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PROBABILISTIC ESTIMATION OF THE ACCURACY OF INNER
PRODUCTS AND APPLICATION TO STOCHASTIC VALIDATION∗

FABIENNE JÉZÉQUEL† AND THEO MARY‡

Abstract. Numerical validation is concerned with certifying the correctness of scientific com-
putations in finite precision arithmetic. This requires tools to reliably estimate the accuracy of
floating-point computations. Dynamic approaches based on stochastic arithmetic are such tools,
but they require each elementary operation to be stochastically rounded, which prevents the use
of optimized linear algebra kernels and leads to a heavy performance penalty. In this article, we
develop two new probabilistic methods to estimate the accuracy of inner products. These two new
approaches only require to randomize either the input or the output of the computation, and thus
allow for the intermediate computation to be efficiently performed with optimized inner product
kernel implementations using classical arithmetic. We carry out a probabilistic error analysis of both
methods that proves that they are able to reliably estimate the accuracy of inner products with
both high fidelity and high probability. We then present their implementation within the CADNA
numerical validation library and their experimental comparison, which confirms that they can be
used as equally reliable, yet much more efficient estimators of the accuracy of inner products.

Key words. inner products, probabilistic error analysis, stochastic arithmetic, numerical vali-
dation, CADNA library

AMS subject classifications. 65G50, 65G20, 65G30, 65F99, 65C99

1. Introduction. Computing the inner product s = xT y of two vectors x, y ∈
Rn is a fundamental task at the heart of many numerical linear algebra applications.
When carried out in a floating-point arithmetic with unit roundoff u, the computed
ŝ satisfies the relative forward error bound [13]

|ŝ− s|
|s|

≤ nu
|x|T |y|
|xT y|

. (1.1)

In many contexts it is important to be able to reliably estimate the accuracy of
the computed inner product—for example, in order to certify the correctness of a
computation. Unfortunately, bound (1.1) cannot be used as a reliable estimator of
the accuracy, for two reasons. First, the nu part of the bound, which corresponds to
the backward error, is often pessismistic: in practice the backward error often exhibits
a much weaker dependence on n. Second, the

κ :=
|x|T |y|
|xT y|

part of the bound, which corresponds to the condition number, is in general sharp
but cannot be reliably computed, since it requires the knowledge of the true inner
product xT y itself.

To obtain a reliable estimator, we may turn to probabilistic approaches, which
exploit randomness to produce error estimates that are both sharper on average and
easier to compute. For example, regarding the backward error bound nu, a well-
known rule of thumb is that the constant n can be replaced in practice by

√
n. This

rule of thumb was formalized by Higham and Mary [10] and was the object of much
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subsequent work [11, 12, 3, 2, 1]. However, this class of probabilistic approaches has
focused on the backward error and the role of n, and does not offer any solution to
the reliable estimation of the conditioning κ.

Dynamic approaches can tackle the complete estimation of the accuracy of inner
products, including the role of κ, by introducing randomness into the computation it-
self. This is in particular the case of stochastic validation approaches, such as Discrete
Stochastic Arithmetic (DSA), implemented for example in the CADNA library [14].
In stochastic arithmetic, all floating-point objects are represented by d distinct values
(called representatives) and computations are performed on each of these d represen-
tatives with stochastic rounding [4]. All intermediate quantities of the computation
also have d representatives, and at the end of the computation, the accuracy of the
final result can be estimated by comparing its d representatives: roughly, one can
estimate that the digits that are identical for all representatives are correct, while the
rest have been lost to numerical noise produced by rounding errors.

Stochastic arithmetic is however expensive, not so much because each operation
is repeated d times, but more importantly because each elementary operation must be
performed separately, in order to apply stochastic rounding. Thus, in the computation
of an inner product, stochastic rounding must be applied after each addition and
multiplication. This is a major performance hurdle because it prevents the use of
optimized libraries, such as the BLAS, which do not support stochastic rounding
modes.

