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Cost-Effective Estimation of Vehicle Lateral
Tire-Road Forces and Sideslip Angle via Nonlinear
Sampled-Data Observers: Theory and Experiments

Anh-Tu Nguyen∗, Senior Member, IEEE, Luciano Frezzatto, Thierry-Marie Guerra, Sébastien Delprat

Abstract—This paper proposes a cost-effective method to
jointly estimate the vehicle sideslip angle and lateral tire-road
forces, which are crucial to improve the stability and perfor-
mance of vehicle control systems. This method only requires
the information from onboard sensors, readily available on
mass-production vehicles. In particular, we consider the case
of sampled asynchronous measurements, i.e., the vehicle sensor
signals used for observer design are transmitted at arbitrary
and distinct times in a certain window bound over the vehicle
networked control system. To this end, we propose a new data-
sampled observer design, where the asynchronous phenomenon
caused by the sampling process is explicitly taken into account
via a linear parameter-varying (LPV) framework. Based on an
augmented Lyapunov-Krasovskii functional and specific relax-
ation techniques, the observer design conditions are derived to
guarantee an L2−gain performance for the discrete-continuous
estimation error dynamics and a maximum allowable sampling
period. The observer design is recast as a convex optimization
problem, subject to linear matrix inequality (LMI) constraints,
which can be efficiently resolved through conventional numerical
solvers. The proposed sampled-data observer is experimentally
evaluated with an autonomous vehicle under several dynamic
driving scenarios, performed on a real test track.

Index Terms—Vehicle dynamics, tire–road forces, sideslip an-
gle, sampled-data observers, aperiodic measurements.

I. INTRODUCTION

Safety and comfort stand out as the utmost priorities when
developing advanced driver assistance systems (ADAS) for
intelligent vehicles (IVs) [1]. The effectiveness and stability
of vehicle control systems significantly rely on real-time
information concerning various vehicle states, particularly
sideslip angle and tire-road forces [2]–[4]. Precise knowledge
of these variables significantly enhances the feedback control
performance as well as the capacity to predict real-time tire-
road friction and potential vehicle trajectories, which plays a
critical role to improve the ADAS control performance [5]–[7].
Unfortunately, obtaining accurate information regarding the
vehicle sideslip angle and tire-road forces in mass-production
vehicles poses challenges due to the high costs and associated
practical limitations [2]. Consequently, it becomes essential
to employ alternative methodologies, such as observation or
estimation, to effectively determine these vehicle variables.
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Extensive research efforts have been dedicated to developing
vehicle state estimation methods with a focus on utilizing
cost-effective vehicle sensors [2]. To this end, various tire-
road force models have been exploited, including linear tire
models, Brush tire models, Dugoff tire models and Pacejka
models [3], [5]. Under normal driving conditions, using the
well-known bicycle model and linear tire models, Luenberger
observers have been widely developed to estimate the vehicle
lateral speed or the sideslip angle [8], [9]. Under similar
vehicle modeling assumptions, a fuzzy adaptive robust cu-
bature Kalman filter (CKF) was proposed in [10] to recover
the information of the sideslip angle and the tire cornering
stiffness. Based on the Brush tire model, a nonlinear observer
has been proposed to estimate the sideslip angle in [11]. A
robust adaptive observer methodology was proposed in [12]
to estimate simultaneously the friction coefficient and vehicle
slip angle using the lateral acceleration and the tire-aligning
moment. Based on test data, the authors in [13] proposed a
modified version of the Brush tire model to develop a method,
combining auxiliary particle filter (APF) and iterated extended
Kalman filter (EKF) with iteration, to estimate the tire slip
angle and the tire-road friction coefficient with non-Gaussian
noise. Zhang et al. [14] presented an estimation framework
based on an improved Brush tire model and a modified square-
root CKF to directly identify the road friction coefficients. The
Dugoff tire models have been leveraged to develop algorithms
to estimate the sideslip angle and/or lateral forces or the tire-
road friction coefficient using an algebraic filtering technique
[15], a Takagi-Sugeno fuzzy observer design [16], a sliding
mode observer combined with an EKF [17]. In particular,
Doumiati et al. [18] experimentally demonstrated with road
results that unscented Kalman filters (UKFs) can provide a
significantly better estimation performance for vehicle sideslip
angle and tire–road forces than EKFs with respect to road
variations. A modified Dugoff model was used in [19] to
develop a dual linear time-varying Kalman filter to estimate
the sideslip angle and the cornering stiffness. Based on Pacejka
models, various Kalman filter-based algorithms have been also
proposed for vehicle estimation, e.g., [20]–[22]. Especially,
Wang et al. [23] developed an adaptive fault-tolerant EKF,
which can efficiently mitigate the impact of partial loss of
sensor data, parameter perturbations, and state mutation on es-
timation accuracy. Many other nonlinear estimation techniques
based on other different tire-road models such as LuGre tire
models, Burchhardt tire models, UniTire tire models, etc. can
be documented in [2]. Unfortunately, most of these estimation



techniques require a precise knowledge about the tire model
parameters and properties. Hence, extensive research efforts
have been devoted to identifying the tire model parameters
[24], [25]. However, such an identification task still remains
challenging to reconstruct the tire characteristics under various
driving conditions [5], [24]. To overcome this major drawback,
taking into account state constrains, Strano et al. [26] devel-
oped a constrained UKF for sideslip angle estimation without
a priori knowledge of tire characteristics. An IMM-based
estimator was proposed in [27] to estimate the tire slip angle
under various road conditions without tire–road information.
To avoid the dependency on the vehicle and tire models,
machine learning and data-driven estimation approaches have
been also exploited, e.g., [28], [29]. However, the related
training processes are usually based on reference data which
are typically not available from mass-production vehicles [30].

