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Experimental Validation of Sensitivity-Aware Trajectory Planning for a
Quadrotor UAV Under Parametric Uncertainty

Ali Srour1, Salvatore Marcellini2, Tommaso Belvedere3, Marco Cognetti4,
Antonio Franchi3,5, Paolo Robuffo Giordano1

Abstract— In this work, we provide an experimental vali-
dation of the recent concepts of closed-loop state and input
sensitivity in the context of robust flight control for a quadrotor
(UAV) equipped with the popular PX41 controller. Our objective
is to experimentally assess how the optimization of the reference
trajectory w.r.t. these sensitivity metrics can improve the closed-
loop system performance against model uncertainties commonly
affecting the quadrotor systems. To accomplish this, we present
a series of experiments designed to validate our optimization
approach on two distinct trajectories, with the primary aim
of assessing its precision in guiding the quadrotor through the
center of a window at relatively high speeds. This approach
provides some interesting insights for increasing the closed-
loop robustness of the robot state and inputs against physical
parametric uncertainties that may degrade the system’s perfor-
mance.

I. INTRODUCTION

Aerial robotics has experienced a growing interest pro-
pelled by advancements in research, resulting in numerous
practical uses. A primary concern with aerial robots is to
improve system autonomy and ensure safety during motion
tasks. Nevertheless, attaining high levels of autonomy for
flying robots remains an enduring challenge due to the
need to operate in unpredictable and uncertain real-world
conditions. Despite efforts to create precise models, real-
world complexities introduce several uncertainties among
which inaccuracies in the model parameters, which can
potentially disrupt the system behavior during task execution.
The pursuit of greater autonomy, precision, and safety in
aerial robotics requires bridging the gap between theoretical
models and practical real-world conditions. Adaptive [1]–
[3] or robust control [4], [5] are typical methods to deal
with parametric uncertainty, either through online parameter
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Fig. 1. Drone trajectory tracking under parametric uncertainties (green) to
pass through a target sd(tw) (blue sphere). Non-optimized (INIT , left) and
optimized (OPTa, right) trajectories are compared. The closest positions
reached to the desired target after each experiment (small red sphere) are
visualized in PyBullet where the drone passes through a circular window at
a relatively high speed. A video of the experiments is available at https:
//youtu.be/QFnrQ_O2BiU.

estimation or by introducing trade-offs between performance
and robustness vs. parametric uncertainty. Another approach
involves employing Model Predictive Control, as discussed
in [6], [7], which predicts the system behavior using a
dynamic model. However, the MPC effectiveness depends
on the model, and thus parameters, accuracy. Uncertainties in
these parameters can significantly impact both the controller
performance and the robot behavior. Another possibility is to
plan feedforward trajectories with minimal state sensitivity,
as in [8]–[10]. However, these approaches operate in an
open-loop fashion and thus do not consider the presence
and strengths/weaknesses of the motion controller that is
eventually implemented on the robot.

Recent strategies for addressing the parameter uncertainty
problem have been introduced in [11]–[15] where metrics
based on closed-loop state/input sensitivity assess how un-
certainties in robot model affect robots behavior during
closed-loop control. To enhance robustness vs. parametric
uncertainties, one can plan a feedforward desired trajectory
that minimizes these sensitivity metrics, creating a motion
plan that is inherently robust. These concepts have been
further developed in [16] for optimal initialization of an
energy tank in the context of passivity-based control, and
in [17] where an extension has been proposed to evaluate
the impact of the controller choice, gain tuning and shape
of reference trajectory for minimizing the parametric sen-
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sitivity for quadrotor flight control. Similarly to some of
these previous works, [18] proposes an offline optimization
scheme in which ellipsoidal tubes on the state are used to
provide approximate robustness of state constraints against
disturbances. Notably, the propagation of the uncertainty
ellipsoids exploited in [14]–[17] and used in this work takes
a different expression due to being oriented towards para-
metric uncertainties instead of using a stochastic modeling
of disturbances.