In this article, we propose two new methods to overcome this hurdle. Both meth-
ods rely on introducing randomness in the computation of inner products in order to
estimate their accuracy, and thus belong to the class of dynamic approaches. Unlike
classical stochastic arithmetic, however, neither of the two methods requires to in-
troduce randomness in the intermediate steps of the computation: the first method
method only adds random perturbations to the input x and/or y, whereas the second
method only adds random perturbations to the output ŝ. Both methods therefore
present the significant advantage of not requiring intrusive modifications of the inter-
mediate computations of the inner product, and can thus rely on optimized imple-
mentations such as the BLAS.

We first provide a more detailed overview of the related work on the probabilistic
estimation of the accuracy of inner products in Section 2. We describe our two new
methods in Section 3 and Section 4, respectively; for both methods, we carry out
a probabilistic error analysis that proves that they are able to reliably estimate the
accuracy of inner products with both high fidelity and high probability. We then
compare them experimentally within the CADNA library in Section 5. We provide
our concluding remarks in Section 6.

2. Related work and motivation.

2.1. Dynamic probabilistic estimation. The numerical validation of algo-
rithms is an important field that concerns itself with certifying the correctness of a
given computation in finite precision arithmetic, or at least providing an estimate of
the accuracy of the result. Given an abstract computation y = f(x) in precision u
that produces a computed ŷ, the most natural error measure from a user point-of-view
is the forward error

εfwd =
∥ŷ − y∥
∥y∥

for some choice norm, that essentially measures how many digits of ŷ are correct.
However, measuring this quantity is in general quite difficult, since the exact result
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y is unknown. Taking the computation of an inner product s = xT y as an example,
neither the exact forward error

|ŝ− s|
|s|

nor its bound (1.1)

nu
|x|T |y|
|xT y|

are easily computable since they involve the exact inner product s.
For this reason we must rely on numerical validation tools to estimate the accuracy

of complex computations. This article is concerned with numerical validation based
on probabilistic approaches. Several tools implement such an approach.

The CADNA library [14] executes each arithmetic operation several times with
stochastic rounding: each time, its result is rounded up or down with the same proba-
bility. Then, the different computed results can be compared to estimate the rounding
errors generated.

The numerical validation tool VERROU [8] also implements stochastic rounding.
VERROU can directly transform binary codes, and thus requires no modification of
the original source programs.

A similar approach is Monte Carlo Arithmetic (MCA) [17, 16], which also relies on
perturbations for numerical validation purposes. With MCA perturbations can apply
to the input or the output of elementary arithmetic operations. MCA is implemented
in MCALIB [7] and Verificarlo [5].

A specific feature of CADNA with respect to other numerical validation tools
based on perturbations lies in the fact that each arithmetic operation is executed
several times before the next one is computed. This synchronous aspect enables one
to estimate the numerical quality of any intermediate or final result. Consequently it
also enables one to detect numerical instabilities that may occur during the execution.

In the sequel we describe stochastic arithmetic that relies on stochastic rounding
as implemented in CADNA. Such a stochastic validation tool represents all floating-
point objects as d distinct values (called representatives) and performs the computa-
tions on each of these d representatives with stochastic rounding. All intermediate
quantities of the computation also have d representatives, and at the end of the
computation, the accuracy of the final result can be estimated by comparing its d
representatives: roughly, one can estimate that the digits that are identical for all
representatives are correct, while the rest have been lost to numerical noise produced
by rounding errors.

With stochastic arithmetic, an arithmetic operation c = a op b where op ∈ {+,−,×, /}
takes the form

c(1) = SR(a(1) op b(1))

. . .

c(d) = SR(a(1) op b(d))

where the (i) superscript denotes the ith representative, and where the stochastic
rounding operator SR(·) rounds either up or down at random with equal probability.
The value of the computed result is then chosen as the mean value c̄ = 1

d

∑d
i=1 c

(i)

and, if no overflow occurs, its number of correct digits (that is, its number of digits
3



not affected by rounding errors) can be estimated as

Dc = log10

(√
d |c̄|
στβ

)
where σ2 =

1

d− 1

d∑
i=1

(
c(i) − c̄

)2
. (2.1)

τβ is the value of Student’s distribution for d− 1 degrees of freedom and a confidence
level 1− β.

