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VARIATIONAL CONVERGENCE OF NONLOCAL INTEGRODIFFERENTIAL
DIFFUSION PROBLEMS OF GRADIENT FLOW TYPE

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND GERARD MICHAILLE

ABSTRACT. In this paper we continue our study of nonlocal problems of gradient flow type
that we developed in our previous papers [AHMM?23, [AHMM24]. We consider here nonlocal
integrodifferential diffusion problems. We present existence, uniqueness and compactness
results and investigate stochastic homogenization.
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1. INTRODUCTION

Consider a compactly supported radial function J : R? — [0, o[ and the corresponding
integrals §, J(z —y)(u(t,y) — u(t,z))dy at time t and §, J(z —y)(u(t —7,y) —u(t — 7, x))dy
at some past time ¢ — 7 with 7 > 0. In many examples of population dynamics, u(t,z)
represents the density of some population at time t located at x in a bounded domain
O < R, and the term

I(t,x) = f I — y)(ult,y) — u(t, 2))dy

accounts for the population flux of individuals at time ¢ in O which jump from y to x in O.
The second population flux

(t,x) fJx— u(t —1,y) —u(t —1,2))dy
is superimposed at each t on the first flux 7(¢,z) with a delay time 7. It may represent a

maturation period, a resource regeneration time or an incubation period. Assuming that 7
is small, the first order approximation J(t,z) = 4,(t + 7,z) ~ %-(t,x) + 7Z>(t,z) together

with jT(O -) = 0 yields to
1 —t
jT(t7'r) = __J €xp <S > j(S,LE)dS-

T Jo T

Consider a term F'(t) which accounts for the source of the population growth at (¢,z). Then,
the differential form of the balance law leads to the following nonlocal equation:

R (*=) sts.21as = oo

0 T

Noticing that 7(t,z) = =V 7 (u(t,z)), where

f |, 7= tatt.) = ate.)Pacdy

and adding a suitable initial condition wug(x), we see that wu(t,x) satisfies the Neumann-
Cauchy homogeneous nonlocal problem of the type:

t

flt (t,2)+V 7 (u(t, ))+% Jexp (874) V7 (u(s,z))ds=F(t) for £'-a.a.te€[0,T]

0

(1.1)
u(0,z) = up(x).

Thus, motivated by the dynamic of the nonlocal flux of populations flowing in random
medium, and presenting some delay time, we continue our study of nonlocal problems of
gradient flow type that we developed in our previous papers [AHMM23|, [AHMM?24] by con-
sidering stochastic homogenization of nonlocal integrodifferential diffusion problems of type
(1.1) with a suitable scaling depending on € > 0. More precisely, given (Q2, #,P) a complete
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probability space, T'> 0 and O < R? a bounded open domain with Lipschitz boundary, we
are interested in the stochastic homogenization as € — 0 of the problems
du¥ t
Ue (t)—l—ng(w,u‘E”(t))—kf K(t — 8)V I(w,ul(s))ds=F.(w,t) for L'a.a. te[0,T]
(7) :
ug(0) = u. € L*(0),

£

where X is a general smooth kernel. For each ¢ > 0, let F. : Q2 x [0,T] — L*(O) be a random
source and let Z : Q x L?*(0) — [0, 0] be given by

)= g [ [ 9 (022522 (MO

with a random density J : Q@ x R4 x R x R? — [0, oo[. For the meaning of the scale parameter
e we refer to [AHMM24l Section 5|. Roughly, we prove (see Corollary that as ¢ — 0,
(P¥) converges almost surely, in a variational sense, to a standard (local) homogenized
problem

du®
(g)bljom) dt
u?(0) = uf € dom( Fom(w,-)).

