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Abstract: Sustainable coastal social–ecological systems rely on healthy ecosystems known to pro-
vide benefits to both nature and people. A key ecosystem found globally is seagrass, for which
maps at a scale relevant to inform conservation and management efforts are often missing. Eelgrass
(Zostera marina), a species of seagrass found throughout the northern hemisphere, has been declining
in Placentia Bay, an ecologically and biologically significant area of Canada’s east coast subject to an
increasing human impact. This research provides baseline information on the distribution of eelgrass
meadows and their anthropogenic stressors at seven sites of Placentia Bay and three sites of the
adjacent Trinity Bay, on the island of Newfoundland. High-resolution maps of eelgrass meadows
were created by combining ground-truth underwater videos with unmanned aerial vehicle imagery
classified with an object-based image analysis approach. Visual analyses of the imagery and under-
water videos were conducted to characterize sites based on the presence of physical disturbances and
the semi-quantitative cover of epiphytes, an indication of nutrient enrichment. A total eelgrass area of
~1 km2 was mapped across the 10 sites, with an overall map accuracy of over 80% for 8 of the 10 sites.
Results indicated minimum pressures of physical disturbance and eutrophication affecting eelgrass
in the region, likely due to the small population size of the communities near the eelgrass meadows.
These baseline data will promote the sustainability of potential future coastal development in the
region by facilitating the future monitoring and conservation of eelgrass ecosystems.

Keywords: Zostera marina; drone; seagrass; OBIA; sustainability; monitoring; human activities

1. Introduction

Seagrasses are marine plants that grow along the shorelines of all continents, except
Antarctica, forming highly productive ecosystems that support a wide diversity of marine
organisms, including invertebrates, fishes, reptiles, mammals, and waterfowl [1]. Sea-
grasses are considered among the most valuable ecosystems globally [2]. They provide key
ecosystem services in coastal regions, supporting fisheries [3,4], protecting from coastal
erosion [5], and acting as a sink for carbon [6,7]. Seagrasses are considered biological sen-
tinels [8] and have been adopted as bioindicators for numerous marine ecosystem health
monitoring programs [9–12].

Seagrasses, however, are threatened by a variety of anthropogenic stressors, including
eutrophication, coastal development, sea level rise, physical disturbances (e.g., propeller
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scarring, trawling, or anchor damage), and increased water turbidity [13]. As a result,
they were found to decline globally at an approximate rate of 1.5% yr−1 [14]. While sea-
grass has been shown to recover following management efforts, such as improving water
quality [15,16], seagrass ecosystems are often impacted by multiple stressors [13]. For
instance, Krause-Jensen et al. [17] assessed that the seagrass of the Western Baltic Sea,
following the mitigation of eutrophication, did not return to its historic levels due to the
additional impact of bottom trawling and to the increased water temperature. Sustain-
able approaches to coastal management, therefore, require to simultaneously address the
multiple stressors of seagrass ecosystems.

One of the key challenges to monitor and consider seagrass ecosystems in sustainable
coastal management is a lack of baseline information on seagrass distribution [18,19]. For
instance, in Canada, where eelgrass (Zostera marina (L.)) has been documented on all
three coasts, numerous meadows remain to be mapped and their extent quantified [18,20].
In addition to the need to map seagrass, threats to these ecosystems should be better
understood at a local scale to effectively target management efforts [19].

On Canada’s east coast, eelgrass is the dominant seagrass species and is designated
an ecologically significant species [21]. The eelgrass of Placentia Bay in the Province
of Newfoundland and Labrador is in decline [22]. A study of 17 sites in Placentia Bay
conducted in 2012 found the average eelgrass percent cover to be half the cover observed
in 1998 [22]. These declines have been largely attributed to the European green crab
(Carcinus maenas; Linnaeus, 1758), an invasive species that was first observed in this region
in 2007 [23], which uproot eelgrass while burrowing or foraging in soft sediments [22,24].
In contrast, eelgrass in nearby coastal areas of the island of Newfoundland not colonized by
green crabs has been reported to be expanding [25]. Previous eelgrass mapping efforts on
the island of Newfoundland, however, consisted mostly of point observations indicating
where eelgrass is present or is likely to occur [26], but provided limited value in terms of
baseline data to monitor temporal changes in eelgrass extent (but see [27]).