We can see that Kalman filtering techniques have occupied
a large body of literature on the estimation of sideslip angle
and/or tire-road forces [2]. The main reason is due to their
ability to cope with the nonlinearities, parameter uncertain-
ties and disturbances/noises involved in the vehicle systems.
Kalman filters typically exhibit effective performance when a
precise vehicle model is accessible [30]. Nonetheless, if the
propagation of errors cannot be sufficiently captured, the EKF
performance may decline and potentially lead to instability
[12]. EKFs based on kinematic vehicle models can improve the
robustness with respect to vehicle parameter variations, e.g.,
tire-road parameters, vehicle mass, inertia, etc. [31], albeit with
a trade-off of slightly noisier estimation results, due to their
strong dependency on the sensor quality. Moreover, despite
some practical guidelines [30], the tuning efforts related to
EKF-based estimation algorithms still remain time-consuming.
Furthermore, most of the existing approaches essentially focus
on the practical estimation performance without paying special
attention on the proofs of convergence and robustness. Indeed,
due to the complexity of the vehicle system modeling, there is
still a lack of literature on the joint estimation sideslip angle
and/or tire-road forces with theoretical guarantees. Recently,
based on Lyapunov stability theory, an asymptotic sampled-
data observer was proposed in [8] to estimate the lateral
velocity by exploiting only the knowledge of sparse yaw
rate samples. However, this method is only effective in the
presence of sufficiently bounded driver maneuvers. Moreover,
the vehicle lateral tire-road forces cannot be estimated with [8].
Jeon et al. [32] also developed an interesting neuro-adaptive
observer to provide asymptotically stable estimation of the
vehicle state and the neural network (NN) weights of the
learned tire model. However, appropriate initial conditions for
the NN weights must be obtained to ensure the convergence.
Moreover, only simulation results were presented in [8], [32].
Hence, further experimental tests should be performed to
verify the practical performance of these observer schemes.

Motivated by the above practical and theoretical estimation
issues, this paper presents a new nonlinear observer method
to jointly estimate the vehicle sideslip angle and lateral tire-
road forces. The cost-effective nature of the observer scheme
hinges on the fact that only information from readily avail-
able onboard sensors is necessary to estimate these crucial

vehicle variables. However, this feature poses a significant
challenge, i.e., the well-known matching condition [9] is not
verified to reconstruct the lateral tire-road forces, considered
as the unknown inputs (UIs) of the vehicle system. Hence,
standard unknown input observers (UIOs) with decoupling-
based approaches [9], [16], [33] cannot be applied in this
case. In particular, for observer design we consider sampled
asynchronous measurements gathered from vehicle sensors,
which can practically take place at arbitrary instants in a
certain window with upper and lower limits. It is emphasized
that the existing estimation approaches, e.g., EKFs/UKFs or
other nonlinear observers previously discussed, require the
sensor data to be transmitted at every fixed (and usually very
small [31]) sampling period. In specific situations where the
output is solely accessible at distinct time instants as in IVs
networked control systems [8], [34], these traditional estima-
tion approaches need to be properly “redesigned” for digital
implementation [35]. Note also that using an exact or approx-
imate discrete-time models of nonlinear systems for observer
design cannot explicitly take into account the perturbations in
between two consecutive sampling instants [36]. To avoid this
technical issue, we directly use a continuous-time nonlinear
model to synthesize a sampled-data observer for vehicle esti-
mation, resulting in a continuous-discrete observer design. The
asynchronous phenomenon caused by the sampling process
is explicitly taken into account in the observer design using
a polytopic linear parameter-varying (LPV) framework. An
augmented Lyapunov-Krasovskii functional together with spe-
cific relaxation techniques are leveraged to derive the design
conditions while guaranteeing an L2−gain performance for the
estimation error dynamics and a maximum allowable sampling
period (MASP). The discrete-continuous observer design is
recast as an LMI-based optimization problem, which can be
efficiently resolved using common solvers [37]. Specifically,
our main contributions are summarized as follows.

• We propose an estimation method to jointly estimate the
sideslip angle and tire-road forces using only sensors,
commonly available on mass-production vehicles.

• Based on a continuous-time nonlinear vehicle model,
a new data-sampled observer is proposed, taking into
account the discrete-time nature of the sampled asyn-
chronous measurements from vehicle sensors.

• The estimation convergence and L2−gain performance
are theoretically guaranteed via Lyapunov-Krasovskii sta-
bility theory. The continuous-discrete observer design is
recast as an LMI-based optimization problem.

• The proposed data-sampled observer is experimentally
validated under several driving scenarios, performed with
the test facilities shown in Fig. 1.

It is emphasized that the joint estimation of sideslip angle and
tire-road forces, considering asynchronously sampled mea-
surements from common vehicle sensors with theoretical per-
formance guarantees, has not been observed in the literature.

Notation. N+ is the set of positive integers, R is the set of
real numbers, R+ is the set of positive real numbers, Rm×n is
the set of all m×n real matrices, and Iq = {1, . . . , q} ⊂ N+.
For a vector x, we denote ‖x‖ =

√
x>x. For a matrix X ,



(a) (b)

Fig. 1. Experimental facilities. (a) INSA-LAMIH autonomous vehicle, (b)
Gyrovia test track in Valenciennes, France.

its transpose is denoted by X>, X � 0 means that X is
positive definite, and He(X) = X + X>. blkdiag(X1, X2)
denotes a block-diagonal matrix composed of two matrices
X1 and X2. We denote I as an identity matrix of appropriate
dimension. The symbol ? represents the transposed terms in
a symmetric matrix. λmin(·) denotes the minimum eigenvalue
of a real symmetric matrix. The arguments of functions are
omitted when convenient.

II. VEHICLE MODELING

This section reviews the key elements of vehicle modeling
for nonlinear observer design. The parameters of the INSA-
LAMIH autonomous vehicle are given in Table I.

TABLE I
VEHICLE NOMENCLATURE.

Parameter Description Value
vy Vehicle lateral speed –
vx Vehicle longitudinal speed –
yr Yaw rate –
δ Front wheel steering angle –
Tw Longitudinal wheel torque –
mv Vehicle mass 1077 [kg]
Cf Front cornering stiffness 47135 [N/rad]
Cr Rear cornering stiffness 56636 [N/rad]
lf Distance from gravity center to front axle 1.08 [m]
lr Distance from gravity center to rear axle 1.24 [m]
Iz Vehicle yaw moment of inertia 1442 [kgm2]
Rt Tires effective rolling radius 0.26 [m]
ρa Air density 1.23 [kg/m3]
Cdy Lateral drag coefficient 0.35 [–]
Cdx Longitudinal drag coefficient 0.32 [–]
Afy Lateral frontal area 2.01 [m2]
Afx Longitudinal frontal area 1.97 [m2]

Fig. 2. Diagram of a 2-DoF vehicle model.