This process is however expensive, not so much because each operation is re-
peated d times, but more importantly because each elementary operation must be
performed separately, in order to apply stochastic rounding. In particular, consider
the computation of an inner product s = xT y, x, y ∈ Rn, via recursive summation:

s0 = 0, (2.2a)
sk+1 = sk + xkyk, for k = 1: n, (2.2b)
s = sn. (2.2c)

With stochastic arithmetic, this computation becomes

s
(i)
0 = 0, for i = 1: d, (2.3a)

s
(i)
k+1 = SR(s

(i)
k + SR(x

(i)
k y

(i)
k )), for k = 1: n and i = 1: d, (2.3b)

s(i) = s(i)n , for i = 1: d. (2.3c)

Note how the SR operator must be applied after each addition and multiplication.
This is a major performance hurdle because it prevents the use of optimized libraries,
such as the BLAS, which do not support stochastic rounding modes. Replacing the
stochastic inner products with standard ones using deterministic floating-point arith-
metic allows indeed for significant performance gains. This has for example been
evaluated with the CADNA library in [15].

2.2. Motivation and contributions. In this article, we propose two differ-
ent methods which replace the SR inner products (2.3) by standard deterministic
inner products (2.2), and introduce randomness in another way to maintain a reliable
estimation of the accuracy.

In the first method, we introduce randomness in the input by randomly perturbing
each representative of x and by computing

s(1) = (x(1) +∆x(1))T y, |∆x(1)| ≤ δ|x(1)|, (2.4)
. . .

s(d) = (x(d) +∆x(d))T y, |∆x(d)| ≤ δ|x(d)|, (2.5)

where ∆x(1), . . . , ∆x(d) are random perturbations. Because the x(i) differ by a factor
of order δ, the s(i) will differ by a factor of order κδ; hence, this method implicitly
estimates the condition number κ. We will show in Section 3 that it leads to reliable
estimation of the accuracy of the inner product.

In the second method, we compute a single, deterministic inner product ŝ, and
we use it to compute κ̂, an explicit estimation of κ. Randomness is then introduced
a posteriori by defining the d representatives of s as

s(i) = ŝ+∆s(i), i = 1: d,
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for a suitable choice of random perturbations ∆s(i) that satisfy

|∆s(i)| ≈ δκ̂|ŝ|,

where δ controls the size of the perturbations. This method will be analyzed in
Section 4.

To summarize:
• The first method (Method 1) randomizes the input x and y with a perturba-

tion of size δ, which amounts to implicitly estimating κ;
• The second method (Method 2) explicitly estimates κ, and randomizes the

output s with a perturbation of size κδ.

3. Method 1: input randomization. Given x, y ∈ Rn, Method 1 computes
the inner product s = xT y while estimating its accuracy as follows. First, we define
perturbed vectors x(1), . . .x(d) of the form

x(1) = x ◦ (1 + δξ(1)), (3.1)
. . . (3.2)

x(d) = x ◦ (1 + δξ(d)), (3.3)

where ◦ denotes the Hadamard (componentwise) product, δ > 0, and ξ(1), . . . , ξ(d) ∈
Rn are standard normal random vectors, that is, their elements ξ

(i)
k are drawn from

the standard normal distribution N (0, 1).
Then, we compute the d inner products s(i) = (x(i))T y and we define

s̄ =
1

d

d∑
i=1

s(i)

and

σ2
s =

d∑
i=1

(s̄− s(i))2.

We finally estimate the accuracy |s− s̄| of s̄ as

σs√
d(d− 1)

. (3.4)

The goal of the rest of this section is to prove that (3.4) is in fact a reliable
estimate with high probability as long as δ is not too small. Note that the important
question here is not how accurate the method is (that is, how far s̄ is from the true
s), but rather how reliable an estimator it is (that is, how far is (3.4) from the actual
accuracy?). Indeed, unlike the true accuracy formula |s̄ − s|, (3.4) is computable
because it does not require the knowledge of the true s, and it can therefore be used
to estimate the accuracy of the computation. Naturally, we also want Method 1 to
retain as much accuracy as possible, that is, to use a δ that is not too larger than the
unit roundoff u.