While the impact of green crab on eelgrass has been documented in Placentia Bay,
the role of other anthropogenic stressors, such as the increasing maritime traffic and
the development of large-scale salmon aquaculture [28,29], has not been investigated.
Furthermore, many of the communities along the coast of Placentia Bay do not have modern
forms of wastewater management, and sewage has been reported to accumulate in some
sheltered areas of Placentia Bay [28,30]. Excess nutrients from aquaculture and wastewater
can cause eutrophication, reducing light availability for seagrass [31,32]. Finally, there are
mooring areas with varying degrees of boating intensity, ranging from single docks used
for recreational boating to harbours for small fishing vessels. Boating-related activities have
been shown to have a negative impact on seagrasses, with damages caused by propeller
scars [33,34], mooring scours [35,36], dock shading [37,38], and anchoring [39,40]. While
the individual disturbances caused by boating-related activities are typically small, an
accumulation of these disturbances over a larger region may be substantial (e.g., [36]).

This study provides baseline data on the distribution of eelgrass in a region where
eelgrass is thought to be declining but where there has been limited quantification of
eelgrass extent or the prevalence of common anthropogenic stressors. The study combined
the use of an unmanned aerial vehicle (UAV) that helped produce very high-resolution
imagery of each study site and ground-truth underwater imagery, allowing high-resolution
seagrass maps to be created. The objectives of this study were (1) to delineate the spatial
extent of seven eelgrass meadows in Placentia Bay and three eelgrass meadows in Trinity
Bay, and (2) to provide local context to the occurrence and impact of eutrophication and
physical disturbance to eelgrass meadows at these sites.

2. Materials and Methods
2.1. Study Sites

Study sites were selected based on previous knowledge of eelgrass presence, as ob-
served by Matheson et al. [22] and Rao et al. [26]. All sites consisted of subtidal eelgrass
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meadows. To help understand the prevalence of anthropogenic stressors, five sites were
selected in areas with limited human development in the surrounding area, while five other
sites were selected in areas experiencing greater levels of human activities—where anthro-
pogenic disturbances (i.e., anchor damage, propeller scaring, and dock shading) or nutrient
pollution could be expected (Figure 1). Sites with higher human presence were along
the shoreline of a community where drainages or docking infrastructure for motorboats
were present. Sites with lower human presence were selected to have minimal presence of
infrastructure except for roads to allow for vehicle access. Seven of those study sites were
selected in Placentia Bay, while three sites were selected in Trinity Bay (Figure 1), a nearby
coastal area outside the invasion range of the European green crab.
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2.2. Aerial Image Collection and Processing

Aerial imagery was collected using a Da-Jiang Innovations (DJI) Mavic 2 Professional
UAV from August to September 2020, during the peak eelgrass biomass period [41]. UAV
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image collection was conducted when the sun’s angle was less than 40◦ and, when possible,
cloud cover was <10% or >90%, specifically targeting overcast or clear sky days, following
the recommendations made by Nahirnick et al. [42]. Due to safe operating guidelines for the
UAV, image collection was conducted on days when wind gust speeds were below 30 km/h,
which also resulted in limited sea surface roughness in the images. DJI’s Ground Station
Pro app v.2.0.12 was used to plan and conduct the UAV surveys. The survey was designed
to obtain nadir images with a forward and lateral overlap of 80% obtained at an altitude
of 120 m, resulting in images at about 2.8 cm/pixel resolution. Images were captured at
a flight speed of 5 m/s using the hover and capture flight mode. For georeferencing the
orthomosaics during image processing, the positions of at least seven Ground Control
Points (GCPs), distributed as evenly as possible throughout each field site on dry land,
were collected with a Garmin eTrex 20x (~3 m accuracy) global positioning system (GPS),
using the waypoint averaging function until a sample confidence of 100% was achieved.

Agisoft Metashape Professional v.1.6.1 [43] was used to create orthomosaics of the
UAV imagery. All land and anthropogenic features (docks, boats, etc.) were manually
masked from each site in ESRI ArcGIS 10.7 [44], and the orthomosaics were resampled to a
spatial resolution of 25 cm to improve the processing time of image classification.

2.3. Ground-Truth Data

Based on visual inspection of the UAV orthomosaics of each study site, underwater
video collection was planned for a later day such that video observations were distributed
throughout the entire study areas, allowing the collection of images over as many cover
types/habitats as possible (Figure 2). The goal being to conduct a supervised classification
of an aerial image, this sampling did not aim to cover the entire area but to provide sample
videos representative of the underwater landscape. Sampling generally involved the
crossing in straight line of the water body from shore to shore using a kayak. Ground-truth
data collection was conducted within 11 to 54 (x = 35.6) days of aerial image collection.
Underwater videos were collected using a Sony FDR-X3000 ActionCam. The camera
was operated in an underwater housing from a slow-moving 2-person kayak, while the
Garmin eTrex 20x GPS recorded the position of the camera operator. The time stamps of the
GPS coordinates were matched in post-processing with the video data by recording a few
seconds of a digital clock synchronized with the GPS time at the start or end of each video.
Improving on the limitations identified by Nahirnick et al. [45] for collecting ground-truth
data with a camera attached to the bottom of a kayak, the underwater camera was affixed to
an Unger 8–16 ft aluminum telescopic pole (Figure 2). The pole height was adjusted by the
camera operator to position the camera near the target features directly under the kayak.