The density of the quadratic inegral functional A : 2 x L*(O) — [0, ] is defined as the
limit of a suitable subadditive process already considered in [AHMM24, Propositions 3.14
and 3.17]. The proof is based upon a general compactness result (see Theorem with
respect to the Moscoxweak I'-convergence for problems of the type:

du,
(2.4
u:(0) = ug. € L*(0)

where, for each ¢ > 0, &.,%. : L*(0O) — [0, [ are convex and Fréchet-differentiable and
satisfy the following condition: (V&.(u), V&.(u)) = ozHV?E(u)H%Q(O) for all u € L*(O) with
a > 0 independent of €.

— () + V. hom (w, u” ))—i—foi;((t — 8)Vhom (w, v (s))ds=F (w, t) for £ -a.a.t € [0,T]

(t) + V& (uc(t) f K(t — s)VG.(u.(s))ds = F.(t) for L'-a.a. t€|0,T]

The plan of the paper is as follows. Section [2| is devoted to existence, uniqueness (see
Theorem and compactness (see Theorem [2.2)) for problems of the type (P.). After
specifying in 1| the framework of our study, Theorem [2.1} u and Theorem are stated and
proved in and 2.3 respectively. Section [3]is devoted to stochastic homogemzatlon In
we spemfy the probablhty setting, and by applying Theorem we obtain existence
and uniqueness of solutions for problems of the type (2¢), see Corollary 3.5 Finally, the
almost surely variational convergence as ¢ — 0 of (%) to (™) is stated (see Corollary

3.9) and proved, by using Theorem in §3.2]

For convenience of the reader, in the appendix we recall some classical definitions and results
that we use in the paper.
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Notation. Throughout the paper we will use the following notation.

e The Lebesgue measure on R? with d € IN* is denoted by #? and for each Borel set
A = R% the measure of A with respect to £¢ is denoted by ZL4(A).

e The class of bounded Borel subsets of R? is denoted by 9, (R?).

e The space of continuous functions from [0, T'] to L*(O) is denoted by C([0,T]; L*(O)).

e The space of absolutely continuous functions from [0,7] to L?(0O) is denoted by
AC([0,T7; L*(0)).

e By u, — u in C([0,T]; L*(O)) we mean that hm SUPsefo71 |Un(t) — u(t)]|z2(0) = 0.

. By U, — u in LQ([O T]; L*(O)) we mean that for every v € L*([0,T]; L*(0)),

So Cun (), v(t)ydt — So (u(t), v(t))dt as n — oo, where (-, -) denotes the scalar product
in L (O)

2. EXISTENCE, UNIQUENESS AND COMPACTNESS FOR INTEGRODIFFERENTIAL DIFFUSION
PROBLEMS OF GRADIENT FLOW TYPE

2.1. Preliminaries. Given T' > 0 and &,% : L*(O) — [0, [ be two convex and Fréchet-
differentiable functionals, we consider the following integrodifferential diffusion problem of
gradient flow type:

du
) O+
u(0) = ug € L*(0),

VE&u(t)) + K+ (V& ou)(t) = F(t) for Lla.a. te[0,T]

where
K+ (V& ou)(t) := L K(t — s)(VE& ou)(s)ds = L K(t — s)VE(u(s))ds

with K € C*([0, T; [0, ).
The map F : [0,T] — L?*(O) is Borel measurable and satisfies the following condition:
(R) F e L*([0,T]; L*(O)) n AC([0,T7]; L*(0)).
The functionals &, % : L*(0) — [0, o[ are convex and Fréchet-differentiable and satisfy the
following conditions:

(Dy) VE(0) = 0;
(Dy) there exists C' > 0 such that for every u,v € L*(0),

IVE(u) = VE(0)|r200) < Cllu = 0|20
(DY) there exists o > 0 such that for every u € L*(0),
(V&(u), VE(u)) = a|VE ()72 ).

