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Poisson imbedding meets the Clark-Ocone formula ∗

Caroline Hillairet† Thomas Peyrat‡ Anthony Réveillac§

April 11, 2024

Abstract

In this paper we develop a representation formula of Clark-Ocone type for any integrable
Poisson functionals, which extends the Poisson imbedding for point processes. This repre-
sentation formula differs from the classical Clark-Ocone formula on three accounts. First
the representation holds with respect to the Poisson measure instead of the compensated
one; second the representation holds true in L1 and not in L2; and finally contrary to the
classical Clark-Ocone formula the integrand is defined as a pathwise operator and not as
a L2-limiting object. We make use of Malliavin’s calculus and of the pseudo-chaotic de-
composition with uncompensated iteraded integrals to establish this Pseudo-Clark-Ocone
representation formula and to characterize the integrand, which turns out to be a pre-
dictable integrable process.

Keywords: Hawkes processes; Poisson imbedding representation; Malliavin’s calculus; Clark-
Ocone formula.
Mathematics Subject Classification (2020): 60G55; 60G57; 60H07.

1 Introduction

Martingale representation formulas for Poisson functionals have been widely investigated in
the literature (such as Løkka [?], Nualart and Schoutens [?]) in relation with stochastic analysis
tools such as the chaotic expansion or the Malliavin calculus. At the crossroad of martingale
representation and the Malliavin calculus lies the so-called Clark-Ocone1 formula which allows
one to provide a description of the integrand in terms of the Malliavin derivative. More
precisely, on the Poisson space, the Clark-Ocone formula gives the following representation of
a square-integrable random variable F :

F = E[F ] +

∫
R+

(DtF )p Ñ(dt)
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1also referred as Clark-Ocone-Haussmann formula
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where Ñ is the compensated Poisson process and (DtF )p is the predictable projection of the
Malliavin derivative of F . It is important to note that in nature the Clark-Ocone formula
and the martingale representation slightly differ as the latter may exist when the former fails
to hold (like for instance for the fractional Brownian motion which is not a semimartingale
with respect to its natural filtration). In addition the Clark-Ocone formula is restricted to
representation of random variables whereas martingale representation provides a dynamic
representation of the integrand for a given martingale. Yet in a Poisson framework both
representations are intricated. Various kinds of generalizations have been obtained. Using the
Malliavin integration by parts formula given in Picard [?], Zhang [?] establishes the following
Clark-Ocone formula: for any bounded Poisson functional F

F = E[F ] +

∫
R+×X

(
D(t,x)F

)p
Ñ(dt, dx)

where Ñ is the compensated Poisson random measure, and
(
D(t,x)F

)p is the predictable
projection of the Malliavin derivative of F . Last and Penrose [?] also give a Clark-Ocone type
martingale representation formula when the underlying filtration is generated by a Poisson
process on a measurable space. Flint and Torrisi [?] provide a Clark-Ocone formula for point
processes on a finite interval possessing a conditional intensity. Di Nunno and Vives [?] develop
a Malliavin-Skorohod type calculus for additive processes and obtain a generalization of the
Clark-Ocone formula for random variables in L1 whose integrand operator is supposed to
be in L1 as well. At the same time, the so-called Poisson imbedding (see Jacod [?, Chapter
4] or Brémaud and Massoulié [?]) provides also a representation of any point process with
respect to an uncompensated Poisson measure. More precisely, if H is a point process on
R+ with stochastic intensity λ, then these pair of processes (H,λ) can be represented on a
probability space (Ω,F ,P) supporting a random Poisson measure N on R+ × R+ and the
following representation holds true :

HT =

∫
(0,T ]×R+

1{θ≤λt}N(dt, dθ); ∀T > 0. (1.1)

Yet Hillairet and Réveillac [?] investigate the so called pseudo-chaotic expansion which in-
volves also non-compensated iterated integrals. This recent contribution leads the way to the
study of a Clark-Ocone representation formula with respect to the non-compensated Poisson
measure N, which in a sense will generalize the Poisson imbedding relation (1.1). The aim of
this paper is to investigate which Poisson-functionals admit such Pseudo-Clark-Ocone decom-
position and to determine the integrand.

More precisely, we consider a Poisson random measure N defined on (X,X) := ([0, T ] ×
X;B(R+) ⊗ X ) equipped with a non-atomic σ-finite measure ρ := dt ⊗ π, and where (X,X )
is a complete separable metric space. The Pseudo-Clark-Ocone formula is stated in Theorem
3.8 for any F in L1(Ω) (under the assumption that ρ(X) < +∞) :

F = F (ω∅) +

∫
[0,T ]×X

H(t,x)F N(dt, dx), P− a.s.. (1.2)

The operator HF is defined as follows:

H :
L0(Ω) → L0(Ω×X)
F 7→ H(t,x)F := D(t,x)F ◦ τt
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where D(t,x) is the Malliavin derivative operator and

τt :
Ω → Ω

ω =
∑n

j=1 δ(tj ,xj) 7→ ωt :=
∑n

j=1 δ(tj ,xj)1{tj<t}.

Let us emphasize that this Pseudo-Clark-Ocone formula holds for any F in L1(Ω) and its inte-
grand HF is well defined pathwise and is proved to belong to L1

P (see Theorems 3.8 and 3.9).
This is a major difference with the standard Clark-Ocone formula that requires F ∈ L2(Ω)
and for which the integrand (DF )p is only defined as a limit in L2(Ω×X) (see Remark 3.3).

The paper is organized as follows. Notations and the description of the Poisson space
and elements of Malliavin’s calculus are presented in Section 2, as well as the operators and
iterated integrals of the (pseudo)-chaotic expansions. The main contribution is stated in
Section 3, which recalls the standard and pseudo chaotic expansions and then derives the
Clark-Ocone formula with respect to the Poisson measure. Finally Section 4 gathers some
technical lemmata.

2 Elements of Malliavin’s calculus on the Poisson space

We introduce in this section some elements and notions of stochastic analysis on a general
Poisson space. All the elements presented in this section are taken from Last [?, ?].

2.1 The Poisson space

N∗ := N \ {0} denotes the set of positive integers and for any finite set S, |S| denotes its
cardinal. We fix (X,X ) a complete separable metric space equipped with a non-atomic σ-
finite measure π and we set (X,X) := ([0, T ]×X;B([0, T ])⊗X ) equipped with the non-atomic
σ-finite measure ρ := dt ⊗ π with dt the Lebesgue measure on R+ and T is a fixed positive
real number. Throughout this paper we will make use of the following notation :

Notation 2.1. We denote with bold letters x elements in X and for x ∈ X we set x := (t, x)
with t ∈ R+ and x ∈ X.

