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Abstract

Rabies control remains challenging in low and middle-income countries, mostly due to lack

of financial resources, rapid turnover of dog populations and poor accessibility to dogs.

Rabies is endemic in Cambodia, where no national rabies vaccination program is imple-

mented. The objective of this study was to assess the short and long-term vaccination-

induced immunity in Cambodian dogs under field conditions, and to propose optimized vac-

cination strategies. A cohort of 351 dogs was followed at regular time points following pri-

mary vaccination only (PV) or PV plus single booster (BV). Fluorescent antibody virus

neutralization test (FAVNT) was implemented to determine the neutralizing antibody titer

against rabies and an individual titer�0�5 IU/mL indicated protection. Bayesian modeling

was used to evaluate the individual duration of protection against rabies and the efficacy of

two different vaccination strategies. Overall, 61% of dogs had a protective immunity one

year after PV. In dogs receiving a BV, this protective immunity remained for up to one year

after the BV in 95% of dogs. According to the best Bayesian model, a PV conferred a protec-

tive immunity in 82% of dogs (95% CI: 75–91%) for a mean duration of 4.7 years, and BV

induced a lifelong protective immunity. Annual PV of dogs less than one year old and sys-

tematic BV solely of dogs vaccinated the year before would allow to achieve the 70% World

Health Organization recommended threshold to control rabies circulation in a dog
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population in three to five years of implementation depending on dog population dynamics.

This vaccination strategy would save up to about a third of vaccine doses, reducing cost and

time efforts of mass dog vaccination campaigns. These results can contribute to optimize

rabies control measures in Cambodia moving towards the global goal of ending human

death from dog-mediated rabies by 2030.

Author summary

Rabies is a fatal zoonotic viral disease. Dog vaccination is recognized as the most cost-

effective and sustainable solution to rabies prevention. Cambodia is endemic with canine

mediated rabies, that would cause to around 800 human death each year. This country

also has a large owned but mostly free-roaming dog population that makes efficient mas-

sive vaccination hard to achieve. In this study, we vaccinated 351 dogs with or without

booster one year later. We then used serological assessed the short and long-term vaccina-

tion-induced immunity in these dogs, and Bayesian modeling to identify a vaccination

strategy adapted to the Cambodian dog population characteristics. Yearly primary vacci-

nations for young dogs, supplemented with a single booster injection of these dogs prom-

ises to achieve 70% dog vaccination coverage effectively and efficiently, and control rabies

circulation in dog populations. Applying this new strategy running for five more years

after the vaccination coverage of at least 70% is achieved, this implies per 1,000 dogs

between 2000 and 5 000 saved vaccine doses depending on dog population characteristics.

Our results could help controlling rabies in Cambodia and potentially be adopted by

other countries facing similar challenges.

Introduction

Human infection with rabies virus (RABV) causes almost always fatal encephalitis when not

treated by timely administration of the vaccine before the onset of symptoms. It still affects

more than 150 countries leading annually to estimated 59,000 deaths, half of them occurring

in Asia ([1]. Up to 99% of human rabies cases are acquired from bites of infected dogs. Since

dogs are the main reservoir and source of infection for humans, dog vaccination is recognized

as the most cost-effective and sustainable solution to rabies prevention [2]. Elimination of

rabies in domestic dog populations can be achieved with�70% dog vaccination coverage each

year for at least five years [3]. Annual vaccination using injectable inactivated virus vaccines is

recommended for all dogs irrespective of age and health status. However, vaccination coverage

may be limited through insufficient vaccine delivery during vaccination campaigns, the disap-

pearance of vaccinated dogs and/or the introduction of unvaccinated, susceptible dogs

through dog movements, trade and demographic processes [4]. The vaccine-induced protec-

tion can be compromised by immuno-suppression through malnutrition, infection and other

stressors [4,5]. Dog vaccination has been successfully used in many industrialized countries to

prevent dog-mediated rabies [3]. However, in low- and middle-income countries (LMICs),

controlling and eventually eliminating rabies is more challenging due to the lack of financial

resources to sustain vaccination and surveillance over longer time, as well as lack of accessibil-

ity to human treatment and dog vaccination especially in rural communities where most rabies

cases occur.
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Several inactivated canine vaccines are licensed in the EU and US. Most vaccines, available

in different formulations, are intended to induce immunity for one to three years [6]. The indi-

vidual immunization rate induced by vaccination can be monitored by measuring neutralizing

antibodies (nAb) as they are a proxy for protection [5]. These antibodies can be measured by

virus neutralization assays such as rapid fluorescent focus inhibition test (RFFIT) or fluores-

cent antibody virus neutralization test (FAVNT) [7]. A nAb titer of� 0�5 IU/mL is considered

protective in humans [3] and dogs [7]. The amount of nAbs produced after vaccination can be

influenced by individual dog characteristics like age [5,8–10], health status [4,5], sex and neu-

tering status [4,8,10] as well as size and breed [8,9,11,12]. Even vaccination studies of labora-

tory bred dogs of the same age, breed and health status showed high individual variability of

immune reaction and nAb production [5,13].