We consider a bicycle vehicle model with two degrees of
freedom, as shown in Fig. 2. In scenarios of typical driving,
assuming small angles and no longitudinal slip, the nonlinear
dynamics of the vehicle can be expressed as follows [9], [38]:

mv (v̇x − yrvy) =
Tw
Rt
− Fax

mv (v̇y + yrvx) = Fyf + Fyr − Fay
Iz ẏr = lfFyf − lrFyr

(1)

where Fax = 0.5CdxρaAfxv
2
x is the longitudinal aerodynamic

drag force, Fay = 0.5CdyρaAfyv
2
y is the lateral aerodynamic

drag force when cornering, and Fyf and Fyr are the lateral
tires forces on front and rear tires. Experimental findings show
that Fyf and Fyr are nonlinearly related to slip angles, except
for small angles where they have a linear relationship [38].
Then, the lateral tire-road forces can be described as

Fyf = 2Cf (1 +Wf∆(αf ))αf

Fyr = 2Cr (1 +Wr∆(αr))αr
(2)

where the sideslip angles αf and αr are given by

αf = δ − vy + lfr

vx
, αr =

lrr − vy
vx

. (3)

The term ∆(αf ) (respectively ∆(αr)) represents the nonlinear
part of Fyf (respectively Fyr). Since ∆(αq), for q ∈ {f, r},
is considered as uncertainties of the lateral tires forces, it can
be normalized as −1 ≤ ∆(αq) ≤ 1. Moreover, Wq , for q ∈
{f, r}, is a weight used for normalization for which 2Cq(1 +
Wq) and 2Cq(1 −Wq), for q ∈ {f, r}, are respectively the
upper and lower bounds of the slopes of the lateral forces
characteristics, i.e.,

2Cq(1−Wq) ≤
∂

∂αq
Fyq ≤ 2Cq(1 +Wq), q ∈ {f, r}.

Let us denote Ff = ∆(αf )αf and Fr = ∆(αr)αr as modeling
uncertainties related to the lateral tires forces. The uncertain
lateral tires forces in (2) can be reformulated as

Fyf = 2Cfαf + 2CfWfFf

Fyr = 2Crαr + 2CrWrFr.
(4)

From (1), (3) and (4), the vehicle nonlinear dynamics can be
represented in the state-space form as

ẋ = f(x) +Bu+Dd (5)

where x =
[
vy yr vx

]>
is the vehicle state vector, u =[

δ Tw
]>

is the known control input, and d =
[
Ff Fr

]>
is

the unknown uncertainty input. The nonlinear function f(x)
and the state-space matrices B and D in (5) are given by

f(x) =

a12 yrvx − a11 vyvx − yrvx − Cyv2ya21
vy
vx
− a22 yrvx

yrvy − Cxv2x


B =


2Cf

mv
0

2Cf lf
Iz

0

0 1
mvRt

 , D =


2CfWf

mv

2CrWr

mv
2Cf lfWf

Iz
− 2CrlrWr

Iz
0 0





with

a11 =
2(Cf + Cr)

mv
, a12 =

2(Crlr − Cf lf )

mv

a21 =
2(Crlr − Cf lf )

Iz
, a22 =

2(Cf l
2
f + Crl

2
r)

Iz

Cx =
CdxρaAfx

2mv
, Cy =

CdyρaAfy
2mv

.

As in practice, while the yaw rate yr and the vehicle speed vx
can be measured inexpensively, measuring the lateral speed vy
or the sideslip angle β remains unattainable for commercial
vehicle applications due to sensor cost reasons [16]. Moreover,
within the IVs network control system, the onboard sensor sig-
nals are transmitted through a common digital communication
network, and are accessible only at discrete-time instants [8],
[34]. Hence, the output of system (5) is given by

yk = Cxk, C =

[
0 1 0
0 0 1

]
(6)

where yk is the sample of y(t) taken at the sampling instants
{t0, t1, t2, . . . }. We consider sampled asynchronous measure-
ments that occur at arbitrary times in a certain window such
that the next sampling instant is defined as

tk+1 = {t ∈ R+ : t > tk and t− tk ≤ Tm} (7)

where Tm > 0 is the maximum allowable sampling period.
From the vehicle nonlinear dynamics (5) and the output

(6) with the asynchronous sampling process (7), we propose
in Section III a new sampled-data observer design. Note also
that β = atan

(
vy
vx

)
[38], then, estimating the lateral speed vy

is equivalent to estimating the sideslip angle β.

III. NONLINEAR SAMPLED-DATA OBSERVER DESIGN

This section first formulates the estimation problem of
lateral tire-road forces and sideslip angle. Then, we present
LMI-based conditions to design the related L2−gain sampled-
data nonlinear observer for joint estimation purposes.

A. Problem Formulation

For generality, the vehicle system (5) with the output (6) is
reconsidered in the following more general form:

ẋ(t) = f(x(t)) +Bu(t) +Dd(t)

yk = Cxk
(8)

with x ∈ Rnx , u ∈ Rnu , d ∈ Rnd and yk ∈ Rny . For observer
design, we consider the following assumption for system (8).

Assumption 1. The matrix D is of full column rank, i.e.,
rank(D) = nd.

Remark 1. Without any loss of generality, Assumption 1 can
be obtained by removing redundant components of d(t). In
contrast to most of existing results on UIO design [16], [33],
here the well-known matching condition, i.e., rank(CD) =
rank(D) is not required. Note that such a matching condition
is not verified for the vehicle system (5). In particular, no
a priori information on d(t) is required as for proportional-
integral observer designs [39].

