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Abstract: In this paper, we introduce a compressible formulation for dealing with 2D/3D compressible 1

interfacial flows. It integrates a monolithic solver to achieve robust velocity–pressure coupling, 2

ensuring precision and stability across diverse fluid flow conditions, including incompressible and 3

compressible single-phase and two-phase flows. Validation of the model is conducted through 4

various test scenarios, including Sod’s shock tube problem, isothermal viscous two-phase flows 5

without capillary effects, and the impact of drops on viscous liquid films. The results highlight 6

the ability of the scheme to handle compressible flow situations with capillary effects, which are 7

important in computational fluid dynamics (CFD). 8

Keywords: compressible formulation; fully coupled solvers; momentum conserving 9

1. Introduction 10

The modelling and simulation of two-phase compressible flows is a highly dynamic 11

field of study due to their crucial involvement in energy systems, such as aerospace 12

engineering, the oil and gas industry, nuclear and biomedical engineering, geophysical 13

studies, and chemical processes. 14

The use of numerical simulation proves necessary for analysing and understanding 15

compressible two-phase flows involving separated phases. Firstly, these flows are intrinsi- 16

cally complex and involve challenging interactions that occur between different phases of 17

fluids or gases, particularly in the vicinity of interfaces. Additionally, safety considerations 18

also drive the use of the numerical simulation. In applications like nuclear reactors or 19

chemical processes, conducting experiments may not be safe or feasible. Further, the nu- 20

merical simulation facilitates parametric studies, enabling engineers to efficiently explore a 21

large range of operating conditions and design parameters. The reasons mentioned above 22

have prompted the CFD community to develop a two-phase compressible flow model 23

throughout the last few decades. Our efforts have been directed towards encompassing a 24

wide array of Mach formulations documented in prior research. Noteworthy references 25

include the work of [1–6] and other relevant sources. 26

In this paper, a compressible formulation is developed to simulate such flow situations. 27

In this formulation, we solve the conservation of mass (in two forms), momentum, and 28

total energy in each of the two phases, as well as an equation for the volume fraction. 29

To close the system of equations, an equation of state is used to take into account the 30

variations in density as a function of pressure and possibly temperature. The original 31

formulation was introduced by [7] and recently extended to all-Mach flows by [8] to 32

account for heat diffusion between two different compressible phases. In the present work, 33

we extend this formulation by maintaining a strong coupling between velocity and pressure 34

variables through the use of a monolithic solver [9–11] and by preserving the consistency 35

between mass transport and momentum via a momentum-conserving scheme [12]. Our 36
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approach is different from what is traditionally performed in the two-phase compressible 37

flow simulation community, for example Abgrall [13], Saurel [14], Massot [15], who use 38

conservative variables such as density or momentum to solve the problem. The interest 39

of our approach is to manage continuous quantities as long as no shock waves occur on 40

velocity or pressure. 41

The remainder of this manuscript is structured as follows: Section 2 introduces the 42

governing equations, including the conservation of mass, momentum, and total energy in 43

each of the two phases. Section 3 describes the employed numerical schemes as well as the 44

monolithic solver used for the solution of the saddle point system on the velocity–pressure 45

coupling. In Section 4, we introduce different cases to check how accurate the incorporation 46

of our compressible formulation is. These test cases are divided into two parts: one to deal 47

with an adiabatic case for an inviscid flow, such as Sod’s shock tube problem, whereas a 48

second part will be devoted to isothermal cases for viscous flows, like liquid injection in a 49

closed cavity, the compression of an air bubble by water, and the drop impact on viscous 50

liquid film. Ultimately, we will sum up our work and offer a perspective on future research. 51