We define Ω the space of configurations on X as

Ω :=

ω =

n∑
j=1

δxj , xj ∈ X, j = 1, . . . , n, n ∈ N ∪ {+∞}

 . (2.1)

Notation 2.2. We also denote by ω∅ ∈ Ω the unique element ω of Ω such that ω(A×B) = 0
for any A×B ∈ X.

Let F be the σ-field associated to the vague topology on Ω. Let P the Poisson measure on
Ω under which the canonical evaluation N defines a Poisson random measure with intensity
measure ρ. To be more precise given any element A×B in X with ρ(A×B) > 0, the random
variable

(N(ω))(A×B) := ω(A×B)

is a Poisson random variable with intensity ρ(A×B) and Ñ defined as

(Ñ(ω))(A×B) := ω(A×B)− ρ(A×B)

3



is the compensated Poisson measure. We define the natural history associated to N

FN
t := σ{N(A×B); (A,B) ∈ X;A ⊂ [0, t]}

and FN := σ{N(A × B); (A,B) ∈ X}. For any F ∈ L1(Ω,FN) and any t ≥ 0 we denote
Et[F ] := E[F |FN

t ]. We also set for any t > 0,

FN
t− :=

∨
0<s<t

FN
s .

We set PN the predictable σ−field associated to FN that is the σ-field on [0, T ]×Ω generated
by left-continuous FN-adapted stochastic processes and we set P := PN ⊗ B(X) the set of
real-valued predictable processes X : Ω× [0, T ]× X. Let

L0
P := {X : Ω× [0, T ]× X which are P -measurable} ,

and for r > 0

LrP :=
{
X ∈ L0

P , ‖X‖Lr
P
< +∞

}
, with ‖X‖Lr

P
:= E

[∫
[0,T ]×X

|X(t,x)|rdtπ(dx)

]1/r

.

According to Jacod [?] (see also Protter [?, Corollary 3]), for any X ∈ L2
P , the process

t 7→
∫

[0,t]×XX(r,x)Ñ(dr, dx) is a FN-martingale which satisfies the following L2-isometry

E

∣∣∣∣∣
∫

[0,t]×X
X(r,x)Ñ(dr, dx)

∣∣∣∣∣
2
 = E

[∫
[0,t]×X

∣∣X(r,x)

∣∣2 drπ(dx)

]
, ∀t ∈ [0, T ]. (2.2)

2.2 Add-points operators and the Malliavin derivative

We introduce some elements of Malliavin’s calculus on Poisson processes. We set

L0(Ω) :=
{
F : Ω→ R, FN − measurable

}
,

L2(Ω) :=
{
F ∈ L0(Ω), E[|F |2] < +∞

}
.

Similarly
L0(Xj) :=

{
f : Xj → R, X⊗j −measurable

}
and for r ∈ {1, 2}, for j ∈ N∗

Lr(Xj) :=

{
f ∈ L0(Xj), ‖f‖rLr(Xj) :=

∫
Xj

|f(x1, · · · ,xj)|rρ⊗j(dx1 · · · dxj) < +∞
}
. (2.3)

Besides,
Lrs(X

j) :=
{
f ∈ Lr(Xj) and f is symmetric

}
(2.4)

is the space of square-integrable symmetric mappings where we recall that f : Xj → R is said
to be symmetric if for any element σ in Sj (the set of all permutations of {1, · · · , j}),

f(x1, . . . ,xj) = f(xσ(1), . . . ,xσ(j)), ∀(x1, . . . ,xj) ∈ Xj .

Given f : Xj → R, we write f̃ its symmetrization defined as :

f̃(x1, . . . ,xj) :=
1

n!

∑
σ∈Sj

f(xσ(1), . . . ,xσ(j)).

The main ingredient we will make use of are the add-points operators on the Poisson space Ω.
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Definition 2.3. [Add-points operators] Given n ∈ N∗, and J := {x1, . . . ,xn} ⊂ X a subset
of X with |J | = n, we set the measurable mapping :

ε+,n
J : Ω −→ Ω

ω 7−→ ω +
∑
x∈J

δx1{ω({x})=0}.

Note that by definition

ω +
∑
x∈J

δx1{ω({x})=0} = ω +

n∑
j=1

δxj1{ω({xj})=0}

that is we add the atoms xj to the path ω unless they already were part of it (which is the
meaning of the term 1{ω({xj})=0}). Note that since ρ is assumed to be atomless, given a set
J as above, P[N(J) = 0] = 1 hence in what follows we will simply write ω +

∑n
j=1 δxj for

ε+,n
x (ω).

We now recall the Malliavin derivative operator.

Definition 2.4. For F in L0(Ω), n ∈ N∗, (x1, . . . ,xn) ∈ Xn, we set

Dn
(x1,...,xn)F :=

∑
J⊂{x1,...,xn}

(−1)n−|J |F ◦ ε+,|J |
J , (2.5)

where we recall that ∅ ⊂ X. For instance when n = 1, we writeDxF := D1
xF = F (·+δx)−F (·)

which is the difference operator (also called add-one cost operator2). Relation (2.5) rewrites
as

Dn
(x1,...,xn)F (ω) =

∑
J⊂{1,...,n}

(−1)n−|J |F

ω +
∑
j∈J

δxj

 , for a.e. ω ∈ Ω.

Note that with this definition, for any ω in Ω, the mapping

(x1, . . . ,xn) 7→ Dn
(x1,...,xn)F (ω)

belongs to L0
s(X

j) defined as (2.4) and in addition the mapping

TnF : (x1, . . . ,xn) 7→ E[Dn
(x1,...,xn)F ] (2.6)

is well-defined and belongs to L2
s(X

j) for any F in L2(Ω) (see [?, ?]).

We recall the following property (see e.g. [?, Relation (15)]) : for F in L2(Ω), n ∈ N∗, and
(x1, . . . ,xn) ∈ Xn, the nth iterated Malliavin’s derivative operator Dn satisfies

DnF = D(Dn−1F ), n ≥ 1; D0F := F. (2.7)

Remark 2.5. If F is deterministic, then by definition DnF = 0 for any n ≥ 1.
2see [?, p. 5]
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2.3 Factorial measures and iterated integrals

We first introduce a purely deterministic operator that will be at the core of the pseudo-chaotic
expansion.

