated as

θk+1 = θk − γC↓

(
1

n

n∑
i=1

C↑(gi(θk))

)
where γ > 0 is the learning rate, C↑ (resp. C↓) is the up-link/client compressor (resp. the down-link/server) and
gi(θk) is a subgradient of the local loss fi such that E[gi(θk)] ∈ ∂fi(θk).

Distributed Randomized Smoothing. Fast rates for non-smooth optimization problems can be attained
using the smoothing approach of Duchi et al. (2012); Scaman et al. (2018). For σ > 0, denote by fσ the smoothed
version of f defined by

fσ(θ) = Eξ[f(θ + σξ)],

where ξ ∼ N (0, Id) is a standard Gaussian random variable. If f is L-Lipschitz then fσ is (L/σ) smooth and it
holds (see Lemma E.3 in Duchi et al. (2012))

∀θ ∈ Rd, f(θ) ≤ fσ(θ) ≤ f(θ) + σL
√
d.

Compression with Exact Error Distribution for Federated Learning

Thus, accelerated optimization algorithms such as Distributed Randomized Smoothing (DRS) can be applied
by using the smoothed version of f . These algorithms rely on approximating the smoothed gradient ∇fσ =
1
n

∑n
i=1∇fi,σ with sampled subgradients of the form gi(θ + σξj) with j = 1, . . . ,m. Each local client i = 1, . . . , n

can sample standard Gaussian variables then compute ĝi(θ) = 1
m

∑m
j=1 gi(θ+σξj) and send it to the server which

aggregates the subgradients. Interestingly, the sampling steps may be replaced with compressors that produce
exact error distribution.

Quantizers act as randomized smoothing. The idea of sampling a random perturbation ξ to evaluate the
subgradients as gi(θ + σξ) can be replaced by first compressing the model parameter θ with a Gaussian error
distribution as E (θ) = θ + σξ and then evaluating the subgradients at compressed point as gi(E (θ)). Similarly
to Philippenko and Dieuleveut (2021), let us consider the update rules where the subgradients are evaluted at
perturbed point as

θk+1 = θk −
γ

n

n∑
i=1

ĝi(θ̂k); θ̂k = E (θk) = θk + ξk,

with a Gaussian error ξk = E (θk)− θk ∼ N (0, σ2Id). In view of approximating the sampling scheme of DRS, the
local clients can perform m local compressions so that ĝi(θ̂k) = 1

m

∑m
j=1 gi(θk + σξj) which gives an unbiased

estimate of the smoothed gradient as E[ĝi(θ̂k)|θk] = ∇fi,σ. Thus, one can exactly recover the Distributed
Randomized Smoothing algorithm of Scaman et al. (2018) and the optimal convergence rates of Theorem 1
therein.

	INTRODUCTION
	BACKGROUND, MOTIVATION
	INDIVIDUAL MECHANISMS
	Individual Mechanisms via Direct and Shifted Layered Quantizers
	Communication Complexity

	AGGREGATE MECHANISMS
	Homomorphic Mechanisms
	Irwin-Hall Mechanism
	Aggregate Q Mechanism
	Aggregate Gaussian Mechanism
	Theoretical Analysis

	COMPRESSION AND SUBSAMPLING FOR PRIVACY
	Trusted server with subsampling strategy
	Less-trusted with SecAgg

	Additional results on aggregated mechanisms
	Properties of relative mixture entropy
	Algorithm DecomposeUnif
	Theoretical analysis of Algorithm DecomposeUnif
	Algorithm Decompose
	Algorithms for Aggregate Gaussian Mechanism
	Algorithm SIGM for Differential Privacy Applications

	Proofs of technical results
	Shifted Layered Quantizer satisfies AINQ
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 1
	Proof of Theorem 2

	Additional Numerical Experiments
	Compression for free in Differential Privacy
	Langevin Dynamics

	Compression for Randomized Smoothing in Federated Learning

