
HAL Id: hal-04554309
https://hal.science/hal-04554309

Preprint submitted on 22 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unavoidable emergent biaxiality in chiral
molecular-colloidal hybrid liquid crystals

J.-S Wu, Marina Torres Lazaro, S Ghosh, H Mundoor, Henricus Herman
Wensink, I I Smalyukh

To cite this version:
J.-S Wu, Marina Torres Lazaro, S Ghosh, H Mundoor, Henricus Herman Wensink, et al.. Unavoidable
emergent biaxiality in chiral molecular-colloidal hybrid liquid crystals. 2024. �hal-04554309�

https://hal.science/hal-04554309
https://hal.archives-ouvertes.fr


Unavoidable emergent biaxiality in chiral molecular-colloidal hybrid liquid crystals

J.-S. Wu,1 M. Torres Lázaro,2 S. Ghosh,1 H. Mundoor,1 H. H. Wensink,2 and I. I. Smalyukh1, 3, 4, 5

1Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO, USA
2Laboratoire de Physique des Solides - UMR 8502,
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Chiral nematic or cholesteric liquid crystals (LCs) are chiral mesophases with long-ranged ori-
entational order featuring a quasi-layered periodicity imparted by a helical director configuration
but lacking positional order. Doping molecular cholesteric LCs with thin colloidal rods with a large
length-to-width ratio or disks with a large diameter-to-thickness ratio adds another level of complex-
ity to the system because of the interplay between weak surface anchoring boundary conditions and
bulk-based elastic distortions around the particle-LC interface. By using colloidal disks and rods
with different geometric shapes and boundary conditions, we demonstrate that these anisotropic col-
loidal inclusions exhibit biaxial orientational probability distributions, where they have tendencies
to orient with the long rod axes and disk normals perpendicular to the helix axis, thus imparting
strong local biaxiality on the hybrid cholesteric LC structure. Unlike the situation in non-chiral
hybrid molecular-colloidal LCs, where biaxial order emerges only at modest to high volume frac-
tions of the anisotropic colloidal particles, above a uniaxial-biaxial transition concentration, the
orientational probability distribution of colloidal inclusions immersed in chiral nematic hosts are
unavoidably biaxial even at vanishingly low particle volume fractions. In addition, the colloidal
inclusions induce local biaxiality in the molecular orientational order of the LC host medium, which
enhances the weak biaxiality of the LC in a chiral nematic phase coming from the symmetry break-
ing caused by the presence of the helical axis. With the help of analytical modeling and computer
simulations based on minimizing the Landau de Gennes free energy of the host LC around the col-
loidal inclusions, we explain our experimental findings and conclude that the biaxial order of chiral
molecular-colloidal LCs is strongly enhanced as compared to both achiral molecular-colloidal LCs
and molecular cholesteric LCs and is rather unavoidable.

I. INTRODUCTION

Since the experimental discovery of chiral nematic
liquid crystals (LCs) over 150 years ago [1, 2], LC
mesophases featuring chirality and long-range orienta-
tional order have been the focus of many research studies.
The fundamental studies of geometry and topology of chi-
ral nematic LCs as model systems provide extensive in-
sights into physics principles associated with experimen-
tally less accessible systems like particle physics or cos-
mology [3–12], in addition to their technological applica-
tion in electro-optics and displays. On the other hand, bi-
axial nematic mesophases have been highly sought-after
in soft matter systems since their first theoretical consid-
eration in 1970 [13]. However, even in a soft-matter sys-
tem with strongly biaxial building blocks such as brick-
shaped molecules, biaxiality was experimentally elusive
and hard to unambiguously demonstrate in equilibrium
states. Recent reports of the experimental discovery of
biaxial nematic order include observations in micellar
and molecular LCs formed by amphiphilic and bent-core
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molecules, respectively [14, 15], and also colloidal disper-
sion of highly anisotropic particles immersed in molecular
LC hosts, so-called hybrid molecular-colloidal nematics
[16–18]. The interplay between chirality and biaxiality
in orientational order has been intensively studied for LC
systems [19–28]. It has been concluded that cholesteric
twisted alignment and biaxial order of LC molecules am-
plify each other and that a chiral twist configuration
cannot be observed without building blocks featuring
a certain degree of biaxiality in their orientational dis-
tributions at the molecular level. However, for purely
molecular systems, the chirality-enhanced biaxiality of
the molecular distribution was predicted and experimen-
tally found to be rather weak [19–26], scaling as (qLm)2

according to the prediction by Priest and Lubensky for
single-component molecular LCs [19] (here q = 2π/p, p is
the helical pitch of the chiral nematic and Lm the molec-
ular length). To date, to the best of our knowledge,
there are no experimental or theoretical considerations
of how the biaxiality of the orientational distribution of
anisotropic colloidal particles could interplay with the
chirality of the nematic host in hybrid molecular-colloidal
LC systems.

In this work, we demonstrate an unavoidably biax-
ial orientation probability distribution for uniaxial col-
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FIG. 1: (a) Helical structure of a chiral LC with helical pitch
length p, with gray ellipsoids representing LC molecules and
colored axes depicting the orthogonal molecular frame: LC
director n̂ (red), helical axis χ̂ (green), and the third axis τ̂
(blue). (b)-(c) Visualizations of a colloidal disk (b) and rod
(c) immersed in a chiral LC at their equilibrium orientations.
Colloids are colored in gray, and the yellow contours mark a
director deviation of 0.67° (b) and 0.3° (c), respectively, of
the numerically-relaxed LC structures from the ideal helical
state indicated by the colored double arrows. For all simula-
tions the anchoring at the colloid surface is homeotropic with
strength W0 = 10−4Jm−2.

loidal particles dispersed in a weakly chiral molecular
host, which is rather unexpected. We report strongly
enhanced biaxial order in the orientational distribution
probability for colloidal rods scaling as (qLc)2, where the
length of the colloidal particles Lc is in the micron range,
more than 3 orders of magnitude larger than that of LC
molecules, albeit still an order of magnitude or so smaller
than the pitch p. The geometry of the cholesteric LC is
described by three non-polar, orthogonal director fields
[Fig. 1]: molecular director field n̂ = −n̂ representing
the local average molecular alignment, the helical axis
field χ̂ = −χ̂ along which n̂ rotates, and the third field
τ̂ = ±n̂ × χ̂ [29, 30]. Here, the helicoidal configuration
with a mutually perpendicular molecular frame (n̂, χ̂, τ̂)
and helical pitch p is hardly perturbed by the intro-
duction of thin colloidal disks or rods in view of their
low concentration and weak surface anchoring bound-
ary conditions. The colloidal particles are uniaxial on
their own with high aspect ratios, and their orientations
are well-controlled by pre-designed boundary conditions.
The biaxiality of the colloidal orientational distribution is
found to exceed values known for biaxiality on the molec-
ular scale in cholesteric LCs and in nematic molecular
colloidal-molecular hybrid systems, despite the low col-
loidal concentration and weak chirality of the molecular
host. In cases where the colloids align along the τ̂ axis,

the biaxiality is found to be more pronounced than when
they are aligned along the molecular director n̂. Further-
more, the molecular biaxiality of the LC host medium
is further boosted by surface anchoring-induced distor-
tions at the edges of the colloidal particles. In contrast
to the orientational distribution of colloidal inclusions in
nematic hybrid molecular-colloidal LCs, in which biaxial
order emerges only at modest to high volume fractions
of anisotropic colloidal particles [17], the orientational
probability distribution of colloidal inclusions in chiral
nematic hosts is unavoidably biaxial even at very low
colloidal volume fractions. In turn, colloidal inclusions
impart local biaxiality onto the molecular orientational
distributions of the LC host medium, which enhances the
weak biaxial order of the LC in a chiral nematic phase due
to the symmetry breaking caused by the presence of the
helical axis. With the help of computer simulations based
on minimizing the Landau de Gennes free energy of the
LC host around the colloidal inclusions [Fig. 2], we ex-
plain our experimental findings and conclude that the bi-
axial order of chiral molecular-colloidal LCs is enhanced
compared to that of both nematic molecular-colloidal and
cholesteric molecular counterparts. We demonstrate that
the interplay between chirality and biaxiality in hybrid
molecular-colloidal LCs is stronger than that in purely
molecular or colloidal systems and that the biaxial sym-
metry of the orientational distributions of the anisotropic
colloids is a universal feature. Finally, we discuss how
our findings may allow for expanding the use of chiral
molecular-colloidal LCs as model systems in studies of
nonabelian defect lines and topological solitons hosted
by states of matter with high-dimensional order param-
eter spaces.

II. METHODS AND TECHNIQUES

A. Synthesis of colloidal disks and rods

Disk or rod-shaped β−NaYF4:Yb/Er particles are syn-
thesized following the hydrothermal synthesis methods
described in detail elsewhere [17, 18, 31–33]. Precursors
and solvents used for the synthesis of colloidal particles
are of analytical grade and used without additional pu-
rifications, and they are bought from Sigma Aldrich if
not specified otherwise. To synthesize nanodisks, 0.7 g
of sodium hydroxide (purchased from Alfa Aesar) is dis-
solved in 10 ml of deionized water and then added with 5
ml of oxalic acid solution (2g, 19.2 mmol) at room tem-
perature to obtain a transparent solution. Under vigor-
ous stirring, we then add 5 ml of sodium fluoride solution
(202 mg, 4.8 mmol) to the mixture. After 15 minutes
of stirring, 1.1 ml of Y(NO3)3 (0.88 mmol), 0.35 ml of
Yb(NO3)3 and 0.05 ml of Er(NO3)3 are added into the
mixture while the stirring continues for another 20 min-
utes at room temperature. Subsequently, the solution is
transferred to a 40-ml Teflon chamber (Col-Int. Tech.)
and heated to and kept at 200 °C for 12 hours (h). The
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mixture is then cooled down naturally to room temper-
ature, and the particles precipitated at the bottom are
collected by centrifugation, rinsed with deionized water
multiple times, and finally dispersed in 10 ml of deion-
ized water. Colloidal rods are prepared using a similar
protocol: 1.2 g of NaOH is dissolved in 5 ml of deionized
water and mixed with 7 ml of ethanol and 20 ml of oleic
acid under stirring, followed by adding 8ml of NaF (1
M), 950 µl of Y(NO3)3 (0.5 M), 225 µl of Yb(NO3)3 (0.2
M), and 50 µl of Er(NO3)3 (0.2 M) and stirring for 20
minutes. The obtained white viscous mixture is trans-
ferred into a 50 ml Teflon chamber, kept at 190°C for 24
h, and then cooled down to room temperature. The par-
ticles deposited at the bottom of the Teflon chamber are
collected and washed with ethanol and deionized water
multiple times and finally dispersed in cyclohexane.

In some cases, silica microrods synthesized following an
emulsion-templated wet-chemical approach [34] are also
used. To synthesize them, 1 gm of polyvinylpyrrolidone
(PVP, molecular weight 40000) is dissolved in 10 ml of
1-pentanol, followed by the addition of 950 µl of absolute
ethanol (Decon labs), 280 µl of deionized water, 100 µl
of sodium citrate solution (0.18 M), and 130 µl of am-
monia solution (28%). The bottle is shaken vigorously
using a vortex mixer after each addition. Then, 100 µl of
tetraethyl orthosilicate (TEOS, 98%) is added under agi-
tation. The bottle is incubated at 25 °C for the next 8 h.
The solution becomes milky white after the reaction, and
it is centrifuged at 6000 revolutions per minute (RPM)
for 10 minutes to separate the as-synthesized rods. The
precipitated rods are then washed two times with water
followed by another two rounds of washing with ethanol
at 3000 RPM for 5 minutes. Finally, to improve the
monodispersity and to remove other lightweight impuri-
ties, the rods are centrifuged at 500 RPM for 30 minutes
and dispersed in ethanol, with the procedure repeated
two more times.

