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Abstract  

 

Background: Vigilance ability refers to the accuracy and speed with which a person performs a 

cognitive-motor task, either voluntarily (endogenous mode) or following a warning stimulus 

(exogenous mode). In the context of a force production task, our study focuses on the impact of 

the states of vigilance by proposing an original approach that allows distinguishing between good 

(inlier) and poor (outlier) participants. We assume that the use of an external signal and duration 

of the temporal preparation (foreperiod) increase the speed and the precision of motor responses. 

Our objective is particularly challenging in the context of a limited dataset with a high level of 

noise. 

New method: Our original methodological approach consists of coupling the RANSAC 

(RANdom SAmple Consensus) algorithm with a statistical machine learning algorithm to handle 

noise. 

Comparison with existing methods: Our clustering approach, based on the coupling of RANSAC 

methodology with ensemble classifiers, overcomes the limitations of conventional supervised 

algorithms that are either not robust to outliers (such as K-Nearest Neighbors) and/or not adapted 

to few-shot learning (such as Support Vector Machines and Artificial Neural Networks).  

Results: The clustering results were validated in terms of reaction time distributions and force 

error distributions with respect to participant groups. We show that the use of an external signal 

and duration of the temporal preparation (foreperiod) increase the speed and the precision of motor 

responses. 

Conclusion: Our study has allowed us to detect atypical attentional patterns and succeeds in 

separating the inliers from the outliers.  

Keywords: vigilance, force production, reaction time, precision, attention, RANSAC, machine 

learning, clustering, outlier, inlier. 

1. Introduction 
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Vigilance is crucial in how we interact with our environment, a trait that is even more pronounced 

and essential in animals. In humans, vigilance or alertness involves the ability to stay focused and 

respond quickly to unexpected changes or events. Several approaches, based on psychological 

questionnaires, cognitive tasks [6, 5, 25, 11] and physiological recordings [1, 18, 14, 28] have been 

proposed in order to characterize the different states of vigilance: 

During a cognitive task (e.g., Go-No-Go and stop-signal tasks), the participants' brains go through 

phases of neural activation and suppression in response to visual, auditory, or combined stimuli. 

The assessment of their attentional state is determined by analyzing their average reaction times 

(RT) [6] and/or their ability to suppress an initiated motor action. In [3], the participant reacts to 

real and false stimuli, and the RT reflects their level of attention. In our work, in line with [9], we 

consider two types of alertness tasks: endogenous and exogenous. Alertness is an important 

component of attention. Endogenous attention occurs when the participant voluntarily (i.e., 

intentionally) directs his attention towards a goal. This type of alert (top-down) attention is 

controlled by the participant's expectations as he processes the expected information. It should be 

maintained over time and reach an optimal value during approximately 500 ms. With exogenous 

attention, an external signal (alertness) involuntarily (i.e., automatically) directs attention to a 

sudden source in the environment (e.g., noise, flash). Exogeneous attention should rise and fall 

very quickly (around 300 ms). Classically, the measures allowing us to precisely evaluate these 

two types of alertness are: the measurement of the reaction time (ms), the omission rate (%), and 

the anticipation rate (%) which increase in the presence of the exogenous signal. Another 

parameter to consider is the accuracy of motor responses (e.g., in the case of a dual task), which 

may decrease when the participant does not have sufficient time to prepare his motor response. 

The time interval between the planning and the initiation of the movement following the alert and 
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the motor response is called the fore-period (FP). The longer the FP, the shorter the RT, resulting 

in increased response accuracy because the participant has more time to control his response. Thus, 

performance is often described in the literature as a trade-off between speed and precision of the 

motor response [17]. 

In our study, we will focus on the effect of alertness on RT and show that other factors, such as 

the level of force (low, medium, and high) applied to a hand grip to produce a motor response, also 

affect the participants' performance. Our hypothesis is that both the force level and the fore-period 

in the exogenous alertness task influence the participants' ability to process information and, 

consequently, their motor responses. This hypothesis implies a relationship between the task 

conditions (force level and fore-period) and the participants' cognitive and motor performance. To 

test this hypothesis, we proposed an original approach to classify participants according to their 

behavior and performance during an exogenous attention task of force production. It is based on 

advances in Machine Learning (ML), which has experienced remarkable growth in popularity over 

the past few decades due to its excellent performance along with mathematical soundness. 

Although ML algorithms (more specifically Artificial Neural Networks, ANN) are mainly used in 

natural language processing and computer vision, where large databases also allow for deep 

learning models, these methods have been increasingly applied in the medical field (synthesis of 

drugs [15], understanding of DNA [2], detection of diseases from medical images [3]). However, 

ML methods are much less used in the evaluation of human behavior, such as with vigilance and 

attention, due to the scarcity of annotated data. As an example of such works, we mention [10], 

where  the authors developed their own database consisting of EEG and eye tracking signals 

recorded during attention tasks performed in virtual reality. The EEG signals are assigned an 

Jo
ur

na
l P

re
-p

ro
of



4 

 

attention score (between 0 and 100 %) according to the eye tracking signal, which allowed them 

to apply a recurrent neural network [4]. 