The factors influencing vaccine-induced protection are complex, and serological profiles

after vaccination can oscillate around the binary threshold of nAb titer, often due to inter-

assay variability [14–17]. Traditional statistical approaches might not fully capture the variabil-

ity and interdependencies among dog demographics, vaccination history, and serological

responses. The application of latent class models (LCMs) in a Bayesian framework is a strategic

choice to assess test sensitivity and specificity in the absence of a gold standard, and Bayesian

methods are commonly used to fit this type of modelling [18]. Additionally, these models are

well-suited for heterogenous populations where individuals can be categorized into latent

groups based on unobservable characteristics. This approach allows us to model the actual

immune states of individuals as “latent” states, providing a more nuanced understanding of

the underlying serological dynamics.

Rabies is endemic in Cambodia, a Southeast Asian country where around 75% of the people

live in rural areas [19]. The dog population in Cambodia is extremely dense, with an estimated

dog-to-human ratio of 1:3–4 [20,21]. There is no national rabies vaccination program nor

canine population management. It is estimated that annually over 800 people die from rabies

but this is likely an underestimation as this calculation is based on data available only for the

capital city Phnom Penh and surrounding regions [22]. Like in many endemic countries,

financial constraints, the possibility of handling aggressive dogs, and their low survival rate

[21], raise questions about the best strategy for feasible and cost-effective annual mass dog vac-

cinations (MDV).

A multi-partner rabies control program started in 2017 to reduce human rabies cases in the

Cambodian provinces Kandal and Battambang. The first achievements of this program were

an estimation of demographic parameters of the dog populations, a deep understanding of

dog-human relationships and dog management practices, as well as the estimation of the

annual bite incidence rate and associated risk factors [21]. Furthermore, this program aimed

to design a dog vaccination strategy accounting for the dog demography in Cambodia and the

vaccination-induced immunity of these dogs. To achieve this goal, we used post-vaccination

serological follow-up accompanying the above-mentioned dog demography survey, and

applied Bayesian modeling to evaluate the individual duration of protection against rabies and

to compare two different alternative vaccination strategies: annual primary vaccination of

young dogs (<1 year old) vs annual primary vaccination of young dogs (<1 year old) with sys-

tematic booster vaccination solely of dogs that have been vaccinated the year before.

Materials and methods

Ethics statement

We followed WOAH guiding principles on animal welfare [23]. The protocol of the survey has

been approved by General Directorate of Animal Health and Production of Cambodia
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(GDAHP). All sampling sessions and interviews were implemented by trained Institut Pasteur

du Cambodge officers with supervision of GDAHP agents, local veterinary services and local

village authorities. All data were anonymized.

Vaccination and serological follow-up

The details of the demographic survey performed in Kandal and Battambang provinces are

provided in Chevalier et al. [21]. During this survey, at enrollment (T0), amenable dogs were

vaccinated against rabies via subcutaneous injection of Rabisin (Merial, Lyon, France) pro-

vided by the World Organization for Animal Health (WOAH) through the General Director-

ate of Animal Health and Production of Cambodia (GDAHP). Before, venous blood was

collected either from jugular or brachial vein, serum was separated from the clot by centrifuga-

tion and then was stored at -20˚C until serological analysis.

The study included two groups of dogs (Fig 1). Group 1 (n = 221) relates to dogs with an

individual blood sample at enrollment (T0) before these dogs received their primary vacci-

nation. These dogs were formally re-identified with their owners, and re-sampled approxi-

mately every 6 months for up to 1.5 years (18 months, T18). Dogs of group 2 (n = 130) were

primary vaccinated (T0) without a prior blood collection. These dogs were re-captured and

re-identified one year after their primary vaccination, a blood sample was collected and

they received a booster vaccination (T12). An additional follow-up blood collection of

group 2 dogs was performed 14 months (T26, n = 130), and 22 months (T34, n = 22) after

booster vaccination.

Fig 1. Vaccination and follow-up schedule for study groups (created by authors using the licensed program BioRender (http://www.biorender.com).