B. Surface functionalization of the colloids

Homeotropic surface anchoring boundary condi-
tions for the director and 5CB (pentylcyanobiphenyl
or 4-cyano-4’-pentylbiphenyl) molecules on the β-
NaYF4:Yb/Er disk surfaces is controlled through surface-
functionalization with a thin layer of silica and polyethy-
lene glycol. First, 5 ml of hydrogen peroxide (H2O2) is
added to 1 ml of colloidal disk dispersion in deionized
water. Then, under vigorous mechanical agitation, 100
µl of nitric acid is added drop by drop into the solu-
tion. After 12 h of agitation, disks are separated from
the liquid by centrifugation and transferred into 1 ml of
ethanol. The colloidal dispersion is then mixed with 75
mg of polyvinyl pyrrolidone (molecular weight 40,000) in
4 ml of ethanol and kept under continuous mechanical
agitation for another 24 h. The particles are collected
and redispersed in 5 ml of ethanol, before the addition
of 200 µl of ammonia solution and 6 µl of tetraethyl or-

thosilicate under mechanical agitation that lasts 12 h.
Disks are collected, washed with ethanol and deionized
water, and redispersed in 4 ml of ethanol. The pH value
of the mixture is adjusted to 12 by adding ammonia so-
lution (28% in water). Then, under mechanical agitation
at 35°C, we add 35 mg of silane-terminated polyethy-
lene glycol (molecular weight 5,000, dissolved in 1 ml of
ethanol at 50°C) to the solution. After another 12 h of
agitation, the surface-functionalized disks are again col-
lected, washed with ethanol and water, and dispersed in
1 ml of ethanol.

As for the hydrothermal-synthesized rods, the surface
chemical treatment not only provides the desired anchor-
ing preference but also controls the cylinder aspect ra-
tio. For this, 4 ml of the nanorod dispersion is added
with 200 µl of HCl in 2 ml of water and kept stirred
overnight. The nanorods are then transferred from or-
ganic to aqueous phases. The nanorods are collected by
centrifugation, washed with deionized water and ethanol
three times, dispersed in deionized water, and then fi-
nally re-dispersed in ethanol. The process of etching with
acid and redispersion is repeated two more times, with
HCl treatments of 12 hours and 3 hours, respectively.
The aspect ratio of the nanorods is increased during acid
treatment to an average value of Lc/Dc ≈ 60.

Similarly, the emulsion-templated rods are slowly
etched in a mild basic condition [35] with 0.5 mM NaOH
for 24 h, followed by drying at 80°C for another 4 h. After
this, the functionalization of silica rods is done by adding
100 µl of perfluorooctyltriethoxysilane (TCI America) to
0.9 mL ethanol dispersion of the silica rods. The mixture
is kept at room temperature for 3 h before being washed
and redispersed three times in ethanol. After vacuum-
drying inside a desiccator and heating at 60 °C for 1 h,
the microrods are immersed in a perfluorocarbon liquid
(Fluorinert FC-70, Alfa Aesar) and kept at 60 °C for 1 h
before being cooled down to the room temperature and
redispersed into ethanol for storage. The fusion of per-
fluorocarbon oil onto the perfluorosilane functionalized
rods results in a fully covered and stable slippery surface
layer, giving desired boundary conditions.

C. Colloidal particle dispersion in chiral molecular
LC

A small amount of left-handed chiral dopant choles-
terol pelargonate is added into molecular 5CB (Frinton
Labs and Chengzhi Yonghua Display Materials Co. Ltd).
To obtain the equilibrium pitch p of the molecular chiral
mixture, the weight fraction of the used chiral additive is
roughly estimated by cd = 1

6.25p . The actual pitch is later

revealed using optical microscopy by observing the peri-
odicity of defect lines in Gradjean-Cano wedge cells [36].
The surface-functionalized particles are then dispersed
into such molecular chiral LC. In a typical experiment,
20 µl of colloidal dispersion in ethanol is mixed with 20
µl of the molecular LC. The mixture is then heated to
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75°C and kept for 2 h to completely evaporate the organic
solvent. A well-dispersed colloidal-molecular hybrid LC
is usually obtained after quenching back to room tem-
perature under mechanical agitation [37–39]. Additional
centrifugation can be carried out to remove the particle
aggregation formed during the isotropic to chiral nematic
phase transition of the molecular LC.

Hybrid LCs containing the colloidal dispersion are in-
filtrated into glass cells with gap thickness typically cho-
sen to be between p/2 and 10p, which is experimentally
set using Mylar films or silica spheres. To achieve unidi-
rectional planar boundary conditions for 5CB molecules,
cell substrates are coated with 1wt.% aqueous polyvinyl
alcohol and rubbed unidirectionally. Typically, the ge-
ometry and planar boundary conditions of the cell give a
sample with its helical axis χ̂ perpendicular to the glass
substrate and with the helical twist of the cholesteric host
LC in compliance with the designed boundary conditions
at the confining glass surfaces.

D. Optical microscopy and characterization of
colloidal orientations

We use different optical microscopy methods to visual-
ize the colloidal orientations inside the hybrid LC, among
which are three-photon excitation fluorescence polariz-
ing microscopy (3PEFPM), photon-upconverting confo-
cal microscopy, polarizing optical microscopy and phase
contrast microscopy. Using 3PEFPM, optical imaging of
director structures of the molecular host medium is per-
formed using a multimodal 3-dimensional (3D) nonlinear
imaging system built around a confocal system FV300
(Olympus) and an inverted microscope (Olympus IX-81)
[38, 40]. The 3D imaging of the β-NaYF4:Yb/Er par-
ticles designed to exhibit upconversion luminescence is
performed with the same setup when the colloidal dis-
persions are excited with a laser light at 980 nm; this
photon-upconversion-based imaging of colloidal particles
minimizes the background signal from the molecular LC,
making such a technique ideal for our study. A 100×
objective (Olympus UPlanFL, numerical aperture 1.4)
and a 980-nm pulsed output from a Ti:Sapphire oscilla-
tor (80 MHz, Coherent, Chameleon ultra) are utilized,
along with a set of Galvano mirrors on the optical path
to achieve sufficient positional accuracy while scanning
the sample horizontally. In addition, the vertical re-
positioning is achieved by a stepper motor on which the
objective could be adjusted to focus at the desired sample
depth, enabling 3D scanning with high accuracy. Lumi-
nescence signals are epi-collected using the same objec-
tive before being sent through a pinhole and detected by
a photomultiplier tube. The data obtained from several
scanning planes are combined into a 3D tiff image to be
analyzed at a later time. The phase contrast images are
taken using a 60× objective (Olympus UPlanFL N, vari-
able numerical aperture 0.65-1.25), mounted on another
microscope system (Olympus IX-83), at various vertical

positions controlled by a motorized sample stage.

The colloidal orientations, representing the normal di-
rection of disks or the long axis of rods, are analyzed on
the basis of two-dimensional (2D) slices of a 3D sample
using ImageJ software (freeware from the National Insti-
tute of Health, [41]), with the error in measured colloidal
angles is about ±1◦. The ensuing statistical data are
transferred to Matlab software for visualization, as well
as for further analysis. The color thresholds of the images
are carefully adjusted to avoid the interference of colloids
out of focus. From the 3D stacks of images, the slice plane
perpendicular to the helical axis χ̂ gives the azimuthal
orientational distribution (ϕ), whereas the vertical slice
plane reveals the polar distribution (θ). Since the col-
loidal orientations are highly confined, as shown by the
high value of uniaxial order Scc, we assume that the two
distributions are independent so that the overall distribu-
tion can be written in factorized form f(ϕ, θ) = f(ϕ)f(θ).
For the same reason, we ignore the effect of the projection
from the 3D volume to the slice planes. After the anal-
ysis of particles by ImageJ, average azimuthal colloidal
orientations are calculated for the data obtained in each
n̂− τ̂ slice plane and plotted against the sample depth (z)
position of the cross-sectional plane, revealing the heli-
cal twist of the colloidal axes. The corresponding helical
pitch p of each 3D volume is subsequently calculated from
the slope of the linear dependence of the azimuthal an-
gle on the vertical position (dϕ/dz = q = 360◦/p) and
is in agreement with the initially designed value men-
tioned above, confirming the undisturbed molecular heli-
cal pitch at low colloidal concentrations. Finally, the col-
loidal orientation distribution is visualized in the molec-
ular director coordinate system frame. The azimuthal
angle in the molecular coordinate is calculated by sub-
tracting the molecular twist from the measured colloidal
orientations, δ = ϕ − qz representing the fluctuation of
colloidal orientation around that of a perfect helix. The
non-orientable property of the colloidal axis û = −û en-
abled us to express the fluctuation angles, δ = δ + π,
for example, within a [-90°,90°] range. Histograms of an-
gular probability distribution with 5° bin width are cal-
culated for each fluctuation angle, and Gaussian fitting

e−σ∗angle2 is performed to each distribution accordingly
with σ being the fitting parameter later used to quan-
tify the peak width. The choice of the fitting equation
is justified by the analytical prediction of energy depen-
dence on deviation angles (to the leading order), which is
detailed in the Results section. In the case of narrow ori-
entational distributions, the visualization is cropped to a
smaller angle range after calculation performed in the full
[-90°,90°] range. In the case of planar rods and the longer
homeotropic rods, it is impractical to do the re-slicing
given the limited number of images taken, and the dis-
tributions found within achiral nematic LCs are adopted
instead as we expect no difference between the horizontal
and vertical distributions in such condition with no bi-
axiality. The same histograms are subsequently utilized
in the computation of the colloidal orientation order pa-
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rameters, which is summarized in Results.

E. Computer simulation of perturbed order of the
molecular LC host around the colloidal particles

Computer simulations are carried out to study the in-
terplay between molecular LC order near the colloidal
surface and the colloidal orientation. The simulations are
based on minimizing the mean-field Landau-de Gennes
free energy for the molecular LC host [5, 17, 42–44]. We
consider a thermotropic bulk free energy density describ-
ing the isotropic-nematic transition of LCs complemented
with elastic contributions associated with LC director
distortions occurring in the bulk volume of the LC:

fLC
bulk =

A
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(m)
kl

∂xj
(1)

with the 3-by-3 matrix Q(m) being the molecular tenso-
rial order parameter describing the local average molec-
ular ordering, xi (i = 1− 3) being cartesian coordinates,
and ε the 3D Levi-Civita tensor. Summation over all in-
dices is implied. Among the bulk energy terms, A, B,
and C are thermotropic constants and Li (i = 1 − 4, 6)
are the elastic constants related to the Frank-Oseen elas-
ticities via:

L1 =
2

27(S
(m)
eq )2

(K33 −K11 + 3K22)

L2 =
4

9(S
(m)
eq )2

(K11 −K24)

L3 =
4

9(S
(m)
eq )2

(K24 −K22)

L4 =
8

9(S
(m)
eq )2

K22
2π

p

L6 =
4

27(S
(m)
eq )3

(K33 −K11) (2)

with K11, K22, K33 and K24 respectively denoting the
splay, twist, bend and saddle-splay elastic moduli, and

S
(m)
eq being the equilibrium uniaxial scalar order param-

eter. In addition to the bulk LC energy there is a contri-
bution due to the boundary condition of the molecular
LC at the colloidal surfaces which reads:

fLC
surf = W0

(
PikQ̃klPlj −

3

2
S(m)

eq cos2θePij

)2

(3)

with W0 the surface anchoring strength, P = v̂ ⊗ v̂ the
surface projection tensor, v̂ the surface normal director,

and Q̃ = Q(m) + 1
2S

(m)
eq I. The equilibrium angle θe = 0

corresponds to vertical or homeotropic anchoring at the
boundary, and θe = π leads to planar degenerate anchor-
ing [45]. The dimensions and anchoring forces associ-
ated with colloidal particles are represented as boundary
conditions inside the numerical volume with the parame-
ters kept constant for each simulation. Specifically, width
Dc = 1µm and thickness Lc = 10nm are used for thin
disks in all computer simulated results, while Dc = 28nm
and Lc = 1.7µm for long rods, if not specified other-
wise. The total energy is then given by the integration of
Eq. (1) over LC volume and Eq. (3) over colloid-molecule
interfaces, with the colloidal volume excluded in the in-
tegral of free energy densities.