2. Governing Equations 52

The derivation of the compressible formulation follows the work of [7]. The governing 53

equations, suitable for modelling compressible two-phase flows using a one-fluid model, 54

are presented. In their conservative forms, the mass and momentum equations read 55

as follows: 56

∂ρ

∂t
+∇ · (ρv⃗) = 0 (1)

and 57

∂ρv⃗
∂t

+∇ · (ρv⃗ ⊗ v⃗) = −∇p +∇ · τ + ρg⃗ + F⃗s (2)

where v⃗ is the fluid velocity, p is the pressure field, t is the time, and ρ and µ are the 58

properties of the fluid. In addition, τ = µ(∇v⃗ + (∇v⃗)T)− 2
3 µ∇ · v⃗ is the viscous stress 59

tensor and g⃗ is the gravity acceleration, whereas F⃗s is the capillary term acting on the 60

interface, modelled in this study by the continuum surface tension force (CSF) [16]. The 61

tracking of the spatio-temporal evolution of the interface requires solving an advection 62

equation for the phase indicator color function C: 63

∂C
∂t

+ v⃗ · ∇C = 0 (3)

By definition, C = 1 in one phase and 0 in the other phase. In the framework of a finite 64

volume approximation of the solution, the color function in the control volumes cut by the 65

interface is, for example, 0 < C < 1. As the velocity and the pressure fields are coupled, 66

a relation between v⃗ and p is needed to obtain the evolution equation for the pressure. 67

Thereby, the conservation of mass equation is not used in its original form (Equation (1)) 68

but is transformed into a pressure equation that is combined with the velocity variable. 69

Within the framework of a compressible flow between two successive instants t and t + dt, 70

the differential in the density with respect to the pressure p and the temperature T leads to 71

dρ

dt
=

(
∂ρ

∂p

)
T

dp
dt

+

(
∂ρ

∂T

)
p

dT
dt

(4)

Introducing the coefficients of isothermal compressibility and isobaric thermal expansiv- 72

ity (sometimes called the expansion or dilatation coefficient), χT = ρ−1(∂ρ/∂p)T and 73

β = ρ−1(∂ρ/∂T)p, respectively, the mass conservation (Equation (1)), combined with 74

Equation (4), can be rewritten as 75

χT
dp
dt

+ β
dT
dt

+∇ · v⃗ = 0 (5)
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For incompressible (χT = 0) and isothermal (β = 0) flows, Equation (5) gives ∇ · v⃗ = 0. 76

When considering compressible flow, the energy equation is also addressed. Within 77

the scope of this paper, we focus on scenarios where thermal diffusion and mass transfer 78

at the interface do not play a significant role and are then neglected. Consequently, under 79

these specific circumstances, the total energy equation is formulated as follows: 80

∂ρe
∂t

+∇ · (ρe⃗v) = −∇ · (⃗vp) +∇ ·
(
τ · v⃗

)
+ ρg⃗ · v⃗ + F⃗s · v⃗ (6)

where e = u + ek denotes the total energy, which is the sum of the internal energy u and 81

kinetic energy per unit mass ek = ∥v⃗∥2/2. 82

To complete the set of equations, an equation of state (EoS) that establishes a relation- 83

ship among the thermodynamic variables, pressure, p; density, ρ; and temperature, T, is 84

required. For any phase, gas or liquid, the Noble–Abel Stiffened-Gas (NASG) equation [17] 85

can give the general formulation of an EoS. In this work, the liquid phase is always as- 86

sumed to be incompressible, while the ideal gas model is adopted for the gas phase. The 87

variation in the density as a function of pressure and temperature is classically expressed 88

by ρ = p/(rT), wherein r is the specific gas constant. On the other hand, from the NASG 89

EoS of an ideal gas, it is seen that ρ = p/(u(γ − 1)), with γ = cp/cv as the isotropic gas 90

coefficient. The combination of the two previous expressions provides a relation for the 91

temperature as a function of the internal energy, T = ru(γ − 1), needed to close the system 92

of Equations (2), (5) and (6), where the interface dynamics are provided by Equation (3). 93

3. Numerical Scheme 94

In this section, the global algorithm used to solve the coupled mass, momentum, and 95

energy equations detailed in the previous section is presented. 96

The algorithm was designed with the underlying idea of a fully implicit formulation 97

of system equations. For example, in momentum conservation Equation (2), all variables 98