Dogs without documented previous rabies vaccination (grey) received their primary vaccination (T0, grey). For group 1 follow-up blood samples were taken

seven months (T7), around one year (T12-14) and 1.5 years (T18) after primary vaccination. Due to logistic restrains the follow-up sequence differs (blue)

within this group between dogs from Kandal (n = 16) and dogs from Battambang (n = 205). From dogs of group 2, a blood sample (T12) was collected one year

after their primary immunization to document the immune response of this primary immunization. Afterwards these dogs received a booster vaccination

(green), and additional samples were collected (green) more than one year (T26) and three years (T34) after the booster vaccination to monitor its effect on the

immune response.

https://doi.org/10.1371/journal.pntd.0012089.g001
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Fluorescent antibody virus neutralization test (FAVNT)

FAVNT was used to determine RABV nAb titer in dogs at T0, T6, T12, T18, T24 and T36. The

assay was performed following WOHA guidelines [7,24]. Antibody titers of� 0�5 IU/mL were

considered positive [25].

Statistical model

Age of the dogs at primary vaccination was categorized in four groups: <12 months, 12–24

months, 24–48 months and>48 months old based on the 25th, 50th and 75th percentiles of the

age distribution. The body condition score (BCS) was categorized as “skinny” for BCS<4,

“normal weight” for BCS 4–6, and “overweight” for BCS>6.

Subsequently, the term of ‘protective immunity’ is used to refer to an immune state indi-

cated by a positive FAVNT result of�0.5 IU/mL as this is indicated by the World Organiza-

tion for Animal Health as a reasonable level of seroconversion after rabies vaccination [26].

We modeled the immune state of each dog in the study cohorts using three states: susceptible

(denoted S), having acquired a protective immunity after a primary vaccination (denoted V1),

or after a booster vaccination (denoted V2). As RABV is endemic in Cambodia, some dogs

could have been naturally exposed to RABV prior to, or during the study, and therefore have

developed a non-lethal infection and subsequent immunity. This may bias the analysis. To

control for this bias, we explicitly represented natural exposure to RABV in the model, and

added a 4th immune state for dogs that acquired a protective immunity after a natural infection

(denoted R). In order to create a usable, simplified model we assumed that in this latter case,

the protective immunity was lifelong. Transitions between immune states are described in

Fig 2. Vaccination of a susceptible dog (naïve, or with lost protective immunity after primary

or booster vaccination) induced a protective immunity (state V1) with a probability q. The

protective immunity is subsequently lost with a rate ρ1. We assume that the dogs experience a

constant rate of immunity loss post-vaccination, suggesting that the duration of immunity fol-

lows an exponential distribution. This hypothesis is particularly relevant in the Cambodian

context, given the short life expectancy of dogs there. We assumed that dogs that received a

booster vaccination (state V2), while already protected since primary vaccination, lost their

protective immunity with a different rate (ρ2). All dogs were assumed exposed to RABV via

natural infection (or to a rabies-like lyssavirus inducing a cross-protection) with a force of

infection λ. When exposed, susceptible dogs may develop a non-lethal form with a probability

π (or died otherwise with a probability of 1-π). They then acquired lifelong protective immu-

nity (R state). We assumed that FAVNT allowed the detection of protective immunity (nAb

titer� 0�5 IU/mL) in vaccinated dogs (states V1 and V2) with a probability p, and that dogs

that acquired a natural immunity (R state) were always positive. The specificity of the FAVNT

was assumed perfect.

The dynamics of the different immune states in a cohort of dogs receiving a primary vacci-

nation at t = PV, and a booster vaccination at t = BV, is described by the following equations

(with 1b the dummy function: 1b = 1 if b is true, and 0 otherwise):

dS
dt
¼ � lS � 1ðt¼PVÞorðt¼BVÞqSþ r1V1 þ r2V2

dV1

dt
¼ 1ðt¼PVÞorðt¼BVÞqS � V1 r1 þ lð Þ � 1t¼BVV1
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dV2

dt
¼ 1t¼BVV1 � V2 r2 þ lð Þ

dR
dt
¼ l pSþ V1 þ V2ð Þ

The model was not identifiable since λ and π always appeared in a multiplicative way. We

therefore defined three scenarios for π, the probability to acquire/develop a non-lethal infec-

tion: the estimate of 0�51 proposed by Hampson et al. [27], and two arbitrary extreme values of

0�05 and 0�95. The five remaining parameters of the model (q, λ, ρ1, ρ2 and p) could then be

estimated for each scenario. We analyzed the influence of three individual dog characteristics

(age group, BCS, and sex) on the five model parameters. For a given dog characteristic and a

given parameter, we compared the model in which the parameter changed according to the

dog characteristic, with the reference model in which the respective parameter value was the

same for all dogs. We thus successively compared 15 alternative models (five

parameters × three individual characteristics) with the reference model, using the Bayes’ factor,