With this study, we have a double objective (i) to define an ANN able to distinguish between 

endogenous and exogenous modes, (ii) to use this ANN to detect atypical attentional behaviors. In 

our work, the data (reaction time, force) were labeled according to the type of task performed 

(endogenous (endo) or exogenous (exo)), which, as mentioned above, are two different and 

important components of attention, favoring the application of ANN to model the two types of 

alertness. We assumed that the vigilance process will induce a different behavior and response in 

the endogenous mode versus the exogenous one (e.g., globally reduced reaction time) so that an 

ANN will be able to classify the response mode of a given participant based on his RT and force 

level values. To do this, we first construct an ANN classifier able to distinguish between 

endogenous and exogenous modes in the case of standard young participants, and then analyze the 

performance of this classifier for any given participant and force level. Note that to define a 

standard expected classification performance as well as predictions of a standard behavior, the 

network has to be trained despite the high variability of the participants and the presence of some 

outliers, which is not a trivial task. Indeed, first, the participants do not have equal attentional 

abilities, which impacts the way the participants use the alert signal to improve their performance 

i.e. to reduce their RT and improve their force level accuracy in exogeneous attentional mode. 

Second, our dataset is too small (27 participants) to be robust to the presence of aberrant (non-

performing) participants, thus affecting the learning process and the endo/exo classification model. 

Thus, we also propose a methodological contribution, which consists in the adaptation of the 

RANdom SAmple Consensus (RANSAC) methodology to statistical machine learning. In our 

case, this allows us to automatically distinguish between the best performing participants (inliers) 
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and the anomalously low performing participants (outliers). In other words, RANSAC will help 

us to detect the ineffective participants, that behave like outliers for our ANN model. 

Highlights: 

• Atypical attentional patterns are detected in young subjects. 

• A score assessing attentional capacity was established to distinguish participants with high 

(inlier) attentional performance from those with low (outliers) performance. 

• This score is based on the coupling of RANSAC methodology with ensemble classifiers, which 

has been shown to handle outliers in a few-shot learning framework. 

• The proposed score-based subject clustering improves the understanding of the duality 

between reaction time and force accuracy. 

2. Participants, experimental paradigm and parameters 

2.1. Participants 

Twenty-seven healthy participants (14 males) aged between 20 and 35 years with no known history 

of neurological, psychiatric, or sensorimotor disorders were recruited. All participants were right-

handed, as assessed by the Edinburgh inventory for right-handedness. Before the screening 

process, all participants were provided with a detailed explanation of the study’s purpose and 

procedures. They signed an informed consent form before participating in the study. The 

institutional research board of the CPP Ile-de-France approved the study protocol. 

2.2.Experimental paradigm 

In order to study the vigilance states, an experimental protocol was designed as follows: 27 young 

and healthy people carry out two types of tasks (endogenous and exogenous). Each participant 

performs 27 trials in endo mode, followed by 27 trials in exo mode. This sequence of 54 trials is 

repeated four times. Each trial consists in focusing attention in the center of the screen and 

squeezing a force handle (handgrip) as quickly as possible when the participant hears the “Go” 

instruction while respecting the level of force requested, among the three levels: low, medium, 
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strong corresponding to 20 %, 50 % and 80 % of the maximum voluntary force (MVF), 

respectively. The order of force levels is randomized for both tasks. In the exogenous task, the 

imperative stimulus (Go) is preceded by an audible alert signal (50 ms duration beep) to alert the 

participant. The duration between the alert and the imperative stimulus varies according to three 

foreperiods (FP): 650 ms, 680 ms and 710 ms. During the endogenous task, there is no warning 

signal, so that the participant has no information about the imminent occurrence of the imperative 

stimulus. The alertness is synchronized with force signal recorded using a Biopac data acquisition 

system (MP150); the data is sampled with the Acknowledge software (version 4.2) at the sampling 

frequency of 10000 Hz. 

2.3. Experimental parameters 

In our study, we consider two complementary types of data: the reaction time and the force level 

accuracy. The reaction time is the time taken by a participant to respond to the imperative stimulus 

(Go signal). We focus on RT since we hypothesize that the vigilance process will correspond to 

participants who, on average, reduce their TR in exo mode thanks to the alert. It is calculated as 

the time difference between the imperative stimulus arrival and the time to reach 15% of the force 

signal deviation from the baseline (cf. Figure 1). Regarding the force error, it indicates how 

accurately a participant achieved the requested level of force among the three levels: low, medium, 

and high, corresponding to 20%, 50% and 80% of MVF, respectively. For each trial, it is calculated 

as the absolute difference between the executed and the requested forces: 

𝜁𝑓 = |𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑟𝑐𝑒 − 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑓𝑜𝑟𝑐𝑒| (1) 

Depending on the type of alerting task, the RT and the force errors are annotated as either endo or 

exo. Figure 2 shows their evolution over time and the alternation between the two modes. 
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Figure 1. Reaction time and force error calculations using 15% of the deviation from the 

baseline and the maximum of the signal, respectively. 