(ρ, v⃗, . . . ) and terms would like to be resolved simultaneously. Due to non-linearity, some 99

quantities, such as physical properties, the inertial term, or the geometrical properties of 100

the interface, are estimated with values expected to closely approximate those obtained 101

through implicit solving. To that purpose, a consistent reformulation and discretization 102

of the inertial term, based on a momentum preserving approach [12], is used. The spacial 103

discretization relies on a classical conservative finite volume approach and is not detailed 104

in this paper. In practice, solving the full system introduces a sequential resolution of 105

equations that themselves combine explicit variables (inertial contribution) with implicit 106

variables resolved by the inversion of linear systems. 107

After time discretization, all variables at time tn = t0 + n∆t, where n is the iteration 108

number and ∆t the constant (non restrictive) time step, are supposed to be known from 109

a previous solution, directly (⃗vn, pn, Cn, and en) or from a reconstruction (ρn, µn, . . . ). At 110

this step, density and, more generally, all the physical properties are synchronised with 111

the phase indicator function Cn. The density is, for example, deduced from a mixing rule, 112

ρn = (1 − Cn)ρ1 + Cnρ2, where ρi is the density of phase i. According to the phase state, 113

an EoS is used to specify the behaviour of ρi. 114

1. The initial step involves the inertial term computation of Equations (2) and (6). As 115

the l.h.s. of the mentioned equations has the same mathematical structure ∂ϕ/∂t + 116

∇ · (ϕv⃗), with ϕ = ρv⃗, ρe, a general approach is used to compute temporary variables 117

(denoted ϕ⋆) in the operator splitting framework [12]. As the density is also a required 118

variable, Equation (1) is also used in the numerical scheme in order to provide an 119

approximation of the density. 120

In practice, ϕn = ρn, ρnv⃗n, ρnen is first initialised before the time integration us- 121

ing a third-order accurate strong stability preserving Runge–Kutta (SSP-RK3) time 122

integrator [18]: 123

ϕ(1) = ϕn − ∆t∇ · (ϕnv⃗n) (7a)
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124

ϕ(2) =
3
4

ϕn +
1
4

ϕ(1) − 1
4

∆t∇ ·
(

ϕ(1)v⃗(1)adv

)
(7b)

125

ϕ⋆ =
1
3

ϕn +
2
3

ϕ(2) − 2
3

∆t∇ ·
(

ϕ(2)v⃗(2)adv

)
(7c)

where v⃗(1)adv = 2⃗vn − v⃗n−1 and v⃗(2)adv = (3⃗vn − v⃗n−1)/2 are the velocities correctly 126

extrapolated to maintain scheme accuracy [19]. To ensure that ϕ remains bounded 127

during advection, high-order schemes such as CUI, WENO, or even CUBISTA are 128

used (see [19] and the references herein for more details). 129

At the end of this step, discrete consistency between the temporary density, ρ⋆; mo- 130

mentum, (ρv⃗)⋆; and energy, (ρe)⋆ variables is ensured. Furthermore, as Equation (1) 131

is a pure advection equation, ρ⋆ directly provides a predicted density: ρn+1 = ρ⋆. 132

2. The next step consists of the color function C advection. A conservative VOF approach, 133

proposed by [20], is used where Equation (3), with time discretization, is formulated as 134

Cn+1 − Cn

∆t
+∇ ·

(
Cnv⃗(2)adv

)
= Cn∇ · v⃗(2)adv (8)

3. With the knowledge of Cn+1, the termophysical properties of the one-fluid model are 135

updated. For ξ = µ, χT , β, γ, and r, by using an arithmetic mixing law, 136

ξn+1 =
(

1 − Cn+1
)

ξ1 + Cn+1ξ2 (9)

where ξi denotes the property corresponding to phase i. Note that the density is not 137

updated as its value is already known from step 1. 138

4. The geometrical properties, normal properties n⃗, and curvature κ, of the interface are 139

evaluated. Here, a smoothed color function C̃n+1 is computed from a diffusion step 140

applied on Cn+1 and the definition 141

n⃗n+1 =
∇C̃n+1

∥∇C̃n+1∥
and κn+1 = ∇ · n⃗n+1 (10)

can be used in the CSF expression of F⃗s = σκn⃗δI where σ is the surface tension and δI 142

is the interface localisation. 143

5. From the EoS of an ideal gas, the temperature T can be expressed as a function of the 144

solved variables v⃗ and e, 145

T =
γ − 1

r

(
e − ∥v⃗∥2

2

)
(11)

