

A Compressible Formulation of the One-Fluid Model for Two-Phase Flows

Simon El Ouafa, Stephane Vincent, Vincent Le Chenadec, Benoît Trouette,

Syphax Fereka, Amine Chadil

► To cite this version:

Simon El Ouafa, Stephane Vincent, Vincent Le Chenadec, Benoît Trouette, Syphax Fereka, et al.. A Compressible Formulation of the One-Fluid Model for Two-Phase Flows. Fluids, 2024, 9 (4), pp.90. 10.3390/fluids9040090 . hal-04554316

HAL Id: hal-04554316 https://hal.science/hal-04554316v1

Submitted on 22 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Article A Compressible Formulation of the One-Fluid Model for Two-Phase Flows

Simon El Ouafa *, Stephane Vincent, Vincent Le Chenadec, Benoît Trouette, Syphax Fereka and Amine Chadil

Laboratoire MSME, CNRS UMR 8208, Université Gustave Eiffel, 5 Boulevard Descartes, 77454 Marne-la-Vallée, France; stephane.vincent@univ-eiffel.fr (S.V.); vincent.le.chenadec@univ-eiffel.fr (V.L.C.); benoit.trouette@univ-eiffel.fr (B.T.); syphax.fereka2@unive-eiffel.fr (S.F.); amine.chadil@cnrs.fr (A.C.) * Correspondence: simon.elouafa@univ-eiffel.fr

Abstract: In this paper, we introduce a compressible formulation for dealing with 2D/3D compressible interfacial flows. It integrates a monolithic solver to achieve robust velocity–pressure coupling, ensuring precision and stability across diverse fluid flow conditions, including incompressible and compressible single-phase and two-phase flows. Validation of the model is conducted through various test scenarios, including Sod's shock tube problem, isothermal viscous two-phase flows without capillary effects, and the impact of drops on viscous liquid films. The results highlight the ability of the scheme to handle compressible flow situations with capillary effects, which are important in computational fluid dynamics (CFD).

Keywords: compressible formulation; fully coupled solvers; momentum conserving

11

12

13

14

1. Introduction

The modelling and simulation of two-phase compressible flows is a highly dynamic field of study due to their crucial involvement in energy systems, such as aerospace engineering, the oil and gas industry, nuclear and biomedical engineering, geophysical studies, and chemical processes.

The use of numerical simulation proves necessary for analysing and understanding 15 compressible two-phase flows involving separated phases. Firstly, these flows are intrinsi-16 cally complex and involve challenging interactions that occur between different phases of 17 fluids or gases, particularly in the vicinity of interfaces. Additionally, safety considerations 18 also drive the use of the numerical simulation. In applications like nuclear reactors or 19 chemical processes, conducting experiments may not be safe or feasible. Further, the nu-20 merical simulation facilitates parametric studies, enabling engineers to efficiently explore a 21 large range of operating conditions and design parameters. The reasons mentioned above 22 have prompted the CFD community to develop a two-phase compressible flow model 23 throughout the last few decades. Our efforts have been directed towards encompassing a 24 wide array of Mach formulations documented in prior research. Noteworthy references 25 include the work of [1-6] and other relevant sources. 26

In this paper, a compressible formulation is developed to simulate such flow situations. 27 In this formulation, we solve the conservation of mass (in two forms), momentum, and 28 total energy in each of the two phases, as well as an equation for the volume fraction. 29 To close the system of equations, an equation of state is used to take into account the 30 variations in density as a function of pressure and possibly temperature. The original 31 formulation was introduced by [7] and recently extended to all-Mach flows by [8] to 32 account for heat diffusion between two different compressible phases. In the present work, 33 we extend this formulation by maintaining a strong coupling between velocity and pressure variables through the use of a monolithic solver [9-11] and by preserving the consistency 35 between mass transport and momentum via a momentum-conserving scheme [12]. Our 36

Citation: El Ouafa, S.; Vincent, S.; Le Chenadec, V.; Trouette, B.; Fereka, S.; Chadil, A. A Compressible Formulation of the One-Fluid Model for Two-Phase Flows. *Fluids* **2024**, *1*, 0. https://doi.org/

Academic Editor: Leonardo Santos de Brito Alves

Received: 1 February 2024 Revised: 13 March 2024 Accepted: 10 April 2024 Published:

Copyright: © 2024 by the authors. Submitted to *Fluids* for possible open access publication under the terms and conditions of the Creative Commons Attri-bution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). approach is different from what is traditionally performed in the two-phase compressible 37 flow simulation community, for example Abgrall [13], Saurel [14], Massot [15], who use 38 conservative variables such as density or momentum to solve the problem. The interest 39 of our approach is to manage continuous quantities as long as no shock waves occur on 40 velocity or pressure.

