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Abstract—This paper investigates cooperative adaptive cruise
control (CACC) for intelligent and connected vehicles using a
predecessor-follower (PF) topology under event-triggered com-
munication and modeling uncertainties. These uncertainties in
the vehicular platoon can challenge the well-known homogeneity
and linearity assumptions of the CACC. To address this issue,
we propose a disturbance observer (DOB) to estimate both the
parametric uncertainty and the unmeasured external signals. The
DOB-based disturbance estimate is directly incorporated into the
feedback linearization control law for uncertainty compensation.
To assess the individual stability of each vehicle and the string sta-
bility of the nonhomogeneous platoon, we formulate overlapping
dynamics that model the interconnection of only those vehicles
directly exchanging information. This formulation of overlapping
dynamics also facilitates the scalability of the platoon, i.e., we
can conveniently increase the number of vehicles in the platoon
without compromising the complexity of the stability analysis.
Using a suitable Lyapunov-Krasovskii functional and the null-
term relaxation technique, we derive sufficient conditions to
design a switched dynamic event-triggered controller (ETC)
that ensures both individual stability and string stability. With
the proposed switching ETC approach, the event-triggering
condition is only evaluated after a predefined constant period,
ensuring a lower bound between events to avoid Zeno behavior.
Extended from the L2 stability concept to explicitly account
for the uncertainty effects of the nonhomogeneous platoon, the
ETC design conditions are formulated as a convex optimization
problem under linear matrix inequalities to maximize the inter-
event time. The effectiveness of the proposed ETC approach is
validated through extensive simulations and comparisons using
an uncertain CACC setup.

Index Terms—Cooperative adaptive cruise control, intelligent
and connected vehicles, vehicle platooning system, string stability,
event-triggered control, disturbance observer.
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I. INTRODUCTION

Traffic congestion and accidents have constantly increased
with a larger population, resulting in problems such as trans-
portation delays, traffic jams, and increased fuel consumption
[1]–[3]. In this context, high-level platoon coordination [4], [5]
together with physical-level platooning control [6]–[8] have
been considered a promising solution. Through platooning,
vehicles can travel in a string-like configuration, maintaining
controlled distance and velocity according to a predefined
strategy/policy and safety constraints [9], [10]. With automatic
distance control, vehicles can maintain shorter and regular dis-
tances without compromising safety, thereby reducing traffic
jams and optimizing transportation.

Adaptive cruise control (ACC) is a well-known concept
for vehicle management, involving a leader (designated here
with index 0) and N follower vehicles in a string, with a
distance policy that can be fixed [11]–[13] or time-based [14],
[15]. The fixed distance policy can provide a closer vehicular
distance but is inefficient for vehicles traveling at higher
speeds [9]. In such cases, time-headway policies are more
versatile, as the distance is controlled based on the standstill
distance along with the speed of the vehicles [9], [16]. As an
extension of ACC, cooperative adaptive cruise control (CACC)
further improves platooning control results by combining
sensor measurements with information exchanged between
vehicles [17], [18]. Depending on the communication between
the vehicles of the platoon and how the information flows,
various flow topologies can be distinguished. The predecessor-
leader-follower (PLF) and its variants consider the sharing of
information from a leader vehicle among all vehicles in the
network, which can be either unidirectional or bidirectional
[19], [20]. The predecessor-follower (PF) topology closely
resembles human driving behavior [9], [14], [15]. In this case,
information flows from the ith vehicle after the leader to the
(i + 1)th vehicle, i.e., the follower of the ith vehicle. Hence,
only the first vehicle (vehicle 1) receives information from the
leader (vehicle 0). Although the PF topology is the simplest in
terms of the number of sensors and communication devices, it
poses additional challenges to ensure string stability [9], [21].
String stability, an important and desired property, ensures
that disturbances are not amplified throughout the string of
platooning vehicles. This reduction in disturbances can lead
to a decrease in excessive braking, thereby contributing to the
alleviation of traffic problems [11], [15], [22].

To ensure string stability, various approaches have been



proposed in the literature based on frequency-domain analysis
(in terms of H∞ norm) such as [23]–[25], and time-domain
methods (in terms of Lp norms) as demonstrated in [14], [15],
[22]. The time-domain approach relies on evaluating the Lp
norm between the leader input or perturbations and the output
of the last vehicle in the platoon. This can also be studied by
evaluating the Lp norm between the input and the output of
the subsystem that composes the string, a concept sometimes
referred to as weak string stability [14], [15].

A. Modeling Uncertainties of Vehicular Platooning Systems

In most works on CACC, a common assumption is the
homogeneity and linearity of the platoon [14], [15], [19],
[21]–[23], [26]. Although this assumption can be achieved
through feedback linearization techniques, the procedure re-
quires precise knowledge of the vehicle parameters. Parametric
uncertainties and unmeasured external variables can cause
mismatches, resulting in nonhomogeneous platooning systems
[27]–[30]. To overcome these problems, Wang et al. [31] pro-
pose an intermediate-based robust observer to jointly estimate
the sensor and actuator faults as well as matched disturbances,
whose effects can be compensated via a robust non-fragile
fault-tolerant control method. In [32], a proportional multiple-
integral observer is employed to simultaneously estimate the
state and a lumped disturbance, which is compensated via
a tube-based model predictive control scheme. However, the
issue of string stability for vehicle platoons is not addressed
in [31], [32]. Alternatively, the authors in [28] consider a
filtering technique to attenuate the effects of disturbances,
while the works [27], [29] explore Lyapunov-like string stabil-
ity conditions with disturbances. These works evaluate string
stability based on the overall platoon dynamics describing the
relationship between the input of the leader and the output of
the last vehicle. Note that the need to consider the overall pla-
toon dynamics can significantly increase the stability analysis
complexity. Indeed, in this case, whenever new vehicles are
added to the platoon, the stability analysis conditions must
be reevaluated. Moreover, as the number of vehicles in the
platoon grows, more decision variables and constraints are
involved in the optimization-based stability analysis, poten-
tially yielding more conservative results or even infeasible
solutions. These factors compromise the scalability of the
application of such stability conditions. In contrast, we propose
here to address the uncertainty issue in platooning control
through feedback linearization combined with a disturbance
compensation technique. To this end, mismatches caused by
parametric uncertainties and exogenous disturbance effects are
modeled as a single virtual disturbance signal, which is esti-
mated and compensated by a disturbance observer (DOB) with
a simple structure. The DOB-based disturbance estimate is
directly integrated into the feedback control law. Consequently,
the platooning system dynamics are only influenced by the
disturbance estimation error, representing the difference be-
tween modeling uncertainties and their estimated counterparts.
To address the impact of the disturbance estimation error, we
propose an extension of the L2 norm stability conditions to
assess string stability. Specifically, classical string stability can

be ensured in the presence of significant uncertainties through
an effective disturbance compensation.

B. Wireless Communication and Event-Triggered Control
In addition to traffic problems and fuel consumption asso-

ciated with the stability of each individual vehicle and string
stability of the platoon, communication between vehicles plays
a crucial role in CACC [12], [33], [34]. In early studies, pla-
toons with vehicle-to-vehicle (V2V) communication adopted
continuous or periodic communication among vehicles [9],
[35], [36]. It is clear that these communication schemes impose
a large bandwidth and energy consumption, as information is
transmitted regardless of any network condition. For this rea-
son, event-triggered controllers (ETC) appear as an appropriate
strategy to reduce the burden of excessive network use [37].
For an ETC scheme, information is only transmitted based
on an event-triggering mechanism (ETM), which evaluates
the next communication instant based on the current and last
transmitted information.