Definition 2.6. For F ∈ L0(Ω), we define the deterministic operators:

T0F := F (ω∅),

and for n ∈ N∗, (x1, · · · ,xn) ∈ Xn,

TnF (x1, · · · ,xn) :=
∑

J⊂{x1,··· ,xn}

(−1)n−|J |F

∑
y∈J

δy

 .

In particular, even though F is a random variable, TnF (x1, · · · ,xn) is a real number as each
term F ($J) is the evaluation of F at the outcome $J (where $J denotes

∑
y∈J δy). Besides,

given the event {N(X) = 0}, TnF (x1, · · · ,xn) coincides with Dn
(x1,...,xn)F and T0F coincides

with F .

Proposition 2.7. (Factorial measures; See e.g. [?, Proposition 1]). There exists a unique
sequence of counting random measures (N(m))m∈N∗ where for any m, N(m) is a counting
random measure on (Xm,X⊗m) with

N(1) := N and for A ∈ Xm+1,

N(m+1)(A)

:=

∫
Xm

∫
X
1{(x1,...,xm+1)∈A}N(dxm+1)−

m∑
j=1

1{(x1,...,xm,xj)∈A}

N(m)(dx1, . . . , dxm);

With this definition at hand we introduce the notion of iterated integrals. In particular for
A ∈ X,

N(n)(A⊗n) = N(A)(N(A)− 1)× · · · × (N(A)− n+ 1).

Note that by definition N(n)(A)1{N(A)<n} = 0. We now turn to the definition of two types of
iterated integrals.

Definition 2.8. Let n ∈ N∗ and fn ∈ L1(Xn).

• In(fn) the nth iterated integral of fn against the Poisson measure N defined as

In(fn) :=

∫
Xn

fn(x1, . . . ,xn) N(n)(dx1, . . . , dxn),

where each of the integrals above is well-defined pathwise for P-a.e. ω ∈ Ω.

• In(fn) the nth iterated integral of fn against the compensated Poisson measure Ñ defined
as

In(fn) :=
∑

J⊂{1,...,n}

(−1)n−|J |
∫
Xn−|J|

∫
X|J|

fn(x1, . . . ,xn) N(|J |)(dxJ)ρ⊗(n−|J |)(dxJc),
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where Jc := {1, . . . , n} \ J and dxJ := (dxj)j∈J and where each of the integrals above
is well-defined pathwise for P-a.e. ω ∈ Ω. We adopt the convention for J = ∅ that∫
...N(0) := 1. It is worth noting that in the Poisson framework the iterated integrals

In can be constructed in L1 as integrals with respect to the factorial measures in a
Lebesgue-Stieltjes fashion; or as the elements of the chaotic expansion which gives a
construction of L2(Ω) as an orthonormal sum of subsets named chaos. We refer e.g.
to [?] for a description of this construction but we recall in particular the isometry
E[|In(fn)|2] = ‖fn‖2L2(Xn) whenever fn belongs to L2(Xn).

Let us also remark that by definition In(fn) = In(f̃n) and In(fn) = In(f̃n) where
f̃n denotes the symmetrization of fn.

To conclude this section, we recall a particular case of Mecke’s formula (see e.g. [?, Relation
(11)]).

Lemma 2.9 (A particular case of Mecke’s formula). Let F ∈ L0(Ω), k ∈ N and h ∈ L0(Xk)
then

E
[
F

∫
Xk

hdN(k)

]
=

∫
Xk

h(x1, . . . ,xk)E
[
F ◦ ε+,k

x1,...,xk

]
ρ⊗k(dx1, . . . , dxk),

providing the right-hand side is well defined as an integral in L1(Xk). The so-called integration
by parts formula is then obtained with the same assumptions

E [F Ik(h)] =

∫
Xk

h(x1, . . . ,xk)E
[
Dk

(x1,...,xk)F
]
ρ⊗k(dx1, . . . , dxk). (2.8)

3 Standard/Pseudo Chaotic expansion and Clark-Ocone for-
mula

In the literature, results on representations of Poisson functionals are mainly concentrated
on the chaos expansion involving iterated compensated integrals operators In. Similarly the
classical Clark-Ocone formula is stated with respect to the compensated Poisson measure
Ñ. Yet [?] investigates the so called pseudo-chaotic expansion which involves iterated non-
compensated integrals operators In. This recent contribution leads the way to the study of
a Clark-Ocone representation formula with respect to the non-compensated Poisson measure
N.

3.1 Chaotic expansion and the Clark-Ocone formula

Let us first recall the classical chaotic expansion and the Clark-Ocone formula with respect to
the compensated Poisson measure Ñ.

Theorem 3.1 (See e.g. Theorem 2 in [?]). Let F in L2(Ω). Then there exists a unique
sequence (fFn )n≥1 with fFn ∈ L2

s(X
n) such that

F = E[F ] +

+∞∑
n=1

1

n!
In(fFn ),

where the convergence of the series holds in L2(Ω). In addition coefficients (fFn )n are given as

fFn = TnF, n ≥ 1
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where TnF is defined by (2.6) and where the equality is understood in L2(Xn). In addition
Theorem 1 in [?] provides the convergence of the series

+∞∑
n=1

∫
Xn

|TnF (x1, . . . ,xn)|2 ρ⊗n(dx1, . . . , dxn).

The other classical relation on the Poisson space is the Clark-Ocone formula, for which one
can find in the literature different variants with different conditions, such as e.g. Privault [?],
Zhang [?], Di Nunno and Vives [?]. In our setting it takes the following form.

Theorem 3.2 (Clark-Ocone formula). Let F in L2(Ω). Then

F = E[F ] +

∫
[0,T ]×X

(
D(t,x)F

)p
Ñ(dt, dx)

where the process (DF )p belongs to L2
P and is in this context the predictable projection of DF

which is properly defined in the Appendix.