To jointly estimate the state x and the unknown input d,
the following nonlinear sampled-data observer is considered:

˙̂x = f(x̂) +Bu+Dd̂+ L(hk)(yk − ŷk)

˙̂z = −KDẑ −K(f(x̂) +Bu+DKx̂)

ŷk = Cx̂k, d̂ = ẑ +Kx̂

(9)

where χ̂ is the estimate of χ, for χ ∈ {x,yk,d, z}. The
estimation error corresponding to any variable χ is given by
eχ = χ− χ̂. The intermediate variable z in the observer (9)
is defined as

z = d−Kx (10)

where the gain matrix K is predefined as

K = τD> (11)

with τ > 0. The parameter-dependent observer gain L(hk) ∈
Rnx×ny is to be designed, and hk = h(tk) is the scheduling
parameter sampled at instant k. We have from (10) that

d = z +Kx. (12)

It follows from (9) and (12) that

ed = ez +Kex. (13)

Then, the estimation error dynamics can be obtained from (5),
(9) and (13) as

ėx = f(x)− f(x̂) +D(ez +Kex)− L(hk)Cexk

ėz = ḋ−K(f(x)− f(x̂) +Dez +DKex)
(14)

where exk
is the sampled value of ex at instant k, and

f(x)− f(x̂) =


(
a12

(
yr
vx
− ŷr

v̂x

)
− a11

(
vy
vx
− v̂y

v̂x

)
−(yrvx − ŷrv̂x)− Cy(v2y − v̂2y)

)
a21

(
vy
vx
− v̂y

v̂x

)
− a22

(
yr
vx
− ŷr

v̂x

)
yrvy − ŷrv̂y − Cx(v2x − v̂2x)

 .
(15)

Due to the physical limitations related to the driving conditions
performed with the test track, depicted in Fig. 1(b), the vehicle
state variables are bounded as [29]

x ∈ D = {vy ∈ [vy, vy], yr ∈ [y
r
, yr], vx ∈ [vx, vx]}

with vy = −vy = 1.5 [m/s], yr = −y
r

= 1.1 [rad/s], vx = 1.5
[m/s], and vx = 20 [m/s]. For observer design, to obtain a
tractable form with reduced complexity of f(x) − f(x̂), we
adopt the following variable changes and first-order Taylor
approximations [40]:

1

vx
=

1

v0
+

1

v1
ξ,

1

v̂x
=

1

v0
+

1

v1
ξ̂

vx ' v0
(

1− v0
v1
ξ

)
, v2x ' v20

(
1− 2

v0
v1
ξ

)
v̂x ' v0

(
1− v0

v1
ξ̂

)
, v̂2x ' v20

(
1− 2

v0
v1
ξ̂

)
v0 =

2vxvx
vx + vx

, v1 =
2vxvx
vx − vx

.

(16)

The new variables ξ ∈ [−ξ, ξ] and ξ̂ ∈ [−ξ, ξ], with ξ = −ξ =
1, are employed to characterize the variations of vx and v̂x,



respectively, within the range defined by their lower limit vx
and upper limit vx. Then, using (16) it follows that

vx − v̂x ' −
2v0
v1

eξ, yrvy − ŷrv̂y = yrevy + v̂yeyr

v2x − v̂2x ' −
2v30
v1

eξ, v2y − v̂2y = (vy + v̂y)evy

yrvx − ŷrv̂x ' −
v20
v1
yreξ + v0

(
1− v0

v1
ξ̂

)
eyr

ϑ

vx
− ϑ̂

v̂x
'
(

1

v0
+

1

v1
ξ̂

)
eϑ +

1

v1
ϑeξ, ϑ ∈ {yr, vy}.

(17)

Using the expressions in (17), we can rewrite (15) as

f(x)− f(x̂) = F (x, x̂)ex

= (F0 + v̂yF1 + yrF2 + ξ̂F3 + vyF4)ex (18)

with

F0 =

−a11v0 a12
v0
− v0 0

a21
v0

−a22v0 0

0 0 −Cxv0


F1 =

−Cy 0 0
0 0 0
0 − v1

v20
0

 , F2 =

 0 0
v20+a12
v1

0 0 −a22v1
− v1
v20

0 0


F3 =

−a11v1 v20+a12
v1

0
a21
v1

−a22v1 0

0 0 0

 , F4 =

−Cy 0 −a11v1
0 0 a21

v1
0 0 0

 .
Note from (18) that the nonlinear matrix F (x, x̂) linearly
depends on the variables v̂y , yr, ξ̂ and vy . Then, using the
well-known sector nonlinearity approach [41, Chapter 2], we
can rewrite f(x)−f(x̂) in the following LPV polytopic form:

f(x)− f(x̂) =
(
F0 + r1(t)vyF1 + (1− r1(t))vyF1

+ r2(t)yrF2 + (1− r2(t))y
r
F2

+ r3(t)ξF3 + (1− r3(t))ξF3

+ r4(t)vyF4 + (1− r4(t))vyF4

)
ex

(19)

with

r1(t) =
v̂y(t)− vy
vy − vy

, r2(t) =
yr(t)− yr
yr − yr

r3(t) =
ξ̂(t)− ξ
ξ − ξ

, r4(t) =
vy(t)− vy
vy − vy

.

The polytopic expression (19) can be rewritten as

f(x)− f(x̂) = A(σ)ex =

(
16∑
i=1

σi(t)Ai

)
ex (20)

where the constant matrices Ai, for i ∈ I16, are obtained
from all possible combinations of the minimum and maximum
bounds of v̂y , yr, ξ̂ and vy . The nonlinear scalar functions
σi(t) = σi(r1(t), r2(t), r3(t), r4(t)), for i ∈ I16, are con-
structed from the combinations of rj(t), for j ∈ I4, which
satisfy the convex sum property [41]

16∑
i=1

σi(t) = 1, σi(t) ≥ 0. (21)

Using (20), the errors dynamics (14) can be rewritten as

ε̇ = Aεε+Aεkεk +Dεw (22)

where ε =
[
e>x e>z

]>
, w = ḋ, and

Aε =

[
A(σ) +DK D

−K(A(σ) +DK) −KD

]
Aεk =

[
−L(hk)C 0

0 0

]
, Dε =

[
0 1

]>
.

