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Abstract—The objective of this paper is to design and develop
an approach to estimate the Remaining Useful Life (RUL) of an
industrial equipment evolving in a Cyber-Physical System (CPS).
To do so, this work aims to predict failures and malfunctions
of an industrial equipment, as well as evaluating all the main
underlying causes. The system will also identify the actions to
be taken in order to maintain the system at a certain level
of performance and guarantee that it will operate in the most
efficient way, which implies a study of all aspects: reliability,
availability and maintenance. Existing works are often limited to
the estimation phase of the RUL, with only a few case studies
(such as ball bearings and Proof Of Concept(PoC)) available
and a significant lack of data. The innovation of this research
work will be to design and develop diagnostic and prognostic
approaches based on Deep Learning (DL)(e.g. Boltzmann Ma-
chine, Recurrent Networks and Echo State Network (ESN)) for
the maintenance and health management of industrial equipment
evolving in a CPS.

I. INTRODUCTION

Following the fourth industrial revolution, referred to as
Industry 4.0 and first coined in the 2011 Hannover Fair
[18], came the fifth’s industrial revolution (Industry 5.0)
with the goal to give more place to human being by taking
advantage of the Industry 4.0 developed technologies. The
main objectives of this new revolution are : to achieve societal
goals by placing humans in the center of the production
process, to reduce the environmental impact by making
production more cleaner and respectful of our planet, and
to become more resilient and economical [1]. In addition,
globalization introduces the mass personalization challenge,
where billions of end-users will require more personalized and
customized products [2]. In this context, Artificial Intelligence
(AI), Internet of Things (IoT), and Cyber Physical Production
Systems(CPPS) would be a driving force to combine human
expertise to design precise control and cognitive abilities [3].

With the massive integration of smart technologies in
manufacturing industries, researchers are observing an
increased complexity and maintenance costs of production
processes. In addition, with globalization and the need for
more customized goods and less lead time, equipments
must be more reliable & resilient. Basically, a big part

of the manufacturing processes assume that manufacturing
assets are available continuously. However, practically
machines can breakdown, or can stop working due to
unknown failures [4]. Thus, manufacturing units should adopt
Predictive Maintenance (PdM) to reduce maintenance costs,
prevent failures and accidents, and increase transparency. [5].
More specifically, PdM processes can assess the health state
of a manufacturing asset by estimating the RUL (Remaining
Useful Life), and optimizes the maintenance plans based
on those predictions. In Industry 5.0, PdM will assist
maintenance operators in identifying potential future failures
and support them by giving recommendations instead of
performing planned and scheduled maintenance or corrective
maintenance. Additionally, in Industry 5.0, there will be
a focus on human factors by proposing new PdM design
consideration that enhance human well-being and overall
system performance [6].

The implementation of PdM systems involves setting up
diagnostic and prognostic capabilities in near-real time [6].
Prognostics and Health Management (PHM) is an engineering
discipline that aims to estimate the Remaining Useful Life
(RUL) of a component or industrial equipment, which is
the amount of time remaining before it stops performing
its assigned task. The predicted RUL is then as used an
indicator which allows production managers to establish a
degradation curve of the equipment from the sensors collected
data. Approaches to estimating RUL can be classified into two
broad categories: Physics of Failures (PoF)-Based and Data-
Driven. It is also possible to combine both approaches, giving
rise to a third category of approaches called hybrid (or fusion)
approaches. The work conducted in [19], shows the effec-
tiveness of data-driven approaches and more specifically Deep
Learning methods in predicting the RUL indicator. The authors
state that several challenges need to be addressed by data-
driven approaches, such as: the trend of complex equipment
health degradation, noisy data from sensors, unavailability of
data, and complex time dependency between sensor data.
In this paper, a data-driven approach for RUL prediction based



on deep neural networks is proposed. The main contributions
of this paper are :

• Reduce processing time, through the use of an encoding
phase that reduces the numbe of features to be learned,