and can be injected into the mass conservation (Equation (5)) that couples solved 146

quantities v⃗, p, and e. However, the velocity norm prevents an implicit coupling 147

due to the non-linearity. The total derivative dT/dt will then be made explicit in the 148

following for non isothermal flows. 149

6. Using the new density ρn+1 and the temporary momentum (ρv⃗)⋆ from step 1, the 150

physical and interface properties from steps 3 and 4, and the temperature definition 151

from step 5, the mass conservation, augmented by the compressibility and dilatation 152

effects, and the momentum equations read, with a first-order time discretization, 153

χn+1
T

(
pn+1 − pn

∆t
+ v⃗n+1 · ∇pn

)
+ βn+1

(
Tn − Tn−1

∆t
+ v⃗n+1 · ∇Tn

)
+∇ · v⃗n+1 = 0 (12a)

154

ρn+1v⃗n+1 − (ρv⃗)⋆

∆t
= −∇pn+1 +∇ · τ

n+1
+ ρn+1 g⃗ + σκn+1n⃗n+1δI (12b)

155

where only the velocity v⃗n+1 and pressure pn+1 fields are implicity coupled and 156

constitute the unknown vector of the underlying linear system. This latter is solved 157
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with a BiCGStab(2) solver [21], where an efficient block triangular preconditioner, 158

improving the convergence of the iterative solver as explained in [10,11], is used. 159

A last discussion concerns the linearization of the term v⃗n+1∇pn+1 into v⃗n+1∇pn. This 160

choice relies essentially on the available stencils from the incompressible version of 161

the used solver [11]. Another approach, where v⃗n+1∇ϕn+1, with ϕ being the pressure 162

or the temperature field, is one again approximated with the application of step 1 to a 163

conservative evolution equation for ϕ, is also considered. 164

7. Finally, we update the total energy (ρe)n+1 using the intermediate total energy (ρe)⋆ 165

computed in step 1 and all other variables now known at time tn+1: 166

(ρe)n+1 − (ρe)⋆

∆t
= −∇ ·

(
v⃗n+1 pn+1

)
+∇ ·

(
τ

n+1 · v⃗n+1
)
+ ρn+1 g⃗ · v⃗n+1 + σκn+1n⃗n+1 · v⃗n+1δI (13)

The total energy at the end of the time iteration is deduced from en+1 = (ρe)n+1/ρn+1. 167

4. Results 168

4.1. Sod’s Shock Tube Problem 169

This configuration was first introduced by [22]. This is a famous test case used to check 170

the ability of the compressible schemes to avoid numerical instability at the shock level and 171

improve the capture of a complex system of shock waves inside the tube. The governing 172

equations are the Euler equations (Equations (12a) and (12b) with µ = 0) supplemented by 173

the equation for the conservation of total energy (Equation (6)), with air characterized by 174

an ideal gas model. 175

Here, a tube of length L = 1 m is considered. A membrane splits the tube into two 176

regions: a high-pressure gas (ple f t, ρle f t) on the left side and a low-pressure gas (pright, ρright) 177

on the other. The membrane is removed at time t = 0. A complex system of shock waves 178

develops inside the tube, i.e., an expansion wave, a contact discontinuity, and a normal 179

shock wave. 180

The initial condition is given on the 1D computational domain, 0 ≤ x ≤ 1 m, as follows: 181

(ρ, v⃗, p) =


(

ρle f t, v⃗le f t, ple f t

)
=
(

1, 0⃗, 1
)

if x ≤ 0.5(
ρright, v⃗right, pright

)
=
(

0.125, 0⃗, 0.1
)

if x > 0.5
(14)

Preliminary studies were conducted to determine the appropriate mesh sizes for effectively 182

capturing the phenomena of the shock tube. The simulations were carried out on a 250, 183

500, and 1000 Cartesian grid with time step conditions such that the CFL is defined by 184

max |u|∆t/∆x = 0.3. The matrices resulting from the discretization will be solved with the 185