 

3. Data preprocessing and feature extraction 

3.1. Statistical outliers removal 

This step consists of removing the outliers from each participant’s reaction times. An outlier 

corresponds to a response that occurs before the onset signal (i.e., an anticipated response) or to a 

missed response (i.e., with a delay greater than 1000 ms from the onset signal). For these two types 

of outliers, we rely on the usual statistical criteria, namely boxplots ([26,23]), setting two temporal 

thresholds equal to 100 ms and 1000 ms, respectively. However, these thresholds are not sufficient 

for quite focused participants who may still experience occasional lapses of attention during the 

tasks. Thus, for each mode (endo and exo), the RT values that fall outside the distribution of RT, 

i.e., greater than 1.5 times the interquartile range IQR, especially above the upper third quartile Q3 

(TR> Q3+1.5 × IQR) are also considered as some outliers and then removed. Figure 2a shows two 
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RT thresholds for outlier detection: the solid and the dashed lines indicate the thresholds for exo 

and endo modes, respectively. 

Similarly, for each participant, the force errors were processed (each mode separately) to remove 

the outliers that fall outside the force errors distribution in endo and exo modes (Figure 2b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     (a)                                                                                      (b) 

Figure 2. Evolution of data over time for a participant: (a) reaction time; (b) force error. 
 

3.2. Normalization of reaction time data 

RT is the main variable we consider when comparing the attentional behaviors. However, its 

dynamic range, which varies between 100  ms and 1000  ms, depends on the participant. In order 

to put the RT of all participants on the same scale, a `standardization' step is required. Classically, 

the latter aims at centering the data around a mean of 0 and setting the standard deviation to 1. For 

any participant indexed i, denoting by 𝜌𝑖 its RT measurements, with mean 𝜇𝑖 and standard 

deviation 𝜎𝑖 the standardized RT variable 𝜌𝑖̅ is obtained as follows: 𝜌𝑖̅ = (𝜌𝑖 − 𝜇𝑖)/𝜎𝑖. Note that 

𝜇𝑖 and 𝜎𝑖 parameters have been estimated after removing the outliers from the 𝜌𝑖 distribution. 

 

3.3. Feature extraction 
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As explained in the Introduction, our database is not large enough to train a Deep Neural Network. 

Nevertheless, we can benefit from the advances in statistical machine learning in the last decades, 

if we (i) consider a shallow neural network, (ii) feed it with well-chosen selected features so that 

the neural layers focus on the decision task.  

 

 

 

 

 

 

 

 

 

Figure 3. Distributions of RT values in endo and exo modes, without distinction between 

participants. 

 

Figure 3 shows the histograms of RT values before normalization in endo and exo mode (when all 

participants are considered together), along with their fitted Normal distributions 𝑁(𝜇, 𝜎2) (up to 

a scale factor to fit the sample number). As we can see, the distributions (𝑝(𝜌|𝑒𝑛𝑑𝑜) and 

𝑝(𝜌|𝑒𝑥𝑜)) heavily overlap, implying the inability to discern both attentional tasks based on the 

raw RT values. Therefore, we introduce higher level hand-crafted features. Specifically, among 

the temporal characteristics defined in [27] such as maximum, minimum, energy, variation, 

activity, complexity, and mobility, we consider those that take into account the specificities of 

alerting tasks (endo or exo), such as the median and the mean. Secondly, we take into account the 
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possible training of the participants along the repetitions and their ability to concentrate through 

the 10𝑡ℎ percentile and the minimum. Finally, in order to reduce the measurement noise, the 

considered features are low-pass filtered, i.e. they are computed based on several RT values 

gathered into sample groups. Each group consists of nine RT samples corresponding to nine 

consecutive trials with the same force level (low, medium, or high). This amounts to using 12 

sliding windows of samples of size nine on the 108 trials of each alert task (endo or exo). Note that 

our `prior-informed' feature selection is in agreement with statistical tests, such as ANOVA and 

Fisher Discriminant Ratio (FDR) according to which a feature is all the more relevant as it 

minimizes the p-value and maximizes the FDR (Table 1). In the following of the study, we focus 

on the minimum and the median to feed the classifier. 

features p-value (↓) FDR(↑) 

minimum 𝟑. 𝟗𝒆−𝟏𝟖 𝟎. 𝟐𝟓𝟓𝟒 

𝟏𝟎𝒕𝒉 percentile 𝟒. 𝟓𝒆−𝟐𝟎 𝟎. 𝟐𝟖𝟕𝟕 

mean 𝟔𝒆−𝟗 𝟎. 𝟏𝟏𝟏𝟓 

median 𝟒. 𝟐𝒆−𝟔 𝟎. 𝟎𝟔𝟗𝟏 

90𝑡ℎ percentile 0.0017 0.0319 

extent 0.0059 0.0244 

coefficient of variation 0.3229 0.0032 

Table 1. Results of ANOVA test and FDR on some features. Retained features are in bold. 