While these methods have shown promise in simulated
case studies, only in [16] the notion of closed-loop state/input
sensitivity was applied to real-world experiments with a
robotic manipulator. Notably, there have been no real im-
plementations using quadrotors executing a motion task. A
major contribution of this work is to provide for the first time
a quadrotor-focused experimental assessment and validation
of a sensitivity-based trajectory generation. The employed
quadrotor is controlled by the widely-used open-source
autopilot PX4. While PX4 is used by numerous research
groups, companies, and enthusiasts for its valuable features,
there are several instances where its control performance
can fall short of meeting user requirements. Users often
attempt to enhance control by customizing the autopilot,
sometimes opting for a model-based approach. However,
such customization is not straightforward and demands a
strong grasp of firmware architecture and proficient program-
ming skills. Our objective is then to employ the closed-
loop state/input sensitivity metric (and derived quantities)
on a drone controlled by a PX4 default controller to assess
how a proper reference trajectory planning, designed to
be robust against parametric uncertainties, can enhance the
performance of a standard drone.

The rest of the paper is structured as follows: In Sect. II,
we recall the main notions of closed-loop state/input sensitiv-
ity. In Sect. III, we present the reader with the optimization
problem proposed with the details of the quadrotor model and
tracking controller used. Sect. IV discusses the simulation
and the experimental results on the controller performance,
and Sect. V concludes the paper.

II. PRELIMINARIES
In this section, we recall for the reader’s convenience the

main notions related to the closed-loop state/input sensitivity
introduced in [11], [12] and recently exploited in [13]–[17].
We consider a robot model

ẋ = f(x, u, p) (1)

where x ∈ Rnq is the state, u ∈ Rnu the control inputs and
p ∈ Rnp a vector of (possibly uncertain) model parameters.
Letting s(x) ∈ Rns be a quantity of interest (e.g., the
position of the robot center), we consider the tracking task
of a desired trajectory sd(a , t) defined for t ∈ [t0, tf ] and
function of a finite set of trajectory parameters a ∈ Rna . The
tracking task is realized by a controller having the following
generic form {

ξ̇ = g (ξ, x, a, pc, kc, t)

u = h (ξ, x, a, pc, kc, t)
, (2)

which is evaluated at a nominal value pc for the uncertain
parameters p. Vector ξ ∈ Rnξ represents the possible internal

controller states (e.g., an integral action), and kc ∈ Rnk is
the vector of control gains.

Following [11], [12], we define the state sensitivity for the
closed-loop system (1–2) as

Π(t) =
∂x(t)

∂p

∣∣∣∣
p=pc

(3)

and the input sensitivity as

Θ(t) =
∂u(t)

∂p

∣∣∣∣
p=pc

. (4)

Matrix Π(t) quantifies how variations of the parameters p
around a nominal value pc will affect the evolution of the
state x (in closed-loop). Analogously, matrix Θ(t) relates
variations of p to variations of the inputs u. Although a
closed-form expression for matrices Π(t) and Θ(t) is in
general not available, it is possible to easily obtain these two
quantities via forward integration of a differential equation
along the system trajectories [11], [12].

Matrices Π(t) and Θ(t) can then be used for several pur-
poses in the context of trajectory optimization, for instance
for obtaining suitable sensitivity metrics to be optimized or
an estimation of the envelope of ‘perturbed trajectories’ for
the states/inputs. To this end, assume that each parameter pi
can vary in a given range δpi centered at a nominal pci

pi ∈ [pci − δpi, pci + δpi] (5)

and define the diagonal weight matrix W = diag(δp2i ).
Letting ∆p = p − pc, an ellipsoid in parameter space
centered at pc and with semi-axes δpi has equation

∆pTW−1∆p = 1. (6)

Following the derivations in [14], from (6) and (3–4) one
can obtain the corresponding ellipsoids in state space

∆xT (ΠWΠT )−1∆x = 1 (7)

and in input space

∆uT (ΘWΘT )−1∆u = 1, (8)

where ∆x = x − xnom and xnom is the state evolution
of (1–2) in the unperturbed case p = pc, and analogously
for ∆u = u− unom.