We separate the analysis into two parts. First, we beging by showing that (3.4) is
a good estimator of the accuracy |s−s̄| of s̄. Second, we take into account the rounding
errors that affect the computation of s̄ with deterministic floating-point arithmetic
and show that they do not significantly affect the quality of the estimator as long as
δ is larger than u.

5



3.1. Accuracy |s − s̄| of the exact s̄. We denote N (µ, σ) the normal distri-
bution with mean µ and standard deviation σ. Given two normal variables X ∼
N (µX , σX) and Y ∼ N (µY , σY ), we recall that for any a, b, c ∈ R the variable
aX + bY + c satisfies

aX + bY + c ∼ N
(
aµX + bµY + c,

√
a2σ2

X + b2σ2
Y

)
(3.5)

We have

s(i) = x(i)T y =

n∑
k=1

xkyk(1 + δξ
(i)
k ).

By (3.5), s(i) therefore satisfies

s(i) ∼ N (s, δ∥x ◦ y∥2). (3.6)

Therefore, reusing (3.5), s̄ satisfies

s̄ ∼ N (s,
δ∥x ◦ y∥2√

d
). (3.7)

Definition 3.1 (Student’s t-distribution). Let X1, . . . , Xd ∼ N (µX , σX) and
let X̄ = 1

d

∑d
i=1 Xi and Y = 1

d−1

∑d
i=1(X̄ −Xi)

2. Then the random variable

t =
X̄ − µX√

Y/d

follows the Student’s t-distribution with d− 1 degrees of freedom.

Combining (3.6) and Definition 3.1, we conclude that

t =

√
d(d− 1)(s̄− s)

σs

follows Student’s t-distribution with d − 1 degrees of freedom. Therefore, we can
bound the quality of the estimation (3.4) by

β = P(|t| ≤ τβ) = P
(
|s̄− s| ≤ τβσs√

d(d− 1)

)
. (3.8)

Since, for Student’s distribution, small values of τβ suffice to make β close to 1, we
conclude that (3.4) is a good estimator of the accuracy of s̄.

3.2. Accuracy |s − ̂̄s| of the computed ̂̄s. All that remains to do is to show
that the deterministic rounding errors that occur during the computations of s̄ do not
play a significant role in the estimation as long as δ is sufficiently larger than u. For
any integer k such that ku < 1, we define

γk =
ku

1− ku
.

Then, s(i) is computed in deterministic floating-point arithmetic and therefore the
computed ŝ(i) satisfies [9]

ŝ(i) = (x(i) +∆x(i))T y, |∆x(i)| ≤ γn|x(i)|, (3.9)
6



where ∆x(i) ∈ Rn and the inequality above holds componentwise. Hence

ŝ(i) = s(i) +∆s(i), |∆s(i)| ≤ γn|x(i)|T |y|. (3.10)

Similarly, the computed ̂̄s satisfies

̂̄s = 1

d

d∑
i=1

(
ŝ(i) +∆ŝ(i)

)
, |∆ŝ(i)| ≤ γd|ŝ(i)|, (3.11)

and thus by (3.10)

̂̄s = 1

d

d∑
i=1

(
s(i) +∆s(i) +∆ŝ(i)

)
(3.12)

=
1

d

d∑
i=1

(
s(i) +∆′s(i)

)
, |∆′s(i)| ≤ (γn + γd + γnγd)|x(i)|T |y| (3.13)

= s̄+∆s̄, |∆s̄| ≤ γn+d
1

d

d∑
i=1

|x(i)|T |y|, (3.14)

where we have used γn + γd + γnγd ≤ γn+d [9, Lemma .3.3]. To go further we
make the simplification of dropping second-order terms of magnitude O(uδ). Since
x(i) = x+O(δ) we then have

̂̄s = s̄+∆s̄, |∆s̄| ≲ γn+d|x|T |y| = γn+d∥x ◦ y∥1. (3.15)

The accuracy |s− ̂̄s| can thus be bounded by

|s− ̂̄s| ≤ |s− s̄|+ |s̄− ̂̄s| ≤ |s− s̄|+ γn+d∥x ◦ y∥1. (3.16)

