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Nonparametric inference on tail conditional quantiles and their least
squares analogs, expectiles, remains limited to i.i.d. data. We develop a fully
operational inferential theory for extreme conditional quantiles and expec-
tiles in the challenging framework of α−mixing, conditional heavy-tailed
data whose tail index may vary with covariate values. This requires a ded-
icated treatment to deal with data sparsity in the far tail of the response, in
addition to handling difficulties inherent to mixing, smoothing, and sparsity
associated to covariate localization. We prove the pointwise asymptotic nor-
mality of our estimators and obtain optimal rates of convergence reminiscent
of those found in the i.i.d. regression setting, but which had not been estab-
lished in the conditional extreme value literature. Our assumptions hold in
a wide range of models. We propose full bias and variance reduction proce-
dures, and simple but effective data-based rules for selecting tuning hyperpa-
rameters. Our inference strategy is shown to perform well in finite samples
and is showcased in applications to stock returns and tornado loss data.

1. Introduction.

1.1. Motivation. Quantile regression is a well-established statistical tool for the assess-
ment of the impact of a vector of covariates X ∈Rp upon a response variable Y ∈R. It fully
describes the conditional distribution of Y given X by considering the conditional quantiles

(1) q(τ |x) = argmin
θ∈R

E ([ϱτ (Y − θ)− ϱτ (Y )] |X = x) , τ ∈ (0,1),

where ϱτ (y) = |τ − 1{y≤0}| |y| denotes the quantile check function. Regression quantile es-
timators at the tails nonetheless typically suffer from instability and inconsistency due to
data sparseness, especially when the underlying conditional distributions are heavy-tailed.
This class of distributions is ubiquitous in, among others, insurance (large losses due to large
claims), finance (large drops in stock indices) and natural sciences (large earthquake magni-
tudes, flood intensity, extreme rainfall). Existing approaches to extremal quantile regression
in the heavy-tailed case fall into two main categories: linear quantile regression approaches,
such as those of [6], [7] and [25], and at the opposite, nonparametric approaches such as
those of [9] and [10]. Yet, tail quantile regression theory typically assumes that the data is
independent and identically distributed (i.i.d.). Only [7] provides feasible inference tools for
α−mixing data, by assuming that conditional quantiles q(τ |x) are linear in x, that the ex-
treme value index is constant, and using self-normalized quantile regression statistics rather

MSC 2010 subject classifications: Primary 62G32; secondary 62G05, 62G08, 62G15, 62G20, 62G30.
Keywords and phrases: Conditional quantiles, conditional expectiles, extreme value analysis, heavy tails, in-

ference, mixing, nonparametric regression.

1



2

than simpler asymptotic Gaussian confidence intervals. More broadly, the problem of infer-
ence on nonlinear extremal quantile regression remains untouched under serial dependence.

In actuarial and financial risk management, the robustness of quantiles may constitute a
weakness as they are not sensitive to the severity of extreme losses. Their failure to satisfy
the coherence property (introduced in [1]) is also a serious drawback. A better alternative in
these respects is expectile regression [22], which focuses on the conditional expectiles

(2) e(τ |x) = argmin
θ∈R

E ([ητ (Y − θ)− ητ (Y )] |X = x) , τ ∈ (0,1),

where ητ (y) = |τ − 1{y≤0}|y2 is an asymmetric quadratic loss function. Expectiles extend
the mean as quantiles extend the median, and induce the only coherent and elicitable risk
measure [29]. As such, they come endowed with a natural backtesting methodology. Besides,
the τ th expectile is in fact the τ th quantile of a transformed distribution function, that is,

(3) e(τ |x) = inf{y ∈R |E(y|x)≥ τ} with E(y|x) =
E[|Y − y|1{Y≤y}|X = x]

E[|Y − y||X = x]
.

Regression expectiles thus make an efficient use of the data, since they rely on the distance
to all observations and not only on their probability, and they benefit from a transparent fi-
nancial meaning in terms of their acceptance sets and the gain-loss ratio [3]. These properties
and others have motivated the development of extremal expectile regression. The pioneering
contribution of [24] is limited to elliptical heavy-tailed distributions, and the nonparametric
approach of [17] hinges on the i.i.d. assumption. The approach of [16] can handle time series
location-scale models, but is highly sensitive to model misspecification, makes the strong
assumption of a constant tail index, and its bootstrap scheme is difficult to calibrate.

1.2. Contribution and outline of the paper. We propose a general and fully operational
nonparametric inferential theory for conditional tail quantiles and expectiles when the data
comes from an α−mixing dependent sequence ((Xt, Yt))t≥1. We allow heavy-tailed data for
both regression modes, although moment restrictions are inevitably required for conditional
extreme expectile inference, since expectiles extend the mean. The conditional tail index is
allowed to depend on covariate values. Our unifying argument is that any quantile can be
estimated by inverting an estimator of the associated distribution function. This is very ben-
eficial theoretically, as it reduces the problem of investigating the asymptotic normality of
extreme conditional quantile and expectile estimators to proving the asymptotic normality of
row sums of identically distributed and dependent random variables, while a solution via em-
pirical versions of (1) and (2) would be technically involved (see [13] and [15] in the uncondi-
tional setting and under a stronger β−mixing assumption). When the level τ is intermediate
in the sense that τ = τn ↑ 1 slowly enough as the sample size n→∞, an asymptotically nor-
mal estimator is then obtained by inverting a kernel smoother of the associated conditional
distribution function. The intermediate level τn is assumed to satisfy nhpn(1 − τn) → ∞,
where hn > 0 is the bandwidth sequence featuring in the kernel estimator. At properly ex-
treme levels τ = τ ′n such that nhpn(1− τ ′n) = O(1), we consider Weissman-type estimators
(after [27]) that rely on a conditional tail index estimator based on quantiles or expectiles.

Our asymptotic theory is obtained through a standard “big blocks separated by small
blocks” argument, for algebraically fast mixing and under reasonable technical conditions on
the distributional behavior of X and of Y given X , marginally and through time; in particu-
lar, we make conditions on (X1,Xt+1) and on the joint extreme value behavior of (Y1, Yt+1)
given (X1,Xt+1) that are weaker than typical conditions in the literature. Our framework
encompasses, among others, location-scale models with possible temporal misspecification,
a general class of nonlinear regression models containing Generalized Linear Models, and
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autoregressive models. Surprisingly perhaps, the asymptotic distribution of the intermediate
estimators remains the same as in the nonparametric i.i.d. setting [10, 17], unlike in the ab-
sence of covariates [13, 15]. We nonetheless improve upon results of the i.i.d. literature by
deriving the asymptotic normality of our estimators at faster rates of convergence than had
been found so far. Obtaining these rates, reminiscent of the optimal rates found in classical
nonparametric statistics under twice differentiability of the function to be estimated, requires
developing an innovative and careful approach to the quantification of bias in smoothed ex-
tremal regression estimators. In particular, we find that the variation in conditional extremes
induces bias that bears a link to the design bias in the terminology of [26]; this had not been
appreciated in the literature before. From the inferential point of view, the Weissman-type
structure makes it possible to come up with very accurate and novel bias-corrected versions
and precise approximations to the empirical variance of the estimators. We thus construct
asymptotic Gaussian confidence intervals that substantially improve upon the naive solutions
existing in the nonparametric extreme value regression literature, in which the problem of ac-
curate Gaussian inference had been mostly ignored. The method is applied here to inference
about extreme conditional quantiles and expectiles, but it can handle any kind of Weissman-
type estimator: the bias correction methodology revolves upon identifying bias sources due
to the extrapolation procedure, while the variance correction relies on a precise evaluation of
the correlation between intermediate estimators and tail index estimators. We propose rules-
of-thumb for the choices of the bandwidth hn and of the sample fraction 1− τn needed for
tail extrapolation, resulting in confidence intervals achieving excellent coverage already for
moderately large sample sizes.

The outline of our paper is the following. Sections 2 and 3 focus on nonparametric ex-
tremal quantile and expectile regression, respectively. Section 4 investigates examples of re-
gression models where our assumptions are satisfied. Section 5 develops a fully operational
inferential methodology, showcased in a simulation study in Section 6 and on real data in
Section 7. Our methods and data have been incorporated into the R package Expectrem1.
Further details about our technical conditions, the proofs of all theoretical results and ex-
tra finite-sample results are deferred to an online Supplementary Material document [12].
Throughout we denote by x+ =max(x,0) and x− =max(−x,0) the positive and negative
parts of a real number x. For a function f on Rp, ∇f(x), Jf(x) and Hf(x) stand re-
spectively for its gradient vector, Jacobian matrix, and Hessian matrix at the point x. For a
function f = f(x,y) on Rp×Rq , let ∇xf andHxf be its partial gradient vector and Hessian
matrix with respect to x (i.e. the first p components of its gradient vector and the submatrix
made of the first p rows and columns of its Hessian matrix, respectively). The symbols 0p
and 1p denote vectors in Rp with all components equal to 0 and 1, respectively.

2. Nonparametric extremal quantile regression.

2.1. Framework. Let ((Xt, Yt))t≥1 be a strictly stationary sequence of copies of
(X, Y ) ∈ Rp × R. Let F (·|x) denote the distribution function of Y given X = x, that is,
F (y|x) = P(Y ≤ y|X = x). Assume that X has a probability density function (p.d.f.) g on
Rp and fix x ∈Rp with g(x)> 0. Consider the following kernel estimator of F (·|x):

F̂n(y|x) =
1

nhpn ĝn(x)

n∑
t=1

1{Yt≤y}K

(
x−Xt

hn

)
with ĝn(x) =

1

nhpn

n∑
t=1

K

(
x−Xt

hn

)
.

1Available on GitHub at https://github.com/AntoineUC/Expectrem
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Hereafter K is a kernel p.d.f. on Rp and hn → 0 is a (positive) bandwidth sequence, with
ĝn being the associated classical Parzen-Rosenblatt estimator of g. A conditional quantile
q(τ |x)≡ inf {y ∈R |F (y|x)≥ τ} can then be estimated by its empirical counterpart

q̂n(τ |x) = inf
{
y ∈R | F̂n(y|x)≥ τ

}
.

The standard roadmap for estimating extreme conditional quantiles at a level τ = τn → 1 as
n→∞ is to consider first intermediate (“extreme, but not too much”) levels τn, for which
q̂n(τn|x) is a (relatively) consistent estimator of q(τn|x). Then, for the estimation of properly
extreme quantiles q(τ ′n|x) without any restriction on τ ′n, one extrapolates such intermediate
estimators using the shape of the tail of the underlying conditional distribution.

In order to assess the asymptotic behavior of this procedure, we introduce the following
conditional, second-order regularly varying tails assumption about Y given X = x:

Condition C2(γ(x), ρ(x),A(·|x)) There exist γ(x)> 0, ρ(x)≤ 0 and a positive or negative
measurable function A(·|x) converging to 0 at infinity such that for any y > 0,

lim
s→∞

1

A(1/F (s|x)|x)

(
F (sy|x)
F (s|x)

− y−1/γ(x)

)
=


y−1/γ(x) y

ρ(x)/γ(x) − 1

γ(x)ρ(x)
if ρ(x)< 0,

y−1/γ(x) log(y)

γ2(x)
if ρ(x) = 0.