4. Proposed approach 

4.1. ANN classification 

The proposed approach relies on the construction of a classifier able to distinguish endo and exo 

modes for participants having a standard attentional level. Considering our database, we opted for 

a shallow network (cf. Figure 4). Specifically, it consists of an input layer, an output layer and two 

hidden layers with six and four nodes, respectively. The input layer dimensionality is equal to the 
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number of considered features defined in Section 3.3. The output layer dimensionality is equal to 

the number of classes, namely two (endo and exo) in this work. The activation functions of the 

hidden layers are either sigmoid functions or Rectified Linear Unit (ReLU) function, and, for the 

output layer, a softmax function (since we deal with a classification problem). 

 

Figure 4. Shallow network architecture: two hidden layers with sigmoid activation functions 

and an output layer with a sigmoid function too; 𝑋 = (𝑥1, 𝑥2) denotes the input feature tensor. 

 

In our case, the attentional ability of the participants is highly variable which, in some cases, boils 

down to random labels (conversely to the usual machine learning datasets where the data has been 

carefully labeled). Thus, a first goal of this study is to construct a classifier whose performance 

applied to a given participant reflects his attentional ability. To do this, we have to (i) train our 

classifier despite the variability in the attentional abilities of the participants in the database, (ii) 

group the participants based on their attentional abilities. Next section describes the implemented 

solution. 

4.2.Attentional abilities estimation 
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The basic idea for classifier learning despite the presence of participants with a very low attentional 

capacity is to focus on the other participants. However, the categorization of the participants (in 

terms of attention) is unknown. Then, inspired by the RANdom SAmpling Consensus (RANSAC) 

method, we estimate many models (classifiers) and select the one that is the most consensual, i.e. 

has the largest consensus set (also called inlier set).  

RANSAC original method [12] was proposed to detect outliers in datasets. Belonging to the field 

of statistical robust estimation, it allows us to estimate the parameters of a parametric model in the 

presence of outliers, i.e. data that do not follow the model under consideration. Conversely to 

robust estimators such as M-estimators, it does not mitigate the weight of some data in the 

estimation, but it searches a subset of data without any outliers. To do this, it considers subsets of 

data as small as possible (to minimize the probability of the presence of an outlier) and evaluate 

the derived model in terms of consistency with the rest of the data. Since original paradigm 

proposition, many variants of the method have been proposed [7]. For example, the original 

consistency criterion was simply an error (for the considered data point) lower than a given 

threshold, but since then many other consistency criteria have been proposed, e.g. to make the 

model parameter estimation more robust with respect to the inlier set or to the inlier threshold, or 

to fit to a given application. 

In this study, RANSAC is used to train our ANN model. The algorithm consists of estimating the 

endo/exo classification model that fits to the majority of the participants. Specifically, a given 

participant fits a given model if the performance of the model for that participant's data is greater 

than a given threshold. The consensus criterion (to be maximized) is then the number of 

participants that fit a model on test. Algorithm 2 describes the estimation of the subset of the 

Jo
ur

na
l P

re
-p

ro
of



13 

 

participants fitting a given model 𝑀 based on the accuracy criterion acc calculated from the 

number of true positives (tp), true negatives (tn), false positives (fp), and false negatives (fn):  

𝑎𝑐𝑐 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

(2) 

Algorithm 1 describes the implemented solution. It is as follows: In the main loop, we randomly 

select a subset of participants of cardinality n (set as small as possible to avoid atypical 

participants) to train the ANN. The network is then used as a predictor for each of the remaining 

participants. For each given participant, based on these predictions and the associated ground truth 

labels, we can use the performance measure (accuracy denoted acc in Algorithm 1) of the ANN 

classification as an index of the similarity between that participant and the participants used for 

the classifier training. In order to increase the robustness of participant evaluation, we also take 

into account model's dependence on its initialization. Specifically, we train the model 𝑡𝑚𝑎𝑥 times 

using different initialization weights and we store the best one (maximizing the evaluated 

performance).  

Finally, note also that, for each ANN found as the best among the 𝑡𝑚𝑎𝑥 training sessions, it is 

definitively kept only if its global consensus is greater than 𝑛𝑚𝑖𝑛 after a final training considering 

its whole set of inliers (rather than the minimal one). 

In this study, we set n=3, 𝑡𝑚𝑎𝑥 = 5, 𝜏𝑎𝑐𝑐=0.7, 𝑖𝑡𝑚𝑎𝑥 = |𝐶|𝑆|
𝑛 |, 𝑛𝑚𝑖𝑛 equal to 70% of the number of 

participants. Finally, Algorithm 3 presents the method for clustering the participants into three 

clusters. For each participant, it counts the number of `good' models (output of Algorithm 1) to 

which he fits by testing whether the participant belongs to the inlier sets associated to these good 

models (here the notation ⟦ . ⟧ refers to the Iverson brackets). In this study, we set 𝜏𝑡𝑜𝑝 and 𝜏𝑜𝑢𝑡 

equal to 70% and 30% (of the total number of sets of inliers), respectively. 
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The algorithms were coded in Matlab, using the pattern recognition network provided by the Deep 

Learning Toolbox for implementing Artificial Neural Networks. The code is available at 

‘https://github.com/wafarekik/code-detection-atypical-behaviors.git’ 

Algorithm 1 Adapted RANSAC. 