The total energy is numerically minimized based on
the forward Euler method integrating:

dQ(m)

dt
= −dF

LC
total

dQ(m)
(4)

with t being the scaled energy-relaxation time of the
LC. Adaptive Runge-Kutta method (ARK23) and FIRE,
Fast Inertial Relaxation Engine, are adopted to increase
numerical efficiency and stability [46, 47]. The steady-
state and termination of simulation are determined by
the change in total free energy in each numerical itera-
tion, which is usually monotonic decreasing. The values
of biaxiality and local orientations of molecular directors
are subsequently identified as eigenvalues and eigenvec-
tors of Q(m) [48]. Alternatively, chirality axes (n̂,χ̂,τ̂)
are also represented as the eigenpairs of handedness ten-
sor (or chirality tensor, [49, 50]) with results having high
consistency with the biaxial approach mentioned above.
A more detailed description and comparison of the two
approaches are to be given in Discussion.

For a thin homeotropic rod, the anchoring effect at
the two ends of the particle is ignored in our simulations
by setting the length of the simulation box equal to the
rod length Lc, which hardly changes the energies but
greatly improves the numerical stability. The following
parameters are used for all computer simulations: A =
−1.72 × 105Jm−3, B = −2.12 × 106Jm−3, C = 1.73 ×
106Jm−3, K11 = 6pN, K22 = 3pN, K33 = 10pN, K24 =

3pN and S
(m)
eq = 0.533. The simulations are carried out

in a Cartesian colloidal frame using equidistant grid sets
and are consistent with those based on a radial-basis-
function approach performed within the molecular frame
[51].

III. RESULTS

A. Symmetry-breaking at single particle level

The symmetry-breaking of the nematic colloidal ge-
ometry, induced by the twisted alignment of chiral



6

0° 0.02° 0° 0.02°

(a) (b)

(c)

W0=10-4 Jm-2, p=3 μm W0=10-5 Jm-2, p=3 μm W0=10-6 Jm-2, p=3 μm

W0=10-4 Jm-2, p=10 μm W0=10-5 Jm-2, p=10 μm W0=10-6 Jm-2, p=10 μm

W0=10-4 Jm-2, p=30 μm W0=10-5 Jm-2, p=30 μm W0=10-6 Jm-2, p=30 μm

!𝒏

!𝝌

$𝝉

!𝒏

!𝝌

$𝝉
!𝒏

!𝝌

!𝝌

!𝒏

!𝒏
$𝝉!𝝌

!𝒏

$𝝉

!𝝌

FIG. 2: (a)-(b) Computer simulations of a thin colloidal disk (a) and a slender rod (b) immersed in a LC with weak chirality.
Yellow contour surfaces mark the region where LC director deviations for n̂ (red axis) are 0.01° from its ideal helical state with
no colloids present. The sectional areas perpendicular to τ̂ (blue axis) are colored by the deviation angle as shown in the color
scale. Homeotropic anchoring W0 = 10−6Jm−2 and a helical pitch p = 30µm are used for both simulations. (c) Simulations of
colloidal disks and rods in energy-minimizing orientations within chiral LCs using various anchoring strengths W0 and pitch
lengths p, with values labeled for each simulation. Yellow contours enclose regions with director distortions larger than or equal
to 0.1°, showing different levels of weak biaxiality. Rods in (c) are cropped for clarity. Axes defining the molecular frame are
colored as in Fig. 1. Disk width Dc = 1µm and rod length Lc = 1.7µm for all simulations.

molecules, can be revealed at the single particle level by
visualizing the LC distortion field around a single col-
loidal particle [Fig. 2]. For cylinder-shaped particles dis-
persed in isotropic solvent, such as thin disks or slen-
der rods in ethanol, a continuous rotational symmetry
can be observed locally with the symmetry axis being
the disk normal or the long axis of the rod because the
other two orthogonal axes are geometrically equivalent.
When the cylindrical colloids are dispersed into a chi-

ral nematic, however, the uniaxial symmetry is broken
in view of the boundary condition at particle-molecule
interfaces and the far-field helical configuration of the
LC molecules. Although the realigning effect induced by
the homeotropic boundary conditions at the colloidal sur-
faces is rather weak with W0 = 10−6J/m2 and deviation
angle� 1◦ [Fig. 2a,b], for example, it is evident that the
rotational symmetry of the surface-defect-dressed cylin-
drical colloids becomes discrete (2-fold rotation) once the
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colloids are immersed in a chiral LC [Fig. 2c]. Clearly,
stronger surface anchoring forces and higher chirality
(shorter pitch) lead to the significantly stronger molec-
ular LC distortion as well as the ensuing emergent bi-
axiality as shown by the computer-simulated distortion
in nematic director. Also, the single-particle symmetry-
breaking is observed even when the helical pitch p is much
larger than the particle dimension, with the particle sizes
around 1-2 µm [Fig. 2c]. This demonstrates that the
shape biaxiality of the dressed colloidal particle imparted
by the molecular chirality of the host is unavoidably de-
veloped at all strengths of surface anchoring and values
of molecular chirality [Fig. 2c].

B. Orientational distribution of the colloidal
particles

To analyze the equilibrium orientation of the cylindri-
cal particles, we perform several sets of simulations at
various colloidal orientations and resolve the correspond-
ing free energies. A thin disk with perpendicular bound-
ary condition [Fig. 3], for example, favors alignment in
which the disk normal vector orients along the molecular
director n̂. Deviations away from the equilibrium direc-
tion give rise to an increase in the overall free energy of
the system [Eq. (1) and Eq. (3)]. We emphasize that
the free energy profiles are distinct for the two deviation
angles δ and ζ in Fig. 3 (with lower energy penalty for
orientational fluctuation along δ). Though weak, the dif-
ference between the two angles and the broken uniaxial
symmetry as a consequence of the chirality in the molec-
ular LC host are unambiguous. Furthermore, Fig. 3 (c,d)
demonstrate that a stronger surface anchoring force with
a higher value of W0 leads to more pronounced energet-
ical nondegeneracy of the two deviation angles. Using
mean-field numerical simulation of the LC host, we are
able to validate the local biaxial symmetry of the orien-
tational probability distribution of an individual colloid,
arising from the inequivalence of χ̂ and τ̂ in the molecular
LC host.

In contrast to the case of a disk, a homeotropic rod
feels a strong energy penalty when aligned towards n̂
and reaches a state of minimal surface anchoring energy
when the long axis points along the τ̂ -direction such that
the LC director at the rod surface naturally complies
with the homeotropic surface anchoring condition [Fig. 4]
[18, 52]. The symmetry-breaking of χ̂ and τ̂ , evident
from the difference between the two energy landscapes
[Fig. 4], is observed again with deviation along the angle
γ being more energetically favored than that along θ.
With the cases of colloidal rods along n̂, χ̂, and τ̂ all
giving distinct free energies, the biaxiality in the ensuing
colloidal orientation probability distribution is explicit,
which is contributed solely by the chirality in the 5CB
host. The results are in agreement with the empirical
evidence shown below.

C. Experimental observation and analysis of the
colloidal orientation

The alignment of the colloidal particles with respect
to the helical director field of the molecular host LC is
probed optically in our experiments. For example, Fig. 5.
(a) demonstrates confocal fluorescence micrographs of
disk-shaped particles immersed in a 5CB liquid crystal
doped with a chiral dopant. The molecular orthogonal
frame (n̂,χ̂,τ̂), which is marked in each micrograph, is
robustly controlled by substrates with planar anchoring
force (Methods). The average normal direction of the
colloidal disks in each vertical slice, which is expected
to lie parallel to n̂, rotates along the sample depth, as
clearly shown with the edge-on perspective [Fig. 5. (a)].
Subsequently, the twisted arrangement of the disk di-
rection is analyzed and a quasi-uniform twisting rate is
found throughout the sample depth [Fig. 5. (b)], with
thermal fluctuation present. We assume that the helix of
molecular director n̂ has a linear trend identical to the
one found using colloidal orientations, which is shown
by the red line in Fig. 5. (b), since the period of the
twisted arrangement of the colloids closely matches the
designed molecular pitch p. We also ascertain that the
colloidal density remains very low such that the molec-
ular LC alignment is not expected to be disturbed by
the introduction of colloidal particles. Once the orienta-
tional distribution of the thin disks is projected onto the
co-rotating molecular frame, we observed Gaussian-like
distributions [Fig. 5. (c)].

With a particle number density (volume fraction ≈
0.026%) far below the phase transition threshold [17],
direct interactions between colloidal disks are negligible
and each particle experiences an orientational potential
imposed mainly by the surrounding molecular LC, as
designed in our numerical simulations discussed above
[Fig. 3]. The statistical results of particles can thus be
treated as the thermal distribution of a single particle
and qualitative agreement is found when compared to
the modeling [Fig. 3]. As shown by the numerical model-
ing earlier, the colloidal director distributions are weakly
asymmetric due to the biaxiality imparted by the chiral
molecular host, demonstrating a stronger energy barrier
of the thin disk fluctuating in the ζ direction. As a result,
the peak widths (full width at half maximum, FWHM)
of the colloidal orientation distributions differ along two
deviation angles (27.6° in δ and 23.1° in ζ, Fig. 5. (c)),
indicating a biaxial D2 symmetry of an individual disk
with 2-fold rotations around n̂ instead of uniaxial D∞
one, even though the cylindrical particles themselves are
of uniaxial symmetry.

We further use phase contrast microscopy to determine
the colloidal alignment directions for planar rods [Fig. 6.
(a)]. In this case, the colloidal thin rods with a pla-
nar surface condition are dispersed within the 5CB chiral
molecular host. By carefully changing the focal position
inside the sample, we obtain a good linear relationship
between the average rod direction and depths, represent-
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FIG. 3: (a) Computer-simulated free energy of molecular chiral LC in the presence of a homeotropic disk at different surface
anchoring strengths W0 as a function of the azimuthal angle δ describing a rotation of the disk normal about the pitch axis
χ̂ (green) defined in the molecular frame (inset). Data points for W0 = 10−4, 10−5, and 10−6J/m2 are marked with triangle,
square, and circle respectively. The energy is scaled by Kp where K = 5.6pN is the average elastic constant and p = 30µm
is the pitch of cholesterics. (b) Numerical free energy profile for a homeotropic disk rotated about τ̂ (blue axis). (c)-(d) The
energy difference in (a) and (b) calculated for surface anchoring strengths W0 = 10−4J/m2 (c) and 10−6J/m2 (d), respectively.
The lowest energies (disk normal aligned along red axis n̂) for each simulation set are chosen to be 10−6Kp instead of 0 to
avoid singularities when converting to a log-scale in (a) and (b). The axes in the insets define the molecular frame and are
colored as in Fig. 1. Cholesteric pitch p = 30µm for all simulations.

ing a helical structure within which the colloidal rods
point along n̂ [Fig. 6. (b)]. Like the case of homeotropic
disks, we again clearly observe a biaxial orientational
symmetry in the molecular frame revealed by distinct
probability distributions along τ̂ and χ̂ (FWHM=15.6° in
δ and 11.8° in ζ) despite the weak chirality (p ≈ 100µm)
of the hybrid LC system [Fig. 6. (c)]. The explicit exper-
imental observations of the biaxial symmetry in the col-
loidal orientation probability distribution, in agreement
with the numerical simulation, can only be attributed to
the chiral twisting of the surrounding molecular LC.

To see the symmetry-breaking behavior in another
type of alignment, such as perpendicular, we adopt the
same methods of colloidal orientation analysis but for
the colloidal inclusion of thin rods with a perpendicular
boundary condition [Fig. 7]. In consistency with the nu-

merical calculation [Fig. 4], the rods aligns towards τ̂ axis
in thermal equilibrium [Fig. 7 (a,d)]. After measuring the
azimuthal angle ϕ of rod long axis in each verticle frame
and converting them to 3D distribution in the molecular
orthogonal frame, we clearly see a narrower distribution
is discovered for the longer rods [Fig. 7 (c,f)]. Due to the
larger surface area of the longer particle, to which the
surface energy is proportional, a stronger energy barrier
develops for the longer colloidal rods to fluctuate away
from the energetically ideal configuration along τ̂ . Fur-
thermore, to our surprise, the orientational distributions
of homeotropic rods behave dramatically differently from
the non-chiral limit, in which case a degeneracy of align-
ment along the χ̂ and τ̂ -axes would be expected and the
distribution along η should be uniform to have the uni-
axial symmetry. Instead, we find an exceptionally strong
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energy barrier for rods deviating along η towards the heli-
cal axis χ̂, with the Gaussian fittings showing peaks even
sharper than those along γ [Fig. 7 (c,f)]. The symmetry
of the hybrid LC system is thus strongly biaxial as exper-
imentally illustrated by the distinct peak widths of the
orientational probability distributions. We will demon-
strate that the rod orientation distributions can not be
interpreted from surface anchoring effects only, but can
be explained by considering the elastic distortions gener-
ated in the bulk of the molecular host. This is addressed
in detail in the following sections using a comprehensive
analytical model.