The remainder of this manuscript is structured as follows: Section 2 introduces the 42 governing equations, including the conservation of mass, momentum, and total energy in 43 each of the two phases. Section 3 describes the employed numerical schemes as well as the 44 monolithic solver used for the solution of the saddle point system on the velocity-pressure 45 coupling. In Section 4, we introduce different cases to check how accurate the incorporation 46 of our compressible formulation is. These test cases are divided into two parts: one to deal 47 with an adiabatic case for an inviscid flow, such as Sod's shock tube problem, whereas a 48 second part will be devoted to isothermal cases for viscous flows, like liquid injection in a 49 closed cavity, the compression of an air bubble by water, and the drop impact on viscous 50 liquid film. Ultimately, we will sum up our work and offer a perspective on future research. 51

2. Governing Equations

The derivation of the compressible formulation follows the work of [7]. The governing 53 equations, suitable for modelling compressible two-phase flows using a one-fluid model, 54 are presented. In their conservative forms, the mass and momentum equations read 55 as follows: 56

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \tag{1}$$

and

$$\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \otimes \vec{v}) = -\nabla p + \nabla \cdot \overline{\overline{\tau}} + \rho \vec{g} + \vec{F}_s$$
⁽²⁾

where \vec{v} is the fluid velocity, *p* is the pressure field, *t* is the time, and ρ and μ are the 58 properties of the fluid. In addition, $\overline{\overline{\tau}} = \mu (\nabla \vec{v} + (\nabla \vec{v})^T) - \frac{2}{3}\mu \nabla \cdot \vec{v}$ is the viscous stress 59 tensor and \vec{g} is the gravity acceleration, whereas \vec{F}_s is the capillary term acting on the 60 interface, modelled in this study by the continuum surface tension force (CSF) [16]. The 61 tracking of the spatio-temporal evolution of the interface requires solving an advection 62 equation for the phase indicator color function C: 63

$$\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = 0 \tag{3}$$

By definition, C = 1 in one phase and 0 in the other phase. In the framework of a finite volume approximation of the solution, the color function in the control volumes cut by the 65 interface is, for example, 0 < C < 1. As the velocity and the pressure fields are coupled, 66 a relation between \vec{v} and p is needed to obtain the evolution equation for the pressure. 67 Thereby, the conservation of mass equation is not used in its original form (Equation (1)) 68 but is transformed into a pressure equation that is combined with the velocity variable. 69 Within the framework of a compressible flow between two successive instants t and t + dt, 70 the differential in the density with respect to the pressure p and the temperature T leads to 71

$$\frac{d\rho}{dt} = \left(\frac{\partial\rho}{\partial p}\right)_T \frac{dp}{dt} + \left(\frac{\partial\rho}{\partial T}\right)_p \frac{dT}{dt}$$
(4)

Introducing the coefficients of isothermal compressibility and isobaric thermal expansiv-72 ity (sometimes called the expansion or dilatation coefficient), $\chi_T = \rho^{-1} (\partial \rho / \partial p)_T$ and 73 $\beta = \rho^{-1} (\partial \rho / \partial T)_n$, respectively, the mass conservation (Equation (1)), combined with 74 Equation (4), can be rewritten as 75

$$\chi_T \frac{dp}{dt} + \beta \frac{dT}{dt} + \nabla \cdot \vec{v} = 0$$
(5)

52

57

For incompressible ($\chi_T = 0$) and isothermal ($\beta = 0$) flows, Equation (5) gives $\nabla \cdot \vec{v} = 0$.

When considering compressible flow, the energy equation is also addressed. Within the scope of this paper, we focus on scenarios where thermal diffusion and mass transfer at the interface do not play a significant role and are then neglected. Consequently, under these specific circumstances, the total energy equation is formulated as follows:

$$\frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho e \vec{v}) = -\nabla \cdot (\vec{v} p) + \nabla \cdot (\overline{\overline{\tau}} \cdot \vec{v}) + \rho \vec{g} \cdot \vec{v} + \vec{F}_s \cdot \vec{v}$$
(6)

where $e = u + e_k$ denotes the total energy, which is the sum of the internal energy u and kinetic energy per unit mass $e_k = \|\vec{v}\|^2/2$.