Require: Set of participants: 𝑆, RT dataset for all participants: 𝐷 = {𝐷𝑘}𝑘∈𝑆 , cardinality of the 

subset used for model fit: n, number of iterations: 𝑖𝑡𝑚𝑎𝑥, number of training sessions: 𝑡𝑚𝑎𝑥, 

accuracy threshold : 𝜏𝑎𝑐𝑐, minimum number of participants in line with a `good' model: 𝑛𝑚𝑖𝑛. 

Ensure: Set of pairs of a `good' model and its associated subset of inlier participants : 𝜣𝑴,𝑰. 

 Initialization: set Θ ← ∅, 𝐼 ← ∅, 𝑖𝑡 ← 0 

 for  it=1 to  𝑖𝑡𝑚𝑎𝑥 do 

 set S← 𝑛 participants randomly selected and 𝑆̅ the set of the other participants. 

 𝐷𝑆 ← 𝑅𝑇 data associated to S 

 𝑛𝑖𝑡 = 0 

 for t=1 to 𝑡𝑚𝑎𝑥 do 

 𝑀 ←classifier trained on 𝐷𝑆 using 𝑡𝑡ℎ random initialization of weights 𝑤. 

 Run Algorithm 2 with entries (𝑀, 𝑆, 𝐷, 𝜏𝑎𝑐𝑐) to derive I the subset of participants in line 

with 𝑀. 

 if |𝐼| > 𝑛𝑖𝑡 then 

 𝑛𝑖𝑡 ← |𝐼| 

 Save data associated to inlier participants and initialization parameters in 

 Θ𝑖𝑡 ← ({𝐷𝑘}𝑘∈𝐼 , 𝑤) 

 end if 

 end for 

 𝑀𝑖𝑡 ← model trained using  Θ𝑖𝑡’s data and initial weights. 

 Run Algorithm 2 with entries (𝑀𝑖𝑡 , 𝑆, 𝐷, 𝜏𝑎𝑐𝑐) to derive 𝐼𝑖𝑡 the subset of participants in line 

with 𝑀𝑖𝑡 . 

 if |𝐼𝑖𝑡| ≥ 𝑛𝑚𝑖𝑛 then 

 Θ𝑀𝑜𝑑𝑒𝑙𝑠 ← Θ𝑀𝑜𝑑𝑒𝑙𝑠 ∪ {(𝑀𝑖𝑡 , 𝐼𝑖𝑡)} 

 end if 

 𝑖𝑡 ← 𝑖𝑡 + 1 

 end for 

 

Algorithm 2 Subset of participants in line with a model. 

Require: Model 𝑀, set of participants to test: S, RT dataset for all participants: 𝐷 = {𝐷𝑘}𝑘∈𝑆, 
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accuracy threshold: 𝜏𝑎𝑐𝑐 

Ensure: inlier set: I 

 𝐼 ← ∅ 

 for 𝑘 ∈ 𝑆 do 

 𝐷𝑘 ← RT data associated to participant k 

 Compute accuracy acc of model  𝑀 on  𝐷𝑘 

 if  acc>𝜏𝑎𝑐𝑐 then 

  𝐼 ← 𝐼 ∪ {𝑘} 

 end if 

 end for 

Algorithm 3 Participant clustering. 

Require: Set of subsets of inlier participants (associated to a `good' model): 𝑆𝐼 = {𝐼𝑗}, top 

threshold: 𝜏𝑡𝑜𝑝 , outlier threshold: 𝜏𝑜𝑢𝑡. 

Ensure: Top inlier set: 𝐼𝑡𝑜𝑝, intermediate inlier set: 𝐼𝑖𝑛𝑡𝑒𝑟, outlier set: 𝐼𝑜𝑢𝑡 

 Initializations: 𝐼𝑡𝑜𝑝 ← ∅, 𝐼𝑖𝑛𝑡𝑒𝑟 ← ∅, 𝐼𝑜𝑢𝑡 ← ∅ 

 𝑁 ← |𝑆𝐼| 

 for i=1 to |𝑆| do 

 𝑠𝑐𝑜𝑟𝑒𝑖 = 0 

 for j=1 to N do 

 𝑠𝑐𝑜𝑟𝑒𝑖 ← 𝑠𝑐𝑜𝑟𝑒𝑖 + ⟦𝑖 ∈ 𝐼𝑗⟧ 

 end for 

 𝑠𝑐𝑜𝑟𝑒𝑖 ←
1

𝑁
𝑠𝑐𝑜𝑟𝑒𝑖 

 if  𝑠𝑐𝑜𝑟𝑒𝑖 > 𝜏𝑡𝑜𝑝 then 

 𝐼𝑡𝑜𝑝 ← 𝐼𝑡𝑜𝑝 ∪ {𝑖} 

 else if  𝑠𝑐𝑜𝑟𝑒𝑖 < 𝜏𝑜𝑢𝑡 then 

 𝐼𝑜𝑢𝑡 ← 𝐼𝑜𝑢𝑡 ∪ {𝑖} 

 else 

  𝐼𝑖𝑛𝑡𝑒𝑟 ← 𝐼𝑖𝑛𝑡𝑒𝑟 ∪ {𝑖} 

 end if 

 end for 

 