Remark 3.3. Contrary to what it suggests, the meaning of the integrand in the stochastic
integral has to be made precise. According to Definition 2.4, DF belongs to L0(Ω × X)
whenever F belongs to L0(Ω); however, the definition of the operator (DF )p is not guaranteed.
For instance F in L2(Ω×X) does not entail DF ∈ L2(Ω×X). Several sufficient conditions can
be found in the literature (see Last [?]). In general as we will make it precise in the proof of
Theorem 3.2 (see Section 5), it is possible to define (DF )p in L2(Ω×X) in a limiting procedure
and based on the continuous feature of the mapping F 7→

(
Et−

[
D(t,x)F

])
(t,x)

together with

the fact that for fixed (t, x), Et−
[
D(t,x)F

]
=
(
D(t,x)F

)p P − a.s. (see [?]). For sake of
completeness, we reproduce the proof of this result in the Appendix (Section 5) following [?,
Section 3.2]. Note that even in the case of the Clark-Ocone formula obtained in [?] where the
L2 assumption on F is relaxed to L1, the integrand operator is assumed to belong to L1 as
well. In Theorem 3.8 below (Pseudo-Clark-Ocone formula) the integrability of the integrand
is a consequence of F in L1.

3.2 Pseudo-chaotic expansion and Pseudo-Clark-Ocone formula

We recall here the pseudo-chaotic expansion obtained with respect to the non-compensated
iterated integrals operators In.

Theorem 3.4 (See Theorem 2 in [?]). Assume ρ(X) < +∞ and F in L2(Ω). Then

F = F (ω∅) +
+∞∑
k=1

1

k!
Ik(TkF ); P− a.s. (3.1)

Inspired by this pseudo-chaotic expansion, we introduce below the operator that will allow us
to write a Clark-Ocone formula with respect to the non-compensated Poisson measure (that
we called Pseudo-Clark-Ocone formula).

Definition 3.5. For fixed t > 0, we consider the measurable transformation τt

τt :
Ω → Ω
ω 7→ ωt

8



where for ω of the form ω :=
∑n

j=1 δ(tj ,xj), (tj , xj) ∈ X, j = 1, . . . , n, n ∈ N ∪ {+∞}, we set

ωt :=
n∑
j=1

δ(tj ,xj)1{tj<t}.

We also set τ0 as
τ0(ω) := ω∅; ω ∈ Ω

where we recall Notation 2.2.

Roughly speaking, τt plays the role of a FN
t−-conditional expectation.

Definition 3.6. Fix (t, x) in X. For F ∈ L0(Ω), we define the operator H as :

H :
L0(Ω) → L0(Ω×X)
F 7→ H(t,x)F := D(t,x)F ◦ τt

that is for ω ∈ Ω

H(t,x)F (ω) := D(t,x)F (ωt) = F (ωt ◦ ε+
(t,x))− F (ωt).

As highlighted in the following lemma, it turns out that the operator H can be written as the
combination of the Malliavin derivative with a very specific Girsanov transformation LT,t. This
is exactly the (non-equivalent) Girsanov transformation which is at the core of the pseudo-
chaotic expansion (see [?]) and under which the Poisson measure N (with intensity ρ on X)
becomes a Poisson measure with intensity 0 on [t, T ]× X.

Lemma 3.7. Assume ρ(X) < +∞ and F ∈ L0(Ω). Fix (t, x) ∈ (0, T )×X. Then the operator
H(t,x) re-writes as

H(t,x)F = Et−[LT,tD(t,x)F ], P− a.s.

with LT,t := exp((T − t)π(X))1{N([t,T ]×X)=0}.

Proof. Let ω ∈ Ω.

(LT,tD(t,x)F )(ω) = exp((T − t)π(X))1{ω([t,T ]×X)=0}D(t,x)F (ω)

=
(
exp((T − t)π(X))1{N([t,T ]×X)=0}D(t,x)F ◦ τt

)
(ω).

Hence since D(t,x)F ◦ τt is FN
t−-mesurable

Et−[LT,tD(t,x)F ] = D(t,x)F ◦ τt exp((T − t)π(X))Et−[1{N([t,T ]×X)=0}]

= (F (ωt ◦ ε+
(t,x))− F (ωt)) exp((T − t)π(X))Et−[1{N([t,T ]×X)=0}]

= H(t,x)F.

We have now all the elements to state the Pseudo-Clark-Ocone formula for any F in L1(Ω),
first under the condition that ρ(X) < +∞.
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Theorem 3.8. Assume ρ(X) < +∞. Let F in L1(Ω). Then HF ∈ L1
P and

F = F (ω∅) +

∫
[0,T ]×X

H(t,x)F N(dt, dx), P− a.s..

In addition this decomposition is unique in the sense that if there exists (c, Z) ∈ R× L1
P such

that
F = c+

∫
[0,T ]×X

Z(t,x) N(dt, dx), P− a.s.. (3.2)

then c = F (ω∅) and for a.-e. (t, x) ∈ [0, T ]× X, Z(t,x) = H(t,x)F , P-a.s..

Proof. To highlight the main keys of the proof, some technical lemmata (namely Lemma 4.1
and Lemma 4.2) are postponed in Section 4.
Uniqueness: Assume Relation (3.2) holds. Then note that F (ω∅) = F1{N(X)=0} = c.
Fix (t, x) ∈ X, t > 0. We have for P-a.e. ω in Ω, since Z ∈ L1

P

H(t,x)F (ω) = D(t,x)F (ωt)

=

∫
[0,T ]×X

(Z(s,y)(ωt + δ(t,x))− Z(s,y)(ωt)) ωt(ds, dy) + Z(t,x)(ωt + δ(t,x))

= Z(t,x)(ωt + δ(t,x)) = Z(t,x)(ωt) = Z(t,x)(ω).

Existence: We proceed in several parts.
Step 1. Since ρ(X) < +∞, P[N(X) = 0] > 0. Let F ∈ L2(Ω). Thus limp→+∞ E[|F−F k|2] = 0

with F k := E[F ] +
∑k

n=1 In(TnF ). By Lemma 4.2 and the uniqueness of the pseudo-chaotic
expansion, for any k,

F k = F k(ω∅) +
k∑

n=1

In(TnF k), and F k = F k(ω∅) +

∫
[0,T ]×X

H(t,x)F
k N(dt, dx),

and H(t,x)F
k belongs to L1

P . In addition by Lemma 4.1, HF is well-defined in L1
P and

lim
k→+∞

E

[∣∣∣∣∣
∫

[0,T ]×X
H(t,x)F

kN(dt, dx)−
∫

[0,T ]×X
H(t,x)FN(dt, dx)

∣∣∣∣∣
]

= 0.