This leads to the probabilistic bound

P
(
|s− ̂̄s| ≤ 2ε

)
≥ P

(
|s− s̄| ≤ ε

)
× P

(
γn+d∥x ◦ y∥1 ≤ ε

)
. (3.17)

Setting ε = τβσs/
√

d(d− 1) yields

P
(
|s− ̂̄s| ≤ 2τβσs√

d(d− 1)

)
≥ β × β′ (3.18)

where

β′ = P
(
γn+d∥x ◦ y∥1 ≤ τβσs√

d(d− 1)

)
. (3.19)

Compared with (3.8), the deterministic rounding errors therefore decrease the
probability of the estimation being reliable by a factor β′. Intuitively, it is easy to
see that β′ must be extremely close to 1 when δ ≫ u since the left-hand side in the
inequality is of order u∥x◦y∥1 while the right-hand side is of order δ∥x◦y∥2. Formally
proving this requires a right tail bound on σs.

First, we characterize the distribution of σ2
s using a result which is a direct con-

sequence of Cochran’s theorem.
7



Lemma 3.2. Let X1, . . . , Xd ∼ N (µX , σX) and let X̄ = 1
d

∑d
i=1 Xi. Then

d∑
i=1

(X̄ −Xi)
2 ∼ σ2

Xχ2
d−1,

where χ2
d−1 is the χ2 distribution with d− 1 degrees of freedom.

Combining Lemma 3.2 with (3.6) yields

σ2
s ∼ δ2∥x ◦ y∥22χ2

d−1. (3.20)

We can therefore use the Chernoff bound for the χ2 distribution: if X ∼ χ2
k, then

for any λ ≤ k
P(X ≤ λ) ≤ (λ/k)k/2 exp

(
(k − λ)/2

)
. (3.21)

Hence, defining for any λ ≤ d− 1

p(λ) =

(
λ

d− 1

)(d−1)/2

exp
(
(d− 1− λ)/2

)
, (3.22)

we obtain
P
(
σs ≤ δ∥x ◦ y∥2

√
λ

)
= P

(
σ2
s ≤ δ2∥x ◦ y∥22λ

)
≤ p(λ). (3.23)

Using (3.23), σs ≥ δ∥x ◦ y∥2λ holds with probability at least 1− p(λ). Replacing
σs by this lower bound in (3.19), we obtain

β′ ≥
(
1− p(λ)

)
× P

(
γn+d∥x ◦ y∥1 ≤ τβδ∥x ◦ y∥2

√
λ√

d(d− 1)

)
, (3.24)

where the rightmost probability does not depend on any random variables and so is
either 0 or 1. It is equal to 1 with the choice

λ =

(√
nd(d− 1)

τβ

γn+d

δ

)2

(3.25)

and we therefore conclude

β′ ≥ 1− p

((√
nd(d− 1)

τβ

γn+d

δ

)2)
. (3.26)

We plot the probability p(λ) as a function of λ and d in Figure 3.1. The figure
shows that p(λ) quickly vanishes as λ decreases, even for small values of d. Therefore,
we conclude that β′ ≥ 1− p(λ) must be very close to 1 as long as λ, and so the ratio
u/δ, is sufficiently small.

3.3. Summary. We summarize the conclusions of the above analysis in the fol-
lowing theorem, which shows that Method 1 is a reliable estimator of the accuracy.

Theorem 3.3. Let x, y ∈ Rn and for i = 1: d let x(i) = x ◦ (1 + δξ(i)), where
δ > 0 and ξ(i) ∼ N (0, 1)n. Let s(i) = (x(i))T y and s̄ = 1

d

∑d
i=1 s

(i) be computed in
deterministic floating-point arithmetic with unit roundoff u. Let

ε =

∑d
i=1(s̄− s(i))2√

d(d− 1)
.
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Figure 3.1: Probability p(λ) as defined in (3.22).

Then for any probability β > 0 the computed ̂̄s satisfies

P(|s− ̂̄s| ≤ 2τβε) ≥ ββ′,

where τβ is the value of Student’s distribution with d − 1 degrees of freedom and
probability level β, and β′ is bounded by (3.26).