This standard condition, wherein A(·|x) is regularly varying with index ρ(x) [see 14, The-
orem 2.3.3 p.44], controls the proximity between the extremes of the underlying conditional
distribution and those of the ideal Pareto distribution with extreme value index γ(x). We
therefore make the fundamental modeling assumption that

Condition M ((Xt, Yt))t≥1 is a stationary α−mixing sequence of copies of a random vector
(X, Y ) satisfying the second-order regularly varying tails assumption C2(γ(x), ρ(x),A(·|x)).
The α−mixing (or strong mixing) assumption we shall make is expressed as follows: let, for
any two positive integers a≤ b, Fb

a = σ({(Xj , Yj), a≤ j ≤ b}) be the σ−algebra generated
by {(Xj , Yj), a≤ j ≤ b}, and say that ((Xt, Yt))t≥1 is α−mixing if and only if

α(n) = sup
k≥1

sup
A∈Fk

1

sup
B∈F∞

k+n

|P(A∩B)− P(A)P(B)| → 0 as n→∞.

More restrictive assumptions that will be employed below to relax certain regularity condi-
tions involve the β−, ρ−, ϕ− and ψ−mixing coefficients, see Section A.1 of the Supple-
mentary Material document [12] for definitions and relationships between the different kinds
of mixing. We introduce the following condition used to develop a “big blocks separated by
small blocks” argument for the theory:

Condition A(ln, rn) There exist sequences (ln) and (rn) such that ln → ∞, rn → ∞,
ln/rn → 0, rn/n→ 0 and nα(ln)/rn → 0 as n→∞.

We also require reasonable regularity assumptions on the kernel function K and the prob-
abilistic behavior of the covariate sequence (Xt)t≥1. Let ∥ · ∥ denote the Euclidean norm
on Rp and B(x, r) be the open ∥ · ∥−ball with center x and radius r > 0. Full details for
the rationale behind our conditions and their interpretation are given in Section A.2 of the
Supplementary Material document [12].

Condition K The p.d.f. K is bounded with a support contained in the unit closed ∥ · ∥−ball.

Condition Lg The p.d.f. g satisfies g(x) > 0 and is Lipschitz continuous at x: there exist
c, r > 0 such that for any x′ ∈B(x, r), |g(x)− g(x′)| ≤ c∥x−x′∥.
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Condition Bp There exists an integer t0 ≥ 1 such that

1≤ t < t0 ⇒ lim
r→0

r−p P(X1 ∈B(x, r),Xt+1 ∈B(x, r)) = 0

and limsup
r→0

sup
t≥t0

r−2p P(X1 ∈B(x, r),Xt+1 ∈B(x, r))<∞.

Assumptions K, Lg and Bp (whose first half is trivially true if t0 can be chosen equal to 1)
are in particular imposed to control the asymptotic behavior of ĝn(x). Assumption Bp will be
satisfied especially if, for all t≥ 1, the pair (X1,Xt+1) has a p.d.f. gt such that supt≥1 gt is
bounded on B(x, r)×B(x, r) for some r > 0. Under condition Lg , this local boundedness
condition is automatically true if (Xt) is β−mixing. When p≥ 2, the causal and invertible
AR(p) process does not satisfy this boundedness condition, but does satisfy assumption Bp.

To control the variation in conditional extreme value behavior across the covariate space,
we make a Lipschitz assumption on the log-conditional survival function at extreme levels.

Condition Lω There exists r > 0 such that

limsup
y→∞

sup
x′∈B(x,r)

x′ ̸=x

1

∥x′ −x∥

∣∣∣∣ 1

log(y)
log

F (y|x′)

F (y|x)

∣∣∣∣<∞.

We also impose an anti-clustering condition that translates into assuming that a joint condi-
tional extreme value of (Y1, Yt+1) cannot be much more likely than a marginal conditional
extreme of Y1, uniformly across time and locally uniformly across the covariate space. Let

Ωh(z|x) = sup
t≥1

sup
y,y′≥z

sup
x′,x′′∈B(x,h)

P(Y1 > y,Yt+1 > y′|X1 = x′,Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

.

Condition BΩ There exist h, z > 0 such that Ωh(z|x)<∞.

This should be considered as a weak requirement compared with the existence of a (condi-
tional) tail copula, as assumed in e.g. [13, 15] in the unconditional setting. It is an important
ingredient in the quantification of the correlation between tail empirical moments.

These conditions will ensure the pointwise asymptotic normality of our estimators at rates
of convergence that have hitherto been standard in the conditional extreme value framework.
Achieving better rates of convergence requires, similarly to classical nonparametric estima-
tion, stronger regularity conditions: it is well-known that the optimal rate of convergence
n−2/(p+4) of ĝn(x) to g(x) is obtained by solving the bias-variance tradeoff if K is symmet-
ric and g is twice differentiable at x. This motivates the following additional assumptions.

Condition KS The p.d.f. K is bounded and symmetric (i.e. K(u) =K(−u)) with a support
contained in the unit closed ∥ · ∥−ball.

Condition Dg The p.d.f. g satisfies g(x)> 0, is continuously differentiable in a neighborhood
of x and its gradient is Lipschitz continuous at x.

Condition Dω For y large enough, the function F (y|·) is differentiable at x, the function
y 7→ ∇x logF (y|x)/ log(y) has a limit µ(x) ∈Rp as y→∞, and there exists r > 0 with

limsup
y→∞

sup
x′∈B(x,r)

x′ ̸=x

1

∥x′ −x∥2

∣∣∣∣ 1

log(y)
log

F (y|x′)

F (y|x)
− (x′ −x)⊤

∇x logF (y|x)
log(y)

∣∣∣∣<∞.

The motivation for the assumption that ∇x logF (y|x)/ log(y) converges as y → ∞ is
the fact that, in the setup of conditional heavy tails, logF (y|x)/ log(y) = −1/γ(x) +
logL(y|x)/ log(y), where L(·|x) is slowly varying. In particular, logL(y|x)/ log(y) → 0
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as y→∞ [see 14, Proposition B.1.9.1 p.36]. The assumption asks for this convergence to
hold also when taking the gradient with respect to x, i.e. the function L(·|x) should not vary
too wildly in x when y is large. The finite limit of ∇x logF (y|x)/ log(y) as y → ∞ will
then be µ(x) =∇γ(x)/γ2(x) ∈ Rp. In summary, while condition Lω is a Lipschitz condi-
tion on the log-conditional survival function at extreme levels, condition Dω is essentially an
appropriate analog about its gradient with respect to x.

2.2. Intermediate quantile estimation. Let τ = τn ↑ 1 as n→∞. We show that q̂n(τn|x)
is asymptotically normal if nhpn(1 − τn)→∞, i.e. τn ↑ 1 slowly enough. Hereafter, under
condition KS and Dω , we let ΥK : (∆,x) ∈R×Rp 7→ γ(x)∆

2

∫
Rp K(u)(u⊤µ(x))2 du.

THEOREM 2.1. Assume that conditions M, A(ln, rn), K, Lg , Lω , Bp and BΩ hold
with

∑∞
j=1 j

ηα(j) < ∞ for some η > 1. Let τn ↑ 1, fix J ≥ 1, pick distinct cj ∈ (0,1]

and let τn,j be such that 1 − τn,j = cj(1 − τn)(1 + o(1)) as n → ∞ (for 1 ≤ j ≤ J ).
Assume further that hn → 0 is such that nhpn(1 − τn) → ∞, nhp+2

n (1 − τn) log
2(1 −

τn) → 0 and
√
nhpn(1− τn)A((1 − τn)

−1|x) = O(1), and that there is δ > 0 such that
rn(rn/

√
nhpn(1− τn))

δ → 0. Then√
nhpn(1− τn)

(
q̂n(τn,j |x)
q(τn,j |x)

− 1

)
1≤j≤J

d−→N
(
0J ,

∫
Rp K

2

g(x)
γ2(x)M

)
,

where M = [1/max(cj , cl)]1≤j,l≤J . If conditions KS , Dg and Dω hold, then condi-
tion nhp+2

n (1 − τn) log
2(1 − τn) → 0 can be replaced by the weaker bias assumption√

nhpn(1− τn) × h2n log
2(1 − τn) → ∆ ∈ [0,∞), in which case, provided rnh

p
n → 0, the

asymptotic mean 0J of the above Gaussian limit is replaced by ΥK(∆,x)1J .

If ((Xt, Yt))t≥1 is ρ−mixing, condition
∑∞

j=1 j
ηα(j)<∞ can be replaced by summability

of the ρ−mixing coefficient series. If ((Xt, Yt))t≥1 is also ψ−mixing with
∑∞

j=1ψ(j)<∞
(instead of

∑∞
j=1 j

ηα(j)<∞ for some η > 1, or summability of ρ−mixing coefficients), all
conditions on (ln) and (rn) (including A(ln, rn)) as well as Bp and BΩ can also be dropped.

It is remarkable that the asymptotic distribution in Theorem 2.1 is exactly the one obtained
in the i.i.d. setting by [10] under an unnecessary regularity assumption on conditional tails.
This is not true in the unconditional setting, see [15]. The essential difference is that the
kernel estimator only takes into account those pairs (Xt, Yt) such that Xt are close enough
to x, and the mixing and stationarity assumptions ensure that such data points are far enough
apart in time and hence asymptotically independent. This phenomenon has been observed in
other contexts, such as nonparametric conditional Expected Shortfall estimation [21, p.784].

Theorem 2.1 actually holds under weaker bias assumptions than those of [10]. Indeed,
when ((Xt, Yt))t≥1 is geometrically α−mixing, and if A(t|x) ∝ tρ(x), as is the case in a
wide range of heavy-tailed models used in practice [see e.g. 2, Table 2.1 p.59], the opti-
mal rate of convergence is nρ(x)/(1−(p+2)ρ(x)) when K, Lg and Lω hold, while it is equal to
n2ρ(x)/(2−(p+4)ρ(x)) if KS , Dg and Dω are satisfied, see Section A.3 of the Supplementary
Material document [12] for details. In the latter setting, note that p = 0 yields the optimal
convergence rate nρ(x)/(1−2ρ(x)) of unconditional extreme value estimators in heavy-tailed
models [see 14, p.77], while the case ρ(x)→−∞, corresponding to the ideal but unrealistic
scenario where all the Yt such that Xt ∈ B(x, hn) can be used, yields the optimal conver-
gence rate n−2/(p+4), i.e. the optimal convergence rate of nonparametric estimators of a twice
continuously differentiable central conditional quantile, see [5]. Of course, the nonparametric
nature of the methodology coupled with the double sparsity of relevant data (in x, due to ker-
nel smoothing, and in y, due to taking only extreme values of the response into account) limits
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the applicability of the method to low dimensions. The nonparametric approach is, however,
indifferent to the structure of the conditional distribution, unlike techniques adapted to taking
large dimensions into account that rely on strong model specifications such as linear quantile
structures, see for instance [6, 7, 25].

The bias component ΥK(∆,x) appearing under conditions Dg and Dω is an analog of
the bias component in kernel regression for the mean. It is linked to the gradient of the tar-
get extreme conditional quantile through the vector µ(x) =∇γ(x)/γ2(x). A key factor in
extremal regression is therefore the variation in conditional extremes, while in standard re-
gression it is also important to account for changes of shape in the regression function through
its second derivatives [see e.g. 26, p.73]. We finally note that γ(x)µ(x) =∇γ(x)/γ(x) =
∇(logγ)(x) is reminiscent of the design bias for classical regression in the terminology
of [26]: the higher and less variable γ around x, the bigger and more stable the local number
of extreme observations, and the easier the conditional extreme value estimation problem.