Hence

E

[∣∣∣∣∣F − F (ω∅)−
∫

[0,T ]×X
H(t,x)FN(dt, dx)

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣F k − F k(ω∅)−
∫

[0,T ]×X
H(t,x)F

kN(dt, dx)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
∫

[0,T ]×X
(H(t,x)F

k −H(t,x)F )N(dt, dx)

∣∣∣∣∣
]

+ E
[∣∣∣F − F k∣∣∣]+

∣∣∣F (ω∅)− F k(ω∅)
∣∣∣ →k→+∞ 0

as F (ω∅)− F p(ω∅) = (P[N(X) = 0])−1E[|F − F k|1{N(X)=0}]→p→+∞ 0.
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Step 2. Assume F ∈ L1(Ω). Let for k ≥ 1, F k := −k∨F ∧ k. Then by monotone convergence
theorem limk→+∞ E[|F − F k|] = 0. For any k, as F k ∈ L2(Ω), by Step 1,

F k = F k(ω∅) +

∫
X
H(t,x)F

kN(dt, dx).

By definition,

|F k(ω∅)− F (ω∅)| = ((P[N(X) = 0])−1)E[|F k(ω∅)− F (ω∅)|]
= ((P[N(X) = 0])−1)E[|F (ω∅)|1{|F (ω∅)|>k}]

→k→+∞ 0.

Finally by Lemma 4.1, HF ∈ L1
P and

lim
k→+∞

E

[∣∣∣∣∣
∫

[0,T ]×X
H(t,x)F

kN(dt, dx)−
∫

[0,T ]×X
H(t,x)FN(dt, dx)

∣∣∣∣∣
]

= 0

leading to F = F (ω∅) +
∫

[0,T ]×XH(t,x)FN(dt, dx).

We now extend the previous result to the case ρ(X) = +∞.

Theorem 3.9. Assume ρ(X) = +∞. Let F in L1(Ω). Then

F = F (ω∅) +

∫
R+×X

H(t,x)F N(dt, dx), P− a.s

and for any subset R ⊂ X with ρ(R) < +∞, HF1{R} ∈ L1
P . In addition if there exists

Z ∈ L0
P such that

E
[∣∣∣∣∫

R+×X
Z(t,x) N(dt, dx)

∣∣∣∣] < +∞

and
F = F (ω∅) +

∫
R+×X

Z(t,x) N(dt, dx), P− a.s.

then for a.-e. (t, x) ∈ R+ × X, Z(t,x) = H(t,x)F , P-a.s..

Proof. The proof is divided in two parts.
Uniqueness: First note that contrary to Theorem 3.8 the value of the random variable F on
the set N(R+ × X) = 0 is not uniquely defined as P[N(R+ × X) = 0] = 0. The same proof as
in Theorem 3.8 gives that for a.e. (t, x) ∈ R+ × X, H(t,x)F = Z(t,x), P-a.s..
Existence: As ρ is a non-atomic σ-finite measure on (X,X), there exists a family of sets
(Rj)j such that for any j, ρ(Rj) < +∞, Rj ⊂ Rj+1 and ∪jRj = X. For any j consider

Ωj :=

ω =

n∑
j=1

δxj , xj ∈ Rj , j = 1, . . . , n, n ∈ N ∪ {+∞}

 ⊂ Ω

so that Ωj ↗ Ω when j tends to +∞. Let F ∈ L1(Ω). As P[N(X) = 0] = 0, once again
we set F (ω∅) := 0. Fix j ≥ 1 and consider Fj := F1{Ωj} so that F j ∈ L1(Ω). Writing Nj

11



the projection of N on Rj (that is Nj(A × B) := N((A × B) ∩Rj)) places ourselves in the
framework of Theorem 3.8 and thus

Fj = F (ω∅) +

∫
Rj

H(t,x)FjN
j(dt, dx), P− a.s.

and HFj1{Rj} ∈ L1
P . By definition Nj coincides with N on Rj and for (t, x) in Rj we have

for any ω ∈ Ωj

(H(t,x)Fj)(ω) = (D(t,x)F
j ◦ τt)(ω) = F j(ωt + δ(t,x))− F j(ωt)

= F (ωt + δ(t,x))1{ωt+δ(t,x)∈Ωj} − F (ωt)1{ωt∈Ωj}

= (D(t,x)F ◦ τt)(ω)1{ωt∈Ωj} = (H(t,x)F )(ω)1{ωt∈Ωj}.

So 1{Ωj}H(t,x)Fj = 1{Ωj}H(t,x)F and thus Fj =
∫
Rj
H(t,x)F Nj(dt, dx), P− a.s..

Note also that by definition of Nj , Fj =
∫
R+×XH(t,x)F Nj(dt, dx), P− a.s..

By monotone convergence, F j converges to F in L1(Ω) so

lim
j→+∞

E
[∣∣∣∣∫

R+×X
H(t,x)FN

j(dt, dx)−
∫
R+×X

H(t,x)FN(dt, dx)

∣∣∣∣] = 0

proving that
∫
R+×XH(t,x)F N(dt, dx) ∈ L1(Ω).

Remark 3.10. For the case of point processes, the Pseudo-Clark-Ocone formula stated in
Theorem 3.8 coincides with the Poisson imbedding representation (1.1). Indeed let H be a
point process with predictable intensity λ defined through the thinning procedure

HT =

∫
(0,T ]×R+

1{θ≤λt}N(dt, dθ); ∀T > 0.

Then HT (ω∅) = 0, and using the previous representation of HT , the difference operator is

D(t,x)HT = HT (·+ δ(t,x))−HT (·)

= 1{x≤λt} +

∫ T

t
(1{θ≤λr◦ε+(t,x)}

− 1{θ≤λr})N(dr, dθ).

Therefore D(t,x)HT ◦ τt = 1{x≤λt} which is Ft−-mesurable. Thus (1.1) re-writes as

HT = HT (ω∅) +

∫
[0,T ]×[0,∞[

H(t,x)HT N(dt, dx), P− a.s..

Note that the standard Clark-Ocone formula is much more tricky to compute, since one has
to compute the conditional expectation (given Ft−) of the integral term

HT = E(HT ) +

∫
[0,T ]×[0,∞[

(
Et−

[
1{x≤λt} +

∫ T

t
(1{θ≤λr◦ε+(t,x)}

− 1{θ≤λr})N(dr, dθ)

])
Ñ(dt, dx)

= E

(∫
[0,T ]

λtdt

)
+

∫
[0,T ]×[0,∞[

1{x≤λt}Ñ(dt, dx)

+

∫
[0,T ]×[0,∞[

(
Et−

[∫ T

t
(1{θ≤λr◦ε+(t,x)}

− 1{θ≤λr})N(dr, dθ)

])
Ñ(dt, dx).