The state and input space ellipsoids can be exploited for
defining a “weighted sensitivity norm” by considering the
eigenvalues λi of the kernel matrix ΠWΠT in (7). In
particular, in [14] and in this work we consider the following
matrix norm

∥Π∥W = max(λi(ΠWΠT )) (9)

which represents the largest (worst-case) deviation of the
state x assuming a parametric uncertainty as in (5). Fur-
thermore, one can also exploit (7–8) for obtaining the tubes
of perturbed trajectories for the individual components of the
states and the inputs. By referring to [14] for all details, for
each direction of interest in the input space, one can obtain
the “tube radius” ri(t) such that

unom,i(t)− ri(t) ≤ ui(t) ≤ unom,i(t) + ri(t). (10)



where unom,i(t) is the behavior of the input ui(t) in the
unperturbed case p = pc. Equation (10) bounds from
above/below the envelope of perturbed inputs when the
parameter uncertainty is bounded as in (5), and an analogous
upper/lower bound can also be obtained for the generic state
component xi(t).

III. OPTIMIZATION PROBLEM

In this work, we consider the following trajectory opti-
mization problem

a∗ = argmin
a

∥Π(tw)∥W
s.t. Ma = b

Umin,i ≤ unom,i(t)− ri(t) ∀i ∀t ∈ [t0, tf ]

unom,i(t) + ri(t) ≤ Umax,i ∀i ∀t ∈ [t0, tf ]. (11)

We seek the optimal value a∗ of the shape parameter a of
the reference trajectory sd(a , t) for minimizing the weighted
norm (9) at a specific time tw (e.g., for passing through a de-
sired point like the center of a window). Minimization of this
cost will increase the robustness (thus reducing the sensitiv-
ity) of the closed-loop system against parameter uncertainties
at tw. The constraints consist of given initial/final conditions
for sd(a , t), represented by the linear constraints Ma = b,
and constraints that bound the envelope of perturbed inputs
within actuation limits Umin,i ≤ Umax,i, ensuring that the
tracking of the optimized reference trajectory will be feasible
for any value of the uncertain parameters p in the range (5).
Note that these constraints leverage the “input tubes” as
described in (10). Of course, other objective functions can be
considered such as the integral of the sensitivity norm along
the trajectory to enhance tracking accuracy during motion.
Furthermore, one can easily include extra constraints like
obstacle avoidance by exploiting the tubes on the states, as
shown in [15]. We note that this optimization problem is
non-convex (as any other trajectory optimization problem of
this type), and therefore one can only guarantee convergence
to a local minimum for a given initial guess.

A. Quadrotor Model

Concerning the quadrotor dynamics, we adopted the model
from [14] that considers a displaced center of mass (CoM).
Let FW = {OW ,xW ,yW , zW} denote the world in-
ertial frame, and FB = {OB,xB,yB, zB} represent the
body frame attached to the drone geometric center. We
define: r = (x, y, z) ∈ R3 as the drone position, v =
(vx, vy, vz) ∈ R3 as its linear velocity in the world frame
FW , q = (qw, qx, qy, qz) ∈ S3 as the unit-norm quaternion
representing the orientation of FB relative to FW , and
ω = (ωx, ωy, ωz) ∈ R3 as the angular velocity of FB with
respect to FW , expressed in FB. The quadrotor state vector
is x = (r,v, q,ω) ∈ R6 × S3 × R3.