4. Method 2: output randomization. Given x, y ∈ Rn, Method 2 proceeds
as follows. We first compute the inner products

s = xT y and r = |x|T |y|

in deterministic floating-point arithmetic, which yields computed ŝ and r̂. Then, we
define

κ̂ = r̂/|ŝ|,

which we use as an estimate of the condition number of the inner product. Finally,
we randomize the output by defining its d representatives as

s(i) = ŝ(1 + ξ(i)δκ̂),

where ξ(i) ∼ N (0, 1) and where δ > 0 is an estimation of the numerical noise intro-
duced in the previous computation. Note that, in practice, we may wish to force some
of the ξ(i) to be of opposite sign, especially if d is small. For example in the specific
case d = 3, we will use

s(1) = ŝ,

s(2) = ŝ(1 + ξ(2)δκ̂),

s(3) = ŝ(1 + ξ(3)δκ̂).

with ξ(2) > 0 and ξ(3) < 0 to avoid the risk that the three values s(1), s(2), and s(3)

are too close to each other.
9



In summary, Method 2 estimates the accuracy of the inner product as δκ̂. In
the context where x, y ∈ Rn are known exactly, the only source of error is in the
computation of the inner product itself and hence we should set δ ≈ u. Method 2 is
in this case quite efficient since it only requires the computation of two inner products
(s and r), both with deterministic arithmetic.

However, if x, y are the result of a previous computation which has incurred other
errors, we must have an estimate of the noise δ already affecting them. In particular,
Method 2 can be used within a stochastic validation tool, in which context we are
given d representatives x(i), y(i). As a preprocessing step, we estimate their noise
δ with the standard formula (2.1) and we use Method 2 on an arbitrary choice of
representatives, or possibly on

x̄ =
1

d

d∑
i=1

x(i)

ȳ =
1

d

d∑
i=1

y(i).

Note that δ should be set as the sum δx+δy of the noise affecting x and y, respectively.
Assuming δ to be a reliable measure of the noise, the loss of accuracy is bounded

by δκ where κ = r/|s| is the true condition number. The goal of the rest of this
section is to analyze to what extent δκ̂ = δr̂/|ŝ| remains a reliable estimate.

The computed ŝ satisfies [9]

ŝ = s+∆s, |∆s| ≤ γn|x|T |y| = γnr. (4.1)

Similarly, the computed r̂ satisfies

r̂ = r +∆r, |∆r| ≤ γnr. (4.2)

Therefore,

κ̂ =
r̂

|ŝ|
=

r +∆r

|s+∆s|
≥ r − γnr

|s|+ γnr
=

r(1− γn)

|s|(1 + γnr/|s|)
= κ

(1− γn)

(1 + γnκ)
. (4.3)

Similarly,

κ̂ =
r +∆r

|s+∆s|
≤ r + γnr

|s| − γnr
=

r(1 + γn)

|s|(1− γnr/|s|)
= κ

(1 + γn)

(1− γnκ)
. (4.4)

Hence,

κ
(1− γn)

(1 + γnκ)
≤ κ̂ ≤ κ

(1 + γn)

(1− γnκ)
. (4.5)

We have thus shown that κ̂ is a reliable estimate of κ as long as γnκ ≪ 1. In the
regime where γnκ ≈ 1, we expect all digits of the result to be lost to numerical noise
anyway, so this is not a significant issue.

5. Numerical experiments and comparison with CADNA.

5.1. The CADNA library. The CADNA1 software [14, 6] is a library which
implements stochastic arithmetic: floating-point numbers become d-dimensional sets

1http://cadna.lip6.fr
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and any operation on these d-dimensional sets is performed element per element using
stochastic rounding. With CADNA β = 5% and d = 3. Therefore the number of
correct digits is estimated from (2.1) within a 1 − β = 95% confidence interval. It
has been shown [18] that d = 3 is in some reasonable sense the optimal sample size.
The estimation with d = 3 is more reliable than with d = 2 and increasing d does not
significantly improve the quality of the estimation. Further information on stochastic
arithmetic can be found in [18] and [19].