To achieve an exponential convergence of the estimation
errors, we perform the following variable change:

ε(t) = eαtε(t) (23)

where α > 0 is a predefined decay rate. Hence, the trans-
formed error system can be obtained from (22) and (23) as

ε̇(t) = Aεε(t) +Aεkεk +Dεw(t) (24)

with Aε = Aε + αI , Aεk = eα(t−tk)Aεk , and w = e2αtw.

Remark 2. Although vy is used to define the LPV polytopic
form (20), this variable cannot be exploited for implementation
of the observer gain L(hk) in (9) due to its online unavailabil-
ity. Hence, the sampled scheduling parameter hk = h(tk) is
only constructed using the measured/estimated variables v̂y ,
ξ̂ and yr, i.e., L(hk) =

∑8
i=1 hi(tk)Li, where hi(tk) =

hi(r1(tk), r2(tk), r3(tk)), for i ∈ I8, are defined from the
combinations of rj(tk), for j ∈ I3. The functions hi(tk), for
i ∈ I8, also satisfy the convex sum property as in (21).

We are now ready to formalize the gain-scheduled sampled-
data observer design problem for the nonlinear system (8).

Problem 1. Consider system (8) and the discrete-continuous
observer (9). Determine the parameter-dependent observer
gain L(hk) ∈ Rnx×ny such that the error dynamics (24)
satisfies the following properties.

(P1). If w(t) = 0, for ∀t > 0, the error dynamics (22) is
globally exponentially stable.

(P2). If w(t) 6= 0, for ∀t > 0 and for any energy-bounded
w(t), under null initial condition ε0 = 0, we have∫ t

t0

‖ε(τ)‖2dτ ≤ ρ2
∫ t

t0

‖w(τ)‖2dτ, ρ ∈ R+. (25)

The following lemmas are useful to design the sampled-data
observer (9) for vehicle estimation purposes.

Lemma 1 (Finsler’s lemma [37]). Let ζ ∈ Rn and B ∈ Rm×n.
The following implications are equivalent:

(i) ζ>Qζ < 0, ∀ ζ 6= 0 such that Bζ = 0;
(ii) ∃X ∈ Rn×m such that Q+ XB + B>X> ≺ 0.

Lemma 2 (Wirtinger’s inequality [42]). Given a positive
definite matrix R, the following inequality holds for every
function ω(u) continuously differentiable in [a, b]→ Rn:∫ b

a

ω̇>(u)Rω̇(u)du ≥ 1

b− a
Ω>1 RΩ1 +

3

b− a
Ω>2 RΩ2 (26)

with

Ω1 = ω(b)−ω(a), Ω2 = ω(b)−ω(a)− 2

b− a

∫ b

a

ω(u)du.



Remark 3. Note that by discarding the second term on the
right-hand side of (26), the resulting condition is equivalent to
the well-known Jensen’s inequality [42].

B. Gain-Scheduled Sampled-Data Observer Design

The following theorem presents sufficient condition to de-
sign a gain-scheduled sampled-data observer (9) such that the
properties in Problem 1 can be ensured. For simplicity of
notation, let us define nε = nx + nd. Moreover, we denote

U(hk) =

8∑
i=1

hi(tk)Ui, V (σ,hk) =

16∑
l=1

8∑
m=1

σl(t)hm(tk)Vlm.

for any matrices of appropriate dimensions Ui and Vlm, with
(i, l,m) ∈ I8 × I16 × I8.

Theorem 1. Consider system (8), a MASP Tm, and scalars
τ > 0, α > 0, λ1, λ2, λ3, and λ4 > 0. If there exist symmetric
positive definite matrices P1(hk), P3(hk), R1(hk), R2(hk),
E1(hk), E3(hk), Q(hk), S(hk) ∈ Rnε×nε , matrices P2(hk),
E2(hk), X1(hk), X2(hk) ∈ Rnε×nε , Nij(σ,hk) ∈ Rnε×nε ,
for (i, j) ∈ I2 × I5, F (hk) ∈ Rnx×nx , Z(hk) ∈ Rnx×ny ,
Yi2(σ,hk) ∈ Rnx×nd , Yi4(σ,hk) ∈ Rnd×nd , for i ∈ I5,
and a positive scalar ρ such that the following optimization
problem is feasible:

min ρ2 (27)
subject to
P (hk) � 0, R1(hk) � 0, R2(hk) � 0 (28)
E(hk) � 0, Q(hk) � 0, S(hk) � 0 (29)[

Ω + TmΨ + He(ΛΓ) ?
D>ε Y

> −ρ2I

]
� 0 (30)

Ξ ? ? ?
D>ε Y

> −ρ2I ? ?
TmN1 0 −TmE1(hk) ?
3TmN2 0 0 −3TmE1(hk)

 � 0 (31)

with

P (hk) =

[
P1(hk) ?
P2(hk) P3(hk)

]
, E(hk) =

[
E1(hk) ?
E2(hk) E3(hk)

]
X(hk) =

[
X1(hk) ?

X2(hk)−X1(hk) X1(hk)−He(X2(hk))

]
Ξ = Ω + TmΥ + eαTmHe(ΛΓ)

Λ> =
[
I λ1I λ2I λ3I λ4I

]
Γ =

[
0 0 Z 0 0

]
, Z = blkdiag(−Z(hk)C, 0)

N>i =
[
N>i1 N>i2 N>i3 N>i4 N>i5

]
, i ∈ I2

Y > =
[
Y >1 Y >2 Y >3 Y >4 Y >5

]
Yi =

[
λi−1F (hk) Yi2(σ,hk)

0 Yi4(σ,hk)

]
, i ∈ I5 and λ0 = 1

Ω = He(Ωs) + I>1 (I +R1 + He(P2))I1 − I>2 R1I2

− (I1 − I2)>R2(I1 − I2) + T 2
mI>5 R2I5 −

[
I1
I3

]>
X

[
I1
I3

]
Ωs = I>5 P1I1 −N>1 (I1 − I3)− 3N>2 (I1 + I3 − 2I4)