To complete the set of equations, an equation of state (EoS) that establishes a relation-83 ship among the thermodynamic variables, pressure, p; density, ρ ; and temperature, T, is 84 required. For any phase, gas or liquid, the Noble–Abel Stiffened-Gas (NASG) equation [17] 85 can give the general formulation of an EoS. In this work, the liquid phase is always as-86 sumed to be incompressible, while the ideal gas model is adopted for the gas phase. The 87 variation in the density as a function of pressure and temperature is classically expressed 88 by $\rho = p/(rT)$, wherein *r* is the specific gas constant. On the other hand, from the NASG 89 EoS of an ideal gas, it is seen that $\rho = p/(u(\gamma - 1))$, with $\gamma = c_p/c_v$ as the isotropic gas 90 coefficient. The combination of the two previous expressions provides a relation for the 91 temperature as a function of the internal energy, $T = ru(\gamma - 1)$, needed to close the system 92 of Equations (2), (5) and (6), where the interface dynamics are provided by Equation (3). 93

3. Numerical Scheme

In this section, the global algorithm used to solve the coupled mass, momentum, and energy equations detailed in the previous section is presented.

The algorithm was designed with the underlying idea of a fully implicit formulation 97 of system equations. For example, in momentum conservation Equation (2), all variables 98 $(\rho, \vec{v}, ...)$ and terms would like to be resolved simultaneously. Due to non-linearity, some 99 quantities, such as physical properties, the inertial term, or the geometrical properties of 100 the interface, are estimated with values expected to closely approximate those obtained 101 through implicit solving. To that purpose, a consistent reformulation and discretization 102 of the inertial term, based on a momentum preserving approach [12], is used. The spacial 103 discretization relies on a classical conservative finite volume approach and is not detailed 104 in this paper. In practice, solving the full system introduces a sequential resolution of 105 equations that themselves combine explicit variables (inertial contribution) with implicit 106 variables resolved by the inversion of linear systems. 107

After time discretization, all variables at time $t^n = t_0 + n\Delta t$, where *n* is the iteration number and Δt the constant (non restrictive) time step, are supposed to be known from a previous solution, directly (\vec{v}^n , p^n , C^n , and e^n) or from a reconstruction (ρ^n , μ^n , ...). At this step, density and, more generally, all the physical properties are synchronised with the phase indicator function C^n . The density is, for example, deduced from a mixing rule, $\rho^n = (1 - C^n)\rho_1 + C^n\rho_2$, where ρ_i is the density of phase *i*. According to the phase state, an EoS is used to specify the behaviour of ρ_i .

1. The initial step involves the inertial term computation of Equations (2) and (6). As the l.h.s. of the mentioned equations has the same mathematical structure $\partial \phi / \partial t + \nabla \cdot (\phi \vec{v})$, with $\phi = \rho \vec{v}$, ρe , a general approach is used to compute temporary variables (denoted ϕ^*) in the operator splitting framework [12]. As the density is also a required variable, Equation (1) is also used in the numerical scheme in order to provide an approximation of the density.

In practice, $\phi^n = \rho^n$, $\rho^n \vec{v}^n$, $\rho^n e^n$ is first initialised before the time integration using a third-order accurate strong stability preserving Runge–Kutta (SSP-RK3) time integrator [18]:

$$\phi^{(1)} = \phi^n - \Delta t \nabla \cdot (\phi^n \vec{v}^n) \tag{7a}$$

94 95

96

81

$$\phi^{(2)} = \frac{3}{4}\phi^{n} + \frac{1}{4}\phi^{(1)} - \frac{1}{4}\Delta t\nabla \cdot \left(\phi^{(1)}\vec{v}_{adv}^{(1)}\right) \tag{7b}$$

$$\phi^{\star} = \frac{1}{3}\phi^{n} + \frac{2}{3}\phi^{(2)} - \frac{2}{3}\Delta t\nabla \cdot \left(\phi^{(2)}\vec{v}_{adv}^{(2)}\right)$$
(7c)

where $\vec{v}_{adv}^{(1)} = 2\vec{v}^n - \vec{v}^{n-1}$ and $\vec{v}_{adv}^{(2)} = (3\vec{v}^n - \vec{v}^{n-1})/2$ are the velocities correctly extrapolated to maintain scheme accuracy [19]. To ensure that ϕ remains bounded 127 during advection, high-order schemes such as CUI, WENO, or even CUBISTA are 128 used (see [19] and the references herein for more details). 129

At the end of this step, discrete consistency between the temporary density, ρ^* ; mo-130 mentum, $(\rho \vec{v})^*$; and energy, $(\rho e)^*$ variables is ensured. Furthermore, as Equation (1) 131 is a pure advection equation, ρ^* directly provides a predicted density: $\rho^{n+1} = \rho^*$. 132