In codes written in C, C++, or Fortran, CADNA allows one to use new numerical
types: the stochastic types. In essence, classical floating-point variables are replaced
by the corresponding stochastic variables, which are composed of three perturbed
floating-point values. The control of the accuracy can be performed on these stochas-
tic variables. The library contains the definition of all arithmetic operations, order
relations, and mathematical functions involving stochastic variables. Thanks to oper-
ator overloading, the use of CADNA in a program requires only a few modifications:
essentially changes in the declarations of variables and in input/output statements.
CADNA can detect numerical instabilities which occur during the execution of the
code. Such instabilities are usually generated by numerical noise, that is, a result
having no correct digits.

5.2. Experimental setting. In these experiments, we use 200 pairs of vectors
x and y of size n = 100. Their inner products have various condition numbers. For
each one we use as a reference value their correctly rounded inner product in double
precision and denote it as strue. All the computations described hereafter are carried
out in double precision. To simulate the fact that in real settings the vectors might
be the result of a previous computation and therefore already perturbed by numerical
errors, we generate a triplet of perturbed vectors

x =
(
x(1), x(2), x(3)

)
=
(
x+∆x(1), x+∆x(2), x+∆x(3)

)
where the ∆x(j) are random perturbations satisfying |∆x(j)| ≤ η|x|. Here η represents
the size of the noise already affecting the vectors before the computation of their inner
product. Thus if η = 0 the vectors are exact and the triplet x consists of three identical
copies of x. Note that we performed experiments (not included here) where y was
also perturbed, which led to similar conclusions.

We compare three approaches: the standard reference implementation in CADNA,
and the new approaches of Method 1 and Method 2.

CADNA computes the inner product xT y with stochastic arithmetic and thus
produces a a stochastic number

sC =
(
s
(1)
C , s

(2)
C , s

(3)
C

)
.

For the implementation of Method 1, we distinguish the cases where η = 0 and
η ̸= 0. Indeed, when η = 0, the triplet x consists of three identical copies of x and so
randomness must be added. We thus define

x̃ =
(
x̃(1), x̃(2), x̃(3)

)
=
(
x+∆x(1), x+∆x(2), x+∆x(3)

)
where the ∆x(j) are random perturbations satisfying |∆x(j)| ≤ δ|x|. Following the
conclusion of the analysis of Method 1, we should take δ sufficiently larger than the
unit roundoff u (we will compare several values of δ in the following). However, when
η ̸= 0, the triplet x already matches the required assumptions and so there is no need
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to further perturb it: we thus define x̃ = x. This amounts to taking δ = η. Method 1
thus computes the inner product x̃T y, producing a stochastic number defined as

sM1
=
(
(x̃(1))T y, (x̃(2))T y, (x̃(3))T y

)
where each inner product (x̃(i))T y is computed with standard deterministic arithmetic.

Finally, for the implementation of Method 2, we compute the inner product s(1) =
(x(1))T y with standard deterministic arithmetic and we then estimate the condition
number as

κ̂ =
|x(1)|T |y|
|s(1)|

.

We finally set the computed result to the stochastic triplet

sM2
= (s(1), s(1) +∆s(2), s(1) +∆s(3))

where we generate the random perturbations ∆s(j) such that they satisfy |∆s(j)| ≤
δκ̂|s(1)| for a given δ. Similarly to Method 1, we will take δ = η when η ̸= 0 and test
various values of δ ≥ u when η = 0.

In the following, we compare the accuracy of the results sC , sM1
, and sM2

com-
puted by CADNA, Method 1, and Method 2, respectively. For each method we report
both the estimated accuracy provided by the method, and the true accuracy obtained
by comparing the computed result to the correctly rounded result strue. In all cases
the accuracy is measured as the number of correct decimal digits of the result. Since
the computed result s = (s(1), s(2), s(3)) is a stochastic number, the true accuracy is
measured using the average result s̄ =

∑3
i=1 s

(i)/3.