Let wi be the squared velocity of the i-th propeller and
define the quadrotor control input u = (w1, . . . , w4). An
allocation matrix is used to relate the inputs u (i.e., the
squared propeller speeds) to the thrust/torques (f, τ )

[
f
τ

]
= kf

 1 1 1 1
0 l 0 −l
−l 0 l 0
km −km km −km

u = Tu (12)

Fig. 2. Block diagram of the PX4 controller, composed of four stages: the
position controller (red), the attitude generator (blue), the attitude controller
(yellow), and the control allocation (green).

where l is the arm length of the quadrotor arm, and kf
and km are the thrust and the drag aerodynamic coefficients
of the propellers [19], [20]. We consider that the quadrotor
center of mass GB is displaced w.r.t. the geometric center
OB by a displacement denoted as gC = (gx, gy, gz) in
FB. The parameters considered uncertain are then the set2
p = (kf , gx, gy, gz, m) ∈ R5. The total force ftot acting
on the quadrotor in FB includes the propeller thrust f ,
gravitational effects, and an additional fictitious force due
to displacement gC :

ftot = fzW −mgR(q)TzW −m[ω]×[ω]×gC .

For the total torque τtot (expressed in FB), we have:

τtot = τ −mg[gC ]×R(q)TzW − [ω]×Jω,

where τ represents the propeller torque as in (12), R(q) ∈
SO(3) is the rotational matrix associated with the quaternion
q and J stands for the body frame inertia matrix about the
geometric center FB. By defining the spatial inertia matrix

M =

[
mI3 −m[gC ]×

m[gC ]× J

]
one can finally obtain the following relation:[

ν
α

]
=M−1

[
ftot
τtot

]
which leads to the quadrotor model with displaced center of
mass 

ṙ = R(q)v

v̇ = ν(x,u,p)

q̇ =
1

2

[
0
ω

]
⊗ q

ω̇ = α(x,u,p)

. (13)

B. PX4 Controller
It is well known that the position r and the yaw angle ψ

are flat outputs for the quadrotor model (13), as explained in,
e.g., [21]. Based on this fact, the PX4 controller is designed
to track a desired position rd(t) and a yaw angle ψd(t)
trajectories by generating suitable propeller speeds u. More
in detail, the controller has a cascaded structure consisting
of four stages (as illustrated in Fig. 2): (i) the position
controller in which the desired position rd is transformed
into an equivalent acceleration setpoint asp, (ii) the attitude
generator responsible for producing both a combined thrust
f and an attitude setpoint qsp derived from the desired yaw
angle ψd and the previously computed acceleration setpoint,

2We did not include km since uncertainties in this parameter have a
negligible impact compared to the other parameters as shown in, e.g., [17].



(iii) the attitude controller determining the desired body
torques and, finally, (iv) the control allocation where thrust
and body torques are transformed in propeller speeds via the
inverse of the nominal allocation matrix (12).

Following the available documentation and open-source
code3, we have implemented an equivalent continuous time
controller and integrated it into our sensitivity-aware plan-
ning scheme. Note that, in the PX4 controller, the inertial and
the body frames are expressed using the North-East-Down
(NED) convention, so trivial conversions are needed if one
chooses to express the dynamic model in different frames.

The position controller in the PX4 consists of a P and a
PID action on the position and velocity errors, respectively.
The latter introduces two 3-dimensional internal states ξv and
ξa to realize the integral and the low-pass-filtered derivative
actions. Denoting with Ωp the low-pass filter cutoff pulsation
and with Pr, Pv , Iv , Dv the diagonal matrix gains, the
position controller equations can be expressed as

ξ̇v = ṙd − v
ξ̇a = −Ωpξa − Ω2

pv

asp = r̈d + Pv(ṙd − v + Pr(rd − r))
−Dv(ξa +Ωpv) + Ivξv.

The attitude generator receives the acceleration setpoint
asp = (ẍsp, ÿsp, z̈sp) and computes the collective thrust
f . Let bz =

(−ẍsp,−ÿsp, g)
∥(−ẍsp,−ÿsp, g)∥ and tsp = bz

bz,z

(
z̈sp

ht

g − ht

)
,

where ht ∈ (0, 1) denotes the nominal normalized hovering
thrust, so that the computed thrust is f = −∥tsp∥. The
attitude setpoint qd is then computed by aligning the z-axis
of the body frame to the desired thrust tsp and rotating of
an angle ψd around such axis [22]. To generate the body
torques, let the quaternion error be qe = q−1 ⊗ qsp. The
angular rate setpoint is then computed proportionally to the
error as ωsp = 2Pq sign(qe,w)qe,xyz , with Pq denoting the
proportional gains and qe = [qe,w, qe,xyz]