BiCGSTAB(2) solver with a residual of ε = 10−9. 186

Figure 1 demonstrates well-resolved shocks with correct shock locations and fewer 187

smeared contact discontinuities. The corresponding solutions show the evolution of pres- 188

sure and density at different times (0 s, 0.025 s, 0.05 s, 0.075 s, and 0.1 s) as a function of 189

the curvilinear abscissa of the shock tube. From this figure, it is clear that an expansion 190

wave propagates to the left, a shock wave propagates to the right, and there is discontinuity 191

between these two waves. 192



Version April 22, 2024 submitted to Fluids 6 of 11

0.0 0.2 0.4 0.6 0.8 1.0
Distance along tube axis [m]

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 [k

g/
m
3]

t=0s
t=0.025s
t=0.05s
t=0.075s
t=0.1s

0.0 0.2 0.4 0.6 0.8 1.0
Distance along tube axis [m]

0.2

0.4

0.6

0.8

1.0

Pr
es
su

re
 [P

a]

t=0s
t=0.025s
t=0.05s
t=0.075s
t=0.1s

Figure 1. Sod’s shock tube problem: The different colored lines represent the solutions on a 1000-point
grid at different times, as indicated by the legend. From the left to the right plot, we display density
and pressure along the horizontal axis.

Since the analytical solution was available, the theoretical curves are overlayed on the 193

numerical ones in Figure 2. This illustrates a clear convergence of the numerical simulations 194

to the exact solution when using a total energy equation, whether for velocity, pressure, 195

internal energy, or density. 196
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Figure 2. Sod’s shock tube problem: Comparison of the numerical solution on different grids (using
total energy) against the exact solution. The solutions are compared at a physical time of 0.1 s and in
a line along the horizontal axis. (a) p. (b) ρ. (c) ∥v⃗∥. (d) u.

Finally, the choice of the solved energy equation is discussed here. As mentioned in 197

Section 3, as the total energy conservation is used, the temperature is deduced from the 198

fluid EoS properties. Other choices are possible, such as enthalpy conservation or, in a more 199

traditional way, the energy equation formulated with the temperature variable (heat or 200

thermal energy equation). The two first choices involve dealing with conserved quantities, 201

i.e., the total energy e or the entalpy h, while the temperature variable in the heat equation is 202

not a conserved quantity. In the latter case, at the discrete level, the energy conservation is 203

then excepted and no longer ensured by the formulation. The consequences are significant, 204

particularly for shocks. Figure 3 again presents the pressure, density, velocity, and internal 205

energy fields by resolving the total energy (Equation (6)) or the heat equation (see [7]). On 206

the one hand, and as shown before with the convergence study (Figure 3), the conservation 207

of total energy ensures that all quantities are predicted accurately, even for coarse grids. 208

On the other hand, on the finest grid level, using the thermal energy equation implies that 209

all quantities across the shocks are badly predicted. 210
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Figure 3. Sod’s shock tube problem: Comparison of the numerical solution on a 1000-point grid
(using total and thermal energy) against the exact solution. The solutions are compared at a physical
time of 0.1 s and in a line along the horizontal axis. (a) p. (b) ρ. (c) ∥v⃗∥. (d) u.



Version April 22, 2024 submitted to Fluids 7 of 11

4.2. Isothermal Case for a Viscous Flow without Capillary Effects 211

In order to validate the compressible two-phase model presented in the previous sec- 212

tion, two academic test cases are studied [3] in the context of isothermal and viscous flows. 213

The purpose is to check the accuracy of the compressible model in a simple isothermal 214

two-phase case by comparing the numerical density and pressure fields with the analytical 215

solutions. The relative error is then estimated for various meshes and the convergence 216

order can be extracted. In both cases, the thermophysical characteristics of the two fluids 217

are given in Table 1. The two configurations are quite similar and are presented in Figure 4. 218

In a square cavity of side length L = 0.1 m, air is compressed by a water injection at a 219

constant mass flow rate. The initial air density is ρ0. As the analytical solutions to these 220

problems are based on a quasi static evolution hypothesis, the velocity V0 is chosen to be 221

very low. In configuration (Figure 4a), air initially spans a length L0 and the water injection 222

velocity is V0 = 0.1 m/s. The mass of air is constant and its volume will vary over time 223

with the volume of water injected according to the following law: 224

ρ(t) = ρ0

(
1 − V0t

L0

)−1
(15)