Some ETC applications in CACC include cases with static
event-triggering mechanisms, whose parameters are time-
independent [19], [38]–[40]. However, due to the static nature
of the triggering mechanisms, these ETC schemes can be
conservative and may result in more transmissions than nec-
essary. To enhance the performance of static ETMs, dynamic
ETMs can be applied, where the involved parameters vary over
time [12], [14], [41] In addition, the triggering conditions of
dynamic ETMs can change according to the information to be
transmitted. One of the primary challenges in event-triggered
communications is preventing Zeno behavior. This undesirable
phenomenon occurs when an infinite number of transmissions
(or events) take place within a finite time interval, i.e., the
time between events converges to zero. It is important to
note that in scenarios without exogenous disturbances and
with full transmission of system states, a positive minimum
time between consecutive events can be readily imposed in
ETMs to prevent Zeno behavior [14], [37], [42]. However, in
cases involving partial transmission of states and/or perturbed
systems, significant technical effort is required to ensure Zeno-
free behavior [43]. Therefore, when parametric uncertainties
and exogenous disturbances are explicitly considered in the
design of platooning ETC, the standard ETMs in [14], [37],
[42] can no longer guarantee a positive lower bound for the
inter-event time (IET) to prevent Zeno behavior. To ensure
a minimum time between consecutive transmissions, as in
[44], we impose an enforced waiting period, ensuring that a
new transmission does not occur before this time has elapsed,
regardless of the event-triggering condition. To account for the
imposed minimum time, we model the platooning dynamics as
a switching system based on the time intervals during which
the event-triggering conditions are considered or not. Using
this switching modeling formulation, we propose a relevant
switched dynamic event-triggering condition to maximize the
IET, thereby reducing the communication workload.

C. Main Proposition and Contributions
We consider a vehicular platoon with one leader and N

followers, as depicted in Fig. 1. The leader vehicle has the



index i = 0, and is denoted by Σ0, while the other vehicles
have indices i = 1, . . . , N , and are denoted by Σi. For this
platoon setup, in addition to the measurements provided by
sensors, vehicles also share information through a network,
with transmission flowing only from vehicle Σi−1 to vehicle
Σi. The problem of interest is to ensure the individual stability
of vehicle Σi and string stability, i.e., input-to-output stability
from Σ0 to ΣN , while minimizing the required communication
between vehicles. In particular, we focus on the scenario
where the vehicle parameters are not precisely known, i.e., a
nonhomogeneous platoon. To this end, we propose a dynamic
event-triggering control method for the string stability of
uncertain vehicle platoons. To address parametric uncertainty,
we model its influences and unmeasured external signals as a
virtual additive disturbance affecting the nominal platooning
system. Using a DOB, this virtual disturbance is estimated and
incorporated into the feedback control law for compensation
purposes. To minimize communication between vehicles in
the nonhomogeneous platoon, we propose a dynamic event-
triggering condition with an enforced minimum time between
consecutive transmissions. To assess the individual stability of
each vehicle and string stability, we formulate an overlapping
dynamics Σi,i−1 that models the interconnection of vehicles
exchanging information, i.e., Σi and Σi−1, for i = 1, . . . , N .
Additionally, inspired by [44], a switching modeling approach
is employed to consider the ETC mechanism.

Under event-triggered communication and the proposed
DOB-based uncertainty compensation, we extend the classical
L2 stability to ensure string stability of the nonhomogeneous
platoon in the presence of the disturbance estimation error. In
contrast to [13], the stability conditions are evaluated for a
single overlapping system Σi,i−1, rather than the interconnec-
tion of all vehicles, i.e., Σ0,N . Moreover, in contrast to [14],
[15], the proposed L2 stability conditions explicitly account
for the uncertainties of the platooning system. Using a suitable
Lyapunov-Krasovskii functional (LKF) [45] and the null-term
relaxation technique [46], we propose an emulation approach
to design the ETC mechanism, ensuring the L2 stability of
the platooning system while maximizing the inter-event time.
The ETC design is reformulated as an optimization problem
under linear matrix inequality (LMI) constraints, which can be
conveniently and effectively solved using common numerical
solvers [47]. Specifically, the main contribution of the paper
can be summarized as follows.

• A DOB-based disturbance compensation scheme is pro-
posed for feedback linearization control of nonhomoge-
neous platoons. The effects of disturbance estimation er-
rors can explicitly be accounted for in the string stability
analysis under event-triggered communication using an
extended L2 stability framework.

• A switched dynamic ETM is proposed with relaxed LKF-
based design conditions to ensure L2 string stability
of the nonhomogeneous platoon while minimizing the
number of transmissions and avoiding Zeno behavior.

• The ETC design, based on a simple overlapping system
instead of the interconnection of all vehicles, enables the
scalability of string stability conditions.

Moreover, a comprehensive comparative study is conducted
with various ETC schemes in recent literature to emphasize
the effectiveness of the proposed platooning control method.
Notation. Rn denotes the n-dimensional Euclidean space,
Rn×m is the set of n×m matrices with real entries. For vectors
x ∈ Rn and y ∈ Rm, ‖x‖ stands for the vector Euclidean
norm of x, and col(x, y) is the same as [xT yT ]T . For a
matrix X , XT denotes its transpose, X−1 its inverse, Tr(X)
denotes its trace, and He(X) = XT + X . For a symmetric
matrix P , P � 0 stands for a positive definite. The symbol
∗ in a matrix denotes a symmetric component. For matrices
Y1, Y2, . . . , Yp, diag(Y1, Y2, . . . , Yp) stands for block diagonal
matrix with entries Yi. The L2 norm of a time-dependent
vector x(t) is denoted by ‖x‖L2

=
√∫∞

0
‖x(t)‖2dt. We

use the subscript n to indicate known (nominal) values. For
example, Mi and Mi,n respectively represent the unknown and
nominal values of parameter Mi. Moreover, for a function f(·)
that depends on a set of parameters, we denote fn(·) to indicate
that the expression is computed using the nominal values of
the involved parameters.

II. MODELING AND PRELIMINARIES

This section first describes the platooning control framework
under consideration. Then, we present the related vehicle
dynamics and the respective distance policy.

A. Platooning Control Framework

Considering the vehicular platoon shown in Fig. 1, the
main goal is to maintain a safe distance between all vehicles.
This distance policy is composed of a fixed distance for the
vehicles in standby and a time-based gap that depends on the
vehicle velocity. The homogeneity assumption is commonly
employed in vehicular platoons to simplify control design
and stability analysis, especially when the feedback lineariza-
tion control technique is used [14], [22], [39]. However,
this assumption is not realistic in practice. Even considering
the feedback linearization procedure, mismatches caused by
modeling uncertainties lead to nonhomogeneous platoons. To
align more closely with real-world scenarios, we assume that
only nominal (approximate) values of vehicle parameters,
obtained through identification, measurements, or provided
by manufacturers, are available for platooning control design.
Additionally, we consider the effect of the unknown rolling
resistance coefficient, treated as an exogenous disturbance. For
control design, we remodel the uncertain nonhomogeneous
platooning system by incorporating parametric uncertainties
and unmeasured exogenous disturbances into a virtual dis-
turbance. Subsequently, we introduce a DOB-based estimate
of this disturbance into the feedback linearizing control law
to compensate for uncertainty effects and enhance controller
robustness.

For the CACC approach, to achieve the desired distance
policy, the vehicles exchange information among themselves.
In this paper, we consider the PF flow topology [21], as
shown in Fig. 1, with vehicle 0 as the leader and vehicle i as
the ith follower, where information flows only from vehicle
Σi−1 to vehicle Σi. Having information shared only between



Fig. 1: Platooning PF topology with one leader (vehicle 0) and N following vehicles. vi and ∆p̂i denote the velocity and the
relative distance between vehicles, while the transmitted signals ai and ui denote acceleration and desired acceleration input.

near vehicles reduces requirements in communication, as long-
range communication is more power-consuming and leads to
more delays [9]. However, not having information from the
leader shared with all the vehicles increases the difficulty in
ensuring string stability [9].

To ensure both platooning string stability and individual
vehicle stability under event-triggering communication, we
first define an overlapping dynamics Σi,i−1 by combining the
dynamics Σi with a part of the dynamics of Σi−1. The string
stability is ensured by evaluating the L2 stability between
the input and the output of these overlapping systems Σi,i−1.
In addition, the overlapping system Σi,i−1 also includes the
effect of uncertainties, modeled as a virtual disturbance, and its
DOB-based compensation. Hence, by evaluating L2 stability
the influence of the disturbance attenuation is also considered.
Moreover, the stability condition is evaluated for a single
subsystem Σi,i−1 instead of the combined dynamics from Σ0

to ΣN . This reduces the complexity of the stability analysis,
as it is independent of the number of vehicles in the platoon.