D. Analytical model

1. Surface anchoring free energy of a cylindrical disk
immersed in a cholesteric host

We consider a low-molecular-weight chiral liquid crys-
tal with a director field n̂(z) twisted along the χ̂-axis of
a Cartesian laboratory frame that we denote by the nor-
malized unit vectors (x̂, ŷ, ẑ) where ẑ coincides with the
helical axis χ̂ in Fig. 1. The helical director field of a
cholesteric, denoted by subscript “h”, may be parame-

terized as follows:

n̂h(z) = x̂ cos qz + ŷ sin qz (5)

in terms of the cholesteric pitch p = 2π/q and handed-
ness q < 0 that we assume left-handed in agreement with
experimental reality without loss of generality. Next, we
immerse an infinitely thin cylindrical disk with aspect
ratio Dc/Lc → ∞ into a cholesteric host. The main
symmetry axis of the colloidal disk is parameterized in
the lab frame as û = x̂ sin θ sinϕ + ŷ sin θ cosϕ + ẑ cos θ
in terms of a polar θ and azimuthal angle ϕ with respect
to the helical axis ẑ = χ̂. The presence of the colloid will
generate elastic distortions of the uniform director field
n̂h(r) due to the specific anchoring of the molecules at
the colloidal surface, quantified by the surface anchoring
strength W0 > 0 (units energy per surface area). The ex-
tent of the elastic distortions around the colloid surface
depends on the surface extrapolation length `s = K/W0

where K denotes the average elastic constant of the ther-
motropic liquid crystal [53]. In our analysis, we first fo-
cus on the regime of infinitely large surface extrapolation
length (`s → ∞), in which case the elastic distortions
around the immersed colloid are absent. For finite `s,
such as in the experimental situation, elastic distortions
are weak but non-negligible and will be accounted for
in the subsequent sections. If we assume the molecu-
lar director field n̂ to remain completely undistorted, the
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surface anchoring free energy can be obtained by using
the Rapini-Papoular model for Eq. (5) and integrating
over the colloid surface denoted by S [54, 55]:

Fs = −1

2
W0

∮
dS(n̂h · v̂(S))2 (6)

where v̂ represents a unit vector normal to the colloid
surface in case of homeotropic (H) anchoring and tan-
gential to the surface if the anchoring is planar (P). Let
us denote its normal by û and ignore anchoring at the
rim. We further define two unit vectors ê1,2 orthogonal
to the disk normal vector û. The two principal anchoring
scenarios, homeotropic (H) and planar (P), are expressed
as follows:

v̂ =

{
û H

ê1 cos ξ + ê2 sin ξ P
(7)

The angle 0 < ξ < 2π must be chosen randomly in the
case when planar anchoring is degenerate across all di-
rections on the disk surface, which is the case in the ex-
perimental situation.

Ignoring finite-thickness effects for Lc � Dc we then
parameterize the face of the disk as follows:

rS = r0 +
Dc

2
t[ê1 sinφ+ ê2 cosφ] (8)

with 0 < t < 1 and 0 < φ < 2π. The surface anchoring
energy per disk face is expressed as follows:

Fs = −1

4
W0D

2
c

∫ 2π

0

dφ

∫ 1

0

dtt

∫ 2π

0

dξ

2π
[n̂h(rS · χ̂) · v̂]2

(9)

Leading to the following generic expression:

Fs = −π
4
W0D

2
c

(
w1 + w2 cos(2δ)

J1(qDc| sin θ|)
qDc| sin θ|

)
(10)

with J1(x) a Bessel function of the first kind, δ = ϕ− qz
the azimuthal angle with respect to the local cholesteric
director, and coefficients:

w1 =

{
1
2 sin2 θ H
1
8 (3 + cos(2θ)) P

(11)

and

w2 =

{
sin2 θ H

− 1
2 sin2 θ P

(12)

The surface anchoring strength of disks is expressed in
dimensionless form by W̄ = βW0D

2
c with β−1 = kBT

the thermal energy in terms of temperature T and Boltz-
mann’s constant kB . Taking disks with diameter Dc ≈
2µm and W0 ≈ 10−6−10−5Jm−2 we find W̄ ∼ 103−104,
indicating that surface anchoring realignment is robust
against thermal fluctuations in the experimental regime.

For the case of homeotropic anchoring, the surface an-
choring energy Eq. (10) reaches a minimum at an equi-
librium angle θ∗ = π/2 and δ∗ = 0, demonstrating pref-
erential alignment of the disk normal along the local LC
host director n̂, in agreement with experimental observa-
tion [Fig. 5].

2. Surface anchoring free energy of a cylindrical rod
immersed in a cholesteric host

We may repeat the previous analysis to describe the
case of a thin colloidal rod with Lc/Dc →∞ by neglect-
ing small contributions associated with the ends of the
cylinder so we only need to parameterize the cylindri-
cal surface of magnitude πLcDc following the principal
contour rS(t) = r0 + L

2 tû with −1 < t < 1 of a cylin-
der with centre-of-mass r0. The surface anchoring free
energy then becomes:

Fs = −1

8
LcDcW0

∫ 2π

0

dφ

∫ 1

−1

dt[n̂h(rS · χ̂) · v̂]2 (13)

In order to describe various anchoring situations we de-
fine two unit vectors ê1,2 orthogonal to û and parame-
terize:

v̂ =


ê1 cosφ+ ê2 sinφ H

−ê1 sinφ cos ξ + ê2 cosφ cos ξ + û sin ξ DP

û SP

(14)
In the case of homeotropic (H) anchoring the molecular
director favors perpendicular alignment to the cylindrical
surface, whereas for simple planar (SP) surface anchoring
along the main rod direction is favored. For complete-
ness, we also include the more general degenerate planar
(DP) case where all anchoring directions perpendicular
to the local surface normal are equally probable. In order
to account for all possible rod orientations with respect to
the molecular field, the angle ξ can take values between
0 and π. We obtain the following generic expression:

Fs = −π
8
LcDcW0

(
w1 + w2 cos(2δ)

sin(qLc cos θ)

qLc

)
(15)

with δ = ϕ − qz the azimuthal angle along a parti-
cle frame co-rotating with the helical director so that∫
dû =

∫ 2π

0
dδ
∫ 1

−1
d(cos θ) and w1 and w2 are angle-

dependent coefficients that depend on the particular an-
choring situation:

w1 =


(1 + cos2 θ) H
1
2 (3− cos2 θ) DP

2 sin2 θ SP

(16)

and

w2 =


− sin θ tan θ H
1
2 sin θ tan θ DP

2 sin θ tan θ SP

(17)
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in terms of the polar θ and azimuthal rod angle ϕ with
respect to the helical axis along the χ̂-direction.

For the homeotropic (H) case the free energy is mini-
mal at an equilibrium angle θ∗ = 0 (with the azimuthal
angle ϕ randomly distributed) which corresponds to the
rod being aligned along the χ̂ direction. However, there
is a second, degenerate minimum at θ∗ = π/2 and
δ∗ = π/2, that describes a rod pointing along the τ̂ -
axis. The minimum surface anchoring energy is Fs =
−(π/4)LcDcW0 for both cases. The energy barrier be-
tween the two minima is only about 1 kBT per rod
so thermal fluctuations should easily make the colloids
switch from one state to the other while staying perpen-
dicular to n̂. For both simple planar (SP) and degenerate
planar (DP) anchoring we only find a single minimum at
θ∗ = π/2 and δ∗ = 0, i.e., the rod preferentially aligns
along the revolving local nematic director n̂ as observed
in experiments [see Fig. 6].

3. Equilibrium colloid orientation

Balancing the surface anchoring free energy with the
orientational entropy of the individual colloids we eas-
ily establish the orientational probability distribution
through the Boltzmann distribution:

f(û) = N exp(−βFs) (18)

with N a normalization constant ensuring that∫
dûf(û) = 1. It is easy to infer from Eq. (10) and

Eq. (15) that the polar and azimuthal angles are strongly
coupled in general. This indicates that the local distribu-
tion of colloidal orientations around the principal align-
ment directions (τ̂ , χ̂ and n̂) [Fig. 1] is rendered biaxial
by the chiral twist, in line with our experimental obser-
vations. Some examples of f for disks are depicted in
Fig. 8 clearly demonstrating preferred alignments of the
disk normals along n̂ (red arrow). We point out that the
consistency found between the numerical modeling and
the analytic theory is remarkable considering the com-
plexity involved in computer simulation due to a wide
range of length scales including molecular, colloidal (with
high aspect ratios) and surface extrapolation lengths as
well as the simplicity and approximations adopted in the
analytic model.

The most interesting situation arises in the case of col-
loidal rods with homeotropic (H) anchoring where there
is a subpopulation of rods aligned along the helical axis
(qLc = 1). In order to gain further insight into the ori-
entational symmetry of those rods, we perform a small-
angle expansion around the equilibrium angle θ∗ = 0 and
retain the leading order coupling term between the two
principal angles θ and δ. The angular fluctuations about
the helical axis (green) are then described by the follow-
ing free energy

Fs ≈
π

8
LcDcW0j0(qLc) cos(2δ)θ2 (19)

with j0(x) = sin(x)/x. It suggests that the subpopula-
tion of rods aligned along the helical axis in fact adopt
a twist-bend-type organization with a pitch q identical
to that of the molecular host. Contrary to cholester-
ics, these phases are characterized by a nematic director
co-aligning with the helical axis. However, the situation
here is more subtle given that chirality is only manifested
at the level of orientational fluctuations around a mean
director “backbone” that itself is not chiral. We identify
a further interesting feature; depending on the sign of
j0(qLc) the twist-bend helix may be either in phase with
the molecular helix (δe = 0 for qLc = 4) or out-of-phase
(δe = π/2 for qLc = 2). In the next Section, we will show
that the pure Rapini-Papoular description is inadequate
in accounting for the experimental observations in Fig. 7
for one of the experimental geometries (rods with per-
pendicular boundary conditions) and that weak elastic
distortions around the colloidal rods must be accounted
for to explain their strong preference for pointing along
τ̂ .

4. Elastic deformations surrounding the rod surface

So far we have completely ignored the role of weak elas-
tic deformations of the host director (`s = K/W0 →∞)
and assumed that the rod orientation is dominated en-
tirely by surface anchoring effects. The experimental
reality, however, is that the surface anchoring extrapo-
lation length is large but finite (`s ≈ 600nm � Dc).
Experimental observations compiled in Fig. 7 point at a
scenario where rods orient preferentially along the τ di-
rection, rather than the helical axis (χ̂) as predicted from
minimizing the bare Rapini-Papoular surface anchoring
energy. A plausible reason as to why rod alignment along
the helical axis (χ̂) seems unfavorable is that it involves
a twisting of the surface disclination that runs along the
rod contour which costs elastic energy. No such twisting
is required if the rod points along τ̂ . Clearly, the discrep-
ancy between experiment and theory must be attributed
to the elastic distortions running along the rod surface
(and their subsequent twisting) which has been ignored
in our considerations thus far. In principle, weak director
distortions may also lead to a mild decrease in the bulk
nematic order parameter, particularly in regions where
the director curvature is strong. In our analysis, we will

assume that the bulk scalar order parameter (S
(m)
eq ) of

the host is constant throughout the system. Even in
the near-field limit close to the rod surface where devi-
ations from bulk nematic order are strongest, we expect
local distortions in bulk nematic order to be minor com-
pared to the (infinitely) strong anchoring scenario that is
considered in the theoretical study by Brochard and De
Gennes [56].