• Allow real-time health assessment, by reducing the la-
tency between data collection and RUL estimation,

• Enhance RUL prediction accuracy, by taking into con-
sideration spatial and temporal features of the collected
signal,

The rest of this paper is organized as follows. Section II
provides an overview of related works. In section III, we
explain the concepts and architecture of the proposed model to
predict the RUL of a system using sensor data. In Section IV,
we briefly present the used dataset, the main obtained results
and a discussion regarding the evaluation criteria used. Finally,
Section V concludes this paper and gives an outlook on future
work.

II. RELATED WORKS

PHM is a multidisciplinary field that involves the use of
data, models, and algorithms to predict the RUL of a system
and to optimize its maintenance [7]. The goal of PHM is to
improve the safety, reliabilitThe approaches used to estimate
the RUL can be classified into two broad families : PoF-
Based and Data-Driven approaches. PoF-based approaches
involve the use of physical models, such as finite element
models, to understand the underlying mechanisms of a sys-
tem’s degradation and predict its RUL.While the Data-Driven
approaches, While the Data-Driven approaches the historical
data (generally collected from sensors and other sources) to
model the health of a system and predict its RUL. Tech-
niques such as statistical modeling, machine learning, and
signal processing are commonly used in this area. Finally, a
hybridization between the two approaches can be performed to
improve the accuracy of RUL prediction, and allow end-users
to interpret the results. Finally, these methods are typically em-
ployed to optimize maintenance operations by utilizing PHM
information to schedule and execute maintenance activities in
an optimized manner. Some of the techniques used for this
purpose include condition-based maintenance and reliability-
centered maintenance. In this context, PHM was applied to
a wide range of systems, including aircraft, wind turbines,
batteries, and engines [15] [16].A literature review would
present case studies of PHM in various applications, including
those mentioned earlier. However, the field of PHM is still
relatively new, and there are many challenges that need to be
overcome. These challenges can include issues related to data
quality, feature selection, and model validation. Overall, PHM
is a multidisciplinary field that is still evolving, but it has the
potential to bring significant benefits to various industries.
Data-driven techniques, specifically AI and Deep Learning,
are increasingly being used in the manufacturing sector due
to the growth of the Industrial Internet of Things (IIoT) and

Big Data [3]. DL techniques, in particular, are increasingly
being utilized in the area of RUL prediction because they have
the capability to automatically extract features from complex
and high-dimensional data and make predictions without the
requirement for manual feature selection or explicit model
equations. In this context, Wang et al. [8] claims that the
current state-of-the-art DL approaches used for RUL predic-
tion, can significantly improve the reliability and the safety
of industrial components or systems, prevent breakdowns, and
reduce maintenance costs.

The four main representative Deep Learning architectures
discussed in this paper include Auto-Encoder (AE), Deep
Belief Network (DBN), Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN). Finally, authors state
that Deep Learning-based RUL prediction approaches are
purely data-driven, thus a large database of run-to-fail tra-
jectories is needed to increase user confidence. Additionally,
combining Deep Learning with other data-driven or physics-
based approaches may provide more effective and precise
results. An example of the use of DL techniques in RUL
prediction can be found in [9]. In their paper, Deutsch et
al. present a Deep Learning-based approach, DBN-FNN, to
predict the RUL of rotating equipment using vibration data
[9]. They showed that the DBN-FNN algorithm achieved a
slightly better accuracy for gear RUL prediction but slightly
worse accuracy than a particle filter-based approach. The
DBN-FNN does not require manual feature extraction and
explicit model equations, making it a promising approach for
RUL prediction of rotating components with big data. How-
ever, the main limitation of this paper is that the DBN-FNN
algorithm still needs further improvement to achieve more
accurate predictions. Additionally, the algorithm is limited to
the specific use case of RUL prediction of rotating equipment
using vibration data, so it may not be suitable for other types
of equipment or data. Another limitation is that this algorithm
needs a certain amount of data to learn from it, otherwise, the
predictions can be inaccurate. Another example can be found
in [10], where authors present a novel deep learning-based
prognostic method for the estimation of machine degradation
status. This approach differs from previous state-of-the-art
methods in that it utilizes a combination of short-time Fourier
transform and multi-scale feature extraction with convolutional
operation to extract relevant information from raw data. This
allows for a more efficient and effective representation of the
data, leading to improved performance in the estimation of
machine degradation status. The limitations of the proposed
deep learning-based method for prognostics in the paper
are the need for sufficient labeled training data, which is a
general requirement for data-driven approaches, especially for
prognostic problems. Additionally, the authors mention that
while the proposed method is promising, it could be further
optimized by using techniques such as SqueezeNet to reduce
network parameters without loss of performance and the Short