The communication is wireless, and, since fixed-time trans-
missions can lead to redundant transmission and network
overflow [37], [44], information is updated according to a
decentralized event-triggering mechanism, as shown in Fig. 2.
Vehicle i receives the acceleration and the desired acceleration
[ai−1 ui−1], as well as the measured information about the
position and velocity [pi−1 vi−1] from vehicle (i − 1). The
control law of vehicle i is composed of both feedforward
and feedback components. The feedforward component is
computed using [ai−1 ui−1], while the feedback component
is computed using [pi−1 vi−1], as well as the internal states
[pi vi ai] of vehicle i. The control signal is filtered to provide
the desired acceleration ui, which, along with the internal state
ai, is transmitted to vehicle (i + 1) according to an event-
triggering mechanism. The proposed ETM is decentralized,
relying only on the measured signals of the vehicle itself and
not on the measurements of other vehicles. To avoid Zeno be-
havior, the event-triggered control condition is evaluated only
after a fixed waiting time, resulting in an enforced minimum
time between events. A switching approach is considered to
model the system with this imposed minimum IET and the
ETC scheme is designed based on this switching model. In
particular, to reduce the communication load, we propose a
dynamic ETC scheme.

C1

C2

1
hs+1 Σi

ETM

C1

C2

[pi−1 vi−1]

[ai−1 ui−1]

+
+

[pi vi ai]

[pi vi]

[ai ui]
Vehicle i Vehicle i+ 1

Fig. 2: Communication loop of the proposed event-triggered
CACC setup. Σi denotes the dynamics of the ith vehicle. C1
and C2 respectively represent the feedback and feedforward
control laws. [pi, vi] denotes the measured state, while [ai, ui]
denotes the transmitted state.

B. Vehicle Dynamics and Distance Policy

For each vehicle in the platooning system, we consider the
following dynamics [48]:

ṗi = vi (1a)

v̇i =
1

Mi

(
Rh,iTi −migFr,i − bivi − civ2i

)
(1b)

Ṫi = − 1

τi
Ti +

1

τi
ue,i (1c)

where pi and vi are the vehicle position and velocity, Ti is
the engine torque, and ue,i is the engine desired torque. The
unknown rolling resistance coefficient Fr,i is considered as an
exogenous disturbance. The auxiliary parameters Mi and Rh,i
in (1b) are respectively defined as

Mi =
(mih

2
w,i + Jr,i + Jf,i)R

2
g,i + Je,i

h2w,iR
2
g,i

(2)

Rh,i = (hw,iRg,i)
−1. (3)

The vehicle parameters are explained in Table I, where the
subscript i is used to indicate that these values can change
among vehicles. Note that in this paper, we consider that
these vehicle parameters cannot be precisely known, leading
to parametric uncertainties, and only their nominal values are
available for control design.

Let us denote v̇i = ai, then the acceleration dynamics can
be derived from (1b) as

ȧi =
1

Mi

(
Rh,iṪi − (bi + 2civi)ai

)
(4)

Substituting Ṫi from (1c) in (4) with Ti in (1b), we obtain

ṗi = vi (5a)



TABLE I: Vehicle model parameters.

Parameters Description
mi Mass of the vehicle (kg)
Rg,i Gear ratio (–)
hw,i Height of center of wheel (m)
Je,i Engine/transmission inertia (kg·m2)
Jr,i Rear wheel inertia (kg·m2)
g Gravitational acceleration (m/s2)
Jf,i Front wheel inertia (kg·m2)
bi, ci Resistance force coefficients (kg/s, kg/(m·s))
τi Time constant of the longitudinal dynamics (s)

v̇i = ai (5b)
ȧi = fi(vi, ai) +Biue,i +DiFr,i (5c)

with

fi(vi, ai) = −
(

1

τi
+ Λi

)
ai −

1

Miτi
(bi + civi) vi

Λi =
1

Mi
(bi + 2civi) , Bi =

Rh,i
Miτi

, Di =
mig

Miτi
.

(6)

Based on the vehicle dynamics (1), let ∆p̂i = pi−1−pi−Lc,i
be the relative distance between vehicles in the platoon, with
Lc,i the vehicle length. We define the distance policy error as

∆pi = ∆p̂i,i−1 −∆pd,i. (7)

The time gap distance policy in (7) is given by

∆pd,i = ri + hvi (8)

where ri is the standstill distance for each vehicle, and h is
the time gap, which is constant for all vehicles of the platoon.

C. String Stability and L2 Stability

In this paper, string stability is evaluated based on the L2

string stability proposed in [22], which is defined as follows.

Definition 1. Let x̄i = [∆pi, vi−1 − vi, ai] and x̄(t) =
col(x̄1, . . . , x̄N ) be the lumped state of all vehicles. Moreover,
let u0 be an exogenous input, and zi = h(x̄i) be a performance
output. The vehicular platoon is L2 string stable if there exist
a constant γ0 and a K-function ρ(·) such that for any initial
condition x̄(0), we have

‖zi‖L2 ≤ γ0‖u0‖L2 + ρ(‖x̄(0)‖), i = 1, . . . , N. (9)

In Definition 1, the exogenous input u0 refers to the leader
input, while zi is a performance output of each vehicle and
will be defined later in Section III. This definition of string
stability is similar to that in [14], which is a particular case of
the general Lp string stability discussed in [8]. Moreover, con-
dition (9) also shows a clear relationship between this string
stability definition and the classical L2 stability described in
[49, Chapter 6.4].

D. Platooning Control Problem Statement

The proposed event-triggered CACC method is based on
the feedback linearization technique together with a DOB-
based disturbance estimation to deal with a platoon setup
with nonhomogeneous vehicles. The designed ETC controller
satisfies the following requirements:
• Ensure the individual stability of each vehicle and the

string stability of the vehicular platoon, based on L2

stability conditions.
• Minimize the influence of the disturbance estimation error

via L2 norm.
• Reduce the number of transmissions for the ETC and

avoid Zeno behavior.

III. CONTROL PROBLEM FORMULATION

This section formulates the problems of disturbance com-
pensation and switching system modeling for ETC design.

A. DOB-Based Uncertainty Compensation

The nonlinear model (5) describes the vehicle dynamics
subject to parametric uncertainties and an exogenous unmea-
sured disturbance, as discussed in Section II. Based on (5c), we
define the following nominal dynamics without the exogenous
disturbance Fr,i:

ȧi,n = fi,n(vi, ai) +Bi,nue,i. (10)

where fi,n(vi, ai) and Bi,n are respectively computed using
the same expressions of fi(vi, ai) and Bi in (6) with nominal
values of vehicle parameters. From the expressions of the
uncertain nonhomogeneous platooning system (5c) and its
nominal model (10), we define a virtual disturbance as

di = fi,n(vi, ai)−fi(vi, ai) + (Bi,n−Bi)ue,i−DiFr,i (11)

which represents the mismatch between (5c) and (10). Consid-
ering the virtual disturbance (11) and the nominal dynamics
(10), we can rewrite (5c) in the form

ȧi = fi,n(vi, ai) +Bi,nue,i − di. (12)

From expression (12), we propose the following disturbance
observer for system (5):

ζ̇i =
∂L(ai)

∂ai
(fi,n(vi, ai) +Bi,nue,i − d̂i)

d̂i = ζi − L(ai)

(13)

where ζi is the internal state of the DOB, L(ai) is the observer
gain, and d̂i is the estimated disturbance. Let us define the
disturbance estimation error as ed,i = d̂i − di. Considering
that di has slow variations, i.e, ḋi ≈ 0, the disturbance error
dynamics can be defined from (12) and (13) as

ėd,i = −∂L(ai)

∂ai
ed,i. (14)

Hence, by choosing L(ai) such that system (14) is asymptot-
ically stable, it follows that d̂i → di.



Using the disturbance observer (13), we propose the follow-
ing linearizing control law for system (5):

ue,i =
1

Bi,n

(
− 1

τd
ai − fn,i(vi, ai) +

1

τd
ui + d̂i

)
(15)

where ui is the desired acceleration input, and τd is the desired
time constant, which is specified considering an estimation of
the real time constant of the vehicle longitudinal dynamics.
Applying the control law (15) to the uncertain system (5), with
(5c) rewritten as (12), and combining with (7), we obtain the
following linearized vehicle dynamics:

Σi :


∆ṗi = vi−1 − vi − hai
v̇i = ai

ȧi = − 1

τd
ai +

1

τd
ui + ed,i

(16)

for vehicles i = 1, . . . , N . For the leader vehicle, we have
∆pi = 0. Then, the leader vehicle dynamics are given by

Σ0 :


v̇0 = a0

ȧ0 = − 1

τd
a0 +

1

τd
u0 + ed,0

(17)

With an effective DOB-based disturbance estimation, i.e.,
‖ed,i‖ ≈ 0, the systems Σi, for i = 0, . . . , N , reduce
to the homogeneous case and common known results on
homogeneous platoon control can be applied.