Fig 2. Probabilistic model of the evolution of dog rabies and serological status during the study period. The whole dog population is separated

in 4 states (indicated by squares): S susceptible dog; V1 dog with protective immunity induced by primary vaccination; V2 dog with protective

immunity induced by primary and subsequent booster vaccination; R dog with protective immunity induced by a non-lethal infection. The

serological results (by FAVNT) are indicated by circles: N negative FAVNT (<0�5 IU/mL); P positive FAVNT (�0�5 IU/mL). The parameters

describing the model dynamics are: λ average force of infection; π probability of non-lethal infection; q probability of acquiring protective

immunity after vaccination; ρ1 rate of loss of protective immunity induced by primary vaccination; ρ2 rate of loss of protective immunity induced

by primary and subsequent booster vaccination; p sensitivity of the serological test for dogs in V1 or V2 status. (*) Sensitivity is assumed perfect for

animals in the R state. (**) Specificity is assumed perfect. (***) Dogs in the V1 state are assumed immuno-competent (since they have acquired a

protective immunity after primary vaccination), therefore, all are assumed to enter the V2 state after the booster vaccination.

https://doi.org/10.1371/journal.pntd.0012089.g002
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interpreted according to the usual rules: the strength of evidence in favor of the alternative

model (relative to the reference model) was considered substantial if 3<BF<20, strong if

20<BF<150, and very strong if BF>150. Models were fitted in a Bayesian Markov Chain

Monte Carlo (MCMC) framework. Priors were non-informative. We used R version 4.2.1 [28]

and RStan version 2.21.5 [29]. R and Stancodes, and raw data- group1a (n = 205), group1b

(n = 16) and group2 (n = 130) are provided in S1 Text.

Evaluation of vaccination strategies

We used the best model estimates to compare two vaccination strategies: (A) annual primary

vaccination of dogs <1 year old; (B) annual primary vaccination of dogs <1 year old with sys-

tematic booster vaccination of dogs that have been vaccinated the year before. For each of the

strategies, we calculated the percentage of the protected population N years after the strategy

started. In this calculation, we considered only vaccine-induced immunity, and neglected nat-

ural immunity (induced by non-fatal infection or cross-protection due to infection with

rabies-like lyssavirus). Mortality rates for each dog population was assumed constant for this

preliminary analysis. Details on calculations are provided in S2 Text.

We calculated the proportion of the dogs with vaccine-induced protective immunity each

year during the first ten years, and after 20 years of implementation (i.e. after complete renewal

of the dog population). Two different Cambodian dog populations were considered: Kandal

province with a 24-months survival rate of 52%, and Battambang province with 34% as

described previously [21]. Confidence intervals (CIs) were calculated using the lower limit of

the CI of q and the upper limit of that of ρ1 and ρ2, for the lower bound, and the upper limit of

the CI of q and the lower CI limit of that of ρ1 and ρ2 for the upper bound.

Results

Cohort characteristics

In total, we included 351 dogs, where 221 dogs received a primary vaccination (group 1), and

130 dogs received an additional booster vaccination (group 2). The median age of dogs at

inclusion was 24 months (min = 1 months; max = 17 years). Overall, 78% (273/351) of the

dogs had a medium BCS, corresponding to normal weight. The male-to-female ratio was 1�26.

Serological results

Serological results were used to categorize each dog into different trajectory groups regarding

their serological status dynamics (Table 1)

Overall, 61% of the dogs had a protective immunity one year after their primary vaccina-

tion. In the dogs receiving a booster vaccination, the rate of protected dogs rose to 95% mea-

sured one year after booster vaccination. Seven dogs presented positive nAb titers (� 0�5 IU/

mL) before they received the rabies vaccination. Overall, 29% (n = 59) remained seronegative

after primary vaccination. Eighty-five dogs (41%) remained seropositive through T6 and T18,

whereas 9% (n = 19) were positive at T6 but became negative at T18, and 7% (n = 14) were pos-

itive at T6 but negative at T12. Nineteen dogs were negative at T6, but became positive at T12

(n = 14) or T18 (n = 5) without being re-vaccinated. For the dogs that received a booster vacci-

nation (group 2, n = 130) and were already seropositive T12 (n = 80), one turned negative at

T24, and 67 (84%) remained positive at T24. Among dogs that were negative at T12 (n = 50), 6

were still negative at T24. In the small cohort of dogs (n = 22) that were follow up until two

years after their booster vaccination (three years after primary vaccination, T36) 100% of dogs

remained positive over the whole study period.
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Modeling of transmission and immunity dynamics

Estimated Bayes’ factor in favor of the alternative models (in which one of the four estimated

parameters varies with one of the three dog characteristics) versus the reference model (with

all parameters having the same value for all dogs) was always <3 (Table 2). We thus selected

the reference model for further analysis.