The underwater videos were used to generate a series of training data points for each
field site. Transects were buffered at 3 m in ArcGIS, corresponding to the approximate
average horizontal accuracy of the GPS, and observations were made at least every 5 s
along the underwater video transects by creating point features within the buffer. Point
features were created when a cover type could be identified in both the underwater video
and the orthomosaic. The classification scheme for each site varied depending on the cover
types present at each site. Each classification scheme started with two classes: sediment
and eelgrass. Additional classes (i.e., shadows, optically deep water, benthic periphytic
brown algae, benthic periphytic green algae, spume, detritus, turbid water, and shells) were
added depending on their presence in the transect observations.

2.4. OBIA and Classification

Object-based image analysis (OBIA) is commonly employed for the accurate classifi-
cation of high-resolution imagery through the process of image segmentation [46]. The R
statistical software (v3.6.1) [47] package SegOptim 0.2.2 [48] was used for image segmenta-
tion and classification. SegOptim uses a genetic algorithm, a machine learning algorithm
that emulates the process of natural selection, to determine the optimal parameter settings
for the segmentation algorithm, and can interface with six third-party software to con-
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duct image segmentation. SegOptim’s segmentation_ArcGIS_Mshift function was used
to conduct image segmentation due to the comparable performance of the algorithm to
others available in SegOptim [48] and the wide use of ArcGIS as a GIS software. The
mean shift segmentation method used by this function [49] uses three parameters: spatial
detail, spectral detail, and minimum segment size. To improve the efficiency of the genetic
algorithm, it is important to constrain the parameter space to avoid poor solutions and to
improve computation time [48]. Details on delineating the parameter space are provided in
the Supplementary Materials.
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camera mount (III). (c) Ground-truth video observation transects (red lines) for Great Barasway Pond
(GBP). Example ground-truth images are provided for (d) sediment, (e) eelgrass, and (f) brown algae.

Image classification was conducted using the mean and standard deviation of RGB
values for the image segments [50–52]. The classification of the image segments was con-
ducted using SegOptim’s random forest classifier with the default parameters (ntree = 250,
mtry = 2). The random forest classifier was selected for its performance compared to other
machine learning classifiers [53] and was frequently the best preforming classification
algorithm for use in SegOptim [48].

For some orthomosaics, the segmentation parameters were manually specified be-
cause SegOptim’s genetic algorithm systematically under-segmented the images. Under-
segmentation is an issue in OBIA that occurs when image objects encompass multiple target
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features (e.g., a patch of eelgrass and a patch of algae are in one image object when they
should be two separate objects). The maximum amount of detail (i.e., maximum spatial
and spectral detail, with a minimum segment size of one pixel) was required to produce a
segmentation that was not under-segmenting. In these instances, the classification was con-
ducted using the mean RGB values for the image segments alone, as a standard deviation
cannot be calculated for image segments with one pixel.

Training and validation for the random forest classifier were conducted using five-
fold cross-validation. Millard and Richardson [54] identified that training data for use in
random forest classification should be sufficiently large, have a random distribution or
class proportions that reflect the actual proportions of the classes on the landscape, and
minimal spatial autocorrelation. A dataset with these attributes improves classification
results and will reduce model overfitting [54]. To produce a dataset with these attributes,
300 observations for each site was deemed sufficiently large. To avoid model overfitting,
the 300 data points consisted of a combination of randomly sampled transect observations
and randomly distributed photo interpretation points. Such a combination of ground-
truth data and photo interpretation points has been previously used in UAV mapping
research (e.g., [51,55]). Indeed, such high-resolution images were shown to be interpreted
accurately by trained photo interpreters, removing the reliance on field observations [50].
A random sample of 100 transect observations, separated by at least 5 m, was taken
from the transect data points in R. In ArcGIS, 200 points, separated by at least 5 m, were
randomly generated within the study boundary of each site and outside of the 3 m video
transect buffers. Photo interpretation points were assigned a class corresponding to the
25 cm resolution orthomosaics. The 2.8 cm resolution images were occasionally referenced
during this process to aid with photo interpretation. These two datasets were merged to
create a file of observation presences containing 100 transect and 200 photo interpretation
observations. A file of observation absences was generated from cells in a grid, with a
5 m cell size, that did not contain an observation. The presence and absence datasets
were merged and spatial autocorrelation between observation presence and absence was
assessed throughout the study site using a series of 10 global Moran’s I tests [56], with
incrementally increasing threshold distances. Ten threshold distances were used to assess
spatial autocorrelation across a range of scales. Threshold distances for the Moran’s I
tests started at the minimum distance so that each observation had at least one neighbor,
followed by 10 m and increasing increments of 5 m up to 50 m. If the distribution of
the observations exhibited significant clustering or dispersion (p-value < 0.05) at any of
these distance thresholds, a new dataset was generated, and the process was iterated. If
subsequent resamples exhibited significant clustering or dispersion, the proportion of
transect data in the dataset was reduced by increments of 25 (i.e., 75 randomly sampled
transect observations and 225 randomly distributed photo interpretation points), and the
process was iterated until a dataset was produced that had a random distribution at all
threshold distances.