Frequency Fourier Transform (SFFT) to reduce computational
burden and memory resource while keeping the resolution.
These will be investigated in future works.
As seen in the previous papers, DL models, including those
used for prognostics, can have several limitations. One limita-
tion is the need for a large amount of labeled data to train the
model, which can be difficult and time-consuming to acquire.
Additionally, deep learning models can be computationally
expensive, which can be an issue for real-time or resource-
constrained applications. Another limitation is that DL models
can be difficult to interpret and understand, which can make it
challenging to diagnose and correct errors. Additionally, DL
models are not robust to noise and outliers, which can affect
the performance of the model. Furthermore, deep learning
models tend to generalize poorly, meaning that they may
not perform as well on unseen data. Finally, DL models
can be affected by the curse of dimensionality, meaning the
model’s performance decreases when the number of features or
dimensions increases. One potential solution to this limitation
is to use Auto-encoders as an embedding algorithm to generate
synthetic data. Auto-encoders are neural networks that can
learn the underlying structure of the input data and can be
used to generate new, synthetic samples. By using Auto-
encoder to generate synthetic data, it may be possible to
overcome the limitation of limited labeled data, and improve
the performance of the deep learning-based prognostic method.
Moreover, Auto-encoder can also be used as an embedding
algorithm, meaning it can transform the data into a lower-
dimensional representation that can be used as input for other
machine learning models. This can also help to overcome the
curse of dimensionality, which is another limitation of deep
learning models.

III. PROPOSED APPROACH

A. Auto-encoders & State Space Models

The proposed methodology employs a data-driven approach
to predict the RUL of a system using sensor data. The process
is divided into two key steps: feature extraction and regression
(time series forecasting). In the feature extraction step, relevant
features are extracted from the sensor data using embedding
models, specifically Auto-encoders (AE). The extracted fea-
tures are then used in the regression step to estimate the RUL
using a State Space Model (SSM), a widely used family of
models in statistical signal processing and time series analysis.

Auto-encoders are particularly useful in the feature ex-
traction step as they enable efficient processing of large-
scale sequential data while discovering a more efficient and
compressed representation of the sensor data. An Auto-
encoder is a neural network architecture designed to learn
an identity function in an unsupervised manner. The encoder
network compresses the high-dimensional input data into a
low-dimensional code, and the decoder network then recovers
the data from the code, with a larger output layer.

Fig. 1. Architecture of the AutoEncoder

This approach is particularly useful for systems where
sensor data is high-dimensional and complex, as it allows
for efficient processing of the data while still extracting
relevant features. The model contains an Encoder function,
parameterized by ϕ, to learn the low dimensional code Z,
a decoder function, parameterized by θ, that reconstructs the
original input X from the lower dimensional code Z as shown
in Figure 1. Additionally, the use of SSM in the regression
step allows for the modeling of dynamic systems, making the
approach suitable for a wide range of applications in various
industries.