According to the selected model, primary vaccination conferred a protective immunity in

82% of dogs (95% CI: 75–91%), for a mean duration of 1/ρ1 = 4�7 years (95% CI: 3�1–8�2

years). Booster vaccination induced a lifelong protective immunity (the lower bound of the

credibility interval was 21 years). Both results were only marginally affected by changes of the

value for the proportion of non-lethal infections (Table 3). As expected, the proportion of

non-lethal infections affected the estimated force of infection.

Evaluation of vaccination strategies

Following vaccination strategy A, 20 years after its implementation with an annual primary

vaccination of 100% of the dogs <1year old, the proportion of protected dogs was 55% (95%

CI: 44–70) and 65% (95% CI: 64–78) in Kandal and Battambang, respectively (Fig 3). With

vaccination strategy B (annual primary vaccination of<1 year old dogs with a systematic

booster vaccination of dogs that had been vaccinated the year before), the proportion of dogs

with protective immunity would reach 83% in Kandal (95% CI: 70–93%) and 85% in

Table 1. Dynamics of serological status.

Primary vaccination* Number of dogs

Time points T0 T7 T12-T14 T18 T26 T34

Trajectories of serological status N N N P n/a n/a 5

N N P N n/a n/a 7

N N P P n/a n/a 7

N P N N n/a n/a 14

N P N P n/a n/a 4

N P P N n/a n/a 19

N P P P n/a n/a 85

P P P P n/a n/a 5

N n/a N n/a n/a n/a 4

N n/a P n/a n/a n/a 10

P n/a P n/a n/a n/a 2

Seropositive dogs 3.3% (7/211) 62.0% (127/205) 61.1% (135/221) 51.7% (106/205) n/a n/a

Booster vaccination** Number of dogs

Time points T0 T7 T12-T14 T18 T26 T34

Trajectories of serological status n/a n/a N n/a N n/a 6

n/a n/a N n/a P n/a 34

n/a n/a N n/a P P 10

n/a n/a P n/a N n/a 1

n/a n/a P n/a P n/a 67

n/a n/a P n/a P P 12

Seropositive dogs n/a n/a 61.5% (80/130) n/a 94.6% (123/130) 100.0% (22/22)

* Primary rabies vaccination on T0

** primary rabies vaccination on T0 and booster vaccination on T12. N negative FAVNT (<0�5 IU/mL); P positive FAVNT (�0�5 IU/mL). n/a indicates not applicable

as no sample collection was performed on the respective time point

https://doi.org/10.1371/journal.pntd.0012089.t001
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Battambang (95% CI: 75–94%). The recommended 70% vaccination coverage would be

achieved in Battambang three years after implementation of this vaccination strategy, and in

Kandal after 5 years (Fig 3).

To calculate the vaccine doses that could be saved when our proposed second strategy

would be applied instead of annual vaccination of all dogs, we assumed an exponentially dis-

tributed life expectancy. For a vaccination campaign applying this new strategy running for

five more years after the vaccination coverage of at least 70% is achieved, this implies per 1,000

dogs an amount of 5,200 saved vaccine doses for the Kandal dog population and 2,720 doses

when applied in Battambang province (Table 4).

Table 2. Bayes’ factor based comparison of 15 alternative models under three scenarios of non-lethal infection probability upon exposure to RABV.

Estimated parameter Dog characteristic Proportion of non-lethal infections

π = 0�51 π = 0�05 π = 0�95

q Age groupa 0�01 0�02 0�01

Body conditionb 0�20 0�22 0�20

Sex 0�30 0�35 0�30

λ Age groupa 0�07 <0�01 <0�01

Body conditionb <0�01 <0�01 <0�01

Sex <0�01 0�01 <0�01

ρ1 Age groupa <0�01 <0�01 <0�01

Body conditionb <0�01 <0�01 <0�01

Sex 0�16 0�21 0�16

ρ2 Age groupa <0�01 <0�01 <0�01

Body conditionb <0�01 <0�01 <0�01

Sex <0�01 <0�01 <0�01

p Age groupa <0�01 <0�01 <0�01

Body conditionb 0�03 0�05 0�03

Sex 0�11 0�14 0�11

π probability of non-lethal infection upon exposure; q probability of acquiring protective immunity after vaccination; λ average force of infection exerted on dogs before

and during the study period; ρ1 rate of loss of the protective immunity induced by primary vaccination; ρ2 rate of loss of the protective immunity induced by primary

and booster vaccination; p sensitivity of the serological test for dogs in the V1 and V2 states. a Four age groups based on quantiles of age distribution: age < 12 months,