In the second case (Figure 4b), an air bubble of initial radius R0 = 30 mm is compressed 225

by injecting water from all the sides of the square cavity, with V0 = 2.5 × 10−3 m/s. The 226

theoretical equation for density evolution over time is 227

ρ(t) = ρ0

(
1 − 4V0Lt

πR2
0

)−1

(16)

The analytical pressure field p is obtained from the analytical density using the ideal gas 228

model, p(t) = ρ(t)rT0, with T0 = 300 K as the reference temperature. 229

V0

Water

Air
L0

L

V0

(a) Case 1

Water

Air

V0

V0

V0 V0
L

R0

(b) Case 2
Figure 4. (a) Water injection in a closed cavity initially full of air. (b) Compression of an air bubble by
water injection.

Table 1. The physical properties of air (initial) and water used in the computations. Here, water is
considered to have a constant density, whereas air is treated as a compressible fluid with an ideal gas
law that couples pressure and density. The surface tension between to two phases is neglected.

Air Water

Density ρ (kg ·m−3) 1.1768292 1000
Viscosity µ (Pa · s) 1.85 × 10−5 1 × 10−3

Compressibility χT (Pa−1) 9.8692322 × 10−6 0.44 × 10−9

Specific gas constant r (J ·K/kg) 287 −

In the following, the cases are simulated on four Cartesian grid meshes composed 230

of 322, 642, 1282, and 2562 control volumes, with a constant time step ∆t = 10−4 s and a 231

residual of ε = 10−9 for the iterative solver. The averaged values of the solved density 232
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and pressure are used for the gas phase and compared to the analytical solutions in (15) 233

and (16). 234

Figure 5 presents the density evolution over time. The final time is chosen such that 235

the final density value (or the gas volume) is about twice (half) the initial one. Before 236

discussions about the convergence study of the simulations, it should be noted that all 237

quantities of interest (density and pressure in the air) converge well, for all times, using 238

the referenced solution. The convergence with the number of control volumes is by upper 239

values in case 1 and by lower values in case 2. 240

Errors in the density and pressure fields, estimated with an L1 relative norm, are 241

presented in Table 2 for both cases. Regarding the relative errors, a Richardson extrapolation 242

is also used on the three finest meshes to find the asymptotic solutions at the final times. A 243

first-order 1 convergence towards the asymptotic values is obtained again. 244

Note that the convergence orders of pressure and density differ slightly since the 245

errors use quantities at the end of the time step. Density is obtained through step 1 in the 246

global algorithm presented in Section 3, while the pressure field comes from the resolution 247

of the momentum and mass conservation equations (Equations (12a) and (12b)). In case 248

the fields are synchronised before the error computation, the order is strictly the same. 249
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Figure 5. Density over time for both cases and different grids. Final time is chosen such as such that
final density is twice initial one. (a) Case 1. (b) Case 2.

Table 2. Convergence study for both case. Relative error in L1 norm is computed from analytical
relations Equations (15) and (16).

Case 1

Mesh ρ Error L1 order p Error L1 order

32 × 32 2.571 2.172 × 10−2 2.217 × 105 2.114 × 10−2

64 × 64 2.544 1.093 × 10−2 0.98 2.194 × 105 1.034 × 10−2 1.03
128 × 128 2.531 5.580 × 10−3 0.97 2.182 × 105 4.980 × 10−3 1.05
256 × 256 2.524 2.840 × 10−3 0.97 2.176 × 105 2.240 × 10−3 1.15

Extrapolation 2.517 3.730 × 10−4 0.97 2.170 × 105 1.200 × 10−3 0.97

Case 2

Mesh ρ Error L1 order p Error L1 order

32 × 32 2.383 4.784 × 10−2 2.123 × 105 1.652 × 10−2

64 × 64 2.441 2.482 × 10−2 0.94 2.149 × 105 4.310 × 10−3 0.93
128 × 128 2.474 1.137 × 10−2 1.12 2.182 × 105 4.980 × 10−3 1.00
256 × 256 2.490 5.210 × 10−3 1.12 2.188 × 105 2.030 × 10−3 1.08