B. Proposed architecture

The proposed architecture for estimating RUL of a turbofan
is motivated by the need for accurate and efficient prediction of
the RUL of these systems. The ability to predict RUL can help
with maintenance planning and scheduling, reducing downtime
and prolonging the life of the equipment.

The proposed architecture is depicted in Figure 2. The
architecture combines several key components to effectively
analyze sensor data and make predictions. The use of an Auto-
encoder allows for the efficient compression and encoding of
the sensory data, reducing the dimensionality and identifying
important features. The LSTM layer then takes the encoded
data and extracts temporal features, allowing for the analysis
of patterns and trends over time. The attention mechanism
provides weights on the LSTM output, allowing the model to
focus on the most relevant information for RUL estimation.
Finally, a fully connected layer with a regression layer uses
this information to make the final RUL prediction.

One of the advantages of this architecture is that it can
effectively handle time-series data, which is crucial for RUL
prediction as the sensor data is collected over time. Addi-
tionally, the use of an auto-encoder and LSTM layer enables
the model to extract features and patterns from the data,
which is important for accurate RUL predictions. The attention
mechanism provides the ability to focus on the most important
features, which can improve the prediction accuracy. Further-
more, the architecture is flexible and can be easily adapted to
different types of sensor data and equipment.



Fig. 2. Architecture of the proposed model

C. Evaluation criteria

To evaluate the accuracy of the proposed RUL prediction
method, two commonly used evaluation criteria have been
adopted: the Root Mean Square Error (RMSE) and the scoring
function. The RMSE is a widely accepted measure of the
difference between the predicted and actual RUL values. A
lower RMSE value indicates a higher level of accuracy in the
prediction.

The scoring function used in the evaluation of the proposed
RUL prediction method was adopted from the PHM data
challenge 2008, an annual competition that encourages the
development of innovative techniques for PHM of engineered
systems. The specific challenge in 2008 was to predict the
RUL of turbofan engines using sensor data. The competition
involved a dataset that consisted of run-to-failure data from
21 turbofan engines. The goal was to predict the RUL of each
engine using data from the sensors, with the best-performing
methods being evaluated using the scoring function.

The scoring function used in the challenge evaluated the

accuracy of the predicted RUL values, as well as the computa-
tional efficiency of the method. The function took into account
the difference between the predicted and actual RUL values,
the time taken to provide a prediction, and the uncertainty in
the predicted RUL values. Therefore, by adopting this scoring
function in the evaluation of the proposed RUL prediction
method, the method’s accuracy and practicality could be
assessed in a comprehensive manner that reflects real-world
scenarios.

In summary, by using both the RMSE and the PHM data
challenge-based scoring function as evaluation criteria, the
performance of the proposed RUL prediction method can be
thoroughly evaluated from both an accuracy and practicality
perspective. The RMSE is used to evaluate the accuracy of the
predicted RUL values, while the PHM data challenge-based
scoring function evaluates both the accuracy and the practical-
ity of the proposed method, taking into account factors such
as computational efficiency and uncertainty in the predicted
RUL values.

IV. RESULTS & DISCUSSION

A. Used Dataset

PHM techniques, such as predicting the RUL of engineered
systems, have a wide range of applications in industry. These
techniques can be used to improve safety, reliability, and
efficiency in applications such as aerospace, energy, transporta-
tion, and manufacturing. By accurately predicting the RUL
of critical components, operators can schedule maintenance
activities more efficiently and minimize downtime. For ex-
ample, predicting the RUL of aircraft engines can help to
minimize maintenance costs and ensure the safety of both crew
and passengers. Similarly, predicting the RUL of a vehicle’s
battery can help to optimise efficiency and reduce the risk of
unexpected failure.

The proposed approach is evaluated using the widely used
Commercial Modular Aero-Propulsion System Simulation (C-
MAPSS) dataset. Specially, we use the C-MAPSS turbofan
engine dataset used in the PHM data challenge 2008 [15]
[16] that contains sensor data from 21 turbofan engines. The
engines were operated under various conditions, and the sensor
measurements were taken at different points in time. The data
includes both time-series sensor measurements and data from
the last measurement of each engine.