T . Finally, the
equations of the PID controller tracking the attitude rate ωsp
are

ξ̇ω = ωsp − ω
ξ̇α = −Ωaξα − Ω2

aω

τ = Pω(ωsp − ω)−Dω(ξα +Ωaω) + Iωξω,

where ξω and ξα are the 3-dimensional internal states of the
controller, Ωa is the cutoff pulsation of the low-pass filter,
and Pω , Iω , Dω are the diagonal matrix gains.

Lastly, the control input u is reconstructed from the
allocation matrix as

u = T−1

[
f
τ

]
where, of course, the matrix T from (12) is evaluated on
the nominal values of the parameters pc (which may differ
from the actual p because of inaccuracies in the quadrotor
model).

IV. EXPERIMENTAL ANALYSIS
A series of experiments and simulations were conducted to

assess the effectiveness of the proposed trajectory generation

3https://github.com/PX4/PX4-Autopilot

obtained by solving (11). Two distinct trajectories sd(a, t) =
(rd(a , t), ψd(a , t)), denoted as Traj1 and Traj2 in the
following, were used to guide the drone through a circular
window at a relatively high speed (2.0 ≤ v ≤ 2.5 m/s) (see
Fig. 3) while complying with the initial/final state constraints
(rest-to-rest motions) and input saturations as in (11). Note
that the actual window was not introduced during the real
experiments for safety reasons, but it was used in PyBullet4
with the real flight data for visualization.

We start by generating a first trajectory – that will be
referred to as INIT in the following – constructed using
piecewise Bezier curves, as discussed in [11], [12], [17],
[23], by performing a preliminary trajectory optimization that
minimizes the snap of rd(a , t) over the whole time interval
with the aim of obtaining a smooth trajectory with minimal
curvature changes and satisfying nominal constraints over the
state and inputs. Thus, all initial non-optimized trajectories
INIT use the minimum snap cost function defined as

a = argmin
a

(∫ tf

t0

∥d
4rd(a, τ)

dt4
∥2dτ

)
s.t. Ma = b

Umin,i ≤ unom,i(t) ≤ Umax,i ∀i ∀t ∈ [t0, tf ]. (14)

Our framework then modifies this trajectory by solv-
ing (11) with INIT as an initial guess. The resulting
trajectory is denoted as OPTa. More in detail, our framework
is implemented in Python and utilizes the COBYLA [24]
nonlinear optimizer from the nlopt toolbox by employing
the symbolic toolbox for symbolic system representation
and making use of the Jitcode [25] framework for in-time
compilation of ordinary differential equations. Within this
framework, optimizing trajectories with the PX4 controller
typically requires 4 to 6 minutes per trajectory.

Our main goal is to evaluate how close the drone gets
to a specific target location, labeled as rd(tw), which is
right at the center of a predefined window. We want to
find out if the drone can safely go through the window,
even when in presence of uncertainties in its parameters.
Additionally, we want to know how close the drone can get
to the center of the window. Traj1, having a duration of
7 seconds, requires a relatively low initial acceleration to
reach the target. Conversely, Traj2, which has a duration of
5 seconds, requires a more significant initial acceleration to
reach the target. Both trajectories ensure a minimum speed
of 2 m/s when they reach the target.

A. Simulation Results
After obtaining trajectories using our sensitivity Python

framework, dynamic simulations have been carried out in
Gazebo thanks to the software in the loop (SITL) feature of
PX4, which allows to simulate the autopilot and communi-
cate through a ROS 2 application. This application reads the
desired trajectory from a csv file, and it sends the series of
setpoints (position, velocity, and acceleration) to the drone.