Commonly used in both ACC and CACC setups [14], [22],
[24], to compensate for the effect of the distance policy with
a constant time gap, we introduce the following filter for all
vehicles Σi, with i = 0, . . . , N :

u̇i = − 1

h
ui +

1

h
ξi (18)

where ξi is the control input signal to be designed.

B. Overlapping System for String Stability Analysis

To evaluate the string stability of the platooning system,
first, we form the following overlapping system between
vehicles Σi and Σi−1 from system (16) and filter (18):

Σi,i−1 :



∆ṗi = ∆vi − hai
∆v̇i = ai−1 − ai
ȧi = − 1

τd
ai +

1

τd
ui + ed,i

u̇i = − 1

h
ui +

1

h
ξi

ȧi−1 = − 1

τd
ai−1 +

1

τd
ui−1 + ed,i−1

u̇i−1 = − 1

h
ui−1 +

1

h
ξi−1

(19)

where ∆vi = vi−1 − vi is the difference in velocity. Note
that the dynamics of the system Σi,i−1 are composed of both
the dynamics of vehicle Σi and vehicle Σi−1. Let us denote
x1,i = [∆pi ∆vi ai ui]

T and x2,i−1 = [ai−1 ui−1]T . Then,
the following control law is chosen for system (19):

ξi = K1x1,i(t)︸ ︷︷ ︸
ufb(t)

+K2x2,i−1(tk)︸ ︷︷ ︸
uff(tk)

(20)

with x2,i−1(tk) = [ai−1(tk) ui−1(tk)]T , which is transmitted
from vehicle (i−1) to vehicle i. Note from (20) that ufb(t) =
K1x1,i(t) represents the feedback control component, and
uff(tk) = K2x2,i−1(tk) represents the feedforward control
component. The feedback and feedforward gains K1 and K2

are constant for all vehicles Σi, with i = 1, . . . , N . These
control gains K1 and K2 are chosen to reduce the distance
policy error, following the guidelines in Remarks 1 and 2.

Remark 1. The feedback gain K1 is determined to ensure
the individual stability of the vehicles. This control gain
can be obtained using any control design technique, such as
H∞ control. However, specifically for a linear homogeneous
platoon, as shown in [22], [23], if the gain matrix K1 =
[K11 K12 K13 K14] is chosen such that

K11 > 0, K12 > τdK11, K13 = hK12, K14 = 0 (21)

then each vehicle of the platoon is individually stable. In this
work, due to the effectiveness of the proposed DOB-based
uncertainty compensation for nonhomogeneous platoons, we
can also choose K1 following (21).

Remark 2. As discussed in [23], the feedforward con-
trol uff(tk) = K2x2,i−1(tk) is utilized to effectively
counteract the influence of ui−1(tk) in steady state, i.e.,
uff(tk) → ui−1(tk), in the dynamics of the distance pol-
icy error col(∆ṗi,∆p̈i,∆

...
p i). Thus, with x2,i−1(tk) =

[ai−1(tk) ui−1(tk)]T and K2 = [K21 K22], it follows that
in steady state, we should have

uff(tk) = K21ai−1(tk) +K22ui−1(tk)→ ui−1(tk). (22)

Moreover, with effective DOB-based uncertainty compensa-
tion, i.e., ed,i ≈ 0, it follows from (16) that

ȧi = − 1

τd
ai +

1

τd
ui. (23)

We can observe from (23) that the acceleration ai converges to
the desired acceleration ui in steady state. Therefore, it directly
follows from (22) that in steady state, one should have

K21 +K22 = 1. (24)

Then, the values of K21 and K22 can be chosen to fulfill (24).

The overlapping system (19) together with the control law
(20) can be further recast in the closed-loop system

Σi,i−1 :


ẋ1,i = (A1 +B1K1)x1,i +A2x2,i−1

+B1K2x2,i−1(tk) + E1ed,i

ẋ2,i−1 = A3x2,i−1 +D1ξi−1 + E2ed,i−1

(25)

with

A1 =


0 1 −h 0

0 0 −1 0

0 0 −1/τd 1/τd

0 0 0 −1/h

 , A2 =


0 0

1 0

0 0

0 0


A3 =

[
−1/τd 1/τd

0 −1/h

]
,

B1 =
[
0 0 0 1/h

]T
D1 =

[
0 1/h

]T
E1 =

[
0 0 1 0

]T
, E2 =

[
1 0

]T
.



Moreover, for string stability analysis, we define the following
performance output to evaluate the L2 stability:

zi = ξi, i = 2, . . . , N (26)

which is the control input, given in (20), of the ith vehicle.

Remark 3. For the particular case of the interconnection
between the leader and the first vehicle, we have

Σ1,0 :


ẋ1,i = (A1 +B1K1)x1,i +A2x0

+B1K2x0(tk) + E1ed,1

ẋ0 = A0x1,0 +D0u0 + ed,0

(27)

with A0 = −1/τd, D0 = −A0, and

z1 = K1x1,1 +K2x2,0(tk). (28)

In this case, we also have the input u0 instead of ξ0. Note also
from (26) and (28) that the performance output zi, for i =
1, . . . , N , is a linear combination of x1,i = [∆pi ∆vi ai ui]

T

and x2,i−1 = [ai−1 ui−1]T . Combined with the L2 stability
analysis, this choice of zi ensures that all variables involved in
the platoon dynamics Σi,i−1 remain bounded with respect to
the control input u0 of the leader under zero initial conditions,
thus ensuring string stability, as shown in (9).

Remark 4. Note that the overlapping system (25) is composed
of the partial interconnection Σi with Σi−1. When combined,
these overlapping systems Σi,i−1 describe the relationship
from Σ0 to Σi. This stacked dynamics has a block-diagonal
structure, composed of the overlapping systems. Hence, eval-
uating the string stability and the individual vehicle stability
of Σi,i−1 implies the stability of the platoon, allowing for
scalability in the platoon setup.

C. Switched Dynamic Event-Triggering Mechanism

The feedforward component in the controller (20) is trans-
mitted from vehicle Σi−1 to vehicle Σi at time instants {tk},
generated according to an ETM. To reduce the information
transmission, we propose in the following a dynamic event-
triggering condition. To this end, we define the error between
the measured and the last transmitted states as

ex,i−1 = x2,i−1(t)− x2,i−1(tk). (29)

Then, the transmission from Σi−1 to Σi occurs according to
the following ETM:

t0,i = 0 (30)
tk+1,i = inf{t > tk,i + ε : θΓ(x2,i−1, ex,i−1)− ηi > 0}

where ε > 0 and θ > 0 are design parameters, and

Γ(x2,i−1, ex,i−1) = eTx,i−1Qex,i−1 − xT2,i−1Rx2,i−1 (31)

with Q and R symmetric positive definite matrices. The dy-
namic variable ηi(t) is with the following switching dynamics:

η̇i = −λ1ηi(1 − χ) − (λ2ηi + Γ(x2,i−1, ex,i−1))χ (32)

where ηi(0) = 0, and λ1, λ2 are positive scalars. The
switching variable χ in (32) is defined as

χ =

{
0 for t ∈ [tk, tk + ε]

1 for t ∈ [tk + ε, tk+1]
(33)

Note that the positive constant ε enforces a minimum waiting
time between consecutive events, i.e., tk+1− tk ≥ ε, to ensure
Zeno-free behavior. Because of the enforced time ε, we divide
the time interval between transmissions as

Ik0 = [tk, tk + ε) and Ik1 = [tk + ε, tk+1) (34)

where Ik0 corresponds to the fixed time interval depending on
ε, and Ik1 depends on the event-triggering condition.

Remark 5. The parameters λ1 and λ2 involved in the dynam-
ics (32) can be set with small values to make the dynamic
parameter ηi(t) converges as slowly as possible and to reduce
the number of events in the steady-state phase.