12–23 months, 24–48 months. b Three classes of body condition score (BCS): skinny (BCS�3), normal (BCS 4–6) and overweight (BCS >6). In the reference model,

parameter values do not depend on dog characteristics. Bayes’ factor (BF) was interpreted according to the usual rules: the strength of evidence in favor of the alternative

model (relative to the reference model) is substantial if 3< BF <20, strong if 20< BF <150, and very strong if BF >150

https://doi.org/10.1371/journal.pntd.0012089.t002

Table 3. Estimated parameter values obtained using the selected model for three scenarios of the probability of non-lethal infection upon exposure to RABV.

Parameter Unit Proportion of non-lethal infections

π = 0�51 π = 0�05 π = 0�95

q Probability 0�82a (0�75–0�91)b 0�84 (0�75–0�94) 0�83 (0�75–0�91)

λ month-1 0�003 (0�001–0�004) 0�016 (0�010–0�022) 0�002 (0�001–0�003)

ρ1 month-1 0�018 (0�010–0�027) 0�022 (0�013–0�035) 0�017 (0�010–0�026)

ρ2 month-1 0�003 (0�001–0�005) 0�002 (0�000–0�006) 0�001 (0�000–0�004)

p Probability 0�90 (0�79–0�97) 0�87 (0�82–0�91) 0�91 (0�87–0�94)

π probability of non-lethal infection upon exposure; q probability of acquiring protective immunity after vaccination; λ average force of infection exerted on dogs before

and during the study period;ρ1 rate of loss of the protective immunity induced by primary vaccination;ρ2 rate of loss of the protective immunity induced by primo- and

booster vaccination; p sensitivity of the serological test for dogs in the V1 and V2 states. a Mean of the posterior distribution. b 95% credibility interval.

https://doi.org/10.1371/journal.pntd.0012089.t003
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Discussion

We used a post-vaccination serological follow-up to investigate the development and persis-

tence of RABV nAbs in 351 dogs under field conditions in Cambodia after a single Rabisin

vaccination, with or without booster injection one year after primary vaccination. We then

Fig 3. Evolution of the proportion of protected dogs in two Cambodian provinces. For the dog population of the Cambodian provinces

of Kandal and Battambang, the proportion of protected dogs were modeled for two vaccination strategies: (A) annual primary vaccination

of animals<1 year old and, (B) annual primary vaccination of animals<1 year old and systematic booster vaccination of dogs that have

been vaccinated the year before. Plain lines indicate the mean value and grey areas show the 95% confidence intervals. Horizontal dashed

lines mark the threshold of 70% vaccination rate recommended by WOAH to control rabies circulation in a dog population, and the vertical

dashed lines indicate the year at which this threshold is achieved after implementation of the strategy.

https://doi.org/10.1371/journal.pntd.0012089.g003

Table 4. Estimation of vaccine doses for different vaccination strategies in Kandal and Battambang province.

Kandal Battambang

Duration (years) of strategy B* 10 8

Necessary vaccine doses per 1,000 dogs

Strategy B 4,800 5,280

Annual vaccination 10,000 8,000

Saved doses 5,200 2,720

* Vaccination program for five more years after at least 70% vaccination coverage was reached

https://doi.org/10.1371/journal.pntd.0012089.t004
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used Bayesian modelling to compare immunization coverage obtained using two different vac-

cination strategies: (A) annual primary vaccination of animals <1 year old and, (B) annual pri-

mary vaccination of animals <1 year old with a systematic booster vaccination of dogs that

have been vaccinated the year before.

The peak of antibody response after primo-vaccination is expected 2–3 weeks after vaccina-

tion [5,30,31]. Due to logistical constraints, this recommended sampling could not be

achieved. However, our results are in concurrence with other studies even if findings of other

studies vary greatly (Table 5). One year after the primary vaccination we observed a protective

nAb titer in 61% of the dogs. Failure to induce protective immunity with single injection in

our study appeared high, with 29% (n = 59) of dogs that received primary vaccination

remained seronegative until T18. However, loss of immunity is probably overestimated as

dogs were sampled the earliest six months after vaccination and therefore the seroconversion

rate usually determined 2–3 weeks after vaccination could not be measured timely. Addition-

ally, vaccinated dogs with a low or negative nAb level may still be protected because of cellular

immunity triggered by primary vaccination [5,32].