2.3. Extreme quantile estimation. Consider now τ ′n such that nhpn(1 − τ ′n) → c <∞.
Then, in a neighborhood of x, very few or no top observations Yt will be close to the
extreme value q(τ ′n|x), so the empirical estimator q̂n(τ ′n|x) will not be consistent. How-
ever, the conditional heavy tail assumption suggests the extrapolation formula q(τ ′n|x) ≈
((1− τ ′n)/(1− τn))−γ(x)q(τn|x) for n large. Plugging in consistent estimators γ̂(x) of γ(x)
and qn(τn|x) of q(τn|x) yields a conditional Weissman-type estimator (see [27]) of q(τ ′n|x):

q̂Wn,τn(τ
′
n|x) =

(
1− τ ′n
1− τn

)−γ̂(x)

qn(τn|x).

We prove below that the choice of γ̂(x) is crucial since q̂Wn,τn(τ
′
n|x) inherits its asymptotics.

THEOREM 2.2. Assume that condition M holds with ρ(x) < 0. Let τn, τ ′n ↑ 1 be
such that (1 − τ ′n)/(1 − τn) → 0 and assume that vn(qn(τn|x)/q(τn|x) − 1) = OP(1)

and vn(γ̂(x) − γ(x))
d−→ Γ, where Γ is a nondegenerate distribution and vn → ∞. If

vnA((1− τn)
−1|x) =O(1) and vn/ log[(1− τn)/(1− τ ′n)]→∞, then

vn
log[(1− τn)/(1− τ ′n)]

(
q̂Wn,τn(τ

′
n|x)

q(τ ′n|x)
− 1

)
d−→ Γ.

In our context, vn is typically
√
nhpn(1− τn) and qn(τn|x) = q̂n(τn|x). As a conditional

tail index estimator, we use the so-called “kernel version of the Hill estimator” from [10]:

γ̂(J)τn (x) =
1

log(J !)

J∑
j=1

log

(
q̂n(1− (1− τn)/j|x)

q̂n(τn|x)

)
, for a fixed J ≥ 2.

The asymptotic distribution of γ̂(J)τn (x) can be deduced from Theorem 2.1. Note that the
number J of high quantiles is fixed; the case J = Jn →∞, which would correspond to the
classical established theory of the Hill estimator [see e.g. 14, Section 3.2], cannot be handled
using Theorem 2.1. Obtaining asymptotic results for a growing number of summands J = Jn
would involve the difficult study of conditional tail empirical quantile processes.

THEOREM 2.3. Work under the conditions of Theorem 2.1, and assume in addition that√
nhpn(1− τn)A

(
(1− τn)

−1|x
)
→ λ(x) ∈R. Then,√

nhpn(1− τn)

(
γ̂(J)τn (x)− γ(x),

q̂n(τn|x)
q(τn|x)

− 1

)
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d−→N

 λ(x)

log(J !)

J∑
j=2

jρ(x) − 1

ρ(x)
, 0

 ,

∫
Rp K

2

g(x)
γ2(x)

 J(J − 1)(2J − 1)

6 log2(J !)
0

0 1

 .

If conditions KS , Dg and Dω hold, under the weaker bias assumption
√
nhpn(1− τn) ×

h2n log
2(1 − τn) → ∆ ∈ [0,∞) and if rnh

p
n → 0, the second component of the asymptotic

mean of the above Gaussian limit is replaced by ΥK(∆,x).

The asymptotic variance of γ̂(J)τn (x) is minimal when J = 9. We shall adopt this choice
in our finite-sample experiments. Theorem 2.3 improves upon Corollary 2 in [10], by re-
moving unnecessary assumptions about the right conditional tail, and by weakening a bias
assumption, see the discussion below Theorem 2.1. The bias component ∆ does not appear
in the limiting distribution of γ̂(J)τn (x), which suggests that the local variation of conditional
extremes is not as important in the estimation of the conditional shape parameter γ(x) of the
Pareto approximating distribution as it is for its scale q(τn|x).

3. Nonparametric extremal expectile regression.

3.1. Framework. Rewrite the conditional distribution function in (3) as E(y|x) = 1 −
φ(1)(y|x)/(2φ(1)(y|x) + y −m(x)) where φ(a)(y|x) = E((Y − y)a1{Y >y}|X = x) and
m(x) = E(Y |X = x). Consider the following kernel smoother for E(y|x):

Ên(y|x) = 1− φ̂
(1)
n (y|x)

2φ̂
(1)
n (y|x) + (y− m̂n(x))

with m̂n(x) =
1

nhpn ĝn(x)

n∑
t=1

YtK

(
x−Xt

hn

)

and φ̂(1)
n (y|x) = 1

nhpn ĝn(x)

n∑
t=1

(Yt − y)1{Yt>y}K

(
x−Xt

hn

)
.

The estimator m̂n is the Nadaraya-Watson estimator of the regression function m. The char-
acterization of conditional expectiles as e(τ |x)≡ inf {y ∈R |E(y|x)≥ τ} (see [20]) implies
that they can be estimated by their empirical counterparts

ên(τ |x) = inf
{
y ∈R | Ên(y|x)≥ τ

}
.

This is in fact exactly the asymmetric least squares estimator ên(τ |x) = argminθ∈R
∫
R[ητ (y−

θ)− ητ (y)]dF̂n(y|x) obtained by smoothing up the loss function defining e(τ |x) in (2).
The definition of conditional expectiles in (2) and (3) requires E(|Y | |X = x) <∞. To

obtain the asymptotic normality of ên(τ |x) at intermediate levels, we make the following
additional assumptions on conditional tail heaviness and regularity of conditional moments.

Condition Hδ One has γ(x) < 1/(2 + δ) and there exists r > 0 such that the function
E(Y 2+δ

− |X = ·) is bounded on B(x, r).

Condition Lm The response Y has a finite second moment given X = x, and the conditional
mean functions E(Y |X = ·) and E(Y 2|X = ·) are Lipschitz continuous at x.

Condition Bm There exists r > 0 such that

sup
t≥1

sup
x1,xt+1∈B(x,r)

E(Y 2
1 + Y 2

t+1|X1 = x1,Xt+1 = xt+1)<∞.

Condition Hδ (in which δ > 0) guarantees a finite conditional moment of order (2 + δ) in a
neighborhood of x; in the unconditional framework, Theorem 2 in [11] requires the analo-
gous E(Y 2+δ

− )<∞. Conditions Lm and Bm ensure the convergence of the regression mean
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at a standard rate, see Proposition A.1 in Section A.4 of the Supplementary Material doc-
ument [12]. Finally, in the spirit of Section 2, a stronger version of condition Lm will be
imposed to obtain better rates of convergence:

Condition Dm The response Y has a finite second moment given X = x, and the condi-
tional mean functions E(Y |X = ·) and E(Y 2|X = ·) are continuously differentiable in a
neighborhood of x and have Lipschitz continuous gradients at x.

An alternative approach uses the asymptotic proportionality between extreme quantiles and
expectiles of heavy-tailed distributions, namely, e(τ |x)/q(τ |x)→ (1/γ(x)− 1)−γ(x) as τ ↑
1 [see Proposition 2.3 in 3]. Plugging in the estimators γ̂(J)τn (x) and q̂n(τn|x) results in the
quantile-based estimator

qen(τn|x)≡ qe(J)n (τn|x) = (1/γ̂(J)τn (x)− 1)−γ̂(J)
τn

(x)q̂n(τn|x).

3.2. Intermediate expectile estimation. We first derive the asymptotic distribution of the
intermediate expectile estimator ên(τn|x) jointly with an intermediate quantile estimator.
This will be key to the construction of an expectile-based estimator for the conditional tail
index, and therefore to our extrapolation of conditional expectiles to extreme levels.

THEOREM 3.1. Assume that conditions M, A(ln, rn), K, Hδ , Lg , Lm, Lω , Bp, Bm

and BΩ hold with
∑∞

j=1 j
η[α(j)]δ/(2+δ) < ∞ for some η > δ/(2 + δ). Let τn ↑ 1 and

κ > 0 be given, and let βn be such that 1 − βn = κ(1 − τn)(1 + o(1)) as n → ∞. As-
sume further that hn → 0 is such that nhpn(1− τn)→∞, nhp+2

n (1− τn) log
2(1− τn)→ 0,√

nhpn(1− τn)A((1− τn)
−1|x) =O(1) and rn(rn/

√
nhpn(1− τn))

δ → 0. Then√
nhpn(1− τn)

(
ên(τn|x)
e(τn|x)

− 1,
q̂n(βn|x)
q(βn|x)

− 1

)
d−→N

(
(0,0),

∫
Rp K

2

g(x)
γ2(x)Σ(x)

)
,

where the 2 × 2 symmetric matrix Σ(x) has entries Σ1,1(x) = 2γ(x)/(1 − 2γ(x)),
Σ2,2(x) = κ−1 and

Σ1,2(x) =


κ−1 if κ≥ 1/γ(x)− 1,(

1

γ(x)
− 1

)γ(x) κ−γ(x)

1− γ(x)
− 1 if κ < 1/γ(x)− 1.

If conditions KS , Dg , Dm and Dω hold, then condition nhp+2
n (1− τn) log

2(1− τn)→ 0 can
be replaced by the weaker bias assumption

√
nhpn(1− τn)×h2n log

2(1− τn)→∆ ∈ [0,∞),
and if moreover rnh

p
n → 0, then the asymptotic mean (0,0) of the above Gaussian limit is

replaced by ΥK(∆,x)× (1,1).

If ((Xt, Yt))t≥1 is ρ−mixing with summability of the ρ−mixing coefficient series (instead of∑∞
j=1 j

η[α(j)]δ/(2+δ) <∞ for some η > δ/(2 + δ)), condition Bm can be dropped and con-
dition Hδ can be replaced by γ(x)< 1/(2+δ). If ((Xt, Yt))t≥1 is in fact also ψ−mixing with∑∞

j=1ψ(j)<∞ (instead of
∑∞

j=1 j
η[α(j)]δ/(2+δ) <∞ for some η > δ/(2 + δ), or summa-

bility of the ρ−mixing coefficients), all conditions on (ln) and (rn) (including A(ln, rn)) as
well as conditions Bp and BΩ can also be dropped, and condition Hδ can be replaced by the
weaker requirement that 0< γ(x)< 1/2.

For ên(τn|x), we obtain again the same asymptotic distribution as in the i.i.d. setting under
weaker moment and regularity assumptions and with a faster optimal convergence rate, see
Theorem 1 in [17] and the discussion below our Theorem 2.1. By contrast, mixing changes
the asymptotic distribution of unconditional empirical intermediate expectiles, see [13].

We turn to the asymptotic normality of the quantile-based expectile estimator qen(τn|x).
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THEOREM 3.2. Work under the conditions of Theorem 2.1 with γ(x)< 1 and E(Y− |X =

x) <∞, and assume in addition that
√
nhpn(1− τn)A((1 − τn)

−1|x) → λ1(x) ∈ R and√
nhpn(1− τn)/q(τn|x)→ λ2(x) ∈R. Then√
nhpn(1− τn)

(
qen(τn|x)
e(τn|x)

− 1

)
d−→N

(
b
(J)
1 (γ(x), ρ(x))λ1(x)+b2(γ(x),m(x))λ2(x),∫

Rp K
2

g(x)
γ2(x)

(
1 + [(1− γ(x))−1 − log(1/γ(x)− 1)]2

J(J − 1)(2J − 1)

6 log2(J !)