The sensor measurements in the dataset include a wide range
of parameters, including pressure, temperature, and vibration.
Some specific examples of the sensor measurements include:

• Total temperature at the front of the compressor
• Total pressure at the front of the compressor
• Physical fan speed
• Vibration measurements at various locations on the en-

gine
The sensor data in the C-MAPSS dataset is considered to be

realistic and representative of the data that would be available



in real-world applications. The goal of the PHM data challenge
was to use this sensor data to predict the RUL of the engines,
with the best-performing methods being evaluated using the
scoring function.
Overall, the C-MAPSS turbofan engine dataset is a valuable
resource for researchers working on PHM, and has been used
in numerous studies on the development and evaluation of
methods for predicting the RUL of engineered systems.
Two subdatasets, FD001 and FD004, are chosen for evaluation,
with FD001 being the simplest and containing only one
operation condition and one faulty type, while FD004 is the
most complicated, containing six operation conditions and two
faulty types. Both subdatasets have training and testing files,
with the training file recording sensor data for a certain number
of engines during the run-to-fail experiments, and the testing
file containing sensor measurements for a certain number of
engines during certain running cycles.

B. Experiment configuration

To evaluate the performance of our proposed algorithm for
predicting RUL, we compared it with a recently published
DL algorithm that utilized an attention-based and LSTM
approach [11]. We also report the training and testing times
for both algorithms. The experiments were conducted on an
Ubuntu 18.04 server equipped with an Intel(R) Core (TM)
i9-9980XEHQ processor running at 4.40 GHz, as well as
4 GeForce NVIDIA RTX 2080 graphics cards with 11 GB
each and 128 GB of RAM. TABLE I displays the results,
indicating that our proposed approach using learning-based
methods requires significantly less time for both training and
testing compared to the baseline model. This is due to the
data reduction achieved with the Auto-encoder. Notably, the
proposed approach boasts the lowest training time, taking only
16.33 minutes in FD001 dataset and 24.31 minutes in FD004
dataset.

TABLE I
RUNNING TIME ALGORITHMS

Algorithms running time Dataset
/minutes FD001 FD004

Attention-based and LSTM approach [11] 22.53 41.77
Proposed algorithm 16.33 24.31

C. Obtained results & Discussion

We first present the performance indicators of the Auto-
encoder model. As stated before, an Auto-encoder is a neural
network used for solving unsupervised learning tasks such as
dimensionality reduction, feature extraction, and data com-
pression. The performance of an Auto-encoder is typically
measured by its train and validation loss. The train loss is
the error between the predicted output and the actual output
on the training set, while the validation loss is the error on a
separate validation set. The train/validation loss and accuracy’s

Fig. 3. Performance metrics of the proposed AutoEncoder

curves are shown in Figure 3. We can notice that the Auto-
encoder has a low training and validation loss, indicating that
it has learned to accurately reconstruct the input data. We also
observe that the small gap between the training and validation
loss indicates a well-performing Auto-encoder.

TABLE II
MAIN OBTAINED RESULTS

Evaluation criteria Dataset
FD001 FD004

RMSE 15,62 31.1814
Score 434.1828 46550.66

In addition, we evaluate the RUL prediction accuracy of
the proposed model by using the standard RMSE and scoring
function given in the 2008 PHM Data challenge (i.e, Early
Prediction Score). Therefore, the average RMSE was calcu-
lated based on the predicted RUL and the ground truth as in
Eq 1, where RUL

(
Truthi) is the ground truth for gas turbine

i, RUL
(
Predi) is the predicted RUL for gas turbine i, finally

N denotes the number of existing gaz turbines.