Measuring rabies nAbs is only a proxy for protection and might not reflect the whole spec-

trum of the immune response and protection upon a rabies vaccination. Besides humoral

immunity, vaccination induces immunologic memory even in dogs with a nAb titer< 0�1 IU/

mL as seen in laboratory RABV challenge [32].

In our study, seven dogs presented positive nAb levels (� 0�5 IU/mL) before they received

RABV vaccination. Moreover, 19 dogs were seronegative at T6, and became positive at T12

(n = 14) or T18 (n = 5) without being re-vaccinated. Vaccine-unrelated rise in nAb titers or

the presence of nAb before primary vaccination is well documented [30,33–36] and can be

explained either by (i) maternal immunity, (ii) non-lethal exposure and/or (iii) cross-reaction

due to exposure with related lyssaviruses. The presence of maternal nAbs is highly unlikely in

our study due to the age of most of the included dogs (>3 months) and the fact that rabies ani-

mal vaccination is not accessible in rural Cambodia. Maternal antibodies are unlikely to pro-

tect the pups longer than six weeks after birth [37]. Several RABV challenge trials had the issue

of insufficiently virulent virus strains [32,38], building evidence for non-lethal RABV expo-

sure. Our dogs with nAb prior to rabies vaccination could also have been exposed to a non-

rabies bat lyssavirus, widely distributed in South-East Asia [39–41], as some of them are

known to cross-neutralize canine RABV [42,43].

Several dogs presented unexpected serological profiles oscillating between seropositive

and–negative results. Several explanations can be put forward (vaccination failure, non-lethal

Table 5. Studies on the immunogenicity of rabies field primary vaccinations.

Study site Vaccine Method used for serology Number of tested dogs Duration of study Observed seroprevalence Reference

Peru Rabisin RFFIT 198 1 year 97% [49]

Finland Madivak RFFIT 47 1 year 91% [50]

Finland Rabisin RFFIT 85 1 year 84% [50]

Tunisia Rabisin RFFIT 200 1 year 73% [51]

Thailand Rabdomun RFFIT 31 1 year 72% [52]

Cambodia Rabisin FAVNT 221 1 year 61% this study

Japan Various* RFFIT 92 1 year 51% [53]

Sri Lanka Nobivac RFFIT 110 1 year 50% [54]

Indonesia Rabisin ELISA (Pusvetma, Indonesia) 171 90 days [55]

* 6 different commercially available rabies vaccines, all derived from the RC-HL strain

https://doi.org/10.1371/journal.pntd.0012089.t005
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infection, lack of sensitivity of the test) but confirm again that a positive result allows to iden-

tify a protected dog but that a negative result does not allow to conclude that the dog is suscep-

tible. The fact that the serological test does not allow to detect 100% of protected dogs was

considered a lack of sensitivity in the Bayesian model. This model therefore allowed (i) to

explicitly represent the non-observable biological status of dogs and (ii) to evaluate the sensi-

tivity of serological testing. According to the model, the mean duration of immunity conferred

by primary vaccination was 4�7 years for 82% of vaccinated dogs. A booster injection one year

later allowed to induce a protective immunity when the previous injection failed, and to induce

a lifelong protective immunity in dogs already seropositive after primary vaccination. Our

models’ predictions extend beyond the observed data timeframe. The short life expectancy of

dogs in Cambodia justifies our assumption of a constant rate of immunity loss post-vaccina-

tion, leading to an exponential distribution for the immunity duration. This assumption might

not hold in other contexts where dogs experience longer life expectancies. Therefore, validat-

ing this hypothesis with more extended follow-up studies is crucial for broader application.

However, the estimated duration of immunity in our study aligns with findings from previous

studies. For instance, a challenge trial showed that 80% of dogs survived more than 6 years

post-primary vaccination [32]. Furthermore, it was observed that dogs with expired vaccina-

tion status exhibited an antibody response to booster rabies vaccination comparable to that of

dogs with up-to-date vaccination status [44]. Given the fast turnover of dog populations in

rabies-endemic countries, this generic approach could be adaptable for use in these regions.

Our assumption of constant mortality rate may lead to overestimate the proportion of dogs

with protective immunity. While the current approach, which overlooks age-related variations

in mortality rates and rates of loss of protective immunity, is preliminary and in need of refine-

ment through extended follow-up, its genericity makes it potentially applicable to other rabies-

endemic countries with rapid dog population turnover.

Based on the declining seropositivity rate after one year, booster vaccinations of dogs are

recommended [13]. Dogs that are primary vaccinated when < six months should receive a

booster dose not later than one year following administration of the first dose [6]. Annual par-

enteral vaccination of�70% of the dog population is effective to control rabies but difficult to

achieve in LMICs due to lack of adequate resources, and aggressive and/or free-roaming dogs.