))
,

where

b
(J)
1 (γ(x), ρ(x)) =

(1− γ(x))−1 − log(1/γ(x)− 1)

log(J !)

J∑
j=2

jρ(x) − 1

ρ(x)

−
(
(1/γ(x)− 1)−ρ(x)

1− γ(x)− ρ(x)
+

(1/γ(x)− 1)−ρ(x) − 1

ρ(x)

)
and b2(γ(x),m(x)) =−γ(x)(1/γ(x)− 1)γ(x)m(x).

If conditions KS , Dg and Dω hold, under the weaker bias assumption
√
nhpn(1− τn) ×

h2n log
2(1 − τn) → ∆ ∈ [0,∞) and if rnh

p
n → 0, the quantity ΥK(∆,x) is added to the

asymptotic mean of the above Gaussian limit.

As is the case for γ̂(J)τn (x), the asymptotic variance of qen(τn|x) ≡ qe
(J)
n (τn|x) is minimal

when J = 9. An important benefit of this quantile-based estimator is that its asymptotic nor-
mality does not require conditions Hδ , Lm and Bm. In particular, it applies as soon as a finite
conditional first moment exists. The estimator qen(τn|x) is biased, however, and its variance
is higher than the variance of ên(τn|x) when γ(x) is only moderately large.

3.3. Extreme expectile estimation. The asymptotic proportionality of extreme quantiles
and expectiles entails e(τ ′n|x)≈ ((1− τ ′n)/(1− τn))

−γ(x)e(τn|x), for n large. Plugging in
consistent estimators γ̂(x) of γ(x) and en(τn|x) of e(τn|x) (such as ên(τn|x) or qen(τn|x))
yields a Weissman-type estimator of e(τ ′n|x):

êWn,τn(τ
′
n|x) =

(
1− τ ′n
1− τn

)−γ̂(x)

en(τn|x).

The next result states that êWn,τn(τ
′
n|x) also inherits the asymptotic distribution of γ̂(x).

THEOREM 3.3. Assume that condition M holds, with γ(x) < 1, ρ(x) < 0 and
E(Y− |X = x) <∞. Let τn, τ ′n ↑ 1 be such that (1 − τ ′n)/(1 − τn) → 0 and assume that

vn(en(τn|x)/e(τn|x) − 1) = OP(1) and vn(γ̂(x) − γ(x))
d−→ Γ, where Γ is a nondegen-

erate distribution and vn → ∞. If vnA((1 − τn)
−1|x) = O(1), vn/q(τn|x) = O(1) and

vn/ log[(1− τn)/(1− τ ′n)]→∞, then

vn
log[(1− τn)/(1− τ ′n)]

(
êWn,τn(τ

′
n|x)

e(τ ′n|x)
− 1

)
d−→ Γ.

Let now (τn) be an intermediate sequence. Define an expectile-based estimator of γ(x) as

γ̂Eτn(x) =

(
1 +

F̂n(ên(τn|x)|x)
1− τn

)−1

,
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where F̂n(·|x) = 1−F̂n(·|x). We derive the joint asymptotic normality of (γ̂Eτn(x), ên(τn|x)).

THEOREM 3.4. Work under the conditions of Theorem 3.1. Assume further that√
nhpn(1− τn)A((1 − τn)

−1|x) → λ1(x) ∈ R and
√
nhpn(1− τn)/q(τn|x) → λ2(x) ∈ R.

Then√
nhpn(1− τn)

(
γ̂Eτn(x)− γ(x),

ên(τn|x)
e(τn|x)

− 1

)
d−→N

(
(bE(x), 0),

∫
Rp K

2

g(x)
vE(x)

(
1− γ(x) 1

1 2

))
,

where vE(x) = γ3(x)/(1− 2γ(x)) and

bE(x) =
γ(x) (1/γ(x)− 1)1−ρ(x)

1− γ(x)− ρ(x)
λ1(x) + γ2(x)(1/γ(x)− 1)γ(x)+1m(x)λ2(x).

If conditions KS , Dg , Dm and Dω hold, under the weaker bias assumption
√
nhpn(1− τn)×

h2n log
2(1 − τn) → ∆ ∈ [0,∞) and if rnh

p
n → 0, the second component of the asymptotic

mean of the above Gaussian limit is replaced by ΥK(∆,x).

Again, mixing does not impact the asymptotic distribution of γ̂Eτn(x) obtained in the
i.i.d. setting [see Theorem 4 in 17] and the bias component ∆ does not appear in the limit.
The advantage of using γ̂Eτn(x) is its low asymptotic variance when γ(x) is moderately high,
at the expense of a strong bias. We discuss a bias-correction methodology in Section 5.2.

4. Regression models covered by our framework. We now draw a non-exhaustive list
of examples satisfying our assumptions. The conditions involving the mixing coefficients or
the sequences (ln) and (rn) hold automatically when the stochastic process ((Xt, Yt))t≥1 is
geometrically α−mixing, namely, there exists a ∈ (0,1) such that α(n) = O(an). Besides,
in the typical extreme value models where A(t|x) ∝ tρ(x), our assumptions linking τn and
hn will be satisfied if hn = C1n

−h and τn = 1 − C2n
−τ , for any C1,C2 > 0 and suitably

chosen h, τ > 0, see the discussion below Theorem 2.1. We therefore focus in this section
on the validity of assumptions M, Hδ (for a given δ > 0), Lg , Lm, Lω , Bp, Bm, BΩ, Dg ,
Dm and Dω . We provide an extended discussion with more insight, and sometimes weaker
conditions, in Section B of the Supplementary Material document [12]. We also give a full
treatment therein of the instructive case of m−dependent (including i.i.d.) observations.

Location-scale model with possible temporal misspecification. Suppose that Yt =m(Xt)+
σ(Xt)εt where m and σ > 0 are location and scale components, and (εt) is a stationary and
centered sequence of unobserved heavy-tailed innovations independent from the sequence
(Xt). The εt can be dependent, yielding a possibly misspecified regression model in the
sense that relevant, serially correlated covariates can be missing in Xt but left in the error εt.

PROPOSITION 4.1 (Location-scale model). Assume that (Xt)t≥1 is β−mixing (i.e. ab-
solutely regular) and (εt)t≥1 is strongly mixing. Suppose further that:

• For any t ≥ 1, the random pairs (X1,Xt+1) have absolutely continuous distributions
whose first marginal has a p.d.f. g such that g(x) > 0, and the functions g, m and σ are
continuously differentiable in a neighborhood of x.
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• The errors εt have a common p.d.f. fε with respect to the Lebesgue measure such that
fε(z) = c0z

−1/γ−1(1 + d0z
−a + d′0z

−a−b(1 + o(1))) as z → ∞, where γ > 0, c0 > 0,
d0, d

′
0 ̸= 0 and a, b > 0 are such that either a ̸= 1, a = 1 ̸= b, or a = b = 1 with then

2d′0(1 + γ) ̸= d20(1 + 2γ).

Then conditions M, Lg , Lω , Bp and BΩ hold. If moreover γ < 1/(2+ δ) and E(ε2+δ
− )<∞,

then conditions Hδ , Lm and Bm hold as well. If in addition g, m and σ are twice con-
tinuously differentiable in a neighborhood of x, then conditions Dg and Dm also hold. If
moreover fε is continuously differentiable in a neighborhood of infinity and satisfies the
second-order von Mises condition −zf ′ε(z)/fε(z)→ 1/γ+1, then condition Dω holds, with
limy→∞∇x logF (y|x)/ log(y) = 0.

The class of β−mixing processes covers many important cases such as Harris recurrent
aperiodic Markov chains [4, Corollary 3.6]. Our conditions on m and σ cover all standard
location-scale regression models, such as heteroscedastic linear regression with smooth con-
ditional variance function, single-index models with smooth link functions, and additive mod-
els. The assumptions on fε hold in the vast majority of standard heavy-tailed models, such
as the Fréchet, Burr, Student and Fisher distributions. We note that this setting cannot cover
time series models such as autoregressive models, which require a specific treatment, because
a key assumption is that the series (Xt) must be independent from the series of errors (εt).

Nonlinear regression model. Let F (·,θ) be a parametric family of heavy-tailed distribu-
tion functions on R, where θ ∈ Θ ⊂ Rd is a finite-dimensional, convex and open set of pa-
rameters, and let q(·,θ) be the associated quantile function (the left-continuous inverse of
y 7→ F (y,θ)). We abuse notation and let θ = θ(·) : x ∈ Rp 7→ θ(x) ∈ Θ be a smooth map-
ping, and we consider the model Yt = q(Ut,θ(Xt)) where (Ut) is a stationary sequence of
unobserved, uniformly distributed innovations independent from the series (Xt). Then Y
given X = x has distribution function F (·,θ(x)): when θ(·) is linear, this setting covers the
(V)GLM model of [28] for a univariate response variable.

PROPOSITION 4.2 (Nonlinear regression model). Assume that (Xt)t≥1 is β−mixing and
(Ut)t≥1 is strongly mixing. Suppose further that:

• For any θ, the survival function F (·,θ) is second-order regularly varying, with tail index
γ = γ(θ), second-order parameter ρ= ρ(θ) and auxiliary functionA=A(·|θ). The function
θ 7→ F (y,θ) is continuously differentiable for y large enough.
• For any t ≥ 1, the random pairs (X1,Xt+1) have absolutely continuous distributions
whose first marginal has a p.d.f. g such that g(x) > 0 and g is continuously differentiable
in a neighborhood of x.
• The parameter mapping θ :Rp →Θ is continuously differentiable in a neighborhood of x.
There are y0 > 0 and a continuous function κ on Θ with

∀θ ∈Θ, sup
y≥y0

∥∥∥∥∇θ logF (y,θ)

log(y)

∥∥∥∥= sup
y≥y0

1

log(y)

∥∇θF (y,θ)∥
F (y,θ)

≤ κ(θ).

Then conditions M, Lg , Lω , Bp and BΩ hold. Assume moreover that:

• The survival function F (·,θ) only puts mass on [0,∞).
• At the point x, γ(θ(x))< 1/(2 + δ).
• The first and second moments of the distribution F (·,θ) define continuously differentiable
functions m1 and m2 of θ wherever they are defined.
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Then conditions Hδ , Lm and Bm hold. If m1 and m2 are twice continuously differentiable
functions of θ wherever they are defined and g and θ(·) are twice continuously differentiable
in a neighborhood of x, then conditions Dg and Dm hold. If θ 7→ γ(θ) is also twice contin-
uously differentiable on Θ and there exist y0 > 0 and a continuous function κ on Θ with

∀θ ∈Θ, sup
y≥y0

{
1

log(y)

(
∥∇θ logF (y,θ)∥+ ∥Hθ logF (y,θ)∥

)}
≤ κ(θ)

then condition Dω holds, with limy→∞∇x logF (y|x)/ log(y) = [∇γ(θ(x))]⊤Jθ(x)/γ2(θ(x)).