From now on, the class of Borel maps F : [0,7] — L?*(O) (resp. the class of convex and
Fréchet-différentiable pair of functionals (&,%) with &, & : L2(O) — [0, 00[) verifying

(vesp. [(D1)H(D2)| and [(Dg))) is denoted by Hmy (resp. AooHmaHDT)-
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2.2. Existence and uniqueness. The problem (%) can be equivalently rewritten as fol-
lows:

d
) + VE@t) = G(t,u) for L-aa. tel0,T]
P) dt
(
u(0) = ug € L*(O)
with G : [0, T] x L*([0,T]; L*(O)) — L?*(O) given by
G(t,u) := F(t) — K= (VZ ou)(t). (2.1)
The following theorem establishes the existence and uniqueness of a solution to problem ().
Theorem 2.1. If|(R)| and|(D,)H(Ds)| hold, then there exists w e C([0,T]; L*(O)) such that:

e W is the unique solution of (P);
o V& ome L*([0,T]; L*(0));
o & e L2([0,T]: L*(0));

(R) u admits a right derivative d;—tﬂ(t) at everyt € [0, T which satisfies d;—f(t)+vg(u(t)) =
G(t,u).

Proof of Theorem 2.1l First of all, by [[Dy)] for every u,v € C([0,T]; L*(O)) and every
T€[0,T],

1K = (V& ou) = K= (VG o)l oor.200)) < Cllu = vleqorrz0) (2:2)

with C := C’Xép K(t)dt. Fix any u e C([0,T]; L*(O)) and consider the following problem:

@(t) + V&((t)) = G(t,u) for L'-a.a. te[0,T]

CORE
v(0) = ug € L*(0).

By [[R)] [[D1)] and (2.2) it follows that
T T

fo Gt w) |22 0t < 2TC ul o g020 + 2 f |F ()]s 0yt < o0,

and so G(-,u) € L*([0,T]; L*(O)). Hence, by [ABMI14, Theorem 17.2.5, pp. 701], the
problem (£,) admits a unique solution Au € C([0,T]; L*(O)). This establishes the existence
of a map A : C([0,T]; L*(O)) — C([0,T]; L*(O)) which, to each u € C([0,T]; L*(0O)),
associates the unique solution Au of (%,).

Step 1: existence and uniqueness. To prove that (%) has a unique solution u €
C([0,T]; L*(0)) it is sufficient to establish the following:

(C) there exists n € IN* such that the iterated map A”™ is a strict contraction.

Indeed, implies that A has a unique fixed point w € C([0,T]; L?*(O)) which is a solution
of (2). On the other hand, if @ € C([0,T]; L*(0)) is another solution of (%), then @ and A%
are two solutions of (%;). Thus AU = @ by uniqueness of the solution of (£;). This means
that u is a fixed point of A. Consequently @ = u because u is the unique fixed point of A.
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Let us prove (C). Fix any u € C([0,T]; L*>(O)) and any v € C([0,T]; L*(O)). Then, by

definition of A, we have:

dAu

o ——(t) + V&(Au(t)) = G(t,u) for Ll-a.a. t €[0,T]; (2.3)
dAv
pm —(t) + V&(Av(t)) = G(t,u) for L1-a.a. t € [0,T]; (2.4)
Au(0) = Av(0) = up. (2.5)
From and , as V& is monotoneﬂ we see that
<dC/l\Tu(T) - %( ), Au(T) — AU(T)> <{G(r,u) — G(,v), Au(T) — Av(T))
for #l-a.a. 7€ [0,T]. Hence

L d HAU( ) — A/U(T)H%Q(O) < {(G(1,u) — G(7,v), Au(T) — Av(T)).

Fix any ¢ € [O,T]. For each s € [0,t], by integration over [0,s] and by using (2.4) and
Cauchy-Scharwz’s inequality, it follows that

[Au(s) — Av(s HLz J (G(T,u) (7,0), Au(T) — Av(T))dr

L IG(7,u) = G(7,0)| 200y |[Au(T) = Av(T)| L2(0)dT.