Several surveys from focal point vaccination campaigns showed that 15–40% of adult dogs

were not brought to veterinarians because they were hard to handle [45–47]. The above-men-

tioned constraints may result in a declined vaccination coverage to an insufficient 20–45%

[27].Very few surveys have been carried out under field conditions, based on immunity dura-

tion and taking into account dog population dynamic to propose pragmatic vaccination strate-

gies. A study in Kinshasa, where the dog population characteristics are close Cambodia’s dog

population, demonstrated that systematic vaccination of puppies as well as annual vaccina-

tion of dogs aged between 3 and 15 months would be an efficient alternative to annual

MDV [48]. In Cambodia, most dogs are owned but are also free roaming and are therefore

often hard to handle. In contrast, younger dogs are more reachable since they mostly stay

around their owner’s houses and are easier to handle. Here, we show that the proportion of

protected dogs would reach 83% in Kandal and 85% in Battambang with an annual vaccina-

tion of <1 year old dogs, and a systematic booster injection of dogs that had been vaccinated

the year before. This strategy would allow controlling rabies transmission in both investi-

gated dog populations within 3–5 years. We estimated 14–34% of vaccine doses required for

annual vaccination of all dogs could be saved by implementation of strategy B. Furthermore,

not only vaccine doses would be saved but also personnel costs would be reduced with strat-

egy B as less dogs need to be vaccinated and younger dogs (<12 months) are usually easier

to handle than adult dogs.
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The here described model is the first one outlining the life-long immunity induced in dogs

after only two vaccinations and its implications for rabies control. These results can contribute

to adapt control measures in Cambodia, but also in other countries with similar dog popula-

tion characteristics moving towards the global goal of ending human deaths from dog-medi-

ated rabies by 2030.
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55. Wera E, Warembourg C, Bulu PM, Siko MM, Dürr S. Loss of binding antibodies against rabies in a vac-

cinated dog population in Flores Island, Indonesia. PLOS Neglected Tropical Diseases (2021) 15:

e0009688. https://doi.org/10.1371/journal.pntd.0009688 PMID: 34492033

PLOS NEGLECTED TROPICAL DISEASES Dog rabies serological follow-up Cambodia

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012089 April 18, 2024 16 / 16

https://doi.org/10.3201/eid1102.040691
https://doi.org/10.3201/eid1102.040691
http://www.ncbi.nlm.nih.gov/pubmed/15752440
https://doi.org/10.3201/eid2001.130813
http://www.ncbi.nlm.nih.gov/pubmed/24377728
https://doi.org/10.1128/JVI.75.7.3268-3276.2001
https://doi.org/10.1128/JVI.75.7.3268-3276.2001
http://www.ncbi.nlm.nih.gov/pubmed/11238853
https://doi.org/10.3390/v11100936
http://www.ncbi.nlm.nih.gov/pubmed/31614675
https://doi.org/10.2460/javma.246.2.205
http://www.ncbi.nlm.nih.gov/pubmed/25554936
https://doi.org/10.1371/journal.pntd.0004221
http://www.ncbi.nlm.nih.gov/pubmed/26633821
https://doi.org/10.1016/j.prevetmed.2020.104928
http://www.ncbi.nlm.nih.gov/pubmed/32113177
https://doi.org/10.1016/j.prevetmed.2015.04.007
https://doi.org/10.1016/j.prevetmed.2015.04.007
http://www.ncbi.nlm.nih.gov/pubmed/25953653
https://doi.org/10.1016/j.prevetmed.2021.105531
http://www.ncbi.nlm.nih.gov/pubmed/34773832
https://doi.org/10.1093/clinids/10.supplement%5F4.s697
http://www.ncbi.nlm.nih.gov/pubmed/3206083
https://doi.org/10.1186/BF03547705
http://www.ncbi.nlm.nih.gov/pubmed/7572461
https://doi.org/10.1016/j.vaccine.2005.09.016
https://doi.org/10.1016/j.vaccine.2005.09.016
http://www.ncbi.nlm.nih.gov/pubmed/16213633
https://doi.org/10.1016/0264-410x%2891%2990186-a
http://www.ncbi.nlm.nih.gov/pubmed/1950096
https://doi.org/10.7883/yoken.66.17
http://www.ncbi.nlm.nih.gov/pubmed/23429079
https://doi.org/10.1186/s12917-017-1038-z
http://www.ncbi.nlm.nih.gov/pubmed/28521804
https://doi.org/10.1371/journal.pntd.0009688
http://www.ncbi.nlm.nih.gov/pubmed/34492033
https://doi.org/10.1371/journal.pntd.0012089