Our conditions on the statistical model F (·,θ) are mild and readily checked in typical
heavy-tailed models such as the Fréchet, Burr, Generalized Pareto and half-t models. If
F (·,θ) puts mass on a neighborhood of −∞, then extra assumptions on the left conditional
tail (such as symmetry) are required to ensure that conditions Hδ , Lm, Bm and Dm hold.

Autoregressive model. Consider the causal and invertible AR(p) model Yt =
∑p

j=1 ϕjYt−j+

εt, t ∈ Z, where the polynomial P (z) = 1 −
∑p

j=1 ϕjz
j has no root inside the closed unit

disk in C, and (εt) is an i.i.d. sequence of innovations. Here Yt should be understood as the
stationary solution of the AR(p) equations, and Xt = (Yt−1, Yt−2, . . . , Yt−p)

⊤.

PROPOSITION 4.3 (Autoregressive model). Assume that the common distribution of the
εt is centered, square-integrable, and has a Lipschitz continuous, everywhere strictly positive
p.d.f. fε with respect to the Lebesgue measure that satisfies fε(z) = c0z

−1/γ−1(1 + d0z
−a +

d′0z
−a−b(1 + o(1))) as z→∞, where γ > 0, c0 > 0, d0, d′0 ̸= 0 and a, b > 0 are such that

either a ̸= 1, a= 1 ̸= b, or a= b= 1 with then 2d′0(1 + γ) ̸= d20(1 + 2γ).

Then conditions M, Lg , Dm, Lω , Bp and BΩ hold, and the process (Yt) is geometrically
β− and ρ−mixing. If ε also has a finite moment of order (2 + δ) and γ < 1/(2 + δ), then
condition Hδ holds. If moreover fε is continuously differentiable, with a uniformly bounded
Lipschitz continuous derivative f ′ε, then condition Dg holds. Finally, if fε also satisfies the
second-order von Mises condition −zf ′ε(z)/fε(z)→ 1/γ+1, then condition Dω holds, with
limy→∞∇x logF (y|x)/ log(y) = 0.

Condition Bm is unnecessary because (Yt) is ρ−mixing. Unlike in our other examples,
checking condition BΩ is nontrivial, because the sequences (Xt) = ((Yt−1, Yt−2, . . . , Yt−p)

⊤)
and (εt) are not independent. This is done by noting that (Yt) is a Markov chain of order p
and then by checking the conditions of Lemma A.1(iii) of the Supplementary Material doc-
ument [12] (with t0 = p). Handling models whose natural covariate is infinite-dimensional,
such as the ARMA and GARCH models containing lagged values of the innovation, or mov-
ing maxima processes such as the m4 process of [23], in which joint distributions of pairs
of responses at different time points are never absolutely continuous, should be viewed as
substantially harder and worthy of future research.

5. Practical implementation. We discuss hyperparameter selection, bias and variance
correction, and asymptotic confidence interval construction for both tail quantities of interest.

5.1. Selection of tuning parameters. The value kn = n(1− τn), rounded to the next in-
teger, can be viewed as the effective sample size for tail extrapolation. A larger kn leads
to larger bias, while smaller kn results in more variance. In the regression case, one should
also determine the bandwidth hn. Results in finite samples indicate that it is often enough
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to use the global bandwidth obtained by minimizing the mean integrated squared error
E(
∫
X (ĝn(x)− g(x))2dx) of the density estimator over the support X of X , that is,

(4) hn,⋆ =

(
p
∫
Rp K

2∫
X
(∫

Rp(u⊤Hg(x)u)K(u)du
)2
dx

)1/(p+4)

n−1/(p+4).

For example, when p= 1, the classical normal scale rule derived from (4), assuming a Gaus-
sian p.d.f. g and a naive kernel K(u) = 1/2 on [−1,1] yields ĥn,⋆ = (12

√
π)1/5σ̂nn

−1/5,
where σ̂n is the empirical standard deviation of the Xt. We adopt this version in our exam-
ples with p= 1 and abuse notation by denoting it hn,⋆.

We turn to a choice of kn optimizing the bias-variance tradeoff in extreme value estima-
tion: if the chosen tail index estimator has an asymptotic variance V (x) and an asymptotic
bias component λ(x)B(x), where λ(x) = limn→∞

√
knh

p
n,⋆A(n/kn|x), we define

kn,⋆(x) = argmin
1≤k≤n

{(khpn,⋆)−1V (x) +B2(x)A2(n/k|x)}.

A common practice is to consider the very general case when A(t|x) = b(x)γ(x)tρ(x), for
b(x) ∈R and ρ(x)< 0, see among others [19]. This yields the closed form expression

kn,⋆(x) =

(
1

−2ρ(x)b2(x)γ2(x)

V (x)

B2(x)

)1/(1−2ρ(x))

h
−p/(1−2ρ(x))
n,⋆ n−2ρ(x)/(1−2ρ(x)).

The quantities b(x) and ρ(x) are estimated using naive kernel regression versions b(x) and
ρ(x) of the moment estimators provided by the R function mop from the Expectrem
package, see Section C.1 of the Supplementary Material document [12]. To estimate B(x)

and V (x), note that when the tail index estimator is chosen as γ̂
(J)
1−kn/n

(x), we have

V (x) = (
∫
Rp K

2/g(x))v
(J)
q (x) and B(x) =B(J)(x), with

v(J)q (x) = γ2(x)
J(J − 1)(2J − 1)

6 log2(J !)
and B(J)(x) =

1

log(J !)

J∑
j=1

jρ(x) − 1

ρ(x)
.

When γ̂E1−kn/n
(x) is chosen, then V (x) = (

∫
Rp K

2/g(x))vE(x) and B(x) =BE(x) where

vE(x) =
γ3(x)(1− γ(x))

1− 2γ(x)
and BE(x) =

γ(x)(1/γ(x)− 1)1−ρ(x)

1− γ(x)− ρ(x)
.

These quantities are estimated by plugging in ĝn(x) (with h = hn,⋆) and ρ(x) in place of
g(x) and ρ(x), and a naive kernel regression version γ(x) of the Hill estimator in place of
γ(x), with h = hn,⋆ and effective sample size k corresponding to 25% of the local sample
size Nh(x) =

∑n
t=1 1{∥Xt−x∥≤h} (see Section C.1 of [12] for the expression of γ(x)).

This results in data-driven choices k̂(J)n,⋆(x) and k̂En,⋆(x), depending on the tail index esti-
mation technique. We omit the dependence of this selected value upon the tail index estimator
and we denote it again by kn,⋆ for the sake of brevity. Our choices may not be optimal in cer-
tain difficult cases, but they afford effective data-based rules on our simulated and real data.

5.2. Bias correction guidelines. The quality of the pure Pareto approximation to condi-
tional heavy tails deteriorates as ρ(x) gets closer to 0, with the resulting bias being possibly
very substantial then. Bias-reduced versions of γ̂(J)1−kn/n

(x) and q̂Wn,τn(τ
′
n|x) are

γ̂
(J,BR)
1−kn/n

(x) = γ̂
(J)
1−kn/n

(x)

1− 1

log(J !)

J∑
j=1

jρ(x) − 1

ρ(x)
b(x)

(
n

kn

)ρ(x)

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and q̂W,BR
n,τn (τ ′n|x) = q̂Wn,τn(τ

′
n|x)

1 +

(
kn

n(1−τ ′
n)

)ρ(x)
− 1

ρ(x)
b(x)γ̂

(J,BR)
1−kn/n

(x)

(
n

kn

)ρ(x)

 .

These estimators are respectively inspired by Theorem 2.3 and by the approach of [19]. We
use γ̂(J,BR)

1−kn/n
(x) within q̂Wn,τn(τ

′
n|x) in our subsequent implementation of q̂Wn,τn(τ

′
n|x).

As for extreme conditional expectile-based estimation, we note that bias reduction is even
more crucial, due to the fact that, in view of Theorems 3.3 and 3.4, the estimators contain
two sources of bias: one coming from the second-order regular variation framework, and the
other stemming from the asymptotic proportionality between quantiles and expectiles. We
suggest using the following bias-reduced version of γ̂E1−kn/n

(x):

γ̂E,BR
1−kn/n

(x) =

(
1 +

F̂n(ên(1− kn/n|x)|x)
kn/n

1

1 + r̂(1− kn/n|x)

)−1

where r̂(1−kn/n|x)

=

(
1− m̂n(x)

ên(1− kn/n|x)

)
1

1− 2kn/n

(
1 +

b(x)[F̂n(ên(1− kn/n|x)|x)]−ρ(x)

1− γ̂E1−kn/n
(x)− ρ(x)

)−1

−1.

This is a kernel regression version of the work in [18] in the unconditional setting. Here
γ̂E,BR
1−kn/n

(x) is computed using the R function tindexp with argument br=TRUE (from the
R package Expectrem) applied to the Yt such that ∥Xt−x∥ ≤ hn,⋆. Bias-reduced versions
êW,BR
n,τn (τ ′n|x) and qeW,BR

n,τn (τ ′n|x) of the extreme conditional expectile estimators êWn,τn(τ
′
n|x)

(extrapolating ên(τn|x)) and qeWn,τn(τ
′
n|x) (extrapolating qen(τn|x)), computed using the R

function extExpect with br=TRUE from that package, are described in Section C.2 of the
Supplementary Material document [12].

5.3. Pointwise asymptotic confidence intervals.

5.3.1. Extremal conditional quantiles. We use the equivalent version of Theorem 2.2 on
the log-scale, which tends to be more accurate in practice. Combined with Theorem 2.3,
this suggests that log(q̂W,BR

n,1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)) is approximately Gaussian centered with

variance (
∫
Rp K

2/g(x))v
(J)
q (x), with v(J)q (x) = γ2(x)× J(J − 1)(2J − 1)/(6 log2(J !)). A

first 95% asymptotic Gaussian confidence interval for q(τ ′n|x) is then

Îq,1(τ
′
n|x) =

q̂W,BR
n,1−kn,⋆/n

(τ ′n|x) exp

±

√ ∫
Rp K2

ĝn(x)
v̂
(J)
q (x)√

kn,⋆h
p
n,⋆

log

(
kn,⋆

n(1− τ ′n)

)
z0.975


with v̂(J)q (x) =

J(J − 1)(2J − 1)

6 log2(J !)
(γ̂

(J,BR)
1−kn,⋆/n

(x))2,

and where zτ is the τ th quantile of the standard normal distribution. This relies exclusively
on the asymptotic distribution of the tail index estimator used in the extrapolation. For small
sample sizes, the variability of the intermediate quantile estimator also has an impact on the
variance of the extrapolated estimator. By Theorem 2.3, γ̂(J)τn (x) is asymptotically indepen-
dent of q̂n(τn|x), so a straightforward calculation provides a refined version ṽ(J)q (x) of the
asymptotic variance estimate of log(q̂W,BR

n,1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)), and thus a corrected 95%
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asymptotic Gaussian confidence interval as

Îq,2(τ
′
n|x) =

q̂W,BR
n,1−kn,⋆/n

(τ ′n|x) exp

±

√ ∫
Rp K2

ĝn(x)
ṽ
(J)
q (x)√

kn,⋆h
p
n,⋆

log

(
kn,⋆

n(1− τ ′n)

)
z0.975

 ,
with ṽ(J)q (x) =

(
J(J − 1)(2J − 1)

6 log2(J !)
+

1

log2(kn,⋆/[n(1− τ ′n)])

)
(γ̂

(J,BR)
1−kn,⋆/n

(x))2.