The following section gathers some technical lemmata.
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4 Technical lemmata

We first prove convergence results of the operator H(t,x). More precisely:

Lemma 4.1. Assume ρ(X) < +∞. Let r ∈ [1, 2] and F ∈ Lr(Ω). Assume there exists
(Gk)k ⊂ Lr(Ω) converging in Lr(Ω) to F such that for any k, HGk belongs to LrP . Then

lim
k→+∞

(∫
[0,T ]×X

E
[∣∣H(t,x)Gk −H(t,x)F

∣∣r] dtπ(dx)

)1/r

= 0.

In particular, the stochastic process HF belongs to LrP and we have the following convergence
in L1

lim
k→+∞

E

[∣∣∣∣∣
∫

[0,T ]×X
H(t,x)GkN(dt, dx)−

∫
[0,T ]×X

H(t,x)F N(dt, dx)

∣∣∣∣∣
]

= 0.

Proof. We adapt the proof of [?, Lemma 2.3] and give only the main arguments. By definition
of the Malliavin derivative (see Definition 2.4) and Lemma 3.7.(∫

[0,T ]×X
E
[∣∣H(t,x)Gk −H(t,x)F

∣∣r] dtπ(dx)

)1/r

= E

[∫
[0,T ]×X

∣∣Et− [LT,tD(t,x)Gk
]
− Et−

[
LT,tD(t,x)F

]∣∣r dtπ(dx)

]1/r

= E

[∫
[0,T ]×X

∣∣Et− [LT,t(D(t,x)Gk −D(t,x)F )
]∣∣r dtπ(dx)

]1/r

≤ E

[∫
[0,T ]×X

∣∣LT,t(D(t,x)Gk −D(t,x)F )
∣∣r dtπ(dx)

]1/r

= E

[∫
[0,T ]×X

(LT,t)r
∣∣D(t,x)Gk −D(t,x)F

∣∣r dtπ(dx)

]1/r

≤ CrE

[∫
[0,T ]×X

(LT,t)r
∣∣∣Gk ◦ ε+

(t,x) − F ◦ ε
+
(t,x)

∣∣∣r dtπ(dx)

]1/r

+ CrE

[∫
[0,T ]×X

(LT,t)r |Gk − F |r dtπ(dx)

]1/r

,

where Cr > 0 is a combinatorial constant depending only on r. Using Mecke’s formula (see
Lemma 2.9)

E

[∫
[0,T ]×X

(LT,t)r
∣∣∣Gk ◦ ε+

(t,x) − F ◦ ε
+
(t,x)

∣∣∣r dtπ(dx)

]1/r

= E

[∫
[0,T ]×X

exp(r(T − t)π(X))|F ◦ ε+
(t,x) −Gk ◦ ε

+
(t,x)|

r1{N([t,T ]×X)=0}dtπ(dx)

]1/r
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≤ exp(Tπ(X))E

[∫
[0,T ]×X

|F ◦ ε+
(t,x) −Gk ◦ ε

+
(t,x)|

r1{N((t,T ]×X)=0}dtπ(dx)

]1/r

= exp(Tπ(X))E

[∫
[0,T ]×X

|F ◦ ε+
(t,x) −Gk ◦ ε

+
(t,x)|

r1{N((t,T ]×X)=0} ◦ ε+
(t,x)dtπ(dx)

]1/r

= exp(Tπ(X))E

[∫
[0,T ]×X

|F −Gk|r1{N((t,T ]×X)=0}N(dt, dx)

]1/r

= exp(Tπ(X))E

[
|F −Gk|r

∫
[0,T ]×X

1{N((t,T ]×X)=0}N(dt, dx)

]1/r

.

Fix ω =
∑n

j=1 δ(tj ,xj), (tj , xj) ∈ [0, T ] × X and n ∈ N (as π(X) < +∞, ω([0, T ] × X) < +∞
P-a.s.). We have ∫

[0,T ]×X
1{N((t,T ]×X)=0}N(dt, dx)(ω)

=
n∑
j=1

1{ω((tj ,T ]×X)=0}

= 1{ω((tn,T ]×X)=0} = 1{ω((0,T ]×X)>0}.

Hence

E

[∫
[0,T ]×X

(LT,t)r
∣∣∣Gk ◦ ε+

(t,x) − F ◦ ε
+
(t,x)

∣∣∣r dtπ(dx)

]1/r

≤ exp(rTπ(X))E
[
|F −Gk|r1{N((0,T ]×X)>0}

]1/r
≤ exp(rTπ(X))E [|F −Gk|r]1/r →k→+∞ 0.

Similarly

E

[∫
[0,T ]×X

(LT,t)r |Gk − F |r dtπ(dx)

]1/r

= E

[
|Gk − F |r

∫
[0,T ]×X

(LT,t)rdtπ(dx)

]1/r

≤ exp(Tπ(X))(Tπ(X))1/rE [|Gk − F |r]1/r →k→+∞ 0.

In addition as HGk converges in LrP it converges pointwise and thus HF belongs to LrP .
Furthermore

E

[∣∣∣∣∣
∫

[0,T ]×X
H(t,x)GkN(dt, dx)−

∫
[0,T ]×X

H(t,x)FN(dt, dx)

∣∣∣∣∣
]

≤ E

[∫
[0,T ]×X

∣∣H(t,x)Gk −H(t,x)F
∣∣N(dt, dx)

]
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= E

[∫
[0,T ]×X

∣∣H(t,x)Gk −H(t,x)F
∣∣ dtπ(dx)

]

≤ (Tπ(X))
r−1
r E

[∫
[0,T ]×X

∣∣H(t,x)Gk −H(t,x)F
∣∣r dtπ(dx)

]1/r

→p→+∞ 0

using Hölder inequality.

Finally, we prove that for any n ∈ N the space generated by the iterated integrals In(fn)
and In(fn) (for fn ∈ Lr(Xn)) are identical.

Lemma 4.2. Assume ρ(X) < +∞ and let r ≥ 1.