2. The next step consists of the color function *C* advection. A conservative VOF approach, 133 proposed by [20], is used where Equation (3), with time discretization, is formulated as 134

$$\frac{C^{n+1} - C^n}{\Delta t} + \nabla \cdot \left(C^n \vec{v}_{adv}^{(2)} \right) = C^n \nabla \cdot \vec{v}_{adv}^{(2)} \tag{8}$$

With the knowledge of C^{n+1} , the termophysical properties of the one-fluid model are 3. 135 updated. For $\xi = \mu$, χ_T , β , γ , and r, by using an arithmetic mixing law, 136

$$\xi^{n+1} = \left(1 - C^{n+1}\right)\xi_1 + C^{n+1}\xi_2 \tag{9}$$

where ξ_i denotes the property corresponding to phase *i*. Note that the density is not updated as its value is already known from step 1. 138

4. The geometrical properties, normal properties \vec{n} , and curvature κ , of the interface are 139 evaluated. Here, a smoothed color function \tilde{C}^{n+1} is computed from a diffusion step 140 applied on C^{n+1} and the definition 141

$$\vec{n}^{n+1} = \frac{\nabla \tilde{C}^{n+1}}{\|\nabla \tilde{C}^{n+1}\|} \quad \text{and} \quad \kappa^{n+1} = \nabla \cdot \vec{n}^{n+1} \tag{10}$$

can be used in the CSF expression of $\vec{F}_s = \sigma \kappa \vec{n} \delta_I$ where σ is the surface tension and δ_I is the interface localisation. 143

5. From the EoS of an ideal gas, the temperature T can be expressed as a function of the 144 solved variables \vec{v} and e_i , 145

$$T = \frac{\gamma - 1}{r} \left(e - \frac{\|\vec{v}\|^2}{2} \right) \tag{11}$$

and can be injected into the mass conservation (Equation (5)) that couples solved 146 quantities \vec{v} , *p*, and *e*. However, the velocity norm prevents an implicit coupling 147 due to the non-linearity. The total derivative dT/dt will then be made explicit in the 148 following for non isothermal flows. 149

Using the new density ρ^{n+1} and the temporary momentum $(\rho \vec{v})^*$ from step 1, the 6. 150 physical and interface properties from steps 3 and 4, and the temperature definition 151 from step 5, the mass conservation, augmented by the compressibility and dilatation 152 effects, and the momentum equations read, with a first-order time discretization, 153

$$\chi_T^{n+1}\left(\frac{p^{n+1}-p^n}{\Delta t}+\vec{v}^{n+1}\cdot\nabla p^n\right)+\beta^{n+1}\left(\frac{T^n-T^{n-1}}{\Delta t}+\vec{v}^{n+1}\cdot\nabla T^n\right)+\nabla\cdot\vec{v}^{n+1}=0$$
(12a)

$$\frac{\rho^{n+1}\vec{v}^{n+1} - (\rho\vec{v})^{\star}}{\Delta t} = -\nabla p^{n+1} + \nabla \cdot \overline{\overline{\tau}}^{n+1} + \rho^{n+1}\vec{g} + \sigma\kappa^{n+1}\vec{n}^{n+1}\delta_I$$
(12b)

155 where only the velocity \vec{v}^{n+1} and pressure p^{n+1} fields are implicity coupled and constitute the unknown vector of the underlying linear system. This latter is solved 157

with a BiCGStab(2) solver [21], where an efficient block triangular preconditioner, improving the convergence of the iterative solver as explained in [10,11], is used. A last discussion concerns the linearization of the term $\vec{v}^{n+1}\nabla p^{n+1}$ into $\vec{v}^{n+1}\nabla p^n$. This choice relies essentially on the available stencils from the incompressible version of the used solver [11]. Another approach, where $\vec{v}^{n+1}\nabla\phi^{n+1}$, with ϕ being the pressure or the temperature field, is one again approximated with the application of step 1 to a conservative evolution equation for ϕ , is also considered.

7. Finally, we update the total energy $(\rho e)^{n+1}$ using the intermediate total energy $(\rho e)^*$ computed in step 1 and all other variables now known at time t^{n+1} :

$$\frac{(\rho e)^{n+1} - (\rho e)^{\star}}{\Delta t} = -\nabla \cdot \left(\vec{v}^{n+1} p^{n+1}\right) + \nabla \cdot \left(\overline{\vec{\tau}}^{n+1} \cdot \vec{v}^{n+1}\right) + \rho^{n+1} \vec{g} \cdot \vec{v}^{n+1} + \sigma \kappa^{n+1} \vec{n}^{n+1} \cdot \vec{v}^{n+1} \delta_I \tag{13}$$

The total energy at the end of the time iteration is deduced from $e^{n+1} = (\rho e)^{n+1} / \rho^{n+1}$.