− I>3 E2(I1 − I3) + Y Ωs1

Ωs1 =
[
Aε 0 0 0 −I

]
Ψ = He(Ψs) +

[
I5 I3

]
E
[
I5 I3

]> − I>4 QI4 + I>3 SI3
Ψs =

[
I5 0

]
X
[
I1 I3

]>
+ I>1 QI4

Υ = He(Υs)− I>4 QI4 − I>3 (S + E3)I3
Υs = I>1 P3I4 + I>4 P2I5

and Ii =
[
0 · · · I · · · 0

]
, for i ∈ I5, is an indicator

vector, whose ith element is an identity matrix of suitable
dimension. Then, the map from w(t) to ε(t) is finite L2−gain
stable such that the performance condition (25) is verified.
Moreover, the observer gain is defined as

L(hk) = F (hk)−1Z(hk). (32)

Proof. For simplicity of notation, the dependence of all matrix
variables on either h(t) or h(tk) is dropped in the proof.
Moreover, we define

ζ>(t) =
[
ε>(t) ε>(t− Tm) ε>(tk) ν>(t) ε̇>(t)

]
with ν(t) =

1

t− tk
∫ t
tk
ε(τ)dτ . For stability analysis of the er-

ror dynamics (24), the following looped Lyapunov-Krasovskii
function candidate is considered:

V (ε) =

5∑
i=1

Vi(ε) (33)

with

V1(ε) =

[
ε(t)∫ t

tk
ε(τ)dτ

]>
P

[
ε(t)∫ t

tk
ε(τ)dτ

]
V2(ε) =

∫ t

t−Tm

ε>(τ)R1ε(τ)dτ

+ Tm

∫ 0

−Tm

∫ t

t+θ

ε̇>(τ)R2ε̇(τ)dτdθ

V3(ε) = (tk+1 − t)
∫ t

tk

[
ε̇(τ)
ε(tk)

]>
E

[
ε̇(τ)
ε(tk)

]
dτ

V4(ε) = (tk+1 − t)
[
ε(t)
ε(tk)

]>
X

[
ε(t)
ε(tk)

]
V5(ε) = (tk+1 − t)(t− tk)

(
ν>(t)Qν(t) + ε>(tk)Sε(tk)

)
.

Note that the positiveness of V (ε) is guaranteed by constraints
(28) and (29). Taking the time derivative of each Vi(ε), for
i ∈ I5, we have

V̇1(ε) = He

(
ζ>
[
I5
I1

]>
P

[
I1

(t− tk)I4

])
ζ

V̇2(ε) = ζ>
(
I>1 R1I1 − I>2 R1I2 + T 2

mI>5 R2I5
)
ζ

− Tm
∫ t

t−Tm

ε̇>(τ)R2ε̇(τ)dτ

V̇3(ε) = −
∫ t

tk

[
ε̇(τ)
ε(tk)

]>
E

[
ε̇(τ)
ε(tk)

]
dτ

+ (tk+1 − t)ζ>
([

I5
I3

]>
E

[
I5
I3

])
ζ (34)



V̇4(ε) = ζ>

(
−
[
I1
I3

]>
X

[
I1
I3

]

+(tk+1 − t)He

([
I5
0

]>
X

[
I1
I3

]))
ζ

V̇5(ε) = ζ>

(
− (t− tk)

[
I4
I3

]> [
Q 0
0 S

] [
I4
I3

]
+ (tk+1 − t)

[
I4
I3

]> [
Q 0
0 S

] [
I4
I3

]
+ (tk+1 − t)(t− tk)He

(
ν̇>(t)Qν(t)

))
ζ.

Applying Jensen’s inequality, see Remark 3, then V̇2(ε) can
be upper bounded as

V̇2(ε) ≤ ζ>(I>1 R1I1 − I>2 R1I2 + T 2
mI>5 R2I5

− (I1 − I2)>R2(I1 − I2))ζ. (35)

Similarly, applying Wirtinger’s inequality in Lemma 2, we can
prove that

V̇3(ε) ≤ ζ>
(

Φ + (tk+1 − t)
[
I5
I3

]>
E

[
I5
I3

])
ζ (36)

with

Φ = − 1

t− tk
Φ>1 EΦ1 −

3

t− tk
Φ>2 EΦ2

Φ>1 =
[
I>1 − I>3 (t− tk)I>3

]
, Φ>2 =

[
I>1 + I>3 − 2I>4 0

]
.

Since E � 0, it follows that(
EΦi + (t− tk)N i

)>
E−1

(
EΦi + (t− tk)N i

)
� 0 (37)

for i ∈ I2, and with N i =
[
N i1 N i2 N i3 N i4 N i5

]
.

From (36) and (37), an upper bound of V̇3(ε) can be charac-
terized as

V̇3(ε) ≤ ζ>
(

Σ + (t− tk)
[
N
>
1 E
−1N1 + 3N

>
2 E
−1N2

])
ζ

(38)

with

Σ = He
(
N
>
1 Φ1 + 3N

>
2 Φ2

)
+ (tk+1 − t)

[
I5
I3

]>
E

[
I5
I3

]
.

Moreover, note that

ν̇(t) = − 1

(t− tk)2

∫ t

tk

ε(τ)dτ +
1

t− tk
ε(t).

Then, the expression of V̇5(ε) in (34) can be rewritten as

V̇5(ε) = ζ>

(
− (t− tk)

[
I4
I3

]> [
Q 0
0 S

] [
I4
I3

]
(39)

+ (tk+1 − t)

([
I4
I3

]> [−Q 0
0 S

] [
I4
I3

]
+ He(I>1 QI4)

))
ζ.

We denote V̇ (ε) =
∑5
i=1 V̇i(ε). From (34), (35), (38) and

(39), it follows that

V̇ (ε) + ‖ε‖2 − ρ2‖w‖2 ≤ ζ̄>Qζ̄ (40)

with ζ̄ =
[
ζ> w>

]>
, and

Q = Ω + (t− tk)Υ + (tk+1 − t)Ψ, Ω = Ω−He(Y Ωs1).