Simulation evidence shows that this correction improves coverage for low sample sizes.

5.3.2. Extremal conditional expectiles. Our extreme conditional expectile estimators are
constructed using the same Weissman extrapolation argument: we build upon Theorems 3.3
and 3.4 to deduce a first 95% asymptotic Gaussian confidence interval for e(τ ′n|x) as

ÎE,1(τ
′
n|x) =

êW,BR
n,1−kn,⋆/n

(τ ′n|x) exp

±

√ ∫
Rp K2

ĝn(x)
v̂E(x)√

kn,⋆h
p
n,⋆

log

(
kn,⋆

n(1− τ ′n)

)
z0.975


with v̂E(x) =

(γ̂E,BR
1−kn,⋆/n

(x))3(1− γ̂E,BR
1−kn,⋆/n

(x))

1− 2γ̂E,BR
1−kn,⋆/n

(x)
.

For a low-to-moderate sample size n, the empirical variance of the estimates tends to be
very far from the asymptotic variance. This is not only due to neglecting the correlation
between the conditional tail index estimator and the empirical expectiles, but also to the use
of the asymptotic proportionality between extreme quantiles and expectiles in the derivation
of the asymptotic results. Calculating the errors incurred in using these two approximations
requires, first of all, an accurate quantification of the variance matrix of the random vector√

kn,⋆h
p
n,⋆

(
nF̂n(ên(1− kn,⋆/n|x)|x)

kn,⋆
−
(

1

γ(x)
− 1

)
,
ên(1− kn,⋆/n|x)
e(1− kn,⋆/n|x)

− 1

)

since, up to order 1/
√
kn,⋆h

p
n,⋆, we have γ̂E,BR

1−kn,⋆/n
(x)≈ G(nF̂n(ên(1−kn,⋆/n|x)|x)/kn,⋆),

where G(u) = 1/(1 + u). An inspection of the proofs of Theorems 3.1 and 3.4 (see Sec-
tion C.3 of the Supplementary Material document [12]) suggests that a corrected asymptotic
variance matrix for this random vector is (

∫
Rp K

2/g(x))Tn(x) where the 2× 2 symmetric
matrix Tn(x) has components

Tn,11(x) =
2(1− γ(x))2

γ(x)(1− 2γ(x))

κ1,n(x)

κ22,n(x)
− 2

1− γ(x)

γ(x)

√
κ1,n(x)

κ2,n(x)
+

1− γ(x)

γ(x)
,

Tn,12(x) =−2γ(x)(1− γ(x))

1− 2γ(x)

κ1,n(x)

κ2,n(x)
+ γ(x)

√
κ1,n(x), Tn,22(x) =

2γ3(x)

1− 2γ(x)
κ1,n(x),

with κ1,n(x) =
1− 2kn,⋆/n

1−m(x)/e(1− kn,⋆/n|x)
and κ2,n(x) = 1− γ(x)m(x)

e(1− kn,⋆/n|x)
.

Replacing γ(x),m(x) and e(1−kn,⋆/n|x) with γ̂E,BR
1−kn,⋆/n

(x), m̂n(x) and ên(1−kn,⋆/n|x)
yields estimators κ̂1,n(x) and κ̂2,n(x) and therefore T̂n,11(x), T̂n,12(x) and T̂n,22(x). Then√

kn,⋆h
p
n,⋆(γ̂

E,BR
1−kn,⋆/n

(x)− γ(x))
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≈
√
kn,⋆h

p
n,⋆

(
G(nF̂n(ên(1− kn,⋆/n|x)|x)/kn,⋆)−G(1/γ(x)− 1)

)
=

∞∑
k=1

(−1)kγk+1(x)

(kn,⋆h
p
n,⋆)(k−1)/2

(√
kn,⋆h

p
n,⋆

(
nF̂n(ên(1− kn,⋆/n|x)|x)

kn,⋆
−
(

1

γ(x)
− 1

)))k

through a power series expansion. [This is conceptually simpler than an Edgeworth expan-
sion, which would approximate the p.d.f. of γ̂E,BR

1−kn,⋆/n
(x).] Taking only the first term above

leads to the delta-method for γ̂E,BR
1−kn,⋆/n

(x); to obtain a finer approximation, we use all terms
up to order 4. Based on our calculation of Tn(x), an asymptotic approximation of the covari-
ance matrix of

√
kn,⋆h

p
n,⋆(γ̂

E,BR
1−kn,⋆/n

(x)− γ(x), ên(1− kn,⋆/n|x)/e(1− kn,⋆/n|x)− 1) is
(
∫
Rp K

2/g(x))Sn(x), where the symmetric matrix Sn(x) has components

Sn,11(x) = γ4(x)Tn,11(x)

(
1 + 8

γ2(x)Tn,11(x)

kn,⋆hn,⋆
×
∫
Rp K

2

g(x)

)
,

Sn,12(x) =−γ2(x)Tn,12(x)
(
1 + 3

γ2(x)Tn,11(x)

kn,⋆hn,⋆
×
∫
Rp K

2

g(x)

)
and Sn,22(x) = Tn,22(x).

We denote by Ŝn(x) the associated estimator, which hinges upon the estimators T̂n(x) and
γ̂E,BR
1−kn,⋆/n

(x) previously introduced. The final step is to recall that (see Section C.2 of [12])

log
êW,BR
n,1−kn,⋆/n

(τ ′n|x)
e(τ ′n|x)

≈ log
êWn,1−kn,⋆/n

(τ ′n|x)
e(τ ′n|x)

− (γ̂E,BR
1−kn,⋆/n

(x)− γ(x)) log(κ1,n(x))

≈
(
log

(
kn,⋆

n(1− τ ′n)

)
− log(κ1,n(x))

)
(γ̂E,BR

1−kn,⋆/n
(x)− γ(x)) + log

ên(1− kn,⋆/n|x)
e(1− kn,⋆/n|x)

.

The variance of (
√
kn,⋆h

p
n,⋆/ log(kn,⋆/(n(1 − τ ′n)))) × log(êW,BR

n,1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x)) is

then estimated by (
∫
Rp K

2/ĝn(x))ṽE(x), where

ṽE(x) =
Ŝn,11(x)L̂2

n + 2Ŝn,12(x)L̂n + Ŝn,22(x)

log2(kn,⋆/(n(1− τ ′n)))
and L̂n = log(kn,⋆/(n(1− τ ′n)κ̂1,n(x))).

This results in the corrected 95% asymptotic Gaussian confidence interval

ÎE,2(τ
′
n|x) =

êW,BR
n,1−kn,⋆/n

(τ ′n|x) exp

±

√ ∫
Rp K2

ĝn(x)
ṽE(x)√

kn,⋆h
p
n,⋆

log

(
kn,⋆

n(1− τ ′n)

)
z0.975

 .
It is shown below to have a greatly improved coverage probability compared to ÎE,1(τ

′
n|x).

6. Simulation study.

6.1. Models and setup. For the sake of brevity, we only report here results in the non-
linear (Burr) regression model, with covariate dimension p = 1. Other cases spanning our
list of worked-out examples, in dimensions p= 1 and 2, are presented in Section C.4 of the
Supplementary Material document [12].

We consider a nonlinear Burr process Yt = ((1−Ut)
ρ(Xt) − 1)−γ(Xt)/ρ(Xt) where:

• Xt = Φ(Zt), where Φ is the standard Gaussian distribution function and (Zt) (simulated
using the garch.sim routine from the R package TSA) is a GARCH(1,1) process with
ω = 0.25, α= 0.75, β = 0.2, i.e. Zt+1 =Σt+1δt+1, where the δt are i.i.d. standard Gaussian
and Σt+1 is defined recursively as Σt+1 = (ω+ αZ2

t + βΣ2
t )

1/2.
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• (Ut) is defined recursively as U0 ∼ Uniform[0,1] and, for t≥ 1, Ut =
1
rUt−1 + ηt, where

the ηt are i.i.d. uniformly drawn over {0,1/r, . . . , (r− 1)/r}, and r = 5. The Ut are standard
uniform and α−mixing, see Section C.4 of [12] for further details.

We fix ρ(x) =−1 for all x ∈ [0,1] and consider three different models for γ(x), x ∈ [0,1]:

(NL-P) The polynomial model γ(x) = 0.15 + 0.5x(1− x);
(NL-S) The sinusoidal model γ(x) = 0.2 + 0.05 sin(2πx);
(NL-C) The constant model γ(x) = 0.2.

In these three cases, γ(x) ∈ (0,1/2) for any x ∈ [0,1]. The true value of the conditional quan-
tile is q(τ |x) = ((1− τ)−1−1)γ(x). The theoretical conditional expectile e(τ |x) is computed
numerically using the function eburr in the R package Expectrem.

We simulate N = 1,000 replications of size n = 10,000 of each of these models (re-
sults for n ∈ {1,000,5,000} are found in Section C.4 of [12]). We estimate extreme con-
ditional quantiles and expectiles at level τ ′n = 1− 10/n= 0.999. We let K(u) = 0.51{|u|≤1}
be the uniform kernel, we select hn = hn,⋆ and τn = τn,⋆ = 1 − kn,⋆/n as in Sec-
tion 5.1, and take J = 9 in the conditional tail index estimator γ̂(J,BR)

1−kn,⋆/n
(x). Our quan-

tile (resp. expectile) estimators are compared with the non-extrapolated quantile estimator
q̂n(τ

′
n|x) (resp. the non-extrapolated expectile estimator ên(τ ′n|x)) and the simple extrapo-

lated version q̂Wn,1−kn,⋆/n
(τ ′n|x) based on γ̂(J)1−kn,⋆/n

(x) (resp. the simple extrapolated version
êWn,1−kn,⋆/n

(τ ′n|x) based on γ̂E1−kn,⋆/n
(x)). Our proposed 95% asymptotic Gaussian confi-

dence intervals for q(τ ′n|x) are compared with the following competing intervals:

Îq,3(τ
′
n|x) =

q̂Wn,1−kn,⋆/n
(τ ′n|x) exp

±

√ ∫
Rp K2

ĝn(x)
v
(J)
q (x)√

kn,⋆h
p
n,⋆

log

(
kn,⋆

n(1− τ ′n)

)
z0.975

 ,
with v(J)q (x) = J(J−1)(2J−1)

6 log2(J !)
(γ̂

(J)
1−kn,⋆/n

(x))2, similar to Îq,1(τ ′n|x) (without correction), and

Îq,4(τ
′
n|x) =

q̂n(τ ′n|x) exp
±γ̂(J)1−kn,⋆/n

(x)

√ ∫
Rp K2

ĝn(x)√
nhpn,⋆(1− τ ′n)

z0.975

 ,
based on an application of Theorem 2.1 written on the log-scale, which does not feature any
extrapolation at all. Likewise, for e(τ ′n|x), we compute

ÎE,3(τ
′
n|x) =

êWn,1−kn,⋆/n
(τ ′n|x) exp

±

√ ∫
Rp K2

ĝn(x)
vE(x)√

kn,⋆h
p
n,⋆

log

(
kn,⋆

n(1− τ ′n)

)
z0.975

 ,
with vE(x) =

(γ̂E
1−kn,⋆/n(x))

3(1−γ̂E
1−kn,⋆/n(x))

1−2γ̂E
1−kn,⋆/n(x)

, similar to ÎE,1(τ
′
n|x) (without correction), and

ÎE,4(τ
′
n|x) =

ên(τ ′n|x) exp
±

√√√√ 2(γ̂E1−kn,⋆/n
(x))3

1− 2γ̂E1−kn,⋆/n
(x)

×

√ ∫
Rp K2

ĝn(x)√
nhpn,⋆(1− τ ′n)

z0.975

 ,
suggested by an equivalent version of Theorem 3.1 using the log-scale. This will make it
possible to assess the benefits of the extrapolation procedure and bias correction scheme.