4. Results

4.1. Sod's Shock Tube Problem

This configuration was first introduced by [22]. This is a famous test case used to check the ability of the compressible schemes to avoid numerical instability at the shock level and improve the capture of a complex system of shock waves inside the tube. The governing equations are the Euler equations (Equations (12a) and (12b) with $\mu = 0$) supplemented by the equation for the conservation of total energy (Equation (6)), with air characterized by an ideal gas model.

Here, a tube of length L = 1 m is considered. A membrane splits the tube into two regions: a high-pressure gas (p_{left} , ρ_{left}) on the left side and a low-pressure gas (p_{right} , ρ_{right}) on the other. The membrane is removed at time t = 0. A complex system of shock waves develops inside the tube, i.e., an expansion wave, a contact discontinuity, and a normal shock wave.

The initial condition is given on the 1D computational domain, $0 \le x \le 1$ m, as follows: 181

$$(\rho, \vec{v}, p) = \begin{cases} \left(\rho_{left}, \vec{v}_{left}, p_{left}\right) = (1, \vec{0}, 1) & \text{if } x \le 0.5\\ \left(\rho_{right}, \vec{v}_{right}, p_{right}\right) = (0.125, \vec{0}, 0.1) & \text{if } x > 0.5 \end{cases}$$
(14)

Preliminary studies were conducted to determine the appropriate mesh sizes for effectively capturing the phenomena of the shock tube. The simulations were carried out on a 250, 500, and 1000 Cartesian grid with time step conditions such that the CFL is defined by $\max |u|\Delta t/\Delta x = 0.3$. The matrices resulting from the discretization will be solved with the BiCGSTAB(2) solver with a residual of $\varepsilon = 10^{-9}$.

Figure 1 demonstrates well-resolved shocks with correct shock locations and fewer smeared contact discontinuities. The corresponding solutions show the evolution of pressure and density at different times (0 s, 0.025 s, 0.05 s, 0.075 s, and 0.1 s) as a function of the curvilinear abscissa of the shock tube. From this figure, it is clear that an expansion wave propagates to the left, a shock wave propagates to the right, and there is discontinuity between these two waves.

Figure 1. Sod's shock tube problem: The different colored lines represent the solutions on a 1000-point grid at different times, as indicated by the legend. From the left to the right plot, we display density and pressure along the horizontal axis.

Since the analytical solution was available, the theoretical curves are overlayed on the numerical ones in Figure 2. This illustrates a clear convergence of the numerical simulations to the exact solution when using a total energy equation, whether for velocity, pressure, internal energy, or density.

Figure 2. Sod's shock tube problem: Comparison of the numerical solution on different grids (using total energy) against the exact solution. The solutions are compared at a physical time of 0.1 s and in a line along the horizontal axis. (a) p. (b) ρ . (c) $\|\vec{v}\|$. (d) u.

Finally, the choice of the solved energy equation is discussed here. As mentioned in Section 3, as the total energy conservation is used, the temperature is deduced from the 198 fluid EoS properties. Other choices are possible, such as enthalpy conservation or, in a more traditional way, the energy equation formulated with the temperature variable (heat or 200 thermal energy equation). The two first choices involve dealing with conserved quantities, 201 i.e., the total energy e or the entalpy h, while the temperature variable in the heat equation is 202 not a conserved quantity. In the latter case, at the discrete level, the energy conservation is 203 then excepted and no longer ensured by the formulation. The consequences are significant, 204 particularly for shocks. Figure 3 again presents the pressure, density, velocity, and internal 205 energy fields by resolving the total energy (Equation (6)) or the heat equation (see [7]). On 206 the one hand, and as shown before with the convergence study (Figure 3), the conservation 207 of total energy ensures that all quantities are predicted accurately, even for coarse grids. 208 On the other hand, on the finest grid level, using the thermal energy equation implies that 209 all quantities across the shocks are badly predicted. 210

Figure 3. Sod's shock tube problem: Comparison of the numerical solution on a 1000-point grid (using total and thermal energy) against the exact solution. The solutions are compared at a physical time of 0.1 s and in a line along the horizontal axis. (a) p. (b) ρ . (c) $\|\vec{v}\|$. (d) u