Span
{
Ik(fk); k ∈ [[0, n]], fk ∈ Lr(Xk)

}
= Span

{
Ik(fk); k ∈ [[0, n]], fk ∈ Lr(Xk)

}
where I0(f) := f and I0(f) := f for f ∈ R. In addition for any n ∈ N∗ and fn ∈ Lr(Xn),

In(fn) =

∫
[0,T ]×X

Et−[D(t,x)In(fn)]Ñ(dt, dx), (4.1)

In(fn) =

∫
[0,T ]×X

H(t,x)In(fn)N(dt, dx), (4.2)

and HIn(fn) belongs to L1
P . Finally if r = 2, then E·−[DIn(fn)] = (DIn(fn))p and it belongs

to L2
P .

Proof. Assume ρ(X) < +∞. Recalling that In(fn) = In(f̃n) and IIn(fn) = In(f̃n) where f̃n
denotes the symmetrization of fn, without loss of generality we assume that all the mappings
below are symmetric.
Step 1: Let n ∈ N∗ and F := In(fn) with fn ∈ Lrs(Xn), r ≥ 1. Then according to Proposition
12.11 in [?], F =

∑n
j=0 Ij(gj) with

gj(x1, . . . ,xj) :=
n!

j!(n− j)!

∫
Xn−j

fn(y1, . . . ,yn−j ,x1, . . . ,xj)ρ
⊗(n−j)(dy1, . . . , dyn−j) ∈ Lr(Xn−j)

as

‖
∫
Xn−j

fn(y1, . . . ,yn−j , ·)ρ⊗(n−j)(dy1, . . . , dyn−j)‖Lr(Xn−j)

≤
∫
Xn−j

‖fn(y1, . . . ,yn−j , ·)‖Lr(Xn−j)ρ
⊗(n−j)(dy1, . . . , dyn−j)

=

∫
Xn−j

(∫
Xj

|fn(y1, . . . ,yn−j ,x1, . . . ,xj)|rρ⊗(n−j)(dx1, . . . , dxj)

)1/r

ρ⊗(n−j)(dy1, . . . , dyn−j)

≤ (Tπ(X))
r

r−1 ‖fn‖Lr(Xn).

Let n ∈ N∗ and F := In(fn) with fn ∈ Lr(Xn), r ≥ 1. Then

F =
∑

J⊂{1,...,n}

(−1)n−|J |
∫
Xn−|J|

∫
X|J|

fn(x1, . . . ,xn) N(|J |)(dxJ)ρ⊗(n−|J |)(dxJc)
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= (−1)n
∫
Xn

fn(x1, . . . ,xn)ρ⊗n(dx1, . . . , dxn)

+
∑

J⊂{1,...,n};J 6=∅

(−1)n−|J |
∫
Xn−|J|

∫
X|J|

fn(x1, . . . ,xn) N(|J |)(dxJ)ρ⊗(n−|J |)(dxJc)

= (−1)n
∫
Xn

fn(x1, . . . ,xn)ρ⊗n(dx1, . . . , dxn)

+

n∑
k=1

∫
Xk

n!

k!(n− k)!
(−1)n−k

∫
Xn−k

fn(y1, . . . ,yn−k,x1, . . . ,xk)ρ
⊗(n−k)(dy)N(k)(dx)

= I0(g0) +

n∑
k=1

Ik(gk)

with g0 := (−1)n
∫
Xn fn(x1, . . . ,xn)ρ⊗n(dx1, . . . , dxn) and as above

gk :=
n!

k!(n− k)!
(−1)n−k

∫
Xn−k

fn(y1, . . . ,yn−k, ·)ρ⊗(n−k)(dy) ∈ Lr(Xk)

Then step1 together with step 2 implies that

Span
{
Ik(fk); k ∈ [[0, n]], fk ∈ Lr(Xk)

}
= Span

{
Ik(fk); k ∈ [[0, n]], fk ∈ Lr(Xk)

}
.

Step 3: Let n ∈ N∗ and fn ∈ Lrs(Xn). We have that for any (t, x) ∈ X,

D(t,x)In(fn) = nIn−1(fn((t, x), ·))

and thus
Et−[D(t,x)In(fn)] = nIn−1

(
fn((t, x), ·)1⊗(n−1)

{[0,t)×X}

)
,

with 1⊗(n−1)
{[0,t)×X}((t2, x2), . . . , (tn, xn)) :=

∏n
i=2 1{ti<t}. The Clark-Ocone representation (4.1)

follows from classical Malliavin’s calculus. Representation (4.2) follows from the definition of
integrals I involving the non-compensated Poisson measure N. Thus uniqueness part of the
proof gives that (4.2) is in force. The last thing to be proved is that both integrands in (4.1)
and (4.2) are predictable.

Step 4: Let n ≥ 1 and fn ∈ Lr(Xn). Using classical approximations (as ρ(X) < +∞)
there exists a sequence (f `n)`≥1 ⊂ Cb(X) (the set of bounded and continuous functions on X)
such that f `n →`→+∞ fn in Lr(Xn). Set F ` := In(f `n) where by abuse of notation we make
use of the same notation of f `n for its symmetrization. We have that

E
[∣∣∣F ` − F ∣∣∣] ≤ ∫ T

0

∫
X
E
[∣∣∣nIn−1(f `n((t, x), ·))− nIn−1(fn((t, x), ·))

∣∣∣]π(dx)dt ≤ ‖f `n−fn‖L1
P
→ 0.

Thus,
H(t,x)F

` = nIn−1(f `n((t, x), ·)1⊗(n−1)
{[0,t)×X})

is left continuous in t for any x, since f `n is a continuous function. Hence we have that HF `
belongs to L1

P and so is HF by Lemma 4.1.
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Similarly if r = 2, thanks to the isometry property of the operator In (see the comment
at the end of Definition 2.8)∫ T

0

∫
X
E
[∣∣∣Et−[In(fn)]− Et−[In(f `n)]

∣∣∣2]π(dx)dt

=

∫ T

0

∫
X
E
[
|nIn−1

(
fn((t, x), ·)1⊗(n−1)

{[0,t)×X}

)
− nIn−1

(
f ln((t, x), ·)1⊗(n−1)

{[0,t)×X}

)
|2
]
π(dx)dt

= n2‖fn − f `n‖2L2(Xn) →`→+∞ 0.

Once again the continuity of the maps f `n gives that Et−[In(fn)] is the predictable projection
of DIn(fn) and thus that it belongs to L2

P .