From Lemma (that we apply with p = 2, a = 0, ¢(:

) = [Au(-) = Av(-)||L2(0) and
m(-) = |G(-,u) — G(-,v)|2(0)) we deduce that for every s € [0, 1],

[Au(s) = Av(s)| r2(0) < Ls |G(1,u) = G(7, )| 20)dT. (2.6)

On the other hand, taking (2.1)) and (2.2)) into account, we see that for every 7 € [0, s],
|G(r,u) = G(7,0) | 20 [ % (VG ou) (1) = K+ (VE 00)(7)] 120
IK + (VZ ou) = K+ (VE 0 0)|co..0200)

N

N

< Cllu—v|eqorgsz20))-

Consequently, for every s € [0, ],
S S
| 166G - 6ol dr < €[ Ju=vlepmopdr
0 0
t
< CJ Hu — U”C([O,T];L2(O))d7— (27)
0

As & : L?(0) — [0, o] is assumed to be convex and Fréchet-differentiable, V& is monotone, i.e. (V& (u)—
V&), u—v) =0 for all u,v e L?(0).
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From (2.6) and (2.7)) it follows that for every u,v € C([0,T]; L*(O)) and every t € [0,T7,

t
1Au — Av|cqo,n:02(0)) < CJ |l — v]eo,m:L2(0))dT- (2.8)
0

By iterating (2.8)) we deduce that for every n € IN*, every u,v € C([0,T]; L?*(O)) and every
te 0,77,

~ i Tl Tn—1
A" — A" oqo..22(0)) < Cnf f E f lu —v]eo,m1:L20)dTn - - dT1
0 JO 0

t T1 Tn—1
nJ J . J dry -+ - dm|u — UHC([O,T];L2(O))
0 Jo 0

(C)"

= 1 lu=vleqomizo.

(@)

<

Consequently, for every n € N* and every u,v € C([0,T]; L*(0)),

. . (CT)"
|A" = A"vleqoryrzon < = u = vloqomzo),

and |(C)| follows because (éf!)n — 0 asn — o0.

Step 2: regularity. From Step 1, let u € C([0,T]; L*(O)) be the unique solution of
(%). Then V& ow € L*([0,T]; L*(0)) and so % e L*([0,T]; L*(O)) because G(,u) €
L3([0,T]; L*(0O)). According to [ABM14, Theorem 17.2.6], to establish it suffices to

show that G(-,u) € AC([0,T]; L*(O)).
First of all, for Z'-a.e. t € [0,T], we have

P VED (4) = o)) +

« (V€ o) (1),

dt it
so that
A% + (V€ o dH
H K+ (VG o) <V2 7((0)+\/T‘— IVE o@)| 2020 (2:9)
dt L2([0.7:L2(0)) dt | 22 o17)
<00.
Consequently
K+ (V€ omw) e WH([0,T]; L*(0)). (2.10)

From (2.10) and [(R)| we conclude that G(-,u) € AC([0,T]; L*(O)), which completes the
proof. W

2.3. Compactness. For eache > 0, let F. : [0,T] — L?*(O) be a Borel measurable map such
that F, € Fmy, let &.,%. : L*(0) — [0,0[ be convex and Fréchet-differentiable functionals
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such that (&.,9.) € Foomammy and consider the following integrodifferential diffusion
problem of gradient flow type:
du,

() 0t (t) + V& (uc(t)) + K= (V. ou.)(t) = F.(t) for Lla.a. te[0,T]

u(0) = ug. € L*(0).

Let F': [0,T] — L*(O) be a Borel measurable map and let &, & : L?(0O) — [0, 0] be proper,
convex and lower semicontinuous functionals that are Fréchet-differentiable on dom(0&) and
dom(0%) respectively. The following result gives sufficient conditions for the compactness of
(P.) as e — 0.