4.2. Isothermal Case for a Viscous Flow without Capillary Effects

In order to validate the compressible two-phase model presented in the previous sec-212 tion, two academic test cases are studied [3] in the context of isothermal and viscous flows. 213 The purpose is to check the accuracy of the compressible model in a simple isothermal 214 two-phase case by comparing the numerical density and pressure fields with the analytical 215 solutions. The relative error is then estimated for various meshes and the convergence 216 order can be extracted. In both cases, the thermophysical characteristics of the two fluids 217 are given in Table 1. The two configurations are quite similar and are presented in Figure 4. 218 In a square cavity of side length L = 0.1 m, air is compressed by a water injection at a 219 constant mass flow rate. The initial air density is ρ_0 . As the analytical solutions to these 220 problems are based on a quasi static evolution hypothesis, the velocity V_0 is chosen to be 221 very low. In configuration (Figure 4a), air initially spans a length L_0 and the water injection 222 velocity is $V_0 = 0.1$ m/s. The mass of air is constant and its volume will vary over time 223 with the volume of water injected according to the following law: 224

$$\rho(t) = \rho_0 \left(1 - \frac{V_0 t}{L_0} \right)^{-1}$$
(15)

In the second case (Figure 4b), an air bubble of initial radius $R_0 = 30$ mm is compressed by injecting water from all the sides of the square cavity, with $V_0 = 2.5 \times 10^{-3}$ m/s. The theoretical equation for density evolution over time is

$$\rho(t) = \rho_0 \left(1 - \frac{4V_0 L t}{\pi R_0^2} \right)^{-1}$$
(16)

The analytical pressure field p is obtained from the analytical density using the ideal gas model, $p(t) = \rho(t)rT_0$, with $T_0 = 300$ K as the reference temperature.

Figure 4. (**a**) Water injection in a closed cavity initially full of air. (**b**) Compression of an air bubble by water injection.

Table 1. The physical properties of air (initial) and water used in the computations. Here, water is considered to have a constant density, whereas air is treated as a compressible fluid with an ideal gas law that couples pressure and density. The surface tension between to two phases is neglected.

	Air	Water
Density ρ (kg · m ⁻³)	1.1768292	1000
Viscosity μ (Pa · s)	$1.85 imes 10^{-5}$	1×10^{-3}
Compressibility χ_T (Pa ⁻¹)	$9.8692322 imes 10^{-6}$	$0.44 imes10^{-9}$
Specific gas constant r (J · K/kg)	287	_

In the following, the cases are simulated on four Cartesian grid meshes composed of 32^2 , 64^2 , 128^2 , and 256^2 control volumes, with a constant time step $\Delta t = 10^{-4}$ s and a residual of $\varepsilon = 10^{-9}$ for the iterative solver. The averaged values of the solved density 232

and pressure are used for the gas phase and compared to the analytical solutions in (15) ²³³ and (16). ²³⁴

Figure 5 presents the density evolution over time. The final time is chosen such that the final density value (or the gas volume) is about twice (half) the initial one. Before discussions about the convergence study of the simulations, it should be noted that all quantities of interest (density and pressure in the air) converge well, for all times, using the referenced solution. The convergence with the number of control volumes is by upper values in case 1 and by lower values in case 2.

Figure 5. Density over time for both cases and different grids. Final time is chosen such as such that final density is twice initial one. (**a**) Case 1. (**b**) Case 2.

Table 2. Convergence study for both case. Relative error in L_1 norm is computed from analytical relations Equations (15) and (16).

Case 1								
Mesh	ρ	Error L_1	order	р	Error L_1	order		
32×32	2.571	2.172×10^{-2}		2.217×10^{5}	2.114×10^{-2}			
64 imes 64	2.544	1.093×10^{-2}	0.98	2.194×10^5	1.034×10^{-2}	1.03		
128 imes 128	2.531	5.580×10^{-3}	0.97	2.182×10^5	4.980×10^{-3}	1.05		
256 imes 256	2.524	2.840×10^{-3}	0.97	2.176×10^{5}	2.240×10^{-3}	1.15		
Extrapolation	2.517	3.730×10^{-4}	0.97	2.170×10^5	1.200×10^{-3}	0.97		
Case 2								
Mesh	ρ	Error L_1	order	p	Error L_1	order		
32×32	2.383	4.784×10^{-2}		2.123×10^{5}	1.652×10^{-2}			
64 imes 64	2.441	2.482×10^{-2}	0.94	2.149×10^5	4.310×10^{-3}	0.93		
128 imes 128	2.474	1.137×10^{-2}	1.12	2.182×10^{5}	4.980×10^{-3}	1.00		
256 imes 256	2.490	5.210×10^{-3}	1.12	2.188×10^5	2.030×10^{-3}	1.08		
Extrapolation	2.503	1.630×10^{-5}	1.12	2.189×10^5	1.640×10^{-3}	1.04		