2.5. Classification Accuracy

Classification accuracy was assessed using SegOptim by calculating Cohen’s Kappa
coefficient, overall accuracy, eelgrass class ‘producer’s accuracy’, and eelgrass class ‘user’s
accuracy’ (hereafter called accuracy metrics). Kappa values were interpreted following
the agreement categories outlined by Sim and Wright [57] (≤0 = poor; 0.1–0.20 = slight;
0.21–0.40 = fair; 0.41–0.60 = moderate; 0.61–0.80 = substantial; and 0.81–1.0 = almost perfect).
Overall accuracy is the percent of correctly classified image objects out of the total sample.
Eelgrass class producer’s accuracy is the commission error, or the accuracy of how often
the eelgrass observations are correctly classified on the map. Eelgrass class user’s accuracy
is the omission error, or the accuracy of how often eelgrass areas classified in the map will
be present on the ground.

The accuracy of the maps was assessed using 5-fold cross-validation. To increase
the likelihood of generating a permutation with an observation in each fold, additional



Sustainability 2024, 16, 3471 7 of 18

observations were added via photo interpretation to any class that had fewer than 10 obser-
vations until 10 observations were achieved. Accuracy metrics were calculated for each fold
when it was acting as the validation sample. The final accuracy metrics for each site were
obtained from the confusion matrices for each fold by calculating the mean and standard
deviation of the accuracy metrics.

2.6. Presence of Anthropogenic Stressors

A semi-quantitative cover of epiphytes was estimated at each site, as an indication
of nutrient enrichment [58], and the occurrence and nature of physical disturbance was
recorded. At sites with a proliferation of epiphytes, the semi-quantitative cover of epiphytes
was visually assessed using the underwater videos. The percent of eelgrass surface in the
field of view covered by epiphytes was visually estimated from the videos and classified
using 6 classes (0%, 1–20%, 21–40%, 41–60%, 61–80%, and 81–100%) (Figure S1). The
duration of video time for each cover category was recorded and the proportion of video
length for each cover category was calculated.

The nature of physical disturbances was determined using a visual inspection of the
UAV imagery. During field visits, when time allowed, underwater video was collected to
ground-truth potential anthropogenic disturbances identified in the UAV imagery. The
area of disturbance was estimated using ArcGIS by manually delineating disturbances
observed in the orthomosaics and using the ‘Calculate Geometry’ tool to calculate the area
of each disturbance. To calculate the percent area of eelgrass affected by anthropogenic
disturbance, the total disturbance area was divided by the total area of eelgrass mapped
across the ten study sites.

3. Results
3.1. Eelgrass Distribution

Maps delineating the distribution of eelgrass at each of the 10 study sites were gener-
ated (Figures 3 and S2–S11). Individual study sites ranged from 0.1747 km2 to 0.3631 km2

in size. The total eelgrass extent at those 10 sites was estimated to be 1.073 km2, with
a mean and median eelgrass area of 0.1073 km2 and 0.0801 km2, respectively, across the
10 sites. The largest eelgrass meadow was observed in western Placentia Southeast Arm
(Figure 3e), with 0.3331 km2 of eelgrass. The smallest eelgrass meadow was observed in
Glennons Cove Pond (Figure 3f), with 0.0013 km2 of eelgrass.