 

5. Results 

In this section, we present the main results obtained on our database. 
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5.1.Participant categorization 

Figure 5 shows some results of Algorithm 1, namely the histograms of the number of models that 

fit a given number of participants, after first estimation (i.e., with training based on the random 

triplet of participants) and after final step (i.e., with training based on the whole inlier participant 

set). According to Figure 5a, only two models (derived from participant triplets {2,6,21} and 

{2,22,30}) have been fitted to a total of 15 participants. Each triplet refers to a subset of three 

participants randomly selected as input for Algorithm 1. However, according to Figure 5b, the 

maximum number of participants fitted to a model is 16, achieved by 3 models, and 18 other 

models fit groups of 15 participants. In the following, we focus on the corresponding inlier groups 

of cardinality equal to 15 or 16 (3 sets of cardinality 16 and 18 sets of cardinality 15). According 

to Figure 5, these 21 sets of participants associated to the best models (in terms of number of 

participants) form the set of subsets of inlier participants 𝑆𝐼 at the entry of Algo. 3.  

 

 

 

 

 

(a) (b) 

Figure 5. Selection of the best classification models (case of sigmoid activation function for 

hidden layers) in terms of the number of participants that are fitted to it: (a) first training; (b) 

final training. 
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Figure 6. Participant evaluation according to the percentage of their occurrence in the inlier sets 

of cardinalities 15 and 16; case of sigmoid activation function for hidden layers. 

 

Figure 6 plots the score of each participant calculated in Algorithm 3. Remember that the 

participant score reflects how much a participant shares similar behavior in terms of endo/exo 

response separation with other participants (represented through an ANN model). Then, the three 

groups of participants are: (i) the most conformal participants whose occurrences are greater than 

70%; (ii) the outliers (atypical participants) with occurrences less than 30%; (iii) participants with 

intermediate conformity, i.e. between 30% and 70%.  However, to increase the robustness of the 

derived group of participants, we also run the algorithm with ReLU (Rectified Linear Unit, [13]). 

Indeed, ReLU activation is very popular in Deep neural Networks (DNN) since the latter require 

simplest activation functions (less complex to compute than a sigmoid). For example, Krizhevsky 

et al., in their very famous article [16] often referred to as the beginning of deep learning, proposed 

to replace the hyperbolic tangent by ReLU activation to reduce the computation time by a factor 

of six. Obtained experimental results are very close (only three participants close to group 

thresholds switch), but considering both results allows us to get more robust participant groups (in 

the spirit of ensemble networks). The top inliers are now the participants who show complete 
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agreement between the ReLU and sigmoid-based networks, with their frequencies greater than 0.7 

in both cases. As a result, the top inlier group includes participants with index in 

{1,12,14,16,22,25,32,28}, the outlier group includes those with index  

in {3,8,10,11,19,20,21,23,26}, and the intermediate inlier group consists of participants with index 

in {2,5,6,9,24,27,17,30,31,33}. 

5.2.Robustness with respect to feature selection 

 

(a)                                                            (b)  

 

 

 

 

 

                                   

(b)                                                                  (d) 

Figure 7. Distributions of standardized RT values in the feature space considering two subsets of 

participants: (a,b) the most conformal participants; (c,d) outliers. 
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The feature pair distributions in endo and exo modes for the most conforming participants and for 

outliers are plotted as 2D scatterplots in Figure 7. While the feature distributions overlap strongly 

for outlier participants (cf. Figure 7c and Figure 7d), for the most conforming participants (Figure 

7a and Figure 7b), the two groups of endo and exo points overlap only slightly, regardless of the 

feature pairs considered (minimum , median) or (10𝑡ℎ percentile, mean). Thus, to evaluate the 

robustness of our approach with respect to the endo/exo classification features, the 10𝑡ℎ percentile 

and the mean have been considered rather than the minimum and the median. As a result of 

Algorithm 1, 17, 16 and 15 participants were fitted to 2, 4 and 28 models, respectively. Comparing 

the clustering results derived using the respective pairs of features, we observe that although the 

ranking of the participants according to their scores can vary slightly, there is a strong agreement 

regarding the set of the top inliers (one participant out of eight) and the set of outliers (exactly the 

same group in both cases). 