Based on the ETM (30) and the control input (20), the
overlapping system (25) can be modeled according to the
interval of interest. Defining τ(t) = t − tk ≤ ε as an
artificial time delay related to the enforced minimum time,
xi = col(x1,i, x2,i−1), wd,i = col(ed,i, ed,i−1), and

A =

[
A1 A2

0 A3

]
, E =

[
E1 0

0 E2

]
, B =

[
B1

0

]
(35)

C1 =
[
I 0

]
, C2 =

[
0 I

]
, DT =

[
DT

1 0
]
.

Then, the overlapping system Σi,i−1 in (25) can be rewritten
in the following switching model:

Σχi,i−1 :



ẋi = (A+BK1C1)x+Dξi−1 + Ewd,i

+(1− χ)BK2C2x(t− τ)

+χBK2(C2x− ex,i−1)

zi = K1C1xi + (1− χ)K2C2xi(t− τ)

+χ(C2xi − ex,i−1)

(36)

where χ is defined in (33). Hence, during the fixed minimum
time, where t ∈ Ik0 , we have χ = 0 and the system is denoted
by Σ0

i,i−1, while for t ∈ Ik1 , we have χ = 1 and the system
is denoted by Σ1

i,i−1.

D. Problem Formulation

Since the uncertainties of the nonhomogeneous platooning
system (5) can be effectively compensated by the disturbance
observer (13), the control gains K1 and K2 of controller (20)
can be a priori chosen based on Remarks 1 and 2. However,
these control gains can only ensure the string stability under
continuous communication. For an event-triggering communi-
cation, the string stability and the individual vehicle stability
can be lost because of the loss of synchrony. Also, since the
platoon is not perfectly homogeneous due to the presence
of ed,i, this disturbance estimation error effects also need to
be considered for stability analysis. Therefore, the platooning
control problem is to design a control law (20) to ensure the
distance policy between vehicles, i.e., ∆pi → 0, such that the
following specifications are verified.



• The individual vehicle stability is ensured in the ideal
condition, i.e., homogeneity, linearity and continuous
communication.

• The switching overlapping system (36) is L2 stable.
• The string stability is ensured in the sense of L2 stability,

i.e., the vehicle inputs are constrained to be non-amplified
over the whole nonhomogeneous platooning system.

• The number of transmissions between vehicles is reduced
while ensuring the existence of a minimum time between
triggering events, given by ε, to avoid Zeno behavior.

The following lemma asserts that ηi(t), as defined in (32),
remains non-negative for all t ≥ 0. This property is crucial in
constructing Lyapunov-Krasovskii functionals for the proofs
in Section IV.

Lemma 1. Consider the variable η(t), defined in (32), with
η(0) ≥ 0. Then, we have η(t) ≥ 0, for all t ≥ 0.

Proof. We distinguish the two following cases.
• Case 1. For t ∈ Ik0 , it follows from (32) and (33) that
η̇ = −λ1η. Then, it is clear that, for η(tk) ≥ 0, we have
η(t) ≥ 0, for ∀t ∈ Ik0 .
• Case 2. For t ∈ Ik1 , the event-triggering mechanism (30)
imposes that Γ < η/θ. Hence, combining with the dynamic
equation η̇ = −λ2η − Γ from (32), we have

η̇ ≥ −λ2η −
1

θ
η. (37)

Then, by comparison lemma [49], it follows from (37) that,
for η(tk + ε) ≥ 0, we have η(t) ≥ 0, for ∀t ∈ Ik1 .

Combining the results of the two above cases, and from the
continuity of η(t), it follows that, for t0 = 0 and η(0) ≥ 0,
then we have η(t) ≥ 0, for ∀t ≥ 0.

IV. EVENT-TRIGGERED PLATOONING CONTROL DESIGN

This section presents our main results of switched dynamic
L2 event-triggered control for vehicle platoons. The switched
dynamic ETC design is recast as an optimization problem
under LMI constraints. To begin with, we present the following
proposition to account for the effect of uncertainty estimation
errors in platooning stability analysis.

Proposition 1. Consider the overlapping system Σi,i−1 in
(25) with xi(0) = 0, and the performance output in (26).
Assume that there exits an upper bound wmax > 0 such that
‖wd,i‖L2

≤ wmax, for all i = 0, . . . , N . If there exist finite
positive scalars β, β0 and γ0 such that

‖ξ1‖L2
≤ γ0‖u0‖L2

+ β0‖wd,1‖L2
(38a)

‖ξi‖L2
≤ ‖ξi−1‖L2

+ β‖wd,i‖L2
(38b)

for all i = 2, . . . , N . Then, we have

‖ξi‖L2
≤ γ0‖u0‖L2

+ ((i− 1)β + β0)ed,max (39)

for all i = 1, . . . , N .

Proof. By recursivity and using the expression (38a), we can
derive from (38b) that

‖ξi‖L2
≤ γ0‖u0‖L2

+ β

i∑
j=2

‖wd,j‖L2
+ β0‖wd,1‖L2

. (40)

Since ‖wd,i‖L2 ≤ wmax, for i = 1, . . . , N , then it follows that

i∑
j=2

‖wd,j‖L2 ≤
i∑

j=2

wmax = (i− 1)wmax. (41)

Combining (40) with (41), we obtain the expression (39). This
completes the proof.

Remark 6. Taking into account the disturbance estimation
error, the inequality (38a) (respectively (38b)) in Proposition
1 ensures L2 stability between the leader Σ0 and the vehicle
Σ1 (respectively the vehicle Σi−1 and the vehicle Σi). For
the case where wd,i ≈ 0, we can directly recover the string
stability condition (9) in Definition 1 from (38a) and (38b)
under zero initial condition.

Remark 7. Note from Proposition 1 that the disturbance
caused by wd,i = col(ed,i, ed,i−1) is amplified according to the
increased number of vehicles of the platoon. This means that
achieving L2 stability is not possible for a nonhomogeneous
platoon of infinite size. On the other hand, the L2 stability
conditions depend on the upper bound wmax, meaning that
for small values of wmax, more vehicles can be added without
compromising the L2 gain performance. Moreover, the L2

stability conditions directly depend on the upper bound wmax.
This implies that the smaller the value of wmax, the larger
the number of vehicles that can be added to the platoon.
With an effective DOB-based disturbance compensation, the
bound wmax can be significantly reduced. In particular, when
ed,i → 0, the number of vehicles of the platoon can be
arbitrarily large.

A. Switched Dynamic ETC Design Conditions

The following theorem provides conditions to ensure the L2

stability of the switched overlapping system (36), as stated in
Proposition 1.

Theorem 1. Consider the overlapping system Σχi,i−1 in (36)
and the event-triggered condition (30). For positive scalars δ,
α, ε, if there exist positive scalars β, γ ≤ 1, matrices P1, P2,
X , X1, Y1, Y2, Y3 and symmetric matrices P � 0, U � 0,
Q � 0 and R � 0 of appropriate dimensions such that the
following optimization problem is feasible:

min Tr(Q) + β2 (42)
Θ � 0, Ψ ≺ 0, Φ ≺ 0, Ω ≺ 0 (43)
R− δI � 0 (44)

where

Θ =

[
P + εΘ11 εΘ12

∗ εΘ22

]
(45)

Φ =



Φ11 Φ12 Φ13 P1D P1E Φ16

∗ Φ22 Φ23 P2D P2E 0

∗ ∗ Φ33 0 0 Φ36

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ −I


(46)



Ψ =



Ψ11 Ψ12 Ψ13 Ψ14 P1D P1E εY T1
∗ Ψ22 Ψ23 0 P2D P2E εY T2
∗ ∗ Ψ33 Ψ34 0 0 εY T3
∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ Ψ77


(47)

Ω =



Ω11 Ω12 Ω13 P1D P1E KT

∗ Ω22 Ω23 P2D P2E 0

∗ ∗ −Q 0 0 −KT
2

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ −I


(48)

with

Θ11 = X+XT

2 , Θ12 = X1 −X, Θ22 = −X1 −XT
2 + Θ11

Ψ11 = He{(A+BK1C1)TPT1 }+ 2αP − Y1 − Y1 −Θ11

Ψ12 = (A+BK1C1)TPT2 − P1 + P − Y T2
Ψ13 = P1BK2C2 + Y1 − Y T3 + Θ12, Ψ14 = Φ16 = CT1 K

T
1

Ψ22 = N22 = −P2 − PT2 , Ψ23 = P2BK2C2 + Y2

Ψ33 = Y3 + Y T3 + Θ22, Ψ34 = Φ36 = CT2 K
T
2

Ψ77 = −Te−2αU, Φ11 = Ψ11 + 2αεΘ11

Φ12 = Ψ12 + εΘ11, Φ13 = Ψ13 + 2αεΘ12

Φ22 = Ψ22 + U, Φ23 = Ψ23 + εΘ12, Φ33 = Ψ33 + 2αεΘ22

Ω11 = He{(A+BKC)TPT1 }+ 2αP + CT2 RC2

Ω12 = (A+BK1C1)TPT2 − P1

Ω13 = P1BK2, Ω23 = P2BK2.