Conclusion

This paper extends to any integrable Poisson-functional the Poisson imbedding that provides
a representation of any point process (with intensity (λt)t) as the integral of 1{θ≤λt} with
respect to an uncompensated Poisson measure N(dt, dθ). More precisely, we provide for any
F ∈ L1(Ω) a Pseudo-Clark-Ocone representation formula with respect to the uncompensated
Poisson measure and whose integrand is fully characterized as H(t,x)F = D(t,x)F ◦ τt. Besides
HF is well defined in L1

P , contrary to the standard Clark-Ocone formula which requires F ∈
L2(Ω) and whose integrand (D(t,x)F )p is only defined as a limit in L2(Ω×X).

5 Appendix

For sake of completeness, we provide below some technical elements on the standard Clark-
Ocone formula.

Lemma 5.1. Consider X a FN⊗X-measurable process with
∫

[0,T ]×X E[|X(t,x)|]dtπ(dx) < +∞.
Then there exists a unique element Xp ∈ L1

P such that for any predictable stopping time τ

E
[
Xτ,x|FN

τ−
]
1{τ<∞} = Xp

τ,x1{τ<∞}.

Proof. The proof essentially follows Lemma 3.3 in [?], in which X is assumed to be bounded.
Let X such that

∫
[0,T ]×X E[|X(t,x)|]dtπ(dx) < +∞ and we set Xk := −k ∨X ∧ k for k ∈ N∗.

For any k ≥ 1, there exists a unique P-measurable process Y k such that for any predictable
stopping τ and x ∈ X

E
[
Xk
τ,x|FN

τ−

]
1{τ<∞} = Y k

τ,x1{τ<∞} P− a.s..

By monotone convergence for any x ∈ X,

E
[
Xτ,x|FN

τ−
]
1{τ<∞} = Yτ,x1{τ<∞} P− a.s.,

where Y := limk→+∞ Y
k belong to L1

P .

We now give a concise proof of the standard Clark-Ocone formula for any F ∈ L2(Ω)
(Theorem 3.2). In particular, following [?, Section 3.2], we make precise the definition of
the integrand (DF )p in L2(Ω × X) in a limiting procedure and based on the continuous
feature of the mapping F 7→

(
Et−

[
D(t,x)F

])
(t,x)

together with the fact that for fixed (t, x),

Et−
[
D(t,x)F

]
=
(
D(t,x)F

)p P− a.s..
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Proof. The chaotic expansion (Theorem 3.1) entails that V := Span
{
In(fn); n ∈ N, fn ∈ L2(X)

}
is dense in L2(Ω). Let F := In(fn) ∈ V with n > 0 and without loss of generality fn is assumed
to be symmetric. We have that

D(t,x)F = nIn−1(fn((t, x), ·))

and by Lemma 4.2

(D(t,x)F )p = Et−[D(t,x)F ] = nIn−1(fn((t, x), ·)1{([0,t)×X)⊗(n−1)}(·))

so that
F =

∫
[0,T ]×X

Et−
[
D(t,x)F

]
Ñ(dt, dx), (5.1)

and

E

[∫
[0,T ]×X

∣∣Et− [D(t,x)F
]∣∣2 dtπ(dx)

]

= n2

∫
[0,T ]×X

E
[∣∣∣In−1(fn((t, x), ·)1{([0,t)×X)⊗(n−1)}(·))

∣∣∣2] dtπ(dx)

= n(n− 1)!

∫
([0,T ]×X)n

|fn|2 (dtπ(dx))⊗n

= E[|F |2] < +∞.

Note that by orthogonality of the operators In the previous result extends to any element F
on V with E[F ] = 0, that is for any F ∈ V with E[F ] = 0,

E

[∫
[0,T ]×X

∣∣Et− [D(t,x)F
]∣∣2 dtπ(dx)

]
= E[|F |2] < +∞.

Let the operators U and Ũ defined as

U :
V → L2

P × R+

F 7→
((

Et−[D(t,x)F ]
)

(t,x)
;E[F ]2

)
.

Ũ :
V → L2(Ω)

F 7→
∫

[0,T ]×X Et−[D(t,x)F ]Ñ(dt, dx).

For any F ∈ V , we have proved that F enjoys Representation (5.1) and Relation (2.2) implies
that

‖U(F )‖2L2(L2
P×R+) = ‖F‖2L2(Ω); ‖Ũ(F )‖2L2(Ω) = E[F 2]− E[F ]2 ≤ ‖F‖2L2(Ω).

Let F ∈ L2(Ω). There exists (Fn)n ⊂ V such that limn→+∞ E[|Fn − F |2] = 0. Using the
previous isometries the sequences (U(Fn))n and (Ũ(Fn))n are Cauchy and thus converging
respectively in L2(L2

P ×R+) and L2(Ω). Let U(F ) := (U1(F ), U2(F )) and Ũ(F )) their limits
where U1 and U2 denote the two components of the limits. In addition, the L2(Ω× [0, T ]×X)-
convergence of the process U1(Fn) implies that U1(F ) is P-measurable. Hence the process
t 7→

∫
[0,t]×X U

1(F )(r,x)Ñ(dr, dx) is a martingale and

E

∣∣∣∣∣
∫

[0,T ]×X
U1(F )(r,x)Ñ(dr, dx)

∣∣∣∣∣
2
 = E

[∫
[0,T ]×X

|U1(F )(r,x)|2drπ(dx)

]
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= lim
n→+∞

E

[∫
[0,T ]×X

|U1(Fn)(r,x)|2drπ(dx)

]
= lim

n→+∞
E[F 2

n ]− E[Fn]2 = E[F 2]− E[F ]2.

Thus

E

∣∣∣∣∣F − E[F ]−
∫

[0,T ]×X
U1(F )(r,x)Ñ(dr, dx)

∣∣∣∣∣
2


≤ lim
n→+∞

(E
[
|F − Fn|2

]
+ |E[F ]− E[Fn]|)

+ lim
n→+∞

E

[∣∣∣∣∣
∫

[0,T ]×X
U1(Fn)(r,x)Ñ(dr, dx)−

∫
[0,T ]×X

U1(F )(r,x)Ñ(dr, dx)

∣∣∣∣∣
]

≤ lim
n→+∞

E

[∫
[0,T ]×X

|U1(Fn)(r,x) − U1(F )|2drπ(dx)

]
≤ lim

n→+∞
‖U1(Fn)(r,x) − U1(F )‖2L2(L2

P×R+) = 0.

The proof is complete.
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