Starting from the default model of the Iris quadrotor, we
performed a simulation running with the nominal parameters.
Then, we carried out Np = 11 simulations using uncertain
parameters p generated by uniformly sampling the inner

4https://pybullet.org/
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green trajectories, while the nominal trajectory tracking (i.e. when p = pc) is denoted in red, all sharing an origin which is the black sphere. Parameters
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volume of the ellipsoid (6). This is done for Traj1 and
Traj2 and for both INIT and OPTa cases. The adjustments
of the parameters were made by modifying the Iris URDF
model. The uncertainty intervals δpi for the matrix W are
chosen relative to the nominal parameters pc as δkf = 0.1kf ,
δgx,y = 0.1l, δgz = 0.1h, and δm = 0.1m, where h is
the distance between the top and bottom plates of the drone
chassis. Thus, the optimization problem of (11) will aim at
minimizing the sensitivity of the quadrotor position r(tw) at
the instant of passing through the window center tw against
variations in the parameters kf , gx, gy , gz and m.

In our initial assessment, as depicted in Fig. 3, we present
the results for the Np “perturbed runs” for both Traj1 and
Traj2 (1st and 2nd row, respectively) under the Gazebo label
(first two columns). The plots report the different targets

reach r(tw) (red dots) that are the closest to rd(tw) (window
center) for each of the perturbed simulations (in green). The
result is a point cloud around the desired target rd(tw). It is
worth noticing that, when there is no parameter uncertainty
affecting the system (i.e. when p = pc) at nominal tracking
(in red), the drone successfully traverses the window with an
accuracy below 0.12 [m] for all the trajectories and in both
the optimized and the non-optimized cases. However, the
outcomes differ significantly for the perturbed simulations.
Specifically, the non-optimized INIT case displays greater
deviations from the desired target location rd(tw), when
compared to the optimized OPTa case, as expected.

This difference is particularly pronounced in the 2nd

trajectory, which is more challenging (due to its higher
accelerations). By referring to Fig. 4, which displays the
distance to the desired target for both trajectories, we observe
that the INIT case shows a larger average deviation of
0.14 [m] for Traj1 and 0.3 [m] for Traj2, in contrast to
the OPTa cases with averages of 0.09 [m] for Traj1 and
0.12 [m] for Traj2. Furthermore, the INIT case exhibits a
significantly larger variance, with certain samples deviating
0.42 [m] in Traj1 and 0.75 [m] in Traj2. In contrast, OPTa
samples tend to cluster around the average. These findings
emphasize the effectiveness of the optimization problem
presented in (11), which is able to capture how variations
in the parameters affect deviations in the considered states.

B. Experimental Results
After the validation of the optimization problem (11)

in simulation, we performed real experiments using the
Acanthis drone (see Fig. 5). Acanthis is an experimental



Fig. 5. Image of the experimental drone Acanthis.
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Fig. 6. Histograms of two trajectory types (left: Traj1, right: Traj2) for both
cases (INIT in blue, OPTa in red) showing the distances to the desired
target (|rd(tw) − r(tw)|) in [m] and it’s average across Np experiments
with Acanthis drone.

drone platform developed and maintained at INRIA/IRISA
Rennes that utilizes the PX4 firmware. Np = 11 perturbed
experiments were performed by physically altering the sys-
tem as depicted in Fig. 7. These perturbations were obtained
by adding some tools and weights on the extension rod of
the Acanthis drone. This allowed us to modify the set of
parameters p = (kf , gx, gy, gz, m) at each experiment. In
particular, the parameter kf is affected mainly by the tools
that we added under the motors that obstruct the airflow,
while the other parameters are affected by the weights and
location of the tools on the extension rod.

Fig. 7. Acanthis drone in its nominal state (top left), and subject to 11
distinct physical perturbations labeled as p1, ..., p11.
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Fig. 8. Experimental actuator speed comparison for Traj2: INIT (top) vs.
OPTa (bottom). The solid red line denotes nominal actuator speed, while
the dashed black line signifies the input tube upper bound (eq. 10). The
horizontal dashed red line represents the actuator limit. The dashed green
and solid orange lines depict Np perturbation runs as in Fig. 7: the solid
orange lines indicate the cases in which the actuation was saturated, and
the green dashed lines the cases in which no saturation occurred. Note how
many fewer saturation cases are present in the OPTa case vs. the INIT
case thanks to the use of the ‘input tubes’ in the constraints (11).