5.3. RT distributions versus participant group 

So far, we have proposed an ANN classification model to distinguish the RT measurements 

performed in either endogenous mode or exogenous mode, and we have used the accuracies of this 

model to score the participants and cluster them into three groups (top-inliers, intermediate inliers, 

and outliers). Before using this partition for further analysis, let us specify the benefit of the ANN 

model. A neural network can be viewed as a function that projects the input values (RT 

measurements in our case) into the score space where the classes (endogenous and exogenous 

modes) should be more separable. To evaluate this “more separable” assertion, we analyzed the 

scores provided by the ANN using either the sigmoid function (called “sigmoid scores”) or the 

ReLU function (“ReLU scores”), with respect to the original RT measurements.  In terms of p-

values, the three datasets have a p-value less than 0.001, which means that the endogenous and 
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exogenous modes have statistically significantly different distributions. However, a low p-value 

only reflects the fact that the hypothesis H0 (homogeneity of the endogenous and exogenous 

distributions in our case) has to be rejected (statistical significance) and not the magnitude of the 

difference between the distributions (substantive significance, based on the relative overlap 

between the two distributions) , which is usually measured by the effect size η². Considering the 

RT values of all participants, the obtained η² value is equal to 0.012. Since, according to [8,21], 

when the effect size is less than 0.2, the difference between the two groups is negligible (even if it 

is statistically significant), we conclude that the RT distributions were barely separable. However, 

thanks to the proposed methodology, this η² can be greatly improved: Considering the “sigmoid 

scores” and “ReLU scores” of the inliers, the obtained η² values are equal to 0.357 and 0.293, 

respectively. Then, the η² value increases up to a factor of 30 with respect to the all participant RT 

values. Finally, comparing the “sigmoid scores” and the “ReLU scores”, still based on the effect 

size criterion, we notice that the sigmoid scores allow for a slightly better distinction between the 

two distributions (endo or exo mode). The proposed algorithm outputs the participant groups, 

allowing us to categorize participants according to their ability to use the alertness signal to reduce 

their reaction time. To see if this RT reduction is effective, Figure 8 shows the histograms and 

fitted normal distributions of RT values in endogenous and exogenous modes for different groups 

of participants: (a) the most conformal  participants, (b) remaining inliers (c) all inliers, (d) outliers. 

From Figure 8, we clearly notice that the overlap between the two distribution of RT values in exo 

and in endo modes depends on the group of participants: from Figure 8a to Figure 8d, the difference 

between the means of RT values in endo and exo modes are equal to 62.9 ms, 28 ms, 45 ms and 

15.9 ms, respectively. We recall that the means difference was equal to 20 ms when considering 
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all participants (Figure 3). In addition, we note that the standard deviations difference decreases 

from 17 ms for all participants to 14.7 ms for all inliers to 7.3 for the most conformal participants. 

 

 

 (a) top-inliers; p<0.001, η2=0.024 (b) intermediate inliers; p<0.001, η2=0.022 

  

(c) inlier group; p<0.001, η2=0.041 (d) oulier group; p<0.001, η2=0.007 

Figure 8. Distributions of reaction time values for different subsets of participants in endo and exo 

modes: (a) the most conformal participants {1,12,14,16,22,25,32,28}, (b) remaining inliers 

{2,5,6,9,24,27,17,30,31,33}, (c) all inliers {1,…,33}, (d) outliers {3,8,10,11,19,20,21,23,26}. For 

each subset, p-value (p) and effect size (η2) are given. 

 

5.4. Force error distributions versus participant group 

The objective of the force error analysis is as follows. On the basis of Reaction Times (and the 

proposed RANSAC-ANN method), we were able to distinguish three groups of participants 

according to their ability to take advantage of the alertness signal (exogenous attention) to reduce 
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their RT values. Now, we wonder whether the same subjects (participant group) who were able to 

focus their attention to reduce RT, were also able to reduce the force errors. Depending on the 

answer to this question, we could either presume that reaction rapidity and force accuracy are two 

positively related tasks (improving the first will also improve the second) or that they are 

independent or competitive (improving the first will not affect or even will penalize the second 

one).  

 

 

 

 

 

 

 

 

 

 

 

 

        (a) p=0.0099, endo = 1.70, exo = 1.65         (b) p=0.0481, endo = 1.49, exo = 1.47 

 

  

 

 

 

 

 

 

 

 

 

 

 

 (c) p=0.6275, endo = 1.83, exo = 1.72 

Figure 9. Observed distributions (fitted by a Weibul distribution) of force errors of subsets of 

participants: (a) the most conformal  participants {1,14,16,22,25,32,28}, (b) all inliers {1,…,33}, 

(c) outliers {3,8,10,11,19,20,21,23,26}. 
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In this study, the methodology used to answer to the previous question is to examine whether the 

difference between the force errors observed in the endogenous and exogenous modes depends on 

the participant group. Specifically, we plotted (cf. Figure 9) the two force error distributions 

corresponding to the endo and to exo modes, for each of the three participant groups defined on 

the basis of their ability to reduce RT in the exogenous mode.  

Statistical tests were performed on the distributions of the force errors. The hypothesis H0 

corresponds to the homogeneity assumption between the distributions of force errors in 

endogenous and exogenous modes. According to the Kolmogorov-Smirnov test, the hypothesis 

H0 tested for the top inliers can be rejected with a Type I risk α=1%, since p-value is equal to 

0.0099. When considering the whole inlier set, the p-value is 0.048, which is less than 5% and can 

therefore still be rejected with a reasonable risk. Conversely, in the case of the outlier set, the p-

value is 0.6275, indicating that H0 cannot be rejected, i.e. the exo and endo distributions of force 

errors cannot be considered as inhomogeneous. 