5.3. Experimental results.

5.3.1. Exact input vectors. First we consider exact input vectors (η = 0)
and evaluate the estimation of the loss of accuracy due to the computation of their
inner product. In this case we must choose for δ a value of order the unit roundoff
u. Figure 5.1 compares the accuracy of the three methods for δ = u, δ = 10u, and
δ = 100u, respectively. The figures show that all three methods can reliably estimate
the accuracy of the computed inner product. However a suitable value for δ should
be chosen. Indeed, for a too small value like δ = u, Method 1 and to a lesser extent
Method 2 can overestimate the number of correct digits and are thus unreliable.
Conversely, for a too large value like δ = 100u, the estimation is reliable but the
computed result is noticeably less accurate than with the standard CADNA method,
due to the introduction of an error of order δ. Therefore, an intermediate value like
δ = 10u appears to be a suitable choice. For this value, both Method 1 and Method 2
compute a result with comparable accuracy to CADNA, while providing a reasonably
tight estimate of their accuracy. Method 2 seems to underestimate the accuracy more
frequently than Method 1 and thus appears to be slightly more pessimistic, although
overall still quite reliable.

5.3.2. Perturbed input vectors. We now consider the case where the input
vectors are already affected by a stochastic perturbation of size η. In this case we
set δ = η and we evaluate the estimation of the loss of accuracy due to both this
initial perturbation and the rounding errors in the computation of the inner product.
Figure 5.2 compares the accuracy of the three methods for η = 10−15 and η = 10−13,
respectively.
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(a) η = 0, δ = u
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(b) η = 0, δ = 10u
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(c) η = 0, δ = 100u

Figure 5.1: Accuracy of the inner product computed by CADNA, Method 1, and
Method 2, w.r.t. the condition number, for exact input vectors (η = 0), and different
values of δ.
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(a) η = δ = 10−15
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(b) η = δ = 10−13

Figure 5.2: Accuracy of the inner product computed by CADNA, Method 1, and
Method 2, w.r.t. the condition number, for perturbed input vectors with different
perturbation sizes η.

When η ≫ u, the initial perturbation dominates the rounding errors and so the
use of deterministic arithmetic in Method 1 does not change the result nor its esti-
mated accuracy compared with the use of standard stochastic arithmetic in CADNA.
Therefore from a certain level of perturbation η Method 1 is as reliable an estimator
as CADNA (as shown in Figure 5.2b this is the case already for η = 10−13). In this
context, Method 2 is also a reliable estimator, although slightly pessimistic.

These observations are confirmed in Figure 5.3, which presents the accuracy of
the methods for one pair of vectors x and y as a function of the perturbation size η.
The condition number of the corresponding inner product is approximately 1.5× 103.
The figure confirms that as soon as η ≫ u Method 1 becomes equivalent to CADNA.
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Figure 5.3: Accuracy of the inner product computed by CADNA, Method 1, and
Method 2, w.r.t. the perturbation size η, for one pair of perturbed input vectors with
condition number κ ≈ 1.5× 103.

6. Conclusion and discussion. We have proposed two new numerical valida-
tion methods to estimate the accuracy of inner products with stochastic arithmetic.
Compared with classical stochastic arithmetic methods, these new methods allow for
the use of efficient deterministic inner products to be used for the bulk of the com-
putation, only introducing randomness either in the input (Method 1) or the output
(Method 2). We have carried out a probabilistic analysis of both of these methods
which proves them to be reliable estimators. We have also confirmed their reliability
via experiments which show that both methods compute estimations that are com-
parable to the standard stochastic validation method implemented in the CADNA
library.

Overall, which of Method 1 or Method 2 should be preferred? Our experiments
show that Method 2 tends to be slightly more pessimistic than Method 1. In terms of
cost, Method 1 computes d inner products (in practice d = 3), whereas Method 2 only
computes 2 of them. However, in the case where the input vectors are already affected
by stochastic perturbations resulting from previous operations, Method 2 also requires
to measure the size of the noise δ. As a rule of thumb, we therefore recommend using
Method 2 when the input vectors are exact and performance is paramount, and using
Method 1 when the input vectors are already perturbed and/or a very tight estimate
is desired.
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