14

0° 15° 30° 45°
1

0

0.5

1

1.5

2

F s (K
p)

#10-3

0

20

40

60

80

100

F s (k
B

T)

(a) (b) (c)

(d)

0° 15° 30° 45°
1

-3

-2

-1

0

F el
 (K

p)

#10-5

-1

-0.5

0

F el
 (k

B
T)

0° 15° 30° 45°
/

-2

-1.5

-1

-0.5

0

F el
 (K

p)

#10-5

-1

-0.8

-0.6

-0.4

-0.2

0

F el
 (k

B
T)

0° 15° 30° 45°
/

0

0.5

1

1.5

2
F s (K

p)
#10-3

0

20

40

60

80

100

F s (k
B

T)

0° 15° 30° 45°
1

0

50

100

150

200

F 
(k

B
T)

Fs+Fel
Fs

qDc=0.21

qDc=0.63

qDc=2.1

0° 15° 30° 45°
/

0

50

100

150

200

F 
(k

B
T)

Fs+Fel
Fs

qDc=0.21

qDc=0.63

qDc=2.1

(e) (f)

(g)
W0=10-6 Jm-2 W0=10-7 Jm-2 W0=10-8 Jm-2

!𝒏 #𝝉

!𝝌

!𝒏
#𝝉

!𝝌

𝛿

!𝒏

#𝝉

!𝝌

𝜁

!𝝌 !𝝌

!𝒏 !𝒏#𝝉 #𝝉

high

low

probability

FIG. 8: (a)-(b) Computer-simulated LC surface anchoring energy (a) and elastic distortion energy (b) using a Q-tensor de-
scription of a chiral 5CB-based LC surrounding a homeotropic disk at different angles δ defined in the inset. The left and
right axes provide different units of energy. (c) The prediction from analytical theory for different values of LC chiral strengths
qDc. Solid lines correspond to the surface anchoring energy alone, while dots include the contribution of weak elastic distortion
around the colloidal disk (see Appendix B). (d)-(f) Numerical simulation of surface energy (d) and elastic energy (e) and
analytical prediction [Eq. (10), Appendix B] (f) of the free energies for homeotropic disks at different angles ζ (defined in the
inset). (g) Unit-sphere projections of the predicted local orientational probability of a disk immersed distribution in a chiral LC
with various anchoring strengths W0. Surface anchoring strength W0 = 10−6Jm−2 for (a)-(f) and cholesteric pitch p = 30µm,
qDc = 0.21 if not otherwise specified. Disk dimensions Lc = 10nm and Dc = 1µm for all simulations and calculations. The
energy zero points are chosen at δ = 0 or ζ = 0 for clarity.

5. Elastic energy of a twisted disclination along the main
rod direction

We will now attempt to quantify the twisted disclina-
tion effect by introducing an angular deviation Φ(r) and
express the helical host director as follows:

n̂h(r) = x̂ cos(qz + Φ(r⊥)) + ŷ sin(qz + Φ(r⊥)) (20)

with r denoting a 3D distance vector and r⊥ the lateral
distance perpendicular to the helical axis χ̂. The total
free energy of a colloidal rod inclusion aligned along the
helical axis is given by the Rapini-Papoular surface an-
choring term Eq. (6) combined with the Frank elastic free

energy in the presence of chirality [57]:

F = 1
2

∫
dr
[
K11(∇ · n̂h)2 +K22(n̂h · ∇ × n̂h + q)2

+K33(n̂h ×∇× n̂h)2
]
− 1

2W0

∮
dS(n̂h · v̂(S))2 (21)

with K11, K22 and K33 respectively denoting the splay,
twist and bend elastic modulus, as defined in our simula-
tion model in Section II. E. For simplicity, we ignore any
contributions due to surface elasticity and assume the
rod to be infinitely long and elastic distortions to occur
only along the radial direction r⊥. Employing cylindri-
cal coordinates Φ(r⊥) = Φ(r, ϑ), expanding up to second
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order in q and integration over ϑ we obtain for the free
energy Fel per unit rod length:

Fel
Lc

= 1
2

∫
dr⊥

{
K11

r2
(1 + ∂ϑΦ)2 +K33(∂rΦ)2

+
(qLc)2

12
∆K

[
1

r2
(1 + ∂ϑΦ)2 − (∂rΦ)2

]}
(22)

where ∆K = K33 − K11 > 0 denotes the difference be-
tween the bend and splay moduli. The elastic anisotropy
turns out to be of crucial importance since the twist cor-
rection O(q2) vanishes in case of the one-constant ap-
proximation K11 = K33 = K22 = K. Similarly, the sur-
face anchoring free energy reads up to quadratic order in
qLc � 1:

Fs
Lc

= −W0

2

∮
C
dϑ

{
cos2(ϑ− Φ)− (qLc)2

12
cos[2(ϑ− Φ)]

}
(23)

where C denotes the circular contour of the rod cross-
section with diameter Dc. For weak distortions Φ � 1
we linearize for Φ and obtain:

Fs
Lc
≈ F

(0)
s

Lc
− W0

2
(1− 1

6 (qLc)2)

∮
C
dϑ sin 2ϑΦ (24)

The first term is the contribution for the undistorted di-
rector field previously analyzed:

F (0)
s = −LcW0

2

∮
C
dϑ

{
cos2 ϑ− (qLc)2

12
cos 2ϑ

}
∼ −π

4
W0LcDc (25)

which corresponds to Eq. (13) for a homeotropic rod
aligned perpendicular to the helical axis (θ = δ = π/2)
in the large pitch limit qLc � 1. The second term in
Eq. (24) accounts for the change of surface anchoring free
energy generated by the elastic distortions. The change
of elastic free energy induced by the twist follows from:

∆F
(el)
twist ≈

1

24
(qLc)2Lc∆KF [Φ0] (26)

where Φ0 denotes the distortion angle for the untwisted
system, and:

F [Φ0] =

∫
dr⊥

[
1

r2
(1 + ∂ϑΦ0)2 − (∂rΦ0)2

]
(27)

is a dimensionless quantity measuring the extent of the
surface disclination surrounding the cylinder. Applying
the one-constant approximation which does not lead to
qualitative changes in this context, we determine Φ0 from
minimizing:

Fel(q = 0)

KLc
= 1

2

∫
dr⊥

{
1

r2
(1 + ∂ϑΦ)2 + (∂rΦ)2

}
(28)

so that (δFel/δΦ)Φ0
= 0 and `s = K/W0 defines the (fi-

nite) surface anchoring extrapolation length. Functional

minimization of the free energy we obtain the Laplace
equation in polar coordinates:

∂2
rΦ0 +

1

r
∂rΦ0 +

1

r2
∂2
ϑΦ0 = 0 (29)

subject to the boundary conditions:

Φ0(∞, ϑ) = 0

∂rΦ0(Dc/2, ϑ) = (4`s)
−1 sin 2ϑ (30)

with the latter denoting a Neumann boundary condition
at the colloid surface imparted by surface anchoring con-
tribution Eq. (24). This ensures that the interior of the
rod cross-section is excluded from the spatial integra-
tions. The result is a simple dipolar field:

Φ0(r, ϑ) = − Dc

16`s

(
Dc

2r

)2

sin 2ϑ (31)

Plugging this back into Eq. (27) and integrating we find
that the difference in elastic energy between the twisted
(χ̂) and untwisted (τ̂) alignment directions in indepen-
dent of the surface anchoring extrapolation length `s and
increases logarithmically with system size `max:

∆F
(el)
twist ∼

π

12
(qLc)2Lc∆K ln

(
2`max

Dc

)
(32)

Taking `max = Lc as typical size cut-off, a splay-bend
elastic anisotropy ∆K = 4pN we find that ∆Ftwist ∼
O(102kBT ). The change in Rapini-Papoular surface an-
choring free energy associated with a twist of the director
distortions reads:

∆F
(s)
twist ∼ −

πW0LcDc

92

Dc

`s
(qLc)2 (33)

which is only a fraction of the thermal energy so that the
total distortion-induced free energy change is estimated

from ∆Ftwist ≈ ∆F
(el)
twist.

In Appendix A we discuss an analytical model that
allows us to quantify the weak elastic distortions that
occur when the rod remains perpendicular to the helical
axis χ̂ but is allowed to display angular fluctuations in
the n̂− τ̂ -plane, as illustrated by the angular probability
distribution f(γ) in Fig. 9. For disks, a similar model
is discussed in Appendix B. There we demonstrate that
the elastic distortions around the disk surface are intrin-
sically chiral but are very weakly developed and do not
lead to qualitative changes in their realignment behavior
as compared to predictions based on the Rapini-Papoular
energy alone Eq. (10).

6. Effective realigning potential per rod

Gathering the findings of the previous paragraph we
revisit the realigning potential acting on a rod immersed
in a cholesteric host. The total external potential is given
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by the bare Rapini-Papoular contribution Eq. (13) for the
undistorted host director plus the free energy contribu-
tions from elastic distortions:

Fs,tot ∼ Fs + ∆Fdist (34)

Since the distortion term cannot be resolved for any rod
orientation but only for cases when the rod is aligned

along either of the directions of the local frame (n̂, τ̂ , χ̂)
of the helical LC host frame we use the following inter-
polation form:

∆Fdist(η, γ) ∼∆Ftwist sin2 η + ∆Ftilt cos2 η sin2 γ (35)

in terms of the two angles η = θ − π
2 and γ = δ − π

2
represented in Fig. 7(c,f) and key elastic contributions;
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∆Ftilt = F (û ‖ n̂)− F (û ‖ τ̂) associated with tilting the
rod away from the τ -axis towards the n̂-direction, dis-
cussed in Appendix A, and ∆Ftwist = F (û ‖ χ̂)− F (û ‖
τ̂) [Eq. (32)] the energy cost associated with twisting
the surface disclination wrapped along the body of the
cylinder. From the analysis in the previous section, we
found that ∆Ftwist is a few hundreds of kBT [Fig. 10(b)]
whereas the elastic distortions due to tilting are much
weaker (∆Ftilt < kBT ) and may, in fact, be neglected
altogether for the weak anchoring regime considered in
this study (Appendix A). The elastic energy is then min-
imal (zero) when the rods align along the τ̂ directions
(θ∗ = π/2 and δ∗ = π/2) as observed in our experiments
[Fig. 7]. The best correspondence with experimental data
is obtained for a surface anchoring amplitude of about
W0 ∼ 6 × 10−7Jm−2. An overview of the orientational
probability distributions associated with Eq. (34), based
on the Boltzmann exponent Eq. (18), are depicted in
Fig. 10(c) indicating that the rod preferentially aligns
along the τ̂ -axis with considerable orientational biaxial-
ity developing around the main alignment direction.

For the case of homeotropic rods reported in Fig. 7
we may roughly estimate the energy contribution due to
the twisted disclination from the width of the distribu-
tions depicted in panels (c) and (f). For small angles η
the Boltzmann factor of Eq. (35) translates into a simple
Gaussian distribution:

f(η) ∝ exp(−∆Ftwistη
2) (36)

and we identify a standard Gaussian FWHM =
2.355/

√
2∆Ftwist. This subsequently gives ∆Ftwist ≈

22kBT for homeotropic rods with Lc = 1.7µm and
∆Ftwist ≈ 76kBT for the longer rods with Lc = 3µm
suggesting that, in both cases, the thermal motion of the
rods is assuredly insufficient to overcome the energy bar-
rier between the τ and χ alignment directions. The values
are in qualitative agreement with the prediction from our
analytical model Eq. (32) where ∆Ftwist ∝ L3

c suggests
that the elastic energy cost of orientating the rods from
τ̂ to χ̂ directions is indeed quite sensitive to the colloidal
rod length Lc. The actual values from Eq. (32), how-
ever, should be considered as an upper bound for ∆Ftwist

mainly because in our model the local nematic order pa-
rameter Sm of the host is constrained at its far-field bulk
value and is not allowed to relax in regions where director
distortions are the largest, as observed in our experiment
and simulations.