Theorem 2.2. For every € > 0, let u. € AC([0,T]; L*(O)) be the unique solution of (%.)
obtained by Theorem and assume that:

(Cy) sup &-(ugp.) < o0;

e>0

uge — ug in L*(0);
3 supHF( W20y < o0

Cy)

Cs)

Cy) F. — F in L*([0,T]; L*(0O));

CQ V& < 0;
) &
)
)

dt 1L ([0,1];L2(0))

Co

7?—>f-§

g) for every {v.}e=o © L*(O), if sup&.(v.) < o0 then {v.}.~o is relatively compact in
e>0

)

(
(
(
(
(C
(C

L*(0)f
Then, there exists u € C([0,T]; L*(O)) such that (up to a subsequence)

a. — u in C([0,T]; L*(O))
and w is a solution of the following integrodifferential diffusion problem of gradient flow type:
du
(P) dt
u(0) = up € dom(¥).
Remark 2.3. As I, € for all € > 0 we have

—(t) + V&(u(t)) + K= (V& ou)(t) = F(t) for L'-a.a. t[0,T]

dF
for all t € [0,T1].
47 om0

In particular, if hold then sup;epo 71 5UPe~g | F=(t)]|z2(0) < 0.

Proof of Theorem 2.2 Fix any ¢ > 0 and let u. € AC([0,T]; L*(O)) be the unique solu-
tion of (%.).

sup [ Fe(t) [ z2(0) < sup | F2(0)] z2(0) + sup
e>

e>0

2The conditionimplies that {©.}.~0 is equicoercive, i.e. for all {v.}c=0 = L2(0), if sup.. G- (v.) < 0
then sup,..¢ [ve|r2(0) < .
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Let 7' > 0 be such that \/?”KHL%[O,T]) < min{a, T'}, so that

a— \/%HKHL%[O,T]) > 0, (2.11)
and set £ := max{k € N : kT < T} and let {T3}icto, 0+13 be defined by

T T ifie{0,---, 0
o T ifi=0+1.
For each i € {0,--- , £}, let . € AC([0,T7]; L*(O)) be defined by
uL(t) == u.(t + Ty). (2.12)

Let Fi:[0,7] — L2(O) be defined by

€

Fi(t):=F.(t+T;) — LTi K(t+T; — s)VG.(u.(s))ds

i—1 Tht1
=F.(t+T)— Z J K(t + Ty — 5)VEG.(u*(s — Ty))ds (2.13)
k=0+Tk
with the convention Y1\ = 0 if i = 0, and let (2?) be given by
du’

(i) {

(t) + VE(ul(t)) = Fi(t) — K+ (V€. 0w )(t) for Ll-a.a. te[0,T]

£

with the convention @ (T) = uq. if i = 0. Note that the problem (%) can be equivalently
rewritten as follows:

‘ du; (t) + V& (u(t)) = GL(t) for L'-a.a. t € [0, f]
()4

with Gt : [0, 7] — L2(O) given by
GL(t) = Fi(t) — K« (VE. o) (t). (2.14)

According to Theorem , it is easy to see that for every i € {0, - , ¢}, u’ given by (2.12)
is a solution of (9!) and satisfies the following regularity condition:

d;tﬂé (t) at every t € [0,7[ which satisfies

A+
(1) +

(R!) u' admits a right derivative

VE.(u.(t)) = GL(b).
Moreover, from [AHMM22, Lemma 2.5, pp. 45] we can assert that
(R?) for every t €]0,T],

d-‘r—i 1 t d—z t dGz
’ e (1) <= f sy ds+ f ss) s
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Roughly, our strategy is as follows. We first show that for every i € {0,--- , ¢}, there exists
w e C([0,T]; L2(O)) such that (up to a subsequence) @. — @ in C([0,T7]; L%(O)). Then, we
define u € C([0,T]; L*(0)) by u(t) = u'(t — T;) if t € [T}, T;41] and we prove that u. — @ in
C([0,T]; L*(0)) and that u is a solution of (%). To implement this stategy we proceed into
three steps.