Then, the overlapping system Σχi,i−1 in (25) is stable under
the event-triggering condition (30). Moreover, the dynamics
of η is stable and condition (38b) in Proposition 1 holds for
system (25) with an L2 gain less than or equal to β.

Proof. For brevity, we omit the subscript i in xi, zi, ex,i−1,
ξi−1 and wd,i. For the stability analysis of system (25), we
consider the Lyapunov-Krasovskii functional candidate

V χ(x, η) = W (x, η) + (1− χ)(V1 + V2) (49)

with W (x, η) = xTPx+ η, and

V1 = (ε− τ(t))

[
x

x(tk)

]T [
Θ11 Θ12

∗ Θ22

][
x

x(tk)

]
(50)

V2 = (ε− τ(t))

∫ t

t−τ(t)
e2α(s−t)ẋT (s)Uẋ(s)ds. (51)

Note that at switching instants tk and tk + ε, i.e., τ(t) = 0
and τ(t) = ε respectively, V χ(x, η) = W (x, η) = V 1(x, η).
This implies that the functional V χ(x, η) is continuous for all
t ≥ 0. Considering the definition of Θ in (45), then condition

ε− τ(t)

ε
Θ +

τ(t)

ε

[
P 0

∗ 0

]
� 0 (52)

implies xTPx + V1 ≥ 0. Note also that to ensure (52), it
suffices to impose Θ � 0 and P � 0. Since V2 ≥ 0 by
construction in (51) and η ≥ 0 from Lemma 1, for ∀t ≥ 0,
then V χ(x, η) in (49) is a proper LKF candidate.

Due to the switching nature of the proposed dynamic ETC
approach, in the subsequent part of the proof, we first consider
two cases, corresponding to the two time intervals Ik0 and
Ik1 , defined in (34). Then, we combine the two intervals as
[tk, tk+1] = Ik0 ∪ Ik1 for stability analysis.

1) System Σ0
i,i−1 and t ∈ Ik0 : For this time interval, one

has V 0(x, η) = W (x, η) + V1 + V2. We compute

Ẇ (x, η) = ẋTPx+ xTPẋ− λ1η (53)

V̇1 = −
[

x

x(tk)

]T [
Θ11 Θ12

∗ Θ22

][
x

x(tk)

]
+(ε− τ(t))ẋ[2Θ11x+ 2Θ12x(tk)] (54)

V̇2 ≤ −2αV2 − e2αε
∫ t

t−τ(t)
ẋ(s)TUẋ(s)ds

+(ε− τ(t))ẋTUẋ. (55)

Let us define κ(t) = 1
τ(t)

∫ t
t−τ(t) ẋ(s)ds. Then, using the

Jensen’s inequality [45], it follows that

−e2αε
∫ t

t−τ(t)
ẋ(s)TUẋ(s)ds ≤ −τ(t)e2αεκ(t)TUκ(t) (56)

Moreover, we have x(t) = x(tk) + τ(t)κ(t). Then, for any
matrices Y1, Y2 and Y3 of suitable dimensions, it follows that

0 = He{(xTY1 + ẋTY2 + xT (tk)Y3)[x(tk)− x+ τκ]} (57)

Similarly, from the expressions of ẋ and z in (36) for t ∈ Ik0 ,
we can directly obtain the following null terms:

0 = He{(xTP1 + ẋTP2)[(A+BK1C1)x

+BK2C2x(tk) +Dξ + Ewd − ẋ]} (58)

0 = He{zT [K1C1x+K2C2x(tk)− z]}. (59)

Combining (53), (54), (55), the inequality (56), the perfor-
mance output z in (36), and adding the null terms (57), (58)
and (59), we can derive the following inequality:

V̇ 0 + 2αV 0(x, 0) + λ1η + zT z − γ2ξT ξ − β2wTd wd

≤ µT0 L(τ(t))µ0 (60)

where µ0 = col(x, ẋ, x(tk), ξ, wd, z, κ). The matrix L(τ(t))
is affine on τ(t), which can be expressed as

L(τ(t)) =
τ(t)

ε
Ψ +

ε− τ(t)

ε

[
Φ 0

∗ 0

]
(61)

where Φ and Ψ are defined in (46) and (47), respectively.
Note from (61) that the conditions Φ ≺ 0 and Ψ ≺ 0 from
(43) ensure that L(τ(t)) � 0, for all τ(t) ∈ (0, ε].



2) System Σ1
i,i−1 and t ∈ Ik1 : For this time interval, we

have V χ(x, η) = W (x, η). Taking its time derivative yields

V̇ 1 = ẋTPx+ xTPẋ+ xTCT2 RC2x

− eTx,i−1Qex,i−1 − λ2η. (62)

As in the previous case, we can derive the following equalities
from (36) for t ∈ Ik1 :

0 = He{(xTP1 + ẋTP2)[(A+BKC)x

+BK2ex,i−1 +Dξ + Ewd − ẋ]} (63)

0 = He{zT [KCx+K2ex,i−1 − z]}. (64)

Adding the null terms in (63) and (64) to (62), we can derive

V̇ 1 + 2αV 1(x, 0) + λ2η + zT z − γ2ξT ξ − β2wTd wd

≤ µT1 Ωµ1 (65)

where µT1 = (x, ẋ, ex,i−1, ξ, wd, z), and Ω is defined in (48).
Hence, the condition Ω ≺ 0 in (43) ensures that µT1 Ωµ1 ≤ 0.

3) System Σχi,i−1 and t ≥ 0: Since [tk, tk+1] = Ik0 ∪ Ik1 ,
combining the conditions (60) and (62), it follows that

V̇ χ + 2αV χ(x, 0) + min{λ1, λ2}η
+ zT z − γ2ξT ξ − β2wTd wd ≤ 0 (66)

for ∀t ∈ ∪∞k=0[tk, tk+1]. For col(ξ, wd) 6= 0, condition (66)
implies that V̇ χ + zT z − γ2ξT ξ − β2wTd wd ≤ 0. Integrating
this latter from 0 to ∞, it follows that

V χ|t→∞−V χ|t→0+‖z‖2L2
−γ2‖ξ‖2L2

−β2‖wd‖2L2
≤ 0. (67)

From the definition of the LKF in (49), we have that V (χ) ≥
0, for all t ≥ 0. Hence, condition (67) implies that

‖z‖L2
≤ γ‖ξ‖L2

+ β‖wd‖L2
+
√
V χ|t→0. (68)

Under zero initial conditions, since γ ≤ 1 we can recover from
(68) the condition (38b) in Proposition 1.

Moreover, the LMI constraint (44) and the minimization of
Tr(Q) in (42) are used to maximize the inter-event time of the
switched dynamic ETC scheme. This completes the proof.

Remark 8. For the L2 stability of the leader vehicle Σ0,
the condition (38a) in Proposition 1 can be satisfied with
Theorem 1 by using the Σ1,0 dynamics (27) while removing
the restriction γ ≤ 1.

Remark 9. The static event-triggering mechanism can be
directly retrieved from Theorem 1 by making θ →∞ in (30),
which results in

t0,i = 0

tk+1,i = inf{t > tk,i + ε : Γ(x2,i−1, ex,i−1) > 0} (69)

where Γ(x2,i−1, ex,i−1) is defined in (31).