Note that

Bζ = 0, with B =
[
Aε 0 Aεk 0 −I Dε

]
. (41)

By Finsler’s lemma, we can deduce that condition ζ̄>Qζ̄ ≤ 0
is verified under the algebraic constraint (41) if

Q+ XB + B>X> � 0. (42)

Then, it follows from (40) that condition (42) implies

V̇ (ε) + ‖ε‖2 − ρ2‖w‖2 ≤ 0. (43)

For the convexification of the observer design conditions, we
select X> =

[
Y > 0

]
while considering the expression (32).

Then, we evaluate (42) at t = tk, we can retrieve condition
(30). Likewise, evaluating condition (42) at t = tk+1 and
performing the Schur complement lemma [37] on the terms
involving E−1, we can achieve condition (31).

Integrating the inequality (43) from t0 to t, it follows that

V (ε)− V (ε0) +

∫ t

t0

‖ε(τ)‖2dτ ≤ ρ2
∫ t

t0

‖w(τ)‖2dτ. (44)

We distinguish the two following cases from (44).
Case 1. If w(t) = 0, for ∀t > 0. It follows from (44) that
V (ε)− V (ε0) ≤ 0. Then, based on the definition of V (ε) in
(33), at each sampling instant we have that

λmin(P )‖ε‖2 ≤ V (ε) ≤ V (ε0) (45)

Considering the variable change (23), it follows from (45) that

‖ε(t)‖ ≤

√
V (ε0)

λmin(P )
e−αt

which, in turn, ensures Property (P1) in Problem 1.
Case 2. If w(t) 6= 0, for ∀t > 0. Assuming null initial
conditions, it follows from (44) that

V (ε) +

∫ t

t0

‖ε(τ)‖2dτ − ρ2
∫ t

t0

‖w(τ)‖2dτ ≤ 0. (46)

Since V (ε) ≥ 0, condition (46) ensures that∫ t

t0

‖ε(τ)‖2dτ − ρ2
∫ t

t0

‖w(τ)‖2dτ ≤ 0

which guarantees Property (P2) in Problem 1.

Remark 4. To mitigate the design conservatism, a free deci-
sion variable K of observer (9) can be considered for the opti-
mization problem in Theorem 1. However, this directly results
in a non-convex formulation with bilinear matrix inequality
(BMI) constraints, posing numerical challenges in determining
practical observer gains. To circumvent this issue, we adopt the
matrix gain K in the specific form of (11). Notably, observe
from (13) that the gain factor τ can offer flexibility for K to
improve the correction of the UI estimation error.

Remark 5. Larger values of the gain factor τ in (11) and the
decay rate α in (23) lead to a faster error convergence. How-
ever, this might result in aggressive estimation behaviors, such



as considerable overshoot and noise amplification. Therefore,
the selection of these design parameters should ensure that the
sampled-data observer, designed from Theorem 1, circumvents
these practical challenges.

Remark 6. The observer design conditions in Theorem 1 are
expressed in terms of LMI constraints of infinite dimension
due to their dependency on hk and/or σ, which can be
suitably parsed by the ROLMIP toolbox [43] generating a
finite set of LMI constraints. This toolbox can also evaluate a
matrix, such as (20), at the minimum and maximum of each
parameter producing a convex set, which alleviates the burden
of manually determining the set. The MOSEK solver is used
to solve the generated LMI-based optimization problem.

IV. EXPERIMENTAL RESULTS

This section presents the experimental validation of the
proposed nonlinear sampled-data observer under different
test scenarios. The experiments are performed using the test
facilities shown in Fig. 1. The INSA-LAMIH autonomous
vehicle is equipped with a Racelogic VBOX III sensor, which
includes a dual-antenna GPS system with RTK correction.
Additionally, the vehicle is integrated with a 6-DoF inertial
measurement unit (IMU) consisting of three accelerometers
and three gyroscopes. The IMU, the dual GPS, and other
measurements are processed by a fusion system. Note that
as the tire forces Fyf and Fyr cannot be directly measured,
these two signals are computed offline using a neural network-
based inverse kinematic method and considered as ground
truth values. Vehicle sensors provide measurements at 100
Hz transmitted on a single CAN bus, which is also used by
other vehicle equipment. The resulting heavy CAN bus load
introduces uncertainty in deterministic bus access, as sensors
need to wait for bus availability. The dSpace MicroAutobox
stores data from the CAN in a buffer, which is read, times-
tamped, and stored on disk every 10 ms. Hence, data results
from asynchronous communication, timestamped with 10 ms
accuracy. To handle asynchronous transmission on the CAN
bus, a MASP of Tm = 20 ms is considered in the Host PC for
analysis conducted offline as shown in Fig. 3. Consequently,
for observer performance illustrations, we consider that for a
sample at tk, the next sampling time tk+1 can randomly occur
as tk+1 = tk + Ts, for any Ts such that tm ≤ Ts ≤ Tm, with
tm = 10 ms and Tm = 20 ms. Note that there is no existing
work on jointly estimating sideslip angle and tire–road forces
under this measurement sampling condition.

Solving the optimization problem (27) in Theorem 1, we
can obtain a data-sampled observer solution with Tm = 20,
τ = 200, α = 50, λ4 = 1, λi = 0, for i ∈ I3, an L2−gain
bound of ρ = 4.5 × 10−3. For comparison, we assess three
nonlinear observers using the same gain expression (32):
• SDO: Proposed sampled-data observer.
• DO10 and DO20: Two discrete-time observers with a peri-
odic (fixed) sampling time of 10 ms and 20 ms, respectively.

The synthesis of the two observers, DO10 and DO20,
is based on the assumption of fixed sampling times of 10
ms and 20 ms, respectively, corresponding to the minimum
and maximum allowable sampling periods. For brevity, the

Fig. 3. Vehicle embedded acquisition system with onboard sensors.

discrete-time observer design and all obtained solutions are
not reported here. Nevertheless, these details are provided in
the supplementary material available at https://bitly.ws/3b5Ug.
The practical performance of the three considered observers is
validated under three test scenarios: (i) random smooth driving
with a roundabout, (ii) sharp turn, and (iii) extreme driving
conditions. Note that, for better graphical illustrations, we only
show the estimation performance of two observers, SDO and
DO10. As expected, the latter exhibits better performance than
DO20, as will be quantitatively compared later.