Step 1: convergence for each i. For each i € {0, -, ¢} we consider the following five
assertions:
(C1) sup G.(@l(0)) < oo
e>0

) {1 (0)}.=0 is relatively compact in L?(O);
) sup | FX(t)] 20y < oo for all t € [0,T7;
e>0
)
)

sup HF2HL2([O,T];L2(O)) <
e>0

ar?
dt

sup
e>0

~ < w’
LY([0,T];L2(0))

and the following five properties:

(P1) o [V 0 T 2o 29,220y <

P) sup %i . :
>0 L2([0,T];L2(0))
P?) there exists C; > 0 such that sup HV?E(ﬂi(t))HLZ(O) <G (\% + 1) for all ¢ €]0, T7;
e>0

(
(
(Pi) sup €.(ui(t)) < oo for all t €]0,T];
(

7 — 7w in C([0,T]: L*(0)); (2.15)
VE.ou — Vot in LX([0,T]: L*(0)). (2.16)

The goal of this step is to prove that hold for all i € {0,--- , ¢}. For this, it suffices
to prove the following three assertions:

(Iy) for i =0, are satisfied;
(I,) for every i € {0,--- , ¢}, if hold then are satisfied;

(I) for every i € {1,---,¢}, if (P%') holds and if (P¥), (P%) and (P%) hold for all k €
{0,--+ ,i— 1}, then are satisfied.

Taking into account, it is clear that is verified. So, we only need to establish
and |(I2)

Step 1-1: proving [(I;)} Fixie {0, -, ¢} and assume that hold.
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Proof of (P*)l As %' is a solution of (%!) we have

J<d_z ), V. (ul( >dt+J<V% ), V&.(ul(t))) dt

+J0 <7<*(V?Eoﬂg)(t),vyg(ag(t)»dt:fo (FL(t), VG (ul(t))) dt.

Hence

[ <vmo.vemio

o[ e oo vamona < - [ (o veo )

+ JT (Fit),VE.(ul(t)ydt.  (2.17)

First of all, as (%= (¢), VE.(T(t))) = 2= (1) we have

[ ), ) - 50010 - 5.6 < 5060

But sup..., @, (7(0)) < e by [T} hence

e>0

M} = sup < ), VE.(u(t ))>dt> < 0. (2.18)

Secondly, by |(D%)| we have

J<V% (@(1), VE-(L(t) ) dt = al| VG 0G| To g 71,1200 (2.19)
Thirdly, from the Cauchy-Schwarz inequality, we have
T
L<K*<V?EOH1)() V(1)) dt<|K = (VL. o HL2 [0,T];L2(0 )va ou HL2 [0,7:L2(0)) °
But, by an easy calculation,
| %+ (VG ow) HL2 ([0,T;L2(0)) WHKHLQ (o) [VE: 0 HL2 [0,7];22(0)) * (2.20)
hence
T
L (K * (VG 0T (1), VLT (1)) dt < VT K 2oy [V 0T Lo ianoy - (2:21)

Fourthly, we have

T
fo (FL(t), VE(TL(1) ) dt < HFEZHLQ([O,T];LQ(O)) vae © ﬂé”m([o,ﬂ;m(c))) :
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But, by

M; = Sl>1%) ||F§HL2([OJ~1];L2(O)) < o0, (2.22)
hence N
T . . . .
L (FU(t), VE(ul(t))ydt < M{|VE. o, ([051.L7(0)) (2.23)
Combining (2.17) with (2.18), (2.19), (2.21) and (2.23) it follows that
(o= VFI %l 20y ) IVE. 012, < M3+ MV 0T o ym00
Thus, for every € > 0,
AIVE om ”L2(0T .L2(0)) - M HV? o HL2 o2y ~ Mo <0,

with A = o — \/>Hi7(||L2 (0,r7) > 0 from , which yields
Proof of [(P%). As @ is a solution of (9”) we have

u (t)>dt+f <V%E(E§(t)),@(t)>dt
J< (V0T ‘rz >dt f <F Uz >dt.