3.2. Map Accuracy Assessment

The mean and standard deviation of the classification accuracy assessments metrics
from the five-fold cross-validation are presented in Table 1. The confusion matrix for each
site is provided in Tables S1–S10, with Kappa values ranging from 0.22 to 0.81. Western
Placentia Southeast Arm and Placentia Swans had “slight” and “fair” agreement levels,
respectively. Placentia Swans (Figure 3d) was the worst preforming classification, ranking
poorly across all accuracy assessment metrics. While western Placentia Southeast Arm had
the lowest average Kappa value, the overall accuracy, eelgrass class producer’s accuracy,
and eelgrass class user’s accuracy had high average values of 86.3%, 99.2%, and 87.5%,
respectively. The other eight sites showed a “substantial” or better level of agreement, with
Great Barasway Pond (Figure 3c) producing the most accurate classification. The average
overall accuracy values ranged from 69.7% to 89.3%.

The average eelgrass class producer’s accuracy ranged from 23.3% to 99.2%, and the
average eelgrass class user’s accuracy ranged from 48.8% to 95.1%. Sites with smaller
eelgrass area generally had the lowest eelgrass class accuracy metrics; the Placentia Swans
site was an exception to this, with a moderate amount of eelgrass cover and a poor classifi-
cation accuracy.
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Table 1. Accuracy assessments of eelgrass distribution maps and the area of eelgrass per site.

Study Site Mean Kappa Overall Accuracy
(%)

Eelgrass Producer’s
Accuracy (%)

Eelgrass User’s
Accuracy (%)

Eelgrass Area
(km2)

Come By Chance Gut 0.71 ± 0.08 82.2 ± 4.9 89.9 ± 9.0 87.9 ± 7.3 0.1310

Glennons Cove Pond 0.67 ± 0.08 82.2 ± 3.5 60.0 ± 43.5 73.3 ± 43.5 0.0013

Great Barasway Pond 0.81 ± 0.04 89.3 ± 2.8 98.4 ± 2.3 95.1 ± 0.4 0.0597

Old Shop Pond 0.73 ± 0.10 82.0 ± 6.9 88.5 ± 6.5 89.2 ± 9.7 0.0687

Placentia Swans 0.46 ± 0.07 69.7 ± 4.1 56.0 ± 5.2 62.1 ± 8.3 0.0916

Ship Harbour 0.72 ± 0.08 82.2 ± 5.1 91.7 ± 7.3 77.2 ± 10.9 0.0587

Southern Harbour 0.61 ± 0.15 75.8 ± 9.9 23.3 ± 14.9 48.8 ± 36.6 0.0054

Spread Eagle Pond 0.65 ± 0.14 84.7 ± 6.3 95.4 ± 3.8 90.0 ± 3.7 0.1967

Sunny Side 0.69 ± 0.10 80.3 ± 6.3 89.8 ± 5.6 81.0 ± 5.2 0.1265

Western Placentia
Southeast Arm 0.22 ± 0.23 86.3 ± 3.1 99.2 ± 1.1 87.5 ± 3.0 0.3331

3.3. Anthropogenic Disturbances

Five occurrences of anthropogenic physical disturbances were identified from the
aerial imagery, caused by three activities: all-terrain vehicles (ATVs) driving in eelgrass
areas, buoys, and boat anchoring (Figure 4). Physical disturbances affected an approximate
area of 132.4 m2, corresponding to only 0.013% of the total area of eelgrass mapped (Table 2
and Figure 5).

Table 2. Summary of the presence of physical disturbance and signs of eutrophication found across
the ten study sites in Placentia Bay and Trinity Bay.

Site Bay Eelgrass
Area (km2)

Disturbance
Area (m2)

Source of
Disturbance Signs of Eutrophication

Come By Chance Placentia Bay 0.1310 75.4 ATV /
Glennons Cove Pond Placentia Bay 0.0013 / / /
Great Barasway Pond Placentia Bay 0.0597 / / /

Old Shop Pond Trinity Bay 0.0687 19.6 ATV, buoy /
Placentia Swans Placentia Bay 0.0916 / / proliferation of epiphytes

Ship Harbour Placentia Bay 0.0587 38.3 buoy, anchor /
Southern Harbour Placentia Bay 0.0054 / / /
Spread Eagle Pond Trinity Bay 0.1967 / / /

Sunny Side Trinity Bay 0.1265 / / /
Western Placentia Southeast Arm Placentia Bay 0.3331 / / floating algal mats

Indications of ATV use were observed at all sites, but disturbances rarely occurred in
areas of eelgrass. ATV tracks were common throughout the sites, particularly concentrated
on beaches and deltas, away from eelgrass. ATV tracks caused disturbance to eelgrass at
Come by Chance Gut and Old Shop Pond. ATV tracks were observed in approximately
87.6 m2 of eelgrass, corresponding to a disturbance area of 0.008% of total eelgrass area.