Remark 10. An alternative to the time gap distance policy in
(8) can be considered as ∆pr,i = ri+hivi, where hi can also
vary according to the vehicle. In this case, the overlapping
system Σi,i−i in (25) depends on both hi and hi−1. Specifi-
cally, we will have matrices A1, B1, D1 depending on hi, i.e.,
A1(hi), B1(hi), D1(hi), and matrix A3 depending on hi−1,
i.e., A3(hi−1). Therefore, the design conditions in Theorem 1

must be evaluated considering A1(hi), B1(hi), D1(hi), and
A3(hi−1) for each hi and hi−1. In this paper, we assume a
constant parameter h in (8) to ensure the direct scalability of
the proposed string stability conditions.

B. Periodic ETC Design Conditions

To show the generic feature of the proposed ETC method
and for comparison purposes, we provide an adaptation of
Theorem 1 to the case of static periodic ETC design. To this
end, we consider the following event-triggering mechanism:

tk+1,i = inf{tk,i + jε : j ∈ N, (70)

xT2,i−1(tk,i − jε)Rx2,i−1(tk,i − jε)− eTx,i−1Qex,i−1 > 0}
with ex,i−1 = x2,i−1(tk,i − jε) − x2,i−1(tk,i). Let us define
τ(t) = t − tk,i − jε, then the switching overlapping system
(36) can be recast as

ẋ = (A+BK1C1)x+BK2C2x(t− τ(t))

−BK2ex,i−1 +Dξi−1 + Ewd

z = K1C1x+K2C2x(t− τ(t))−K2ex,i−1.

(71)

Based on system (71) and the event-triggering condition (70),
we provide the following theorem for periodic ETC design.

Theorem 2. For positive scalars δ, α, ε, if there exist positive
scalars β, γ ≤ 1, matrices P1, P2, X , X1, Y1, Y2, Y3, and
symmetric matrices P � 0, U � 0, Q � 0 and R � 0 of
appropriate dimensions such that the following optimization
problem is feasible:

min Tr(Q) + β (72)
H0 � 0, R− δI � 0 (73)

Φ̃ =

[
Φ̄ Ξ

∗ −Q

]
≺ 0, Ψ̃ =

[
Ψ̄ Ξ

∗ −Q

]
≺ 0 (74)

with

Φ̄22 = Φ22 + CTRC, Ψ̄22 = Ψ22 + CTRC

Φ̄ij = Φij , Ψ̄ij = Ψij

Ξ =
[
KT

2 B
TP1 KT

2 B
TP2 0 . . . −KT

2

]T
.

Then, the closed-loop system (71) is stable under the periodic
ETM (70). Moreover, condition (38b) in Proposition 1 holds
for system (71) with an L2 gain less than or equal to β.

Proof. We provide a sketch of this proof in the following
since it follows similar steps to that of Theorem 1. Choosing
the Lyapunov function candidate V = xTPx + V1 + V2, and
considering the same time derivatives as in (54) and (55), and
the following null terms:

0 = He{(xTP1 + ẋTP2)[(A+BK1C1)x+BK2C2

x(t− τ)−BK2ex,i−1 +Dξ + Ewd − ẋ]}
0 = He{zT [K1C1x+K2C2x(t− τ)−K2ex,i−1 − z]}

along with (57), as in the proof of Theorem 1, we can derive

V̇ + 2αV + xTCT2 RC2x− eTx,i−1Qex,i−1
+ zT z − γ2ξT ξ − β2wTd wd ≤ µ̃TH(τ(t))µ̃ (75)



with µ̃ = col(x, ẋ, x(tk), κ, ξ, wd, z, ex,i−1), and

H(τ(t)) =
τ(t)

ε
Ψ̃ +

ε− τ(t)

ε

[
Φ̃ 0

∗ 0

]
(76)

for τ(t) ∈ (0, ε], where the matrices Ψ̃ and Φ̃ are defined
in (74). Note that the matrix H(τ(t)) is affine in τ(t), and
condition (74) ensures that

µ̃TH(τ(t))µ̃ ≤ 0. (77)

Note also that the ETM (70) ensures that

x(t− τ)TCT2 RC2x(t− τ)− eTx,i−1Qex,i−1 < 0. (78)

For col(ξ, wd) 6= 0, it follows from (75), (77) and (78) that

V̇ + 2αV + zT z − γ2ξT ξ − β2wTd wd ≤ 0. (79)

Integrating the condition (79) from 0 to ∞, we can obtain
(38b). This completes the proof.

Remark 11. For the choice of the control design parameters
in Theorems 1 and 2, the maximum time parameter ε is chosen
such that the ETC design conditions are feasible without
compromising the L2 gain β. The parameter δ is searched
to maximize the inter-event times, i.e., to increase the norm-
value of R. The maximum decay rate α is chosen to ensure a
fast closed-loop convergence while guaranteeing the feasibility
of the ETC design conditions.

V. ILLUSTRATIVE RESULTS AND COMPARISONS

This section presents illustrative results and various com-
parative studies to show the effectiveness of the proposed
switched dynamic ETC platooning control method. To cor-
roborate the proposed control approach this end, we consider
a platoon setup with one leader (Σ0) and four followers (Σ1 to
Σ4). For each follower, the nominal parameters are different.
Table II presents the nominal values of the vehicle parameters
and their corresponding uncertainties, denoted by ∆i, as a per-
centage for each vehicle with i = 0, 1, 2, 3, 4, which results in
a nonhomogeneous platoon setup. For simulations, the rolling
resistance coefficient Fr is considered constant for all vehicles,
i.e., Fr = 0.015 (s/kg). However, it is assumed to be unknown
and is not used to compute the feedback linearizing control
law (15). Moreover, the length of the vehicles, Lc = 2.5 (m),
is also known for all vehicles.

For all vehicles, the feedback linearizing controller (15)
is designed considering the nominal vehicle values, i.e., the
columns Σi in Table II. For DOB-based disturbance compen-
sation, we compute d̂i in (15) using the disturbance observer
(13) with L(ai) = Lai. The DOB gain L as well as the
distance policy parameters from (8) and the desired time
constant τd are given in Table III. The feedback gains K1

and K2 of the control law (20) are chosen following Remarks
1 and 2 as1

K1 =
[
0.2 0.7 −0.42 0

]
, K2 =

[
−0.2 1.2

]
.

1Note that the feedback gain K1 is chosen to be the same as in [14] for the
comparison between different ETMs in Subsection V-C, while the feedforward
gain K2 can be easily selected to fulfill (24).

TABLE II: Nominal values of the vehicle parameters and
respective uncertainties in percentage.

Par. Σ0 ∆0 Σ1 ∆1 Σ2 ∆2 Σ3 ∆3 Σ4 ∆4

m 1724 0 % 2241 -10% 2930 -10% 3620 -10% 3965 50%
hw 0.276 -10% 0.635 -20% 0.414 -20% 0.635 40% 0.524 20%
Jr 0.748 40% 0.972 -30% 1.571 -20% 0.823 40% 1.720 40%
Je 0.140 00% 0.350 30% 0.266 50% 0.266 50% 0.238 20%
Rg 0.104 20% 0.177 00% 0.198 50% 0.115 -30% 0.115 20%
b 7.350 10% 13.965 -20% 11.025 -20% 13.965 10% 8.085 40%
c 0.190 20% 0.437 40% 0.285 -30% 0.399 50% 0.209 50%
τ 0.050 50% 0.095 -10% 0.075 -20% 0.125 0 % 0.075 50%

TABLE III: Distance policy, DOB gain and ETC parameters.

Par. r[1,2,3,4] h τd L ε δ α θ λ1 λ2

Value 2 0.6 0.1 50 0.1 0.005 0.01 5 0.01 0.01

A. Test 1: DOB-Based Disturbance Compensation

This test is used to evaluate the control performance and
highlight the importance of DOB-based uncertainty compen-
sation for a nonhomogeneous platoon. To this end, the simu-
lations are performed for two cases: uncertain platoon with
and without DOB-based uncertainty compensation, without
considering the effects of the ETC. For this test, the vehicles
follow the leader with a velocity v0, as shown in Fig. 3.
For all the followers, the initial conditions are chosen as
[∆pi ∆vi ai ui] = 0, i.e., all the vehicles are stationary and
with a correct distance policy.

Fig. 3 shows the difference in distance policy for two cases:
i) platoon without uncertainty (nominal), ii) uncertain platoon
with DOB-based uncertainty compensation (uncertainty with
DOB). Observe that the DOB is able to compensate for
disturbances, resulting in a platooning control behavior similar
to the nominal case. The vehicles exhibit behaviors close
to the nominal, forming a nearly homogeneous platoon. The
importance of the DOB becomes more evident when compared
with the case without uncertainty compensation, as shown in
Fig. 4. In this scenario, the distance policy error is on the
order of 10 meters, which can be considered dangerous and
may lead to collisions in practical situations.