A. Test 1: Normal Driving with a Roundabout

During this test, the vehicle is maneuvered along a trajec-
tory, encompassing gentle turns and a circular intersection,
as shown in Fig. 4(a). The longitudinal speed, the steering
angle, and the wheel torque corresponding to this scenario
are presented in Figs. 4(b), (c) and (d). The estimation results
are depicted in Fig. 5. We remark that both SDO and DO10
observers deliver excellent estimates of the lateral speed.
While the DO10 observer can provide a good estimation of the
road-tire forces, the proposed SDO observer still demonstrates
better performance when driving throughout the track.
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Fig. 4. Test 1. (a) Vehicle trajectory, (b) Vehicle longitudinal speed vx, (c)
Steering angle δ, (d) Wheel torque Tw .
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Fig. 5. Estimation performance obtained with Test 1. (a) Lateral speed vy ,
(b) Lateral force on front tires Fyf , (c) Lateral force on rear tires Fyr .

B. Test 2: Driving with Sharp Turns

In this test scenario, the vehicle performs three sharp turns at
points A, B and C as depicted in Fig. 6(a), and then is smoothly
driven through the track. The corresponding vehicle trajectory,
the time-varying longitudinal speed, the steering angle, and
the wheel torque are presented in Fig. 6. Fig. 7 shows that the
unmeasured lateral speed, as well as the tire-road forces, are
precisely estimated with the proposed SDO observer despite
the sharp turns. The estimates of the road-tire forces given by
the DO10 observer are much less accurate than those of the
SDO observer since asynchronous sensor measurements were
not considered in its design.

Fig. 6. Test 2. (a) Vehicle trajectory, (b) Vehicle longitudinal speed vx, (c)
Steering angle δ, (d) Wheel torque Tw .

C. Test 3: Driving under Extreme Conditions

This test is performed with a challenging driving situation,
where the vehicle is driven with some zigzag behaviors. The
corresponding vehicle trajectory, the time-varying speed, the
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Fig. 7. Estimation performance obtained with Test 2. (a) Lateral speed vy ,
(b) Lateral force on front tires Fyf , (c) Lateral force on rear tires Fyr .

steering angle and the wheel torque are shown in Fig. 8.
The aggressive driving style leads to a longitudinal speed
profile characterized by rapid shifts in both steering angle and
lateral speed, as illustrated in Figs. 8(b), (c), and Fig. 9(a),
respectively. In specific segments of the test, notably from 2
s to 6 s, the estimation performance of lateral speed is not
satisfactory. This is primarily due to violent zigzag driving
patterns performed by the driver on straight road sections,
as seen in Fig. 8. The simplified vehicle model (1) fails to
effectively capture the highly solicited nonlinear dynamics in
this scenario, leading to a degradation in the performance of
the considered model-based observers. However, despite this
challenging test, the proposed sampled-data observer is still
able to accurately estimate the unmeasured variables vy , Fyf ,
and Fyr, especially during sharp turns and sudden changes of
direction, as shown in Fig. 9. Similarly to the two previous
tests, although both SDO and DO10 observers exhibit similar
performance for lateral speed estimation, the SDO observer
demonstrates significantly better accuracy in estimating road-
tire forces.

For a quantitative estimation performance analysis, the
root mean square errors (RMSE) and mean absolute errors
(MAE) of the unmeasured lateral speed vyRMSE and vyMAE,
the lateral road-tire forces FyfRMSE and FyfMAE, and FyrRMSE
and FyrMAE, obtained with the three considered nonlinear
observers (SDO, DO10 and DO20), are computed. These
performance indicators are summarized in Table II for the
three driving scenarios. First, the numerical results confirm
that all three observers provide good estimates of the lateral
speed, even though the performance of the DO20 observer is
significantly more degraded under extreme driving conditions
in Test 3. Second, the error indicators related to the road-tire
forces seem to be higher than expected, primarily caused by
measurement outliers, as shown in Figs. 5, 7 and 9. However,
from a global perspective, we observe that the SDO observer
outperforms the DO10 observer, which, in turn, provides better



Fig. 8. Test 3. (a) Vehicle trajectory, (b) Vehicle longitudinal speed vx, (c)
Steering angle δ, (d) Wheel torque Tw .
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Fig. 9. Estimation performance obtained with Test 3. (a) Lateral speed vy ,
(b) Lateral force on front tires Fyf , (c) Lateral force on rear tires Fyr .

estimation quality compared to the DO20. Third, the analysis
results confirm that the proposed SDO observer consistently
achieves a highly satisfactory estimation performance under
all considered test scenarios.

V. CONCLUSIONS AND FUTURE WORKS

A nonlinear data-sampled observer design has been pro-
posed to jointly estimate the sideslip angle and the lateral
road-tire forces of autonomous ground vehicles. To this end,
we develop a nonlinear observer, which is able to reconstruct
both the vehicle state and the unknown input without requiring
the well-known matching condition. In particular, we consider
sampled vehicle measurements, which can practically take
place at arbitrary instants in a certain window with upper
and lower limits. To derive the observer design conditions,
the nonlinear estimation error dynamics is parameterized in
an LPV polytopic form. Then, Lyapunov-Krasovskii stability
theory is leveraged to ensure the exponential error convergence

while guaranteeing a maximum allowable sampling period and
an L2−gain performance. The data-sampled observer design
is recast as an LMI-based optimization problem, which can
be efficiently resolved using common numerical solvers. The
practical estimation performance of the new nonlinear data-
sampled observer is experimentally validated under represen-
tative test scenarios. The experimental results show that the
proposed method can provide accurate estimates of both the
sideslip angle and the lateral road-tire forces.

It is challenging to fully capture the nonlinearities of
tire forces using uncertain linear models, as shown in (4),
especially under limit handling conditions. Future work will
focus on using more accurate tire force models, such as
nonlinear or piecewise affine models, for observer design
to improve estimation performance, especially under limit
handling conditions. Another future research direction is to
exploit the proposed estimation method to design an effective
fault-tolerant control scheme for autonomous vehicles under
on-the-limit driving situations.
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