EXTREMAL INFERENCE WITH DEPENDENT HEAVY-TAILED DATA 19

6.2. Results. We represent in Figure 3 boxplots of the extreme conditional quantile and
asymmetric least squares expectile estimates, as well as the coverage probabilities of the
intervals Îq,j(τ ′n|x) and ÎE,j(τ

′
n|x), for 1 ≤ j ≤ 4, in models (NL-P), (NL-S) and (NL-C).

Quantitative results at selected values of x are provided in Tables C.1, C.2 and C.3 in Sec-
tion C.4 of the Supplementary Material document [12]. We discuss the conclusions from a
full set of results for sample sizes n ∈ {1,000,5,000,10,000} in an expanded list of models
found in Section C.4 of [12], see Figures C.1–C.8 therein. Comparing quantile-based expec-
tile estimates with their bias-reduced asymmetric least squares counterparts (see Figure C.1)
reveals that êW,BR

n,τn (τ ′n|x) appears to have the smallest bias overall, although it has a slightly
higher variance than the extrapolated, bias-reduced quantile-based estimator qeW,BR

n,τn (τ ′n|x).
This makes it difficult to decide which one of the asymmetric least squares or quantile-based
expectile estimators performs best. We note that the main advantage of the quantile-based ap-
proach is to not rely upon the finite second moment assumption. Since our simulation setting
considers models where the conditional second moment is finite, we focus throughout this
section on the proposed extreme conditional quantile estimators as well as the asymmetric
least squares conditional expectile estimators and their associated confidence intervals.

Even though empirical point estimates without extrapolation seem at first glance to per-
form respectably, their variance is substantially larger than that of extrapolated estimates, and
most importantly the lack of extrapolation makes accurate inference impossible. This is obvi-
ous from the coverage probabilities of ÎE,4(τ

′
n|x), often very close to 1. While bias reduction

and variance correction for extrapolated estimates are arguably not crucial for quantile es-
timation at large values of n, and in fact bias correction can slightly deteriorate coverage
probabilities of the Gaussian confidence interval, bias reduction is however valuable when
the second-order parameter ρ(x) gets close to 0 (see the top panels of Figure C.6), and vari-
ance correction brings noticeable improvements when n is moderately large (n = 1,000),
with coverage probabilities typically improving by about 5% when using our proposed in-
terval Îq,2(τ ′n|x) instead of Îq,1(τ ′n|x), see the third row of Figures C.2–C.7. Bias and vari-
ance correction are, however, of prime importance when estimating and inferring extreme
conditional expectiles: standard extrapolated estimates are heavily biased, with the asymp-
totic consistency property not visibly evidenced even for large n, see the second row of Fig-
ures C.2–C.7. This is due to the presence of a typically very large bias term proportional to
the reciprocal of the extreme conditional quantile in the expectile extrapolation formula that
is key for the asymptotic normality of extrapolated expectile estimators, see Lemma A.10
in Section A.4 of [12]. In addition, the uncorrected expression of the asymptotic variance of
the extrapolated expectile estimates yields values very far from their sample variance, while
our corrected proposal gets very close to this observed variance, see the rightmost panels
in Figure 3. These are the main reasons why the intervals ÎE,1(τ

′
n|x) and ÎE,3(τ

′
n|x) have

very poor coverage, while ÎE,2(τ
′
n|x) achieves a coverage remarkably close to the nominal

rate when n≥ 5,000 and performs much better than its competitors when n= 1,000, see the
third row of Figures C.2–C.7. A coverage close to the nominal level is also achieved in the
more challenging dimension p= 2, see the third column of Figure C.8, although misspecified
values of the second-order parameters ρ and b were used in this difficult situation in order
to better handle the finite-sample variability of the resulting quantile and expectile estimates.
It should be highlighted that in a substantial number of cases, the non-corrected variance
estimate v̂E(x) was not positive and therefore the associated confidence interval ÎE,3(τ

′
n|x)

could not be calculated; by contrast, the interval ÎE,2(τ
′
n|x) was always well-defined. As evi-

denced in the bottom panels of Figures C.2–C.7, the median length of the interval Îq,2(τ ′n|x)
(resp. ÎE,2(τ

′
n|x)) was found to be close to that of Îq,1(τ ′n|x) and Îq,3(τ ′n|x) (resp. ÎE,1(τ

′
n|x)

and ÎE,3(τ
′
n|x)) and always substantially shorter than that of Îq,4(τ ′n|x) (resp. ÎE,4(τ

′
n|x)),
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thus reflecting the added value of the extrapolation procedure combined with the bias and
variance correction schemes.

We conclude that the Gaussian asymptotic theory, when properly corrected in order to
account for the presence of conditional heavy tails, provides reasonably accurate inference.
It should not come as a surprise that good inferential results require a fairly large sample
size, of the order of several thousands, due to the four main difficulties of the problem: (i)
Temporal mixing, which impacts the trustworthiness of the asymptotic Gaussian limits, (ii)
Nonparametric smoothing, inducing an approximation bias due to local variation of the un-
derlying distribution, (iii) Sparsity in x due to the nonparametric regression framework, and
(iv) Sparsity in y due to the extreme value context. Sparsity in x is a particular concern in the
difficult model (AR), where the covariate, being a lagged response, takes unbounded values
and where a correct inference can only be expected where observations Yt concentrate.

7. Real data analysis.

7.1. Stock returns data. The first dataset, available from the R package HRW, contains
the n= 2,363 values of the excess daily stock returns (daily log-returns minus risk-free in-
terest rate) on General Electric and the S&P 500 index, from 1 November 1993 to 31 March
2003. Let Xt (resp. Yt) be the negative of the excess daily log-return of the S&P 500 in-
dex (resp. General Electric), whose large values represent large losses. In a full-fledged data
analysis one would of course be interested in understanding the extreme value behavior of
Yt given the full history of the S&P 500 index; in this illustrative example we focus on pre-
dicting the conditional extreme quantiles and expectiles of Yt given Xt = x, a fixed value.
About half of the data is negative, which is detrimental to the calculation of our bias-reduced
estimators that require only positive values, see Section C.1 of [12]. We thus shift most of the
data above 0 by subtracting to the Yt their empirical unconditional 10% quantile, approxi-
mately equal to −0.023, i.e. we apply our procedures to Y ′

t = Yt+0.023 before shifting back
to the original position.

As in our simulation study, we infer extremal regression quantiles and expectiles at level
τ ′n = 1−10/n≈ 0.995 by following the methodology described in Section 5.1. We represent
in the middle panel of Figure 1 (restricted to the intervalXt ∈ [−0.015,0.015] which contains
more than 80% of the data) our bias-reduced extrapolated estimates q̂W,BR

n,1−kn,⋆/n
(τ ′n|x) and

êW,BR
n,1−kn,⋆/n

(τ ′n|x), along with their respective asymptotic 95% confidence intervals Îq,2(τ ′n|x)
and ÎE,2(τ

′
n|x). The purely empirical estimates q̂n(τ ′n|x) and ên(τ ′n|x) are graphed in the

left panel along with their respective asymptotic 95% confidence intervals Îq,4(τ ′n|x) and
ÎE,4(τ

′
n|x). In agreement to what was observed in Section 6.2, the intervals Îq,4(τ ′n|x) and

ÎE,4(τ
′
n|x) are almost overall wider than Îq,2(τ ′n|x) and ÎE,2(τ

′
n|x), respectively.

The estimated curves, confidence intervals, and regression mean all point towards a lin-
ear trend. This motivated us to perform a residual-based extreme value estimation from the
ordinary linear regression model Yt =−0.00030 + 1.24Xt + εt. We construct the residuals
ε̂t and we calculate corresponding residual-based, bias-corrected extreme quantile estimates
q̂n,τn,ε(τ

′
n), following [19], and bias-corrected extreme expectile estimates ên,τn,ε(τ ′n), fol-

lowing [18], in which we chose τn = 1− 200/n= 0.915 after a graphical inspection of the
Hill plot of residuals, with associated asymptotic 95% Gaussian confidence intervals on the
log-scale. This yields conditional extreme point quantile and expectile estimates of the Yt
as qn,τn(τ

′
n|x) = −0.00030 + 1.24x + q̂n,τn,ε(τ

′
n) and en,τn(τ ′n|x) = −0.00030 + 1.24x +

ên,τn,ε(τ
′
n), and their corresponding confidence intervals through the same linear transla-

tion, all of them graphed in the right panel of Figure 1. In this panel, we also represented
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FIG 1. Stock market data. Blue line: Estimated conditional quantile at level τ ′n = 0.995 (with 95% confidence
interval in dashed line), red line: Estimated conditional expectile at level τ ′n = 0.995 (with 95% confidence in-
terval in dashed line). Left panel: Nonparametric empirical estimates, middle panel: Extrapolated nonparametric
estimates, right panel: Extrapolated estimates based on the linear regression model. In the left and middle panels,
the orange line is the Nadaraya-Watson estimate. In the right panel, the orange line is the ordinary least squares
line, and the cyan line represents the extremal quantile regression estimate of [8].

the corresponding (extrapolated) extremal linear quantile regression estimate of [8], pro-
duced using their extrap.rq routine in which the preliminary estimate of the tail index
is calculated using their summary.rq.hill routine at the intermediate level 0.95, chosen
according to their recommendations. Although the middle and right panels yield a broadly
similar message, the confidence intervals from the linear model are wider than our bias- and
variance-corrected nonparametric confidence intervals. This is probably due to the unavoid-
able assumption of constant tail index in the linear model, whose validity is unclear here. The
extremal linear regression estimates are thus inevitably driven by the few largest observations
in the data cloud. By contrast, our nonparametric method is able to finely differentiate condi-
tional extreme value behavior when x varies. Accurate inference on both extremal regression
modes, without recourse to the a priori assumptions of linearity and common tail, is crucial
in order to produce correct tail risk appraisal. This is especially important for conditional
expectiles that typically result in more liberal assessments of risk than conditional quantiles
because they satisfy the diversification principle, and that here appear indeed to induce less
conservative risk measurements.

7.2. Tornado losses data. This dataset2 records, for each tornado that has occurred in
the United States between 1 January 2010 and 31 December 2019, the associated monetary
loss (loss), its starting and ending latitude and longitude (slat, slon, elat and elon),
and the length and width of the area traveled over by the tornado (len and wid). We focus
on the loss per surface unit Y (in USD) in terms of the tornado’s (average) geographical
location X = (X1,X2), that is, Y = loss/(len × wid), X1 = (slon + elon)/2, and
X2 = (slat+ elat)/2. To keep the analysis simple and illustrative of our results, we do
not attempt to conduct a conditional extreme value analysis of losses given the random path
of the tornado, and we do not incorporate other covariates (such as population density) that
can contribute to the monetary loss. This results in a sample (Xt, Yt) of size n= 6,360 across
the whole of the US (excluding Alaska and Hawaii), including the major Joplin, Missouri,
tornado which caused a total loss of 2.8 billion USD on 22 May 2011. We focus on the part
of the US to the east of the 100th meridian west, due to sparsity of recorded tornadoes to the
west of this geographical limit. The data, over the studied area, is represented in Figure 2 (a).