B. Test 2. Performance Evaluation of Switched Dynamic ETC

This test is used to evaluate the tracking control performance
of the proposed switched dynamic ETC design with and
without DOB-based disturbance compensation. With the same
chosen control gains K1 and K2 as in Test 1 and the control
parameters given in Table III, the event-triggering condition
(30) is designed using Theorem 1. The optimization problem
(42) results in β = 2.5, and

Q =

[
2.77 −16.61

∗ 99.65

]
, R =

[
0.0145 −0.0132

∗ 0.0143

]
. (80)

Fig. 5 shows the velocity v, the acceleration a, and the
distance policy error ∆p for each vehicle in the considered
nonhomogeneous platoon. Note that the vehicles in the platoon
are able to follow the leader velocity and the distance policy
converges to zero without significant oscillations. Moreover,
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Fig. 3: Test 1. Comparison between the nominal platoon and
the uncertain platoon with DOB-based uncertainty compensa-
tion for continuous communication.
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Fig. 4: Test 1. Comparison of distance policy errors ∆pi be-
tween the nominal platoon and the uncertain platoon with and
without DOB-based uncertainty compensation for continuous
communication.

employing the same event-triggering control mechanism, we
compare the distance policy errors between vehicles obtained
with and without DOB-based disturbance compensation. As
seen in Fig. 6, there is a significant difference in the distance
policy errors, reaching values on the order of 10 (m), for the
case without disturbance compensation.
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Fig. 5: Test 2. Velocity v, acceleration a and distance policy
error ∆p of the platooning vehicles obtained with the switched
dynamic ETM (30), designed based on Theorem 1.

0 5 10 15 20

−3

−2

−1

0

Σ1

∆
p
1

(m
)

Uncert. with DOB Uncert. without DOB

0 5 10 15 20

0

2

4

6 Σ2

∆
p
2

(m
)

0 5 10 15 20

−3

−2

−1

0

Σ3

Time (s)

∆
p
3

(m
)

0 5 10 15 20

0

10

20
Σ4

Time (s)

∆
p
4

(m
)

Fig. 6: Test 2. Distance policy errors ∆pi obtained with the
switched dynamic ETM, designed based on Theorem 1, with
and without DOB-based uncertainty compensation.

Now considering a time-varying velocity reference for a
longer simulation time interval of tsim = 320 (s), as illus-
trated in Fig. 7. We observe that the follower vehicles can
still correctly follow the leader and maintain the specified
distance policy. Fig. 7 also displays the inter-event time for
transmissions to vehicles Σ1 to Σ4. Notice that every time
the leader changes its velocity, the inter-event time is reduced.
However, as the vehicles reach a steady state, the number of
transmissions considerably decreases, as evident in the last
steady state after 220 seconds.

C. Test 3. Comparison between Different ETC Mechanisms

To further evaluate the platooning control performance,
we compare the four following ETMs under the same test
conditions as in Fig. 5:

• Proposed dynamic ETM, designed with Theorem 1.
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Fig. 7: Test 2. Platooning with a time-varying velocity refer-
ence, and inter-event time for each vehicle obtained with the
switched dynamic ETC design from Theorem 1.

• Dynamic ETM, proposed in [14]. Following the same
search procedure as in [14], the parameters of the ETM
can be determined, as depicted in Table IV.2

• Static ETM, discussed in Remark 9.
• Periodic ETM, designed with Theorem 2.

TABLE IV: ETM parameters obtained for the ETM in [14].

Parameter γ τmeit φ1(0) ε λ ρ

Value 8.442 0.1 2.8674 0.5 0.2027 0.04

In Fig. 8, we observe that the distance policy errors do
not show significant differences among the considered event-
triggering mechanisms. However, in terms of communication,
there is a significant difference, as shown in Table V, which
summarizes the average time between events during the tran-
sient phase Tavg, and the number of events Nevent obtained
with the four ETC schemes. In particular, the switched dy-
namic ETC scheme shows a significant difference compared
to the other cases, with almost less than a third of the number
of events. Furthermore, in Table V, we present the ratio of
total simulation time to the number of events, denoted as
Tsim/Nevent, with Tsim = 320 (s). When comparing this value
with Tavg, a significant difference is observed only in the
proposed switched dynamic ETC scheme. This is mainly due

2Note that with the ETM parameters provided in Table IV, both the
proposed method and the one in [14] yield similar ETC performance for pla-
tooning systems without parametric uncertainties and exogenous disturbances,
although these results are not shown here for brevity.

to the long interval without triggering communication, which
is not included in the average. Furthermore, it is noteworthy
that in the presence of parametric uncertainties and exogenous
disturbances, the dynamic ETC method presented in [14]
yields a control performance similar to that of the compared
static ETC scheme. To better illustrate this difference in
triggering communication, Fig. 9 depicts the inter-event times
obtained with different ETMs. We can clearly see that, except
for the proposed method, the numbers of events of other
compared ETMs do not reduce as the platooning system
achieves the steady state, and the transmission intervals are
close to the minimum time. This confirms the advantages of
the proposed ETC method in comparison to related results.
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Fig. 8: Test 3. Distance policy errors ∆pi obtained using the
four compared ETMs.

TABLE V: Average time between events during the transient
phase Tavg, number of events Nevent, and average events
during the total simulation time Tsim/Nevent obtained with
four ETC schemes.

ETC Indicator
Vehicle

1 2 3 4

D
yn

am
ic Tavg (s) 0.40 0.38 0.37 0.35

Nevent 534 559 589 617
Tsim/Nevent 0.60 0.57 0.54 0.52

St
at

ic

Tavg (s) 0.10 0.11 0.11 0.11
Nevent 3004 2817 2606 2729
Tsim/Nevent 0.11 0.11 0.12 0.12

Pe
ri

od
ic Tavg (s) 0.20 0.22 0.23 0.23

Nevent 1953 1701 1385 1439
Tsim/Nevent 0.16 0.19 0.23 0.22

[1
4]

Tavg (s) 0.11 0.11 0.11 0.11
Nevent 2954 2912 2843 2885
Tsim/Nevent 0.11 0.11 0.11 0.11

VI. CONCLUDING REMARKS

Considering the control communication between vehicles
in the predecessor-follower flow topology, a switched dy-
namic ETC method has been proposed for nonhomogeneous
platoons. To effectively compensate for the uncertainties of
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Fig. 9: Test 3. Inter-event times obtained using the four
compared ETMs. (a) Proposed dynamic ETM, (b) Static ETM,
(c) Periodic ETM, (d) Dynamic ETM [14].

the platooning system, treated as a virtual disturbance, a
DOB-based uncertainty estimate is included in the feedback
linearization control law. As a result, string stability and the
stability of individual vehicles can be evaluated in a manner
similar to the classical CACC design conditions. The control
communication between vehicles is established based on a
dynamic event-triggering condition with a minimum time to
ensure Zeno-free behavior. For platooning control, from the
vehicle dynamics and using a switching modeling technique,
we form an overlapping system Σi,i−1, representing the in-
terconnection between two adjacent vehicles Σi and Σi−1.
Subsequently, using a Lyapunov-Krasovskii functional and the
null-term relaxation technique, sufficient LMI conditions are
derived to ensure L2 stability between the vehicle systems
Σi and Σi−1, as well as L2 string stability for a limited-
size platoon, considering the disturbance estimation error as
an additional exogenous input. Through extensive simulations
and comparisons, we demonstrate that the proposed DOB-
based event-triggered platooning control method can ensure
string stability despite the presence of considerable modeling
uncertainties. Furthermore, the dynamic switched ETC can
also reduce the amount of communication compared to static
ETC and periodic ETC mechanisms, ensuring long time inter-
vals without transmissions when the nonhomogeneous platoon
achieves the steady state. Due to the generic formulation of
the proposed ETC platooning control method with LKF-based
stability analysis, the L2 design conditions can be further
extended in the future to consider time delays, actuator faults,
and attacks. Extensions to different communication topologies
will also be investigated, exploiting the particularities of each
while maintaining the scalability of the L2 design conditions.
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