RMSE =

√√√√ 1

N

N∑
i=1

(RULi
Truth −RULi

Pred)
2 (1)

In the other hand, we use the Early Prediction Scoring
Function [17] which is a metric applied to prognostic tasks.
This scoring function, given by Eq. 2, will penalizes late
prediction than the early ones. The scoring function is given
as follow:

s =

{ ∑N
i=1 exp

−di
13 −1 if di < 0∑N

i=1 exp
di
10 −1 if di > 0

(2)

where di represents the difference between the predicted RUL
and the ground truth (i.e., di = RULi

Truth −RULi
Pred).

The main experimental results of the proposed approach are
shown in TABLE II. TABLE III presents the experimental
outcomes of some other state-of-the-art techniques on the
two datasets. In general, the performance of various methods



TABLE III
EXPERIMENTAL RESULTS ON THE FD001 AND FD004 DATASETS [11]

Statistic Shallow Learning Deep Learning
Criterion Cox’s regression [12] MLP [13] SVR [13] RVR [13] ELM [14] RF [14] CNN [13] LSTM [11] VAE+RNN [14] RVE [14]

FD001 RMSE 45.10 37.56 20.96 23.80 17.27 17.91 18.45 14.53 15.81 13.42
Score 28616 17972 1381.5 1502.9 523.00 479.75 1286.7 322.44 326 323.82

FD004 RMSE 54.29 77.37 45.35 34.34 38.43 31.12 29.16 27.08 26.54 16.37
Score 1164590 5616600 371140 26509 121414.47 46567.63 7886.4 5649.41 5634 1845.99

exhibits a notable discrepancy between the FD001 and FD004
datasets. This disparity can be attributed to the differing char-
acteristics of the datasets. Specifically, the FD001 dataset is
relatively straightforward, with a single operational condition
and a single failure mode. In contrast, the FD004 dataset
contains a considerably larger number of engines for testing,
with a total of 248 engines, which is significantly more than
the number of engines in the FD001 dataset. As a result,
the cumulative scores for all engines in the FD004 and
FD001 datasets differ significantly in magnitude, highlighting
the importance of dataset complexity when evaluating the
effectiveness of various methods.
The effectiveness of the proposed approach in predicting the
RUL has been demonstrated, as evidenced by its superior
performance relative to the majority of benchmark approaches.
Furthermore, the proposed approach exhibits the shortest run-
ning time for RUL prediction, outperforming even the best
and most recent benchmark approaches [11]. This combination
of high accuracy and computational efficiency underscores
the potential utility of the proposed approach in practical
applications where real-time RUL prediction is critical.
The proposed approach’s superior computational efficiency in
predicting the RUL compared to other benchmark approaches
enables more rapid and precise RUL predictions. This ca-
pability can have significant implications for maintenance
operations, as it allows maintenance personnel to plan and
implement maintenance activities with greater speed and ac-
curacy. As a result, downtime can be reduced, and overall
equipment reliability can be improved, leading to greater
operational efficiency and cost savings for the organization.

V. CONCLUSION

In summary, the proposed data-driven approach for RUL
prediction using deep neural networks offers several significant
advantages. By integrating an encoding phase, the processing
time is reduced, enabling real-time health assessment with
minimal latency between data collection and RUL estimation.
Moreover, the approach incorporates both spatial and temporal
features of the signal, resulting in improved RUL prediction
accuracy. Overall, this approach has the potential to enhance
the reliability and effectiveness of predictive maintenance in
diverse industries, including aerospace, manufacturing, and
healthcare. By reducing processing time and allowing real-
time health assessment, potential equipment failures can be

detected in advance, reducing downtime and maintenance
costs. Additionally, enhanced RUL prediction accuracy can
improve maintenance scheduling and enhance safety by iden-
tifying potential equipment failures before they cause acci-
dents or harm to individuals. Nonetheless, challenges such
as the requirement for high-quality input data and adequate
computational resources remain. Further research is necessary
to fully realize the potential benefits of this approach and
overcome its limitations, such as addressing interpretability
and explainability issues and optimizing the trade-off between
prediction accuracy and computational efficiency.