E. Colloidal order parameters

In order to facilitate comparison with experimental re-
sults, we define the colloidal orientational order which
measures the principal direction of alignment of the col-
loids along the cholesteric helix. Taking the local molecu-
lar LC director n̂ as a reference frame we define a colloidal
uniaxial order parameter as follows:

Scm = 〈P2(û · n̂)〉f (37)

with 〈...〉f denoting a thermal average, and a colloidal
biaxial nematic order parameter that measures the rela-
tive orientational order with respect to the principal di-
rections orthogonal to n̂h:

∆cm = 〈(û · τ̂)2 − (û · χ̂)2〉f (38)

Alternatively, we can probe the orientational order from
the tensorial order parameter for colloids Qc = 3

2 〈û ⊗
û〉f − 1

2I which measures orientational order with respect
to the principal colloidal alignment direction indepen-
dently from the chosen reference frame. The correspond-
ing uniaxial and biaxial order parameters defined within
the colloidal frame are denoted by Scc and ∆cc, respec-
tively. In case of colloids aligning along the molecular
director n̂, the two frames coincide and the correspond-
ing values of order parameters are identical.

Sample Scc ∆cc Scm ∆cm

Homeotropic disk 0.66 0.067 0.66 0.067
Planar rod 0.94 0.014 0.94 0.014

Homeotropic rod (Lc = 1.7µm) 0.70 0.12 -0.26 0.76
Homeotropic rod (Lc = 3.0µm) 0.86 0.065 -0.38 0.89

TABLE I: Colloidal order parameters measured in colloidal
coordinates (c) and molecular frame (m) for each set of ex-
periments shown in Fig. 5, Fig. 6, and Fig. 7.

To quantify the symmetry-breaking of the colloidal
orientational distribution in experiments, we measured
the uniaxial Scc and biaxial ∆cc order parameters for
both disks and rods (Table I). The uniaxial order pa-
rameter Scc, as a measure of unidirectional ordering
(Eq. (37)), represents the strength of orientational con-
finement which greatly depends on the synthesized ma-
terials and the ensuing surface anchoring effects. Sub-
sequently, the non-equivalence of axes orthogonal to the
average colloidal/molecular axis is evaluated using the bi-
axial order parameter ∆cc (Eq. (38)), with−1 < ∆cc < 1.
The values of S are experimentally determined to be
Scc = Scm = 0.66 for homeotropic disks dispersed in chi-
ral 5CB-based LC [Fig. 5] and Scc = Scm = 0.94 for rods
with planar boundary condition [Fig. 6]. The values of
∆cc are found to be 0.067 and 0.014, respectively, show-
ing a robust symmetry-breaking among χ̂ and τ̂ leading
to biaxial orientational symmetry.

When the average orientations of the two compo-
nents differ, however, the choice of reference frame de-
termines the values of order parameters. Stronger ori-
entational fluctuations are found for the shorter rods
with homeotropic anchoring (Fig. 7 a-c) with Scc = 0.70
and ∆cc = 0.12, while the dispersion of the longer rods
showed a smaller orientational distribution with higher
uniaxial order parameter Scc = 0.86 and lower biaxiality
∆cc = 0.065, though still higher than that measured for
planar rods. The order parameters obtained are in good
agreement with the analytical prediction using Eq. (19)
and Eq. (35), which give Scc = 0.75,∆cc = 0.17 for the
shorter rods, and Scc = 0.90,∆cc = 0.058 for the longer
rods using the experimental parameters.
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The enhanced biaxiality for homeotropic rods aligning
perpendicular to the molecular director n̂ will be dis-
cussed in the following section. Calculated in the molec-
ular reference frame, the negative values of Scm and large
values of ∆cm simply represent the geometry in which the
average colloidal director lies orthogonal to the molecular
one n̂.

IV. DISCUSSION

A. Enhanced biaxial symmetry-breaking at
perpendicular colloidal-molecular alignment

For colloidal rods immersed in a chiral LC, the biax-
ial order developed at the level of the colloids is much
more pronounced for rods with homeotropic boundary
condition, whose energy-favored orientation is along τ̂
and perpendicular to n̂. As a consequence, the rotational
symmetry (with the rotation axis being τ̂) is obviously
not continuous, with n̂ being the material axis represent-
ing the actual molecular direction and χ̂, in contrast,
an “imaginary” one. The dissimilarity and the resulting
symmetry breaking are thus more pronounced than those
in the case of colloids aligned along n̂, as clearly shown
above by biaxial colloidal distribution probabilities in the
experimental results.

Analytical theory predicts a similar type of realign-
ment and enhanced biaxiality to occur for homeotropic
rods immersed in chiral host LCs where the chiral and
biaxial “dressing” around the rod will also be much more
pronounced than that of rods with planar or parallel
boundary conditions. With the significant contribution
from the elastic energy of the background molecular LC
to the total free energy [Eq. (35)], we are provided an
additional control of this emergent biaxiality by tuning
elasticities of the molecular host to boost the biaxiality
of the hybrid LC [Eq. (26)]. Likewise, disks with planar
anchoring, which could be realized through appropriate
surface functionalization [31], exhibit equivalent perpen-
dicular alignment (but this time along the helical axis χ̂)
which would also give strongly enhanced biaxial order in
the disk orientation distribution.

B. Quadratic scaling of biaxial order parameter
with chirality

In the weak molecular chirality regime, we may char-
acterize the leading order contribution of chirality to col-
loidal biaxiality by expanding the biaxial order parameter
up to the quadratic order in the inverse pitch q = 2π/p:

∆ = ∆0(qa)2 +O[(qa)4] (39)

where the length scale corresponds to the colloidal dimen-
sions; a = Dc for thin disks and a = Lc for cylinderical
rods. The zeroth order term must be zero given that no

intrinsic biaxiality can be expected from purely uniaxial
components at zero chirality. Also, the linear term pro-
portional to qa must vanish since the value of biaxiality
should not depend on the handedness of the host mate-
rial. Following the results Eq. (18), Eq. (38), and the free
energies for each type of colloids, we computationally ver-
ify the quadratic scaling ∆ ∼ ∆0(qa)2 within the weak
chirality approximation qa � 1 [Fig. 11(a)]. Interest-
ingly, the quadratic scaling of biaxial order with the pa-
rameters qLc or qDc resembles the theoretical prediction
by Priest and Lubensky for a single-component molec-
ular LC [19], in which case Lc needs to be replaced by
Lm denoting the size of the molecules. Despite the differ-
ent derivations of biaxiality from component material(s),
the agreement between the results from our hybrid LC
system and single-compound LC reveals the underlying
physical principle, namely a close relationship between
biaxial order and chirality. Most interestingly, the pref-
actor ∆0 turns out to be very different for each system
considered and has a distinct, non-trivial dependence on
the surface anchoring strength [Fig. 11(b)].

C. Enhanced biaxiality of the molecular host at the
colloidal surface

The molecular biaxial order parameter ∆m measures
the broken uniaxial symmetry of the LC host (which is
5CB). The ∆m is associated to the tensorial local mean-
field order parameter by [17, 48]:

Q(m) = Sm

(
3

2
n̂⊗ n̂− I

2

)
+ ∆m

(
3

2
m̂⊗ m̂− I

2

)
(40)

with the molecular director field n̂ and the biaxial direc-
tor m̂ orthogonal to each other. Here, Sm is the scalar
order parameter measuring the uni-directionality of n̂,
with Sm ≥ ∆m ≥ 0. Accordingly, in the numerical com-
putation, the order parameters are determined by the
diagonalization of the Q tensor:

∆m =
2

3
(λ2 − λ3)

Sm = λ1 + ∆m/2 (41)

where λ1 > λ2 > λ3 are the eigenvalues of Q(m). The di-
rectors n̂ and m̂ are then found by calculating the eigen-
vectors corresponding to λ1 and λ2, respectively. Since
eigenvalues are interpreted as the “directionalities” along
each orientation (eigenvector), the calculation of ∆m in
Eq. (41) corresponds exactly to finding the inequivalence
of the two minor axes (m̂ and n̂ × m̂), and the value of
biaxiality is a measure of the broken rotational symmetry
along n̂, analogous to the colloidal orientation distribu-
tions illustrated above. Using numerical modeling based
on the Q-tensor representation of the LC order parame-
ters, we find ∆m at a far-field helical background to be of
the order of 10−7, which is precisely the value predicted
using ∆m ∼ (qLm)2 with the size of a 5CB molecule
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FIG. 11: (a) Biaxial order in the colloidal orientation distribution for the weak chirality regime qa � 1, with a the typical
colloid size. The results are based on the Rapini-Papoular surface anchoring energy Eq. (6) and Eq. (18) using W0 = 10−6Jm−2.
(b) Dependence of the prefactor ∆0, defined by ∆ ∼ ∆0(qa)2 on the anchoring strength based on the colloidal dimensions
Lc = 1.7µm and Dc = 28nm for the rods and Dc = 2µm for the disks.
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FIG. 12: (a)-(c) Contours of molecular biaxiality (magenta)
around the colloids (gray) marking the regions with ∆m

larger than 10−3 (a) and 10−4 (b,c), respectively. The or-
thogonal frame defining the molecular axes is colored as in
Fig. 1. Homeotropic anchoring condition is used for (a,c)
and planar anchoring for (b). Surface anchoring strength
W0 = 10−6Jm−2 and LC helical pitch p = 30µm is used for
all simulations.

being in the nanometer range Lm = 2nm [19], showing
the intrinsic biaxial order in the molecular chiral liquid
crystal.

Interestingly, we also discover that ∆m greatly in-
creases from 10−7 in the far-field limit to 10−4 or even
10−3 near the colloidal surfaces [Fig. 12], being especially
prominent at the regions where the surface anchoring
force favors a distinct molecular director alignment from
the helical far-field. The enhanced biaxiality induced by
the colloidal particles is qualitatively interpreted as the
mismatch of two axes – the particle surface anchoring ori-
entation v̂ and background LC aligning direction n̂. As a
quantification of the broken uniaxial rotation symmetry
of n̂, higher values of ∆m can be found at particle surfaces
with a greater discrepancy in the two orientations, with
maximum ∆m located at regions where surface normal
director perpendicular to background far-field [Fig. 12].
Furthermore, within LC regions with a ∆m dominated by
particle surface and far exceeding the background value
10−7, the biaxial director m̂ is found to coincide with the
perpendicular component of the surface anchoring direc-
tor to the nematic director m̂ = v̂− (v̂ · n̂)n̂, confirming
the idea that the colloidal surface induces molecular bi-
axiality order by introducing an energy landscape for n̂
without uniaxial symmetry.

In case of no host chirality, biaxial order stabilized by
correlations between colloidal particles immersed in ne-
matic 5CB was reported in [18]. Furthermore, compared
to pure molecular LCs without colloids, the frustrated
alignment of n̂ induced by the presence of colloidal par-
ticles also leads to a reduced bulk nematic order param-
eter Sm and the formation of defects in cases with strong
surface anchoring. In our systems, though, we expect the
two independent contributions to the “biaxialization” of
uniaxial 5CB liquid crystal – the introduction of chiral
dopant and of colloidal particles – to have negligible ef-
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fects on the free energies in our analytical model, which
is evident by the induced values of ∆m and has been con-
firmed by the numerical modeling using a tensorial order
parameter Q(m).