4.3. Isothermal Case for a Viscous Flow with Capillary Effects: Drop Impact on Viscous Liquid Film 250

As a continuation of the test cases already presented, the drop impact on the viscous ²⁵¹ liquid film case is set up here. The main aim is to check the ability of our compressible ²⁵² formulation to simulate two-phase flows with large density and viscosity ratios and strong 253 interface deformation. Here, the Mach number is around 0.007 and the flow configuration 254 is almost incompressible. Following the simulations in [23], we consider a drop of water of 255 diameter $D = 2.8 \times 10^{-3}$ m, perfectly circular, with coordinates (0, 0, 5.15 D), placed into a 256 rectangular domain of dimensions Lx = 10D, Ly = 10D, and Lz = 20D. The water surface 257 is initialised at y = 4.5D. The boundary conditions of the domain are non-slip on all faces 258 and homogeneous Neumann on the top. The time step is adaptive, and the CFL is 0.3. The 259 simulations were carried out with the residual $\epsilon = 10^{-5}$ of BiCGSTAB(2) solver, both with 260 the compressible formulation and with the incompressible scheme. 261

The results obtained from the compressible and incompressible models are compared 262 with the experimental results shown in Figure 6. Figure 7 shows time snapshots captured 263 at 4.3, 22.6 and 28.7 milliseconds after droplet impact. Initially, as inertia dominates the 264 capillary forces, the drop penetrates the water film and induces the formation of a crater 265 (see Figure 8a) and a rising corona, which later induces a secondary ejection of droplets. 266 After reaching the maximum depth, the crater begins to retract over time due to capillary 267 forces. Finally, compressible and incompressible solvers give identical results that are in 268 agreement with the experiment results (see Figure 6). In addition, in Figure 8b, we can 269 see an equivalence between the compressible model and the incompressible model on the evolution of the crater, in which a good agreement is observed between the numerical 271 results and the experimental measurements. We are dealing with the case where the 272 compressible model degenerates into an incompressible model. We then conclude that 273 our compressible scheme is capable of handling two-phase flows with large interface 274 deformations in incompressible limit of the flow motion. 275

Figure 7. Simulation of drop impact into a deep pool using different schemes with a resolution of 32 cells per drop diameter. Presentation of the VOF interface (C = 0.5 isosurface) at three different times: 4.3 ms, 22.6 ms, and 28.7 ms. The simulation with a resolution of 32 cells per drop diameter was carried out on 512 processors of the TGCC IRENE Rome HPC cluster. (**a**) is 4.3 ms. (**b**) is 22.6 ms. (**c**) is 28.7 ms.

Figure 8. Evolution of the dimensionless crater depth Z_{cr}^* as a function of dimensionless time τ for the studied schemes. The numerical results are compared to the experimental measurement in [23]. (a) Definition of the maximum crater depth. (b) Compressible vs. incompressible model using 32 cells per drop diameter.

5. Conclusions

In this work, we introduce a compressible formulation integrated with an original 277 monolithic solver to address two- and three-dimensional compressible interfacial flows, 278 showcasing a concrete progression in computational fluid dynamics. Our developed 279 scheme stands as a notable advancement, providing a dependable and flexible toolkit for 280 accurately and stably simulating diverse fluid flow scenarios, spanning from incompressible 281 to compressible and encompassing both single-phase and two-phase situations with or 282 without capillary effects. Future works will be devoted to the extension of this solver to 283 the validation of the presented model in the case of a droplet splashing into a pool or air 284 bubbles [24,25] or a spray of drops and the interaction between shock/rarefaction waves 285 and fluid/fluid interfaces. 286

Author Contributions: Conceptualization, S.E.O., S.V. and B.T.; Methodology, S.E.O.; Software, S.V.287and B.T.; Validation, S.E.O., S.F. and B.T.; Formal analysis, S.E.O. and S.F.; Investigation, S.E.O., S.V.288V.L.C. and A.C.; Writing—original draft, S.E.O.; Writing – review & editing, S.E.O., S.V., V.L.C., B.T.289and A.C.; Visualization, S.E.O. and S.F.; Supervision, S.V. All authors have read and agreed to the290published version of the manuscript.291

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We are grateful for access to the computational facilities of the French CINES204(National computing center for higher education) and TGCC granted by GENCI, France, under project205number A0112b06115. We thank the technical and administrative teams of these supercomputer206centers and agencies for their kind and efficient help. All authors have read and approved the final207version of manuscript to be published.208

Conflicts of Interest: The authors declare no conflicts of interest.