2Available at https://www.spc.noaa.gov/wcm/\#data
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The heavy tail model assumption was checked using local Generalized Pareto QQ-plots [see
pp. 90-91 in 14] omitted for the sake of brevity. Tail index estimates were found to exceed 1
in many locations x, which prevents the use of the expectile risk measure.

Our target is the extremal conditional risk measure q(τ ′n|x) at each location x, where
τ ′n = 0.995 corresponds to a catastrophic loss exceeded (on average) only once every 200
cases at the location of interest. This is a reasonable choice given that, for instance, the state
of Florida has recorded around 200 tornado events over the 10-year period we examine. A
major hurdle to address that goal in this two-dimensional setting is the practical calculation
of the optimal bandwidth hn,⋆. The usual rule-of-thumb calculations for the evaluation of∫
R2(u

⊤Hg(x)u)K(u)du, involved in (4), based on a bivariate Gaussian assumption lead
to tedious calculations and unappealing results, and a uniform distribution over the covariate
space cannot be chosen as it would have an identically zero Hessian matrix. Instead, the crude
observation that the latitude X2 ∈ [18,49] of the data points concentrates around its median
while the longitude X1 ∈ [−100,−66.5] appears more uniformly scattered suggests, for the
specific purpose of calculating hn,⋆ only, to make the simplifying assumption that

g(x1, x2)∝ 1[−100,−66.5](x1)× (49− x2)(x2 − 18)1[18,49](x2).

This leads to a diagonal nonzero Hessian matrix Hg(x). Letting κ(u) = (15/16)(1− u2)2,
for u ∈ [−1,1], be the one-dimensional quartic kernel and K(u) = (16/(5π))κ(∥u∥) be its
isotropic version on R2, leads to the global spatial bandwidth hn,⋆ ≈ 5.47. Then, for each
geographic location x, representing one of the 21,935 cities located east of the 100th merid-
ian picked in the United States Cities Database3, we chose the corresponding local optimal
hyperparameter kn,⋆ = k̂n,⋆(x) as described above in Section 5.1, with the only difference
that we set ρ(x) ≡ −1 and b(x) ≡ 1, as recommended in Section C.4 of [12] when the co-
variate has dimension 2. Each city x has in its hn,⋆−vicinity 1,100 observations on average,
with 90% of locations reporting at least 400 observations. Figure 2 (b) displays the historical
frequency of tornadoes, showing that the area most often hit mainly comprises the states of
Alabama, Mississippi, Louisiana, Arkansas, Missouri, Kentucky, and Tennessee.

The Nadaraya-Watson estimates of the conditional mean of losses per squared yard and the
extrapolated bias-reduced conditional quantile estimates are shown in Figures 2 (c) and (d),
respectively. The first conclusion is that the area most exposed to tornadoes is actually not the
riskiest in terms of average and/or extremal conditional losses per tornado. By contrast, torna-
does in the states of Florida, Texas, Oklahoma, Nebraska, South Dakota, Iowa and their sur-
roundings are found to carry the most extreme risk, with a 99.5%−regression Value-at-Risk
exceeding 80 USD per squared yard, even though the frequency of tornadoes there is sub-
stantially lower. The large difference in order of magnitude between the regression mean and
extremal quantile reflects the great variability and tail heaviness of the conditional loss distri-
bution; an important benefit of the nonparametric approach is its ability to accurately identify
conditional extreme value behavior, without recourse to any strong a priori spatio-temporal
model specification. According to the results obtained at 9 selected cities, reported in Table 1,
the conditional tail index varies with x, with a minimum of 0.79 achieved at Harrisville, MI,
as opposed to 1.53 in Woodson, TX, which is the location with maximal estimated extreme
quantile risk. We also note that, among others, Charleston, SC and New Orleans, LA have
very similar tail index estimates but completely different tail quantile estimates, owing to a
strong geographical heterogeneity in the scale parameter of the loss distribution. Most impor-
tantly, the confidence intervals Îq,4(0.995|x) based on purely empirical estimates are much
wider than those provided by our bias- and variance-corrected proposal Îq,2(0.995|x) based

3Available at https://simplemaps.com/data/us-cities
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Location x
Nhn,⋆

(x) γ̂
(J,BR)
1−kn,⋆/n

(x)
q̂n(0.995|x) q̂

W,BR
n,1−kn,⋆/n

(0.995|x)

(State) Îq,4(0.995|x) Îq,2(0.995|x)
New York

413 1.11
16.71 63.53

(NY) [2.46, 113.35] [18.13, 222.70]
Charleston

839 0.96
48.08 56.15

(SC) [12.54, 184.28] [22.58, 139.64]
Nashville

2,317 0.95
16.57 24.51

(TN) [8.31, 33.04] [14.62, 41.08]
Captiva

205 0.93
236.74 144.67

(FL) [36.08, 1553.36] [43.50, 481.13]
New Orleans

1,427 0.98
27.46 31.01

(LA) [11.44, 65.88] [16.42, 58.58]
Woodson

958 1.53
118.37 390.59

(TX) [16.53, 847.72] [100.95, 1511.26]
Kansas City

1,326 1.30
45.99 69.00

(MO) [11.29, 187.43] [25.57, 186.21]
Minneapolis

620 0.93
34.09 40.49

(MN) [9.54, 121.79] [17.01, 96.40]
Harrisville

472 0.79
24.86 29.32

(MI) [4.76, 129.71] [10.28, 83.67]
TABLE 1

Tornado losses data. Results at selected cities (first column), with the number of neighboring observations
(second column), conditional tail index estimate (third column), empirical conditional quantile estimate at level

0.995 (fourth column) and extrapolated bias-reduced conditional quantile estimate at the same level (fifth
column), along with the 95% asymptotic confidence interval corresponding to each quantile estimate in brackets.
Captiva, FL is the city with maximal estimated average loss; Woodson, TX is the city with maximal extrapolated

conditional quantile estimate; Harrisville, MI is the city with minimal estimated conditional tail index.

on extrapolated quantile estimates, and overrepresent the uncertainty about high regression
quantiles, in agreement with our conclusions based on simulated data.

Our results are compared with the straightforward unconditional approach estimating, in
each state, the mean and Value-at-Risk at level 99.5% from the univariate sample of losses
in this state only, see Figures 2 (e) and (f). This approach yields quantile point estimates in
the riskiest areas that are up to 67% lower than those of the regression method, and produces
unrealistic discontinuities in the estimates, see the examples of Texas-Oklahoma-Kansas,
Nebraska-South Dakota and Georgia-South Carolina, while the local nature of our proposed
approach eliminates these discontinuities between neighboring states by combining regional
tail information. A similar countywide analysis in the spirit of risk assessment exercises such
as those reported by the US Federal Emergency Management Agency (FEMA)4 cannot be
carried out here, because certain counties did not report any observation.

4Available at https://hazards.fema.gov/nri/tornado
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FIG 2. Tornado losses data. Top row, left: Data across the eastern half of the US, right: Local number of ob-
servations in the hn,⋆−ball. Middle row, left: Estimated conditional mean of losses per squared yard, right:
Extrapolated conditional quantile estimate of those losses at level τ ′n = 0.995. Cities with the highest estimated
conditional average loss and extreme loss are marked with a black triangle in the left and right panels, respec-
tively. Bottom row, left: Unconditional statewide estimation, using the sample average, right: Using the bias-
reduced extreme quantile estimator of [19]. Losses (all panels except (b), in USD) and tornado frequency (panel
(b)) are indicated by a color scheme, ranging from dark blue (lowest) to dark red (highest).



EXTREMAL INFERENCE WITH DEPENDENT HEAVY-TAILED DATA 25

0
0.

12
0.

28
0.

44
0.

6
0.

76
0.

92

−0.4−0.20.00.20.4
Q

ua
nt

ile
 e

st
im

at
io

n

0
0.

12
0.

28
0.

44
0.

6
0.

76
0.

92

−0.50.00.51.0

E
xp

ec
til

e 
es

tim
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00.20.40.60.81.0

C
ov

er
ag

e 
pr

ob
ab

ili
tie

s

x

Cov. prob.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.800.850.900.951.00

C
ov

er
ag

e 
pr

ob
ab

ili
tie

s

x

Cov. prob.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.000.020.040.06

E
xp

ec
til

e 
va

ria
nc

e 
es

tim
at

es

x

Variance

0
0.

12
0.

28
0.

44
0.

6
0.

76
0.

92

−0.4−0.20.00.20.4

Q
ua

nt
ile

 e
st

im
at

io
n

0
0.

12
0.

28
0.

44
0.

6
0.

76
0.

92

−0.50.00.51.0

E
xp

ec
til

e 
es

tim
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00.20.40.60.81.0

C
ov

er
ag

e 
pr

ob
ab

ili
tie

s

x

Cov. prob.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.800.850.900.951.00

C
ov

er
ag

e 
pr

ob
ab

ili
tie

s

x

Cov. prob.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.000.020.040.06

E
xp

ec
til

e 
va

ria
nc

e 
es

tim
at

es

x

Variance

0
0.

12
0.

28
0.

44
0.

6
0.

76
0.

92

−0.4−0.20.00.20.4

Q
ua

nt
ile

 e
st

im
at

io
n

0
0.

12
0.

28
0.

44
0.

6
0.

76
0.

92

−0.50.00.51.0

E
xp

ec
til

e 
es

tim
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00.20.40.60.81.0

C
ov

er
ag

e 
pr

ob
ab

ili
tie

s

x

Cov. prob.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.800.850.900.951.00

C
ov

er
ag

e 
pr

ob
ab

ili
tie

s

x

Cov. prob.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.000.020.040.06

E
xp

ec
til

e 
va

ria
nc

e 
es

tim
at

es

x

Variance

F
IG

3.
Si

m
ul

at
io

n
re

su
lts

in
di

m
en

si
on

p
=

1
.

Fr
om

le
ft

to
ri

gh
t,

bo
xp

lo
ts

of
lo
g
(q̂

W
,B

R
1
−
k
n
,⋆
/
n
(τ

′ n
|x
)/
q(
τ
′ n
|x
))

(g
re

en
),

lo
g
(q̂

W 1
−
k
n
,⋆
/
n
(τ

′ n
|x
)/
q(
τ
′ n
|x
))

(b
lu

e)
an

d

lo
g
(q̂
n
(τ

′ n
|x
)/
q(
τ
′ n
|x
))

(b
ro

w
n)

;
bo

xp
lo

ts
of

lo
g
(ê
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SUPPLEMENTARY MATERIAL

Supplementary material for “Inference for extremal regression with dependent
heavy-tailed data” The supplementary material document [12] contains further details about
our technical conditions and an expanded discussion of the rates of pointwise convergence of
our estimators. We then provide the proofs of all theoretical results in the main paper and a
full analysis of our worked-out regression examples, preceded by auxiliary results and their
proofs. We finally provide further details about our bias and variance correction procedures,
and extra finite-sample results.
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