D. Biaxial interpretation of chiral liquid crystals

As suggested in the section above, the intrinsic biaxi-
ality of a chiral nematic LC allows us to define local bi-
axial directors even in absence of colloidal particles. The
molecular biaxial order persists ∆m ∼ (qLm)2 as long as
the chirality q, or the helicity in the director alignment,
is non-vanishing. To accurately account for this unavoid-
able biaxiality, we modify and expand the calculation in
Ref. [49, 50] for uniaxial chiral nematics, in which the
chirality-associated directors (n̂,χ̂,τ̂) are found by diag-
onalizing a 3-by-3 handedness tensor H defined as:

Hij = εikln̂k
∂n̂l
∂xj

(42)

with summation over indices assumed. The trace∑
iHii = −n̂ · (∇ × n̂) gives the helicity of the LC di-

rector alignment field. Considering the intrinsic biaxial
order in chiral LCs, we can similarly construct the hand-
edness tensor using the molecular tensorial order param-
eter Q(m):

Hij =
4

9Sm
2 εiklQ

(m)
kn

∂Q
(m)
ln

∂xj
(43)

The uniaxial definition Eq. (42) can be recovered by ex-
panding the equation using Eq. (40) with ∆m = 0. Note
that the trace of the handedness tensor again represents
the helicity and is identical to the chiral part of elastic
free energy (L4 term in Eq. (1)). Strikingly, in numeri-
cal simulation we discovered that the helical director field
χ̂, which is computed as the eigenvector corresponding to
the eigenvalue with the largest absolute value, thoroughly
matches the directors calculated by diagonalizing Q(m):
χ̂ = n̂ × m̂ [Fig. 13], which also immediately suggests
τ̂ = m̂ (Note all directors are head-tail symmetric). The
excellent overlap of the two orthogonal frames, (n̂, τ̂ , χ̂)
originating from chirality and (n̂, m̂, n̂ × m̂) represent-
ing biaxiality, directly demonstrates the biaxial feature
in chiral nematic LCs. The energy-minimizing of Q(m)

automatically incorporates these symmetries once all de-
grees of freedom beyond those for pure uniaxial nemat-
ics are allowed. Consequently, one can straightforwardly
identify chirality through the concomitant biaxial prop-
erties using q ∼

√
∆m/a and χ̂ = n̂× m̂ instead of inves-

tigating the helical twisting and spatial derivatives of the
LC directors. These values are well-defined from the bi-
axiality calculation even inside LC defects with reduced
uniaxial order parameter Sm.

Therefore, with the chirality-driven biaxial symmetry
taken into account, one can naturally analyze structures
within a chiral LC using considerations similar to the

(a)

(b)

FIG. 13: (a) The director profiles simulated inside a Bloch-
wall-like structure resembling a helical-twist. Treated as in a
uniaxial LC, n̂ (red) and χ̂ (green) are calculated using chi-
rality tensor [49] and visualized as ellipsoids (left). The direc-
tors simulated instead by biaxial Q-tensor are visualized us-
ing bricks (right), with red, blue, and green faces respectively
corresponding to principle n̂, biaxial m̂, and the third n̂× m̂
orthogonal axes [48]. (b) Numerical simulation of molecu-
lar n̂ and helical χ̂ axes in a 2D meron-like structure using
chirality-based (left) and biaxiality-based approaches (right).

ones derived for biaxial nematics [Fig. 13]. Since the the-
ory describing the topological classification of defects and
solitons in biaxial nematics, which has an order param-
eter space SO(3)/D2, is distinct from those emerging in
a uniaxial LC with S2/Z2 counterpart [3, 30, 57–59], the
biaxial symmetry in a chiral LC offers an alternative in-
terpretation of topological objects in cholesterics differing
from their more conventional description. For example,
a helical configuration resembling a Bloch wall can be
found across our experiments. By identifying the χ̂ direc-
tor field within, which is uniformly aligned, we can visual-
ize the configuration as a 1-dimensional soliton formed in
brick-like LCs with matching director fields [Fig. 13] with
a uniform χ̂ field and helical twisting in n̂ and τ̂ fields.
Furthermore, unlike uniaxial LCs with a single director
field, biaxial systems with three orthogonal director fields
cannot accommodate a fully nonsingular solitonic struc-
ture as 2D translationally invariant fully nonsingular ob-
jects, implied by π2(SO(3)/D2) = 0 [3, 58]. As shown
in Fig. 13(b), a meron-like arrangement of directors is
a nonsingular soliton embedded in the molecular direc-
tor n̂. The meron, or half-skyrmion structure, has been
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constructed as a 2D soliton composed of a single direc-
tor or vector with the absence of singularity [5, 60, 61].
The structure becomes, however, a singular defect in a
biaxial system, as demonstrated by the emergence of sin-
gularities found at the center in the χ̂ and τ̂ director
fields orthogonal to the material director field. Similarly,
3D topological solitons, fingers, and other non-singular
structures in cholesterics can be viewed as defects lines
and loops in a biaxial system by thoroughly analyzing
all three directors as well [3, 62]. Besides, some phenom-
ena of the defects and soliton structures in a system of
chiral nematics, including nonabelian disclinations and
their entanglement behaviors, are elucidated only from
the perspective of biaxial topological descriptions that
are distinct from uniaxial topology [3, 30, 63, 64]. With
the biaxial directors defined and simulated in consistency
with the chiral description, the biaxial features of chi-
ral nematics, including their topological defects, solitons,
and frustrated structures can be easily and naturally ex-
plored. This opens up the possibility of using molecular-
colloidal chiral nematics as model systems in the explo-
ration of nonabelian vortices, solitonic structures with
low-symmetry order parameters, etcetera.

V. CONCLUSION AND OUTLOOK

We have explicitly demonstrated that immersing uni-
axial, non-chiral colloidal rods and disks into a low-
molecular-weight cholesteric liquid crystal host leads to
emergent biaxial order that we identify at both colloidal
and molecular levels by combining experiment with nu-
merical simulation and analytical theory [Fig. 14]. Un-
like the previously studied case of hybrid molecular-
colloidal biaxial phases [16–18], we observe multi-level
biaxial symmetry-breaking at ultralow colloidal content
where colloid-colloid interactions are negligible. By ex-
ploring a variety of colloidal shapes and surface anchoring
symmetries we report biaxial order emerging at three dis-
tinct levels. First, molecular director distortions develop
around each colloid which, although being of marginal
extent because of weak surface anchoring conditions,
display a distinct two-fold signature imparted by the
cholesteric host. Second, the orientational distribution
of the colloids around the local cholesteric director is
demonstrated to adopt a clear biaxial signature, and the
response of the corresponding biaxial order parameter is
found to depend non-trivially upon the surface anchoring
strength as well as on the ratio of the cholesteric pitch
and the principal colloidal dimension (rod length or disk
diameter). Finally, at the molecular scale, we demon-
strate that enhanced biaxiality emerges close to the col-
loidal surface at levels strongly exceeding those expected
for purely molecular cholesterics.

A particularly striking manifestation of biaxial
symmetry-breaking is encountered for thermotropic
cholesterics doped with colloidal rods with homeotropic
surface anchoring. Driven by a combination of surface

anchoring forces and an energy penalty incurred by twist-
ing a weakly developed surface disclination along the
rod main axis, these rods have a strong tendency to
align perpendicular to both the helical axis and the local
cholesteric director, thus imparting a two-fold D2h orien-
tational symmetry onto the hybrid system at each point
along the cholesteric helix. By means of numerical mini-
mization of the Landau de Gennes energy and mean-field
theory based on the Rapini-Papoular surface anchoring
energy, we have revealed that the multi-level expression
of emergent biaxiality in our systems is already manifest
at ultralow colloid concentrations, essentially as a single-
colloid effect, and we find consistent agreement between
our predictions from modeling and the experimental ob-
servations.

Our results pave the way towards controlled biaxial
order at both colloidal and molecular levels. By harness-
ing the interplay of chiral and biaxial symmetries, future
research efforts could be directed along the following sev-
eral emergent avenues. At larger colloidal concentrations
a richer phenomenology could be expected and explored
due to the more prominent roles expected to be played
by steric, electrostatic or defect-mediated colloid-colloid
interactions further enriching the surface anchoring and
elastic forces discussed here. Besides the emergent sym-
metry breaking discussed here, one could, in principle,
also apply electric or magnetic fields to reconfigure either
molecular or colloidal sub-systems, or both, to achieve
even lower externally induced symmetries of LCs, for
instance, corresponding to triclinic or monoclinic point
groups. Finally, by realizing topological solitons in the
molecular-colloidal hybrid system with nontrivial chiral-
ity and biaxiality, one could reveal the stability of topo-
logical structures for various low-symmetry order param-
eter spaces. While ferromagnetic colloidal particle dis-
persions have already provided insight into the possibil-
ity of formation of solitons in polar chiral liquid crystals
[65], this study could be extended to symmetries differing
from nonpolar and polar uniaxial LCs, for example, by
exploring multi-dimmensional solitonic structures corre-
sponding to the SO(3)/D2 order parameter space.
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Appendix A: Elastic distortions around the rod
surface for û ⊥ χ̂

In order to complete our understanding of the strength
of the elastic distortions surrounding the main section of
a thin rod we now focus on the case where a rod is per-
pendicular to the helical axis χ̂ and aligned at an angle
γ away from the τ̂ -axis. This situation is depicted in
Fig. 9(a) . Since the rod is perpendicular to the heli-
cal axis χ̂ we may ignore the effect of chiral twist and
parameterize the host director field case within a Carte-
sian reference frame spanned by the tripod (x̂, ŷ, ẑ) with
ẑ = χ̂:

n̂h(r) = x̂ cos Φ(r) cos ε(r)+ ŷ sin Φ(r) cos ε(r)+ ẑ sin ε(r)
(44)

As before, we ignore end effects and express the spa-
tial variation of the distortion angles in polar coordi-
nates, i.e. Φ(r, ϑ) and ε(r, ϑ) that parameterize space in
the lab frame. In principle, the Euler-Lagrange expres-
sions emerging from minimizing the elastic free energy
are strongly coupled and cannot be solved analytically
even in the case of weak surface anchoring. We expect,
however, that a tilted rod will mostly experience distor-
tions along its main axis χ̂, expressed by a non-zero ε,
while the director deviations Φ surrounding the lateral
cross-section of the rod remain far less affected by the
rotation. Then, we can pursue a hybrid route by ‘con-
straining Φ = Φ0 to its solution for the perpendicular
case Eq. (30) and minimize the free energy only with
respect to ε.

To render the model analytically tractable we assume
that the rod cross-section along which the director dis-
tortions are expected to occur is curvature-free and can
be described by a strip of length Ls and Ds � Ls. We
define a tilt angle γ = δ − π

2 (with 0 < γ < π/2) so
that γ = 0 corresponds to the case where the rod points
perpendicular to the LC host director n̂. All distances
are normalized in terms of the colloidal rod diameter Dc.
The distortions are then described by the 2D Laplacian:

(∂2
x + ∂2

y)ε = 0 (45)

The general solution reads:

ε(x, y) =

∞∑
n=1

e−nπx[an cos(nπy) + bn sin(nπy)] (46)

which vanishes in the far-field limit ε(x → ∞) = 0. The
Rapini-Papoular surface anchoring free energy reads:

Fs
KLc

= − 1

2`s

∫ 1

0

dy cos2(γ − ε(0, y)) (47)

which translates into the following boundary condition
at the surface of the strip located at x = 0:

∂xε(0, y) =
1

4`s
sin[2(γ − ε(0, y))] (48)

Further, for symmetry reasons we require the distortion
angle to be vanishing at both sides of the strip:

ε(0, 0) = ε(0, 1) = 0 (49)

which implies that an = 0. The coefficients bn need to
be resolved from:

nπ

2
bn =

1

4`s

∫ 1

0

dy sin(nπy) sin

[
2

(
γ −

∞∑
k=1

bk sin(kπy)

)]
(50)
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For small tilt angles γ � 1 distortions are expected to be
weak ε � 1 so that we linearize sin 2(γ − ε) ≈ 2(γ − ε).
This enables us to resolve the coefficients analytically:

bn =

(
1− (−1)n

(nπ)2

)
γ

`s
(51)

The free energy increase induced by the elastic distortions
is given by:

∆Fel =
πKLc

4

∞∑
n=1

nb2n (52)

which in the linearized regime for small γ gives a simple
analytical result:

∆Fel =
7KLc

8π3
ζ(3)

(
γ

`s

)2

(53)

with ζ(3) ≈ 1.2 a constant from the Riemann-Zeta func-
tion ζ(x). The surface anchoring free energy reads:

Fs = −LcDcW0

2
2

∫ 1

0

dy cos2(γ − ε(0, y)) (54)

where the factor two reflects the two opposing sides of
the rectangular strip with surface LD whose contribu-
tions are equivalent. Then, in the absence of elastic
distortions and no tilt (γ = 0) the surface anchoring
free energy would simply be Fs = −LcDcW0 which only
marginally differs from the result for the cylindrical case
Fs = −(π/4)LcDcW0. Within the linearized regime for
small tilt angles γ � 1 the change in surface anchoring
free energy imparted by the elastic distortions is given
by:

∆Fs ≈ LcDcW0

∫ 1

0

dy(γ − ε(0, y))2

≈W0LcDc

(
1 +

1

48`2s
− 7ζ(3)

π3`S

)
γ2 (55)

This expression along with Eq. (53) clearly reflects the
basic trade-off between surface anchoring and elasticity
where the cost in elastic free energy is partly compen-
sated by a reduction of the surface anchoring free energy
(last term). The total free energy change for small tilt
angles now reads:

∆Ftot ∼W0LcDc

(
1− 49ζ(3)

8π3`s

)
γ2 +O(γ2/`2s) (56)

Let us now compare our results with the simple Rapini-
Papoular expression Eq. (13) in the absence of elastic
distortions. Taking θ = π/2 and expanding for small γ
we find:

∆F
(s)
tot ∼

π

4
W0LcDcγ

2 (57)

Disregarding the trivial curvature prefactor π/4 in the
last expression, we find that the impact of the elastic

distortions is rather marginal, since the correction term
in Eq. (56) is less than 1 kBT . Numerical resolution
of Eq. (50) reveals that weak elastic distortions occur
mostly when the rod is at an oblique angle γ = π/4.
The predictions from our analytical model are depicted
in Fig. 9(c).