Twelve buoys were observed in eelgrass areas, with five of them marking fishing gear
while seven others were associated with docking infrastructure. Two buoys associated with
docking infrastructure at Old Shop Pond and Ship Harbour created disturbances due to
ropes dragging in the sediment with a combined area of ~21 m2. The other buoys did not
create visible disturbances.
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Figure 4. (a) All-terrain vehicle (ATV) disturbance area, (b) buoy disturbance area, (c) underwater
image of buoy rope disturbance, (d) anchor disturbance area, and (e) underwater image of anchor in
eelgrass meadow.

Anchoring within the eelgrass meadow was observed in the field at Ship Harbour.
Eelgrass in the surrounding area varied in density with some barren patches. The anchoring
disturbance, however, did not create a disturbance characteristic of anchoring damage. The
disturbance area associated with anchoring was estimated to be 23.8 m2.
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Figure 5. (a) Portion of disturbance area relative to the total area of eelgrass mapped. (b) Disturbance
area at each site caused by anthropogenic activities. No disturbances were observed at GBP, GCP, PLS,
SEP, SOH, SUN, or WPS. CBC: Come By Chance Gut; GBP: Great Barasway Pond; GCP: Glennons
Cove Pond; PLS: Placentia Swans; OSP: Old Shop Pond; SEP: Spread Eagle Pond; SHB: Ship Harbour;
SOH: Southern Harbour; SUN: Sunny Side; WPS: Western Placentia Southeast Arm.

3.4. Semi-Quantitative Epiphyte Cover

Placentia Swans was the only site to have a large presence of epiphytes. When eelgrass
was present in the video, approximately 27% of the video had no epiphyte cover, 49%
had between 120% epiphyte cover, and 24% had over 20% epiphyte cover (half of it with
60–80% epiphyte cover) (Figure 6). At all other sites, the presence of epiphytes was minimal.
However, at western Placentia Southeast Arm, tannin-rich freshwater inputs from heavy
rainfall in the days preceding the video collection reduced the video quality, and potentially
reduced epiphyte detectability. At western Placentia Southeast Arm, a dense algal cover
was observed during field visits (Figure 6c).
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Figure 6. (a) Proportion of underwater video duration by epiphyte cover category, measured as
the amount of eelgrass in the video frame covered by epiphytes, when eelgrass was present in the
ground-truth video at Placentia Swans. (b) Underwater image of epiphytes corresponding to the
61–80% epiphyte cover category. (c) Example of dense algal cover observed during field visits to
western Placentia Southeast Arm.

4. Discussion

Our study mapped the distribution of eelgrass at seven sites of Placentia Bay and
three sites of Trinity Bay, offering geographic baseline datasets for eelgrass on the island
of Newfoundland. Very few anthropogenic physical disturbances were detected across
the sites, and only one site, Placentia Swans, had a proliferation of epiphytes that could
indicate nutrient enrichment (Table 2). These results suggest a minimal impact of physical
disturbance and eutrophication on eelgrass in Placentia Bay and Trinity Bay; however, a
larger number of study sites would be required to confirm the minimal impact of physical
disturbance and eutrophication throughout the entirety of both bays.

4.1. Presence of Anthropogenic Stressors

Recreational vehicle disturbance has been shown to cause a decrease in saltmarsh
vegetation cover [59]. The impact is most evident in areas with high track density, but
reductions to vegetation cover can also occur in areas with a single track [59]. Come By
Chance and Old Shop Pond were the only sites to have ATV disturbance. Come By Chance
was classified with lower human presence due to the absence of anthropogenic structures
and distance from a community, but this does not mean that human activities are absent
from the site. There were indications of ATV use at all sites but mostly on land or in the
intertidal zones, and rarely in areas occupied by eelgrass. In contrast to other regions where
seagrass grows in the intertidal zone and disturbance from recreational vehicles is more
common [60], eelgrass in Newfoundland rarely grows in the intertidal zone or shallow
subtidal [20], due to winter ice damage [26]. The water depth in areas of eelgrass may deter
ATV users and may explain why there are few instances of eelgrass disturbance caused by
ATVs despite indications of ATV use in other parts of the study sites. During field visits,
the eastern half of the eelgrass meadow at Come By Chance was submerged by only a
few centimeters of water, differing from the upper depth limit for Newfoundland eelgrass
(~1 m depth) described by Murphy et al. [20]. The shallow nature of the eelgrass meadow
at Come By Chance during low tide may make the depth of water over the eelgrass area
traversable by ATV. Similarly, at Old Shop Pond, ATV disturbance was observed in small
patches of shallow eelgrass along the edge of a river delta.
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The impact of mooring buoys on seagrass is well documented [35,36,61]. The area
disturbed by buoys in the study sites remains very low (0.002%), when compared to the
total area of eelgrass mapped and to other estimates of mooring buoy disturbances found
in the literature. The mooring areas in this study have fewer moorings than other examples
from the literature. For instance, in contrast to the seven buoys associated with docking
infrastructure in this study creating a disturbance area of 21 m2, Unsworth et al. [36]
identified 366 scars caused by moorings across eight sites creating an estimated total
disturbance area of 3.71 hectares, and Glasby and West [35] estimated that leased moorings
(1914 moorings) across New South Wales, Australia, caused ~22.4 hectares of disturbance
to seagrasses.