6. Discussion 

Our study focuses on vigilance, which is essential to our interactions with the environment. We 

investigate how vigilance or alertness, involves the ability to stay focused and respond quickly to 

changes or unexpected events. Our study proposes an artificial intelligence-based approach to 

classify participants according to their behavior and performance during an attentional task of force 

production. Specifically, our study used an artificial neural network (ANN) model and RANSAC 

algorithm to identify the participants who behaved as outliers, indicating atypical attentional 

behaviors. Our approach highlights the promising utility of combining these techniques to explore 

and quantify human vigilance as well as identifying atypical attentional patterns. Based on our 

study, we outline the main results below.  
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6.1.Anticipation hypothesis validation 

Firstly, based on Figure 8, we note that the ranking of the participants provided by Algorithm 3 is 

effective since the “most conformal” participants significantly reduced their RT in exogeneous 

mode with respect to endogeneous mode which is an expected outcome, in line with the literature 

([20]). Then, the hypothesis regarding anticipation appears as a valid hypothesis provided that the 

participants of the group show a consistent behavior (inlier participants). Specifically, our study 

distinguishes participants who are able to use the alert signal to enhance their vigilance and 

improve their reaction times. Additionally, our methodology enabled the isolation of some 

participants who disregarded the alert signal and exhibited suboptimal attentional behavior, as 

evidenced by their RT values being higher in exogenous mode than in endogenous mode. For this 

specific group of participants, we assumed that they either did not rigorously follow the 

instructions, or the repetition of trials in the cognitive task might have induced a state of mind 

wandering, consequently leading  to a decrease level of attention. Finally, we propose to interpret 

the decrease of the standard deviations difference as an index of performance or vigilance stability; 

this metric is particularly more efficient among groups with higher performance levels. 

6.2. Error force analysis 

Concerning the distributions of the force errors, we assume that there is a part of the force error 

that is due to imprecision in the control of the force, and that is common to most of the 

measurements. Subsequently, the interesting part (for our study) occurs when the force error can 

be attributed to an attention deficit, probably due to a focus on the answer speed, i.e. when the 

force error is relatively important. To validate this result, we have performed Kolmogorov 

statistical test on force error distributions. Firstly, as with the RT analysis, Figure 9 confirms the 

relevance of the participant clustering for the analysis of attentional behavior, as it reveals varied 
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behaviors across different groups. However, in contrast to the RT case where such a relevance 

could be expected since the clustering criterion involves RT values, the force error data were not 

considered in the clustering process at all, rendering our conclusions even more intriguing. 

Then, the inlier group behavior (Figure 9a and Figure 9b) shows that the distributions of force 

errors in endogenous and exogenous modes are significantly different (p-value lower than 1% or 

5% depending if we consider the top-inlier or inlier group) when the participants are able to 

consider the alertness signal. Concerning the outlier participants (Figure 9c), they use neither the 

alert signal nor the fore-period to improve their precision. Their force errors are similar in both 

endogenous and exogenous modes (p-value > 0.05). 

Now, upon examining the Weibul distribution parameters and the means values (endo and exo), 

we observe that all groups exhibit a reduction in force error in the exogenous mode compared to 

the endogenous mode, that shows that the alertness signal is used efficiently. However, the 

reduction in the (top) inlier group is lower than in the outlier group. Therefore, we infer that when 

the two modes significantly differ in terms of force errors, i.e. in the case of the top-inlier and inlier 

groups, the two tasks are competitive since the reduction in RT comes at the cost of reducing force 

error. In other words, the motor response and its accuracy are optimized when subjects prioritize 

the speed (Reaction Time) at the expense of the force level, as already observed by [19]. 

7. Conclusion 

In this work, we proposed a methodological approach to estimate the vigilance ability of 

participants during a cognitive motor task that is either voluntary (endogenous mode) or guided by 

an external signal (exogenous mode). It consists of distinguishing between participants who use 

the alertness signal  to reduce their reaction time and participants who react similarly in the 

presence or absence of the alertness. Given a small dataset, our basic idea was to couple the 
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RANSAC algorithm with a shallow neural network to handle noisy labels that impact the training 

process for endogeneous/exogenous classification. Although our clustering results were validated 

through the distributions of reaction-times and error forces with respect to clusters of participants, 

future work will focus on more sophisticated testing of the approach on simulated data presenting 

noisy labels. Another future perspective of our research involves fusing reaction time data with 

functional imaging data to characterize the influence of vigilance states on the endogenous and 

exogenous neural networks of attention. 
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Highlights 
• Atypical attentional patterns are detected in young subjects. 
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• Score disentangles high (inliers) and low (outliers) attention performance. 

• Score combines RANSAC and classifiers for outlier handling in few-shot learning. 

• Score-based subject clustering clarifies RT and force accuracy duality. 
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