Appendix B: Elastic distortions around the disk
surface

Ignoring elastic distortions we find that disks with
homeotropic surface anchoring tend to orient along the
local molecular director n̂, as observed in experiment.
This is the optimal situation that incurs the least amount
of elastic distortions, compared to the other principal di-
rections in which cases the disk surface would experience
strongly unfavorable tangential surface ordering. How-
ever, even when the disk normal is aligned along the lo-
cal nematic director there are local mismatches between
the far-field and preferred surface director due to the
weak twisting of the host director along the helix axis
χ̂ and when the rod normal fluctuates away its equilib-
rium orientation. The elastic distortions are expected to
be weak but they will become more outspoken at shorter
cholesteric pitches. It is instructive to compute the ex-
tent of these distortions along the lines of our previous
analysis for rods. Let us consider an infinitely thin disk
with its normal pointing along n̂ and rotated over an
angle δ through the helix axis χ̂ so that the disk vec-
tor is restricted to lie in the plane perpendicular to it.
We assume weak elastic distortions Φ developing in this
plane. Defining a host director in the Cartesian lab frame
n̂h = x̂ cos Φ(x, y)+ŷ sin Φ(x, y) we find, assuming elastic
isotropy, that the distortions are described by the Laplace
equation:

(∂2
x + ∂2

y)Φ = 0 (58)

The effect of a twisting host director is accounted for
through the surface anchoring free energy:

Fs = −W0

2

∮
dS[n̂h · (R(qz + δ) · v̂(S))]2 (59)

where S parameterizes the face of the disk (as previously
we ignore finite thickness effects for disks with Dc � Lc)
and v̂ = (1, 0, 0) indicating homeotropic anchoring along
the surface normal. The rotation matrix reads:

R(qz + δ) =

cos(qz + δ) − sin(qz + δ) 0
sin(qz + δ) cos(qz + δ) 0

0 0 1

 (60)

A key distinction with the rod case discussed previously is
that the distortions are not uniform across the disk sur-
face but depend on the location of the surface element
with respect to the helical axis. It is convenient to di-
vide the disk surface into infinitely thin strips, with each
surface element on the strip being equidistant from the
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centre-of-mass along the helical axis χ̂ thus experiencing
the same degree of elastic distortions.

For notational brevity, we implicitly normalize all
lengths in units of the disk diameter Dc and parameterize
the disk surface in terms of y = 1

2 cosα and z = 1
2 sinα

with −π < α < π. Each strip then has length Ls = cosα
and thickness Ds = 1

2 cosαdα and surface ds = LsDs.
The surface anchoring free energy of an arbitrary strip
with surface ds and centre-of-mass distance z then reads:

F strip
s = −W0[cos(Φ(0, y)− qz − δ)]2ds (61)

The boundary condition at the strip the disk equator
(α = 0) reads:

Φ(∞, 0) = 0

`s∂xΦ(0, y) = −1

2
sin[2(Φ(0, y)− qz − δ)]

≈ 1

2
sin[2(qz + δ)]− cos[2(qz + δ)]Φ(0, y)

(62)

where we take 0 < y < 1 for convenience. The distortions
should be symmetric at the edges (Φ(0, 0) = Φ(0, 1)).
The general solution of the Laplace equation Eq. (58)
reads:

Φ(x, y) =

∞∑
n=1

e−nπxbn sin(nπy) (63)

Applying the boundary conditions we obtain the follow-
ing expression for the coefficients:

bn =
sin[2(qz + δ)]

cos[2(qz + δ)]− nπ`s

(
1− (−1)n

nπ

)
(64)

Given that q and −q do not give equivalent results we
conclude that the distortions created near the disk sur-
face carry a distinct chiral signature imparted by the chi-
rality of the host LC, as evidence by the Landau - de
Gennes simulations [Fig. 1 and Fig. 12]. The nature of
the imprint depends on the twist angle δ between the
disk normal and the molecular director n̂. We further
deduce that the distortions vanish at infinitely weak sur-
face anchoring (`s →∞) and in the absence of twist and
tilting (q = 0 and δ = 0), as we expect. The elastic free
energy for the total disk is given by:

∆Fel =
πKDc

4

∫ π/2

−π/2
dα cosα

∑
n

nb2n (65)

which may be evaluated as a function of the angle δ be-
tween the disk normal and the molecular director taking
the surface anchoring extrapolation length (in units of
the disk diameter Dc) to be about `s ≈ 3. The change in
surface anchoring free energy induced by the distortions
follows from linearizing Eq. (61) and integrating over all

strips:

∆Fs =
W0D

2
c

2

∫ π/2

−π/2
dα cos2 α sin[2(qz + δ)]

×
∑
n

bn

(
1− (−1)n

nπ

)
(66)

We reiterate that z depends on the angle α via z =
Dc

2 sinα.
We finish our analysis by considering the case where

the disk normal rotates over the τ̂ -axis by an angle ζ.
This is equivalent to the situation depicted in Fig. 3(c)
and (d). In this situation, the tilting will generate addi-
tional weak LC director distortions across the χ̂-direction
that we denote by the angle ε. The spatially-dependent
host director now reads:

n̂h(r) =

cos Φ(r) cos ε(r)
sin Φ(r) cos ε(r)

sin ε(r)

 (67)

with r = (x, y). Each distortion angle obeys the Laplace
equation in the n̂− τ̂ -plane:

(∂2
x + ∂2

y)Φ = 0

(∂2
x + ∂2

y)ε = 0 (68)

The surface anchoring free energy now takes the following
form:

Fs = −W0

2

∮
dS[n̂h · (RζR(qz) · v̂(S))]2 (69)

where the matrix Rζ describes a rotation of the disk nor-
mal over the τ̂ -axis (cf. Fig. 3(c)):

Rζ =

 cos ζ 0 sin ζ
0 1 0

− sin ζ 0 cos ζ

 (70)

Analogous to the previous case, we may derive boundary
conditions from linearizing Fs for weak distortions Φ� 1
and ε� 1. Plugging in the general solution [Eq. (63)] and
defining bn as the distortion modes pertaining to Φ(x, y)
and dn as those for ε(x, y) we find that both distortion
angles are intricately coupled, as expected:

bn = cn cos ζ sin(2qz)

dn = cn sin(2ζ) cos2(qz) (71)

From these we immediately assert the most basic scenar-
ios; both distortions vanish for a disk in an achiral host
(q = 0) at zero tilt (ζ = 0), whereas at nonzero tilt angle
only ε(dn) is nonzero. For a disk immersed in a chiral
host (q 6= 0) at zero tilt (ζ = 0) we recover the previous
scenario with Φ(bn) given by Eq. (64) and ε(dn) = 0].
Both distortion angles are expected to be nonzero in case
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the disk normal is tilted away from the local director of
the chiral host. The common prefactor reads:

cn =
2
(

1−(−1)n

nπ

)
1 + 2`snπ − cos(2ζ)− 2 cos2 ζ cos(2qz)

(72)

The change in elastic free energy is a simple superposition
of amplitudes:

∆Fel =
πKDc

4

∫ π/2

−π/2
dα cosα

∑
n

n
(
b2n + d2

n

)
(73)

The contribution arising from the host chirality turns out
zero for symmetry reasons:

∆Fchiral = Kq

∫
dr∂yε(x, y) = 0 (74)

which is easily inferred from inserting the expansion
Eq. (63) and integrating over y. The reduction in surface
anchoring free energy caused by the distortions Φ is as
follows:

∆Fs,Φ = W0D
2
c cos ζ

∫ π/2

−π/2
dα cos2 α sin(2qz)

×
∑
n

bn

(
1− (−1)n

nπ

)
(75)

supplemented with a similar contribution accounting for
the distortions ε:

∆Fs,ε = W0D
2
c sin(2ζ)

∫ π/2

−π/2
dα cos2 α cos2(qz)

×
∑
n

dn

(
1− (−1)n

nπ

)
(76)

We find that the surface anchoring is always negative and
outweighs the cost in elastic free energy thus lower the
overall free energy of the system, as it should. The results
in Fig. 8(c) and (f). We find that the elastic distortions
are most developed at oblique orientations (δ or ζ ≈ π/4)
and do not strongly depend on the direction along which
the disk is rotated.

If we now reconsider the total alignment potential for
disks accounting for corrections derived above we con-
clude that the ordering of the disks is hardly affected
by the distortions. The free energy changes are typi-
cally several tens of kBT which is about two orders of
magnitude smaller than the typical Rapini-Papoular sur-
face anchoring free energy W0D

2
c which is about 1500

kBT . disks experiencing weak surface anchoring with a
cholesteric host with large pitch (qDc < 1) will therefore
simply follow the local molecular director with thermal
fluctuations around the optimum angle being strongly
suppressed. The considerable penalty incurred by angu-
lar fluctuations away from the local cholesteric director is
demonstrated in Fig. 8(c) and (f) for a number of differ-
ent host pitches. Although the presence of elastic distor-
tions around the disk surface lead to a systematic reduc-
tion of the total free energy, their effect on the realigning
properties of a colloidal disk immersed in a cholesteric
host LC seems rather marginal.
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Y. Galerne. Chirality-induced biaxiality at the uniaxial-
to-biaxial cholesteric phase transition. Physical Review
A, 40(8):4647, 1989.

[21] J. D. Bunning, D. A. Crellin, and T. E. Faber. The
effect of molecular biaxiality on the bulk properties of
some nematic liquid crystals. Liquid crystals, 1(1):37–51,
1986.

[22] A. B. Harris, R. D. Kamien, and T. C. Lubensky. Micro-
scopic origin of cholesteric pitch. Physical review letters,
78(8):1476, 1997.

[23] S. Dussi and M. Dijkstra. Entropy-driven formation of
chiral nematic phases by computer simulations. Nature
Communications, 7(1):1–10, 2016.

[24] S. Dhakal and J. V. Selinger. Chirality and biaxial-
ity in cholesteric liquid crystals. Physical Review E,
83(2):020702, 2011.

[25] L. Longa, W. Fink, and H.-R. Trebin. Biaxiality of chiral
liquid crystals. Physical Review E, 50(5):3841, 1994.

[26] G. Canevari. Biaxiality in the asymptotic analysis
of a 2d landau- de gennes model for liquid crystals.
ESAIM: Control, Optimisation and Calculus of Varia-
tions, 21(1):101–137, 2015.

[27] A. B. Harris, R. D. Kamien, and T. C. Lubensky. Molec-
ular chirality and chiral parameters. Reviews of Modern
Physics, 71(5):1745, 1999.

[28] T. C. Lubensky, A. B. Harris, R. D. Kamien, and G. Yan.
Chirality in liquid crystals: From microscopic origins to
macroscopic structure. Ferroelectrics, 212(1):1–20, 1998.
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