Only one instance of anchoring within an eelgrass meadow was observed. The
disturbance associated with anchoring at Ship Harbour was not a clear disturbance pattern.
The presence of a lower density of eelgrass and barren patches suggest that anchoring may
periodically occur in the same area but could also be natural variation in eelgrass density.
This highlights a limitation in identifying physical disturbances using aerial imagery and
underwater video without consistent temporal monitoring. If anchoring was not observed
in this area during field visits, we may not have been able to identify this barren patch
as a potential disturbance. If disturbances are created without a clear pattern, typical of
common sources of disturbance (e.g., propeller scarring or mooring chains), they will likely
not be detected when the source is no longer present for identification. Therefore, the
number of physical disturbances identified may be underestimated due to the limited
ability to determine if barren patches are of anthropogenic origin or naturally occurring.
For instance, in Ship Harbour, two semi-circle disturbances with a diameter of ~6 m and a
disturbance width of ~1 m were observed in both the ortho imagery and with underwater
video (Figure S12). The regular shape of these disturbances suggests an anthropogenic
source, but we were unable to identify the source of these disturbances.

Epiphytes, an indication of nutrient enrichment, were mostly observed at one study
site: Placentia Swans. This site is adjacent to the town of Placentia, the largest town along
the eastern shore of Placentia Bay, with a population of ~3500 [62]. Previous reports have
indicated that untreated sewage may accumulate in some of the sheltered embayments
of Placentia Bay [28], which may be the case here as there are drainages from the town
of Placentia that empty directly into this site (Figure S13). Other factors, such as hydro-
dynamics [63,64], may also affect the presence of epiphytes across the study sites. The
western portion of Placentia Southeast Arm, also adjacent to the town of Placentia, with
a sewage outlet draining directly into the site, had minimal observations of epiphytes in
the underwater video. Poor video quality, due to heavy rainfall and a large tannin-rich
freshwater input in the days preceding underwater video collection, may have reduced
epiphyte detectability at western Placentia Southeast Arm. However, a dense algal cover
was observed at the site during UAV image collection. While there were indications of
nutrient enrichment at the two sites adjacent to the town of Placentia, both sites have
dense eelgrass meadows. This suggests that the current level of eutrophication may not
be affecting eelgrass meadows in the area, yet. Based on the observations made in the
western Placentia Southeast Arm and in Placentia Swans, it is recommended that these two
sites be subjected to a more comprehensive examination, including a detailed analysis of
trends in seagrass bed degradation, an identification of key driving factors, and potential
conservation strategies.

This study observed eelgrass meadows growing adjacent to anthropogenic develop-
ment but, at the moment, there appears to be little presence of anthropogenic disturbance.
The communities in the surrounding areas of sites in this study have small human popu-
lations, the largest being the town of Placentia with a population of ~3500 [62], resulting
in a smaller disturbance area and less nutrient pollution relative to regions where these
stressors are more prevalent, such as the USA [65], Europe [15], and Australia [61]. Physical
disturbances and proliferations of epiphytes appear to occur infrequently in eelgrass mead-
ows of Placentia Bay and Trinity Bay. However, we were only able to survey a handful of
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sites. Stressors to eelgrass can vary locally [66]. For instance, the impact of boating activities
on submerged aquatic vegetation can be highly variable and site-specific characteristics
may influence the effect [67]. As such, our findings cannot be easily generalized to other
eelgrass meadows of Placentia Bay and Trinity Bay that could not be surveyed.