REFERENCES

[1] Xu, Xun, et al. ”Industry 4.0 and Industry 5.0—Inception, conception
and perception.” Journal of Manufacturing Systems 61: 530-535, 2021.

[2] Maddikunta, Praveen Kumar Reddy, et al. ”Industry 5.0: A survey on
enabling technologies and potential applications.” Journal of Industrial
Information Integration 26, 2022.

[3] Verma, Ashwin, et al. ”Blockchain for Industry 5.0: Vision, Opportuni-
ties, Key Enablers, and Future Directions.” IEEE Access 10, 2022.

[4] Maddikunta, Praveen Kumar Reddy, et al. ”Industry 5.0: A survey on
enabling technologies and potential applications.” Journal of Industrial
Information Integration 26, 2022.

[5] Van Oudenhoven, Bas, et al. ”Predictive maintenance for industry 5.0:
behavioural inquiries from a work system perspective.” International
Journal of Production Research, 2022.

[6] Maqbool, Fariha, Haroon Mahmood, and Hasan Ali Khattak. ”An
Efficient Fault-Prediction Mechanism for Improving Yield in Industry
5.0.” 24th International Multitopic Conference (INMIC). IEEE, 2022.

[7] Pecht, M., & Gu, J. Physics-of-failure-based prognostics for electronic
products. Transactions of the Institute of Measurement and Control,
31(3-4), 309-322, 2009.

[8] Wang, Y., Zhao, Y., & Addepalli, S. Remaining useful life prediction
using deep learning approaches: A review. Procedia manufacturing, 49,
81-88, 2020.

[9] Deutsch, Jason, and David He. ”Using deep learning-based approach to
predict remaining useful life of rotating components.” IEEE Transactions
on Systems, Man, and Cybernetics: Systems 48.1, 2017.

[10] Li, X., Zhang, W., & Ding, Q. ”Deep learning-based remaining useful
life estimation of bearings using multi-scale feature extraction”. Relia-
bility engineering & system safety, 182, 208-218, 2019.

[11] Chen, Z., Wu, M., Zhao, R., Guretno, F., Yan, R., & Li, X. . Machine
remaining useful life prediction via an attention-based deep learning
approach. IEEE Transactions on Industrial Electronics, 68(3), 2521-
2531, 2020.

[12] PHAM, Hong Thom, YANG, Bo-Suk, NGUYEN, Tan Tien, et al.
Machine performance degradation assessment and remaining useful life
prediction using proportional hazard model and support vector machine.
Mechanical Systems and Signal Processing, vol. 32, p. 320-330, 2012.

[13] G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural network
based regression approach for estimation of remaining useful life,” in
Proc. Int. Conf. Database Syst. Adv. Appl., 2016, pp. 214–228.



[14] Costa, Nahuel, and Luciano Sánchez. ”Variational encoding approach for
interpretable assessment of remaining useful life estimation.” Reliability
Engineering & System Safety 222 (2022): 108353.

[15] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in Proc. Int.
Conf. Prognostics Health Manage., pp. 1–9, 2008.

[16] A. Saxena and K. Goebel, “PHM08 challenge data set,” NASA AMES
Prognostics Data Repository, Moffett Field, CA, USA, Tech. Rep., 2008.

[17] G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural net-
workbased regression approach for estimation of remaining useful life,”
inProc.Int. Conf. Database Syst. Adv. Appl., 2016, pp. 214–228.

[18] Messe, Deutsche. ”Hannover Messe 2011.” Engineering and Technology
6.3 (2011): 90-90.

[19] Gugulothu, Narendhar, et al. ”Sparse neural networks for anomaly detec-
tion in high-dimensional time series.” AI4IOT workshop in conjunction
with ICML, IJCAI and ECAI. 2018.