References

- Yoon, S.Y.; Yabe, T. The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method. *Comput. Phys. Commun.* 1999, 119, 149–158.
- Kwatra, N.; Su, J.; Grétarsson, J.T.; Fedkiw, R. A method for avoiding the acoustic time step restriction in compressible flow. *J. Comput. Phys.* 2009, 228, 4146–4161.
- Caltagirone, J.P.; Vincent, S.; Caruyer, C. A multiphase compressible model for the simulation of multiphase flows. Comput. 305 Fluids 2011, 50, 24–34.
- Shyue, K.M.; Xiao, F. An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach. J. Comput. Phys. 2014, 268, 326–354.

276

292

293

200

- Nourgaliev, R.; Luo, H.; Weston, B.; Anderson, A.; Schofield, S.; Dunn, T.; Delplanque, J.P. Fully-implicit orthogonal reconstructed Discontinuous Galerkin method for fluid dynamics with phase change. J. Comput. Phys. 2016, 305, 964–996.
- Urbano, A.; Bibal, M.; Tanguy, S. A semi implicit compressible solver for two-phase flows of real fluids. J. Comput. Phys. 2022, 456, 111034.
- Fuster, D.; Popinet, S. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. *J. Comput. Phys.* 2018, 374, 752–768.
- Saade, Y.; Lohse, D.; Fuster, D. A multigrid solver for the coupled pressure-temperature equations in an all-Mach solver with VoF. J. Comput. Phys. 2023, 476, 111865.
- El Ouafa, M.; Vincent, S.; Le Chenadec, V. Navier-stokes solvers for incompressible single- and two-phase flows. Commun. 317 Comput. Phys. 2021, 29, 1213–1245.
- El Ouafa, M.; Vincent, S.; Le Chenadec, V. Monolithic solvers for incompressible two-phase flows at large density and viscosity ratios. *Fluids* 2021, 6, 23.
- El Ouafa, S.; Vincent, S.; Le Chenadec, V.; Trouette, B. Fully-coupled parallel solver for the simulation of two-phase incompressible flows. *Comput. Fluids* 2023, 265, 105995.
- El Ouafa, M. Développement d'un Solveur Tout-Couplé Parallèle 3D Pour la Simulation des Écoulements Diphasiques Incompressibles à Forts Rapports de Viscosités et de Masses Volumiques. Ph.D. Thesis, Université Gustave Eiffel, Champs-sur-Marne, France, 2022.
- Abgrall, R.; Saurel, R. Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 2003, 186, 361–396. https://doi.org/10.1016/S0021-9991(03)00011-1.
- Saurel, R.; Abgrall, R. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows. J. Comput. Phys. 1999, 328 150, 425–467. https://doi.org/10.1006/jcph.1999.6187.
- Drui, F.; Larat, A.; Le Chenadec, V.; Kokh, S.; Massot, M. A hierarchy of two-fluid models with specific numerical methods for the simulation of bubbly flows/acoustic interactions. In Proceedings of the APS Division of Fluid Dynamics Meeting Abstracts, APS Meeting Abstracts, San Francisco, CA, USA, 23–25 November 2014; p. R33.003.
- 16. Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. 333
- 17. Le Métayer, O.; Saurel, R. The Noble-Abel stiffened-gas equation of state. Phys. Fluids 2016, 28, 046102.
- Gottlieb, S.; Shu, C.W.; Tadmor, E. Strong Stability-Preserving High-Order Time Discretization Methods. SIAM Rev. 2001, 335 43, 89–112.
- Nangia, N.; Griffith, B.E.; Patankar, N.A.; Bhalla, A.P.S. A robust incompressible Navier-Stokes solver for high density ratio multiphase flows. J. Comput. Phys. 2019, 390, 548–594.
- Weymouth, G.D.; Yue, D.K.P. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. 339 Phys. 2010, 229, 2853–2865.
 340
- Dongarra, J.J.; Duff, I.S.; Sorensen, D.C.; Van der Vorst, H.A. Numerical Linear Algebra for High Performance Computers; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1998.
- Sod, G.A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 343 1978, 27, 1–31.
- Bisighini, A.; Cossali, G.E.; Tropea, C.; Roisman, I.V. Crater evolution after the impact of a drop onto a semi-infinite liquid target.
 Phys. Rev. E 2010, 82, 036319.
- Zheng, W.; Zhu, B.; Kim, B.; Fedkiw, R. A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension. J. Comput. Phys. 2015, 280, 96–142. https://doi.org/10.1016/j.jcp.2014.08.051.
- Lentine, M.; Cong, M.; Patkar, S.; Fedkiw, R. Simulating Free Surface Flow with Very Large Time Steps. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Lausanne, Switzerland, 29–31 July 2012; Lee, J., Kry, P., Eds.; The Eurographics Association: Eindhoven, The Netherlands, 2012. https://doi.org/10.2312/SCA/SCA12/107-116.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.