4.2. Image Segmentation

In OBIA, the image segmentation step is largely regarded as the most critical step for
a well-performing classification. Lourenço et al. [68] found that the accuracy of thematic
vegetation maps produced using ArcGIS’ mean shift segmentation was worse than that of
eCognition, a common proprietary software used for OBIA, and Orfeo Toolbox/Monteverdi
(OTB), an open source OBIA software. For instance, the difference between overall accuracy
(OA) was small between ArcGIS and OTB, with values of 84.3% and 87.0%, respectively,
with a larger difference when compared to eCognition (OA = 95.7%) [68]. Similarly, for
multiclass thematic vegetation maps of UAV imagery, Gonçalves et al. [48] found that
ArcGIS produced a Kappa index of 0.78 compared to 0.85 for RGISLib’s Shepherd segmen-
tation algorithm, and a Kappa of 0.96, the highest Kappa value, for single-class thematic
vegetation maps. Perhaps, image segmentation conducted with an alternative segmenta-
tion software would result in different thematic map accuracy assessments, but potential
gains in map accuracy may be small. Previous studies have compared the performance of
different segmentation software in terrestrial environments [48,68–70], but future studies
could compare the performance of different segmentation software specifically for mapping
optically shallow coastal habitats where the optical properties of water and water depth
create more subtle and smooth transitions between image objects.

4.3. Monitoring Recommendations

Monitoring seagrass beds can help fill critical data gaps for informing sustainable
coastal management. UAVs provide a cost-effective solution for acquiring high-resolution
imagery to monitor seagrass beds. However, the use of UAVs for monitoring seagrass
beds is dependent on research objectives. For meadow-scale surveys, UAVs provide
users with greater flexibility to control the frequency and timing of observations when
compared to alternative remote sensing methods. This flexibility is particularly beneficial
in regions where cloud cover would regularly impact optical satellite observations. The
high-resolution imagery of UAVs also enables the monitoring of disturbances to seagrass
beds. Small area disturbances may go unnoticed if the size of the disturbance is less than
the spatial resolution of the image sensor. For instance, the disturbances mapped in this
study would not be distinguishable in 10 m spatial resolution Sentinel-2 optical imagery.
Additionally, the scale of the research objectives is important to consider and presents
a limitation of UAV seagrass monitoring. For regional assessments, the use of satellite
imagery would be imperative to survey an entire region. For instance, Traganos et al. [71]
mapped 2510.1 km2 of Posidonia oceanica in the Aegean and Ionian Seas using Sentinel-2
imagery. Mapping such an extent with UAVs would be unfeasible.

The reproducibility of UAV surveys may also prove challenging due to the impacts of
environmental conditions (e.g., surface rippling and cloud cover) on image classification
for UAV imagery [27]. Prystay et al. [27] conducted seasonal UAV monitoring of seagrass
beds and found inconsistent misclassification between their seasonal image classifications,
which resulted in the inability to detect micro-/meso-scale changes. Prystay et al. [27]
recommends the use of UAV surveys in concert with ground surveys. UAVs benefit moni-
toring programs by quantifying seagrass meadows at a macro-scale (e.g., seagrass extent)
and ground surveys (e.g., snorkel surveys, quadrats, and monitoring stations) provide
micro-scale details such as seagrass shoot density and fragmentation [27]. Integrating a
variety of scales of monitoring was shown to be an effective method for detecting changes
in seagrass ecosystems [72]. Ultimately, the objectives of a monitoring program and the
quantitative metrics for determining objective progress will determine the scale and method
of data collection.
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5. Conclusions

This study looked at the spatial distribution of eelgrass in Placentia Bay, an area
of Canada’s east coast where eelgrass has declined due to the invasive European green
crab [22], and Trinity Bay, an adjacent area where this species is currently absent. Detailed
data on eelgrass are rarely available, impacting our ability to monitor and understand
changes in this important ecosystem often degraded in coastal environments. Findings
indicate variable eelgrass extent in embayments of Placentia Bay and Trinity Bay. The study
offers a baseline for monitoring future distributional changes in eelgrass that could be
caused by European green crab or other environmental changes. The restoration of lost
eelgrass due to the European green crab may be challenging until invasive European green
crab populations are effectively managed or decline [73]. Future studies will be required to
assess the effectiveness of eelgrass restoration in areas invaded by the European green crab.
Baseline data from this study contribute to addressing a lack of data regarding the extent
of Canadian seagrass. The results also suggest that, currently, there is little anthropogenic
impact from physical disturbance and eutrophication on eelgrass in Placentia Bay and
Trinity Bay. The limited number of disturbances and generally low epiphyte cover observed
are likely due to the low populations of the communities in proximity to the eelgrass
meadows. Changes to anthropogenic activities or environmental changes may impact
eelgrass in the region. The continued monitoring of eelgrass and of its stressors in Placentia
Bay is critical to continue to inform conservation and management efforts for this critical
coastal ecosystem and to ensure the sustainability of coastal social–ecological systems that
benefit from those species.
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mosaic and thematic map, Table S2: Glennons Cove Pond confusion matrix, Figure S4: Great
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