Extrapolation 2.503 1.630 × 10−5 1.12 2.189 × 105 1.640 × 10−3 1.04

4.3. Isothermal Case for a Viscous Flow with Capillary Effects: Drop Impact on Viscous Liquid Film 250

As a continuation of the test cases already presented, the drop impact on the viscous 251

liquid film case is set up here. The main aim is to check the ability of our compressible 252
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formulation to simulate two-phase flows with large density and viscosity ratios and strong 253

interface deformation. Here, the Mach number is around 0.007 and the flow configuration 254

is almost incompressible. Following the simulations in [23], we consider a drop of water of 255

diameter D = 2.8 × 10−3 m, perfectly circular, with coordinates (0, 0, 5.15 D), placed into a 256

rectangular domain of dimensions Lx = 10D, Ly = 10D, and Lz = 20D. The water surface 257

is initialised at y = 4.5D. The boundary conditions of the domain are non-slip on all faces 258

and homogeneous Neumann on the top. The time step is adaptive, and the CFL is 0.3. The 259

simulations were carried out with the residual ϵ = 10−5 of BiCGSTAB(2) solver, both with 260

the compressible formulation and with the incompressible scheme. 261

The results obtained from the compressible and incompressible models are compared 262

with the experimental results shown in Figure 6. Figure 7 shows time snapshots captured 263

at 4.3, 22.6 and 28.7 milliseconds after droplet impact. Initially, as inertia dominates the 264

capillary forces, the drop penetrates the water film and induces the formation of a crater 265

(see Figure 8a) and a rising corona, which later induces a secondary ejection of droplets. 266

After reaching the maximum depth, the crater begins to retract over time due to capillary 267

forces. Finally, compressible and incompressible solvers give identical results that are in 268

agreement with the experiment results (see Figure 6). In addition, in Figure 8b, we can 269

see an equivalence between the compressible model and the incompressible model on the 270

evolution of the crater, in which a good agreement is observed between the numerical 271

results and the experimental measurements. We are dealing with the case where the 272

compressible model degenerates into an incompressible model. We then conclude that 273

our compressible scheme is capable of handling two-phase flows with large interface 274

deformations in incompressible limit of the flow motion. 275

(a) (b) (c)
Figure 6. Experimentalimages [23] of the crater formation inside a deep pool and the rising crown
above the liquid surface. (a) is 4.3 ms. (b) is 22.6 ms. (c) is 28.7 ms.

(a) (b) (c)

1-Incompressible Model

2-Compressible Model

Figure 7. Simulation of drop impact into a deep pool using different schemes with a resolution of
32 cells per drop diameter. Presentation of the VOF interface (C = 0.5 isosurface) at three different
times: 4.3 ms, 22.6 ms, and 28.7 ms. The simulation with a resolution of 32 cells per drop diameter
was carried out on 512 processors of the TGCC IRENE Rome HPC cluster. (a) is 4.3 ms. (b) is 22.6 ms.
(c) is 28.7 ms.
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Figure 8. Evolution of the dimensionless crater depth Z∗
cr as a function of dimensionless time τ for

the studied schemes. The numerical results are compared to the experimental measurement in [23].
(a) Definition of the maximum crater depth. (b) Compressible vs. incompressible model using 32
cells per drop diameter.

5. Conclusions 276

In this work, we introduce a compressible formulation integrated with an original 277

monolithic solver to address two- and three-dimensional compressible interfacial flows, 278

showcasing a concrete progression in computational fluid dynamics. Our developed 279

scheme stands as a notable advancement, providing a dependable and flexible toolkit for 280

accurately and stably simulating diverse fluid flow scenarios, spanning from incompressible 281

to compressible and encompassing both single-phase and two-phase situations with or 282

without capillary effects. Future works will be devoted to the extension of this solver to 283

the validation of the presented model in the case of a droplet splashing into a pool or air 284

bubbles [24,25] or a spray of drops and the interaction between shock/rarefaction waves 285

and fluid/fluid interfaces. 286
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