In the last two columns of Fig. 3, we present the results
for Traj1 and Traj2 (1st and 2nd row, respectively), both
for the optimized and non-optimized cases. Notably, it is
evident from Traj1 that the deviation is more pronounced in
the INIT case. In fact, the point cloud – representing the
different target reach locations r(tw) and denoted with red
dots in Fig. 3 – is larger when compared to the OPTa case.
Fig. 6 provides insights for Traj1 in the experiments, where
we find that the average distance to target for the INIT
case is 0.09 [m], while it reduces to 0.07 [m] for the OPTa
case. This reduction signifies an improvement of 2 [cm]
on average. Additionally, the OPTa case demonstrates less
variance, further supporting its effectiveness.

Similar results are confirmed for Traj2. As it can be
observed in Fig. 3, the deviation from the target is both
larger and more spread in the INIT case compared to the
OPTa case. Returning to Fig. 6, for Traj2, we find that the
average distance to target is about 0.19 [m] for the INIT
case while it is around 0.16 [m] for the OPTa case. However,
it is important to note that the INIT case exhibits a higher
variance with deviations reaching up to 0.31 [m], whereas the
maximum deviation in the OPTa case is around 0.21 [m].
These results highlight the significant improvements in terms
of the average distance to the target and the reduced spread
achieved with the optimized OPTa approach. In addition,
Fig. 1 visualizes the flight logs data in PyBullet for Traj2.
Collisions with the virtual window occurred 50% of the times
in the INIT case while they are reduced to 25% for the
optimized OPTa case across the 12 experiments. For a more
detailed visualization, please refer to the attached video also
available at this link.

To illustrate the impact of the input sensitivity on the
constraints in the optimization problem (11), we refer to
Fig. 8. This figure reports the normalized actuator speed
u3(t) for Traj2 in real experiments, featuring both the INIT
case (top) and the OPTa case (bottom). In the nominal
case p = pc (in red), both INIT and OPTa maintained
the actuator speeds well below their maximum limit, thus
ensuring satisfactory reaching of the target. However, the

https://youtu.be/QFnrQ_O2BiU


situation changes when the perturbations in Fig. 7 act on
the drone. In the non-optimized INIT case, a considerable
number of experimental perturbed runs (in orange) quickly
reached saturation of the maximum speed limit. In contrast,
the OPTa case displayed a quite better behavior, with
only one of the Np perturbations reaching saturation at
the beginning (corresponding to p8 in Fig. 7), potentially
exceeding the predefined range of 10% deviation as per
eq. (5). Furthermore, we observed that the actuator behavior
(normalized speed) in the OPTa case generally remained
within the upper bound of the input tube (indicated by
the dashed black line) obtained from the input sensitivity
matrix (4). This highlights the significance of including input
constraints (with their ‘tubes’) to ensure robustness against
parameter variations of the inputs, particularly for aggressive
trajectories such as Traj2.

V. CONCLUSIONS
In this paper, we have experimentally validated the op-

timization problem in which the effect of parametric un-
certainties in a quadrotor model (quantified by the notion
of closed-loop state sensitivity) can be minimized by acting
on the reference trajectory to be tracked. We selected two
distinct trajectories to be tracked by the UAV “Acanthis”,
introducing real-world physical perturbations to generate pa-
rameter uncertainties. The experimental results demonstrate
the effectiveness of the proposed optimization in reducing the
effects of uncertainties stemming from physical parameter
perturbations, enabling more precise target attainment at
relatively high speeds. We also showcased the significance
of input sensitivity within the constraints of our optimization
problem. Indeed, by using the input tube in the constraints,
one can ensure the robustness of inputs against parametric
uncertainty. Future work will consider the possibility of
online replanning (e.g., within a MPC scheme) for runtime
generation of robust trajectories during flight.
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