—

Pi)l

Hence
da' T R Th
Fi(t dt (V. o) (), Ze ) ) dt
= f< 9% > +j<a< (V. o) (1) dt<>>

[ {vmmon, T

<HFZHL2(0T .L2(0)) s AL HL2 [0,7];22(0 >

+ M,

dul

£

dt

L2([0,T];L2(0))

du’ A

- LM (2.24)
At 2o 71:22(0))

with M} < oo and M] < o given by (2.18) and respectlvely. On the other hand,
setting

< (M{ +]| K+ (VE. o)

”L?([O,f];L?(O) )‘

M = sup V€. ou HL2( 040120 (2.25)
we have M: < o by , and by (2.20} - we see that

< Mg\/ﬂﬂcl\m([o,ﬂ)'

)

HK*( V. o HL2(0T]L2(O

From ([2.24) it follows that for every € > 0,

da. |’ iR d
- (MHM%\/EHKHL%[O,T])) ’

£

dt

£

dt

— M} <0,

L2([0,T];L2(0)) L2([0,T];L2(0))
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which implies
Proof of |(P%). First of all, from (2.9), (2. 20|) and |(P})} we can assert that
sup | %= (VG 0w, wa ([0,7}:22(0)) < &
According to (2.14)), from |(C%)[ and (2.26) we deduce that
, dG"!
M3 = sup |—= < 0.
=0 | 4t i qoye2(0))
Setting
du
M} := sup T,
20 | @t | 2o y100)
where M} < o by from we see that for every t €]0, 77,
‘ ', (t) H + Mj
< T 3
dt £2(0) \/ ([0,7];L2(0))
< —MZ + M}
\/i 4 3

with M} < oo given by (2.27). Fix any ¢ €]0, T[ By we have
d+ﬂl —z —z z —1
(LE0.VE@0) ) + (VB0 TE@0) = (G0, TE@0),
and by using and the Cauchy-Scharwz inequality, we obtain

(. Ve )| + o). Ve )

( 41
From ([2.28) and (2.30) we deduce that
a|VE.(a(t))

| VL@ 120, <

L2(0)

e )uw T O

Lo i i
|20y < %M4 + My + [ GLO)] 120,
Set
Mg = sup sup HF

Jup sur M iz(0)

where M! < o by From the definition of Gi(¢) in (2.14) it is easy to see that

GE O 20y < IF W a0y + %L e2qoirn [V © oo a0y
< Mg+ M| K] 2or

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

where M is given by (2.25). Combining (2.31]) and (2.32)) we concude that for every & > 0

and every t €]0, T,

‘}V(‘ef(ﬂi(t))“m(g) <G (\/LZ + 1>
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with Cj := £ max { M}, M3 + M + M| K| r2(o.r7) }, which implies |(P)]
Proof of [(P)l By using (2.29), [(D%)} the Cauchy-Scharwz inequality, (2.32) and |(P%)} it is
easily seen that for every t €]0, 77,
d'u; i i —i
), VEm0)) < (G, VD))
|G 20 [VEED))

N

|20y |20y

~ 1
< Ci|—+1 2.33
() 239
with O := (Mg + MgHKHLz([O,TD)Ci. Fix any s e]O,T]. By integrating (2.33]) over [0, s] we

et
g f <d+_l ), V. (T >dt f ( 1) dt. (2.34)

As (L (1), VE(u (1)) = Q=T (1) for all ¢ €]0, 5[, we have
f <d+_2 ), V. (@ ( >dt f ? °) (Wt = BT () — BT (). (2.35)

~

From (| and (2.35) we deduce that for every € > 0 and every s €]0, 7],

, , . /1
(@ (s)) (w2(0)) . 7
T
< M:+ Cz — +1|dt
el
with M := sup.., %. (_'i ) < o by [(CD)} which implies m
Proof of (Pi), Asul e AC([ T): L*(0)) and sup,., | <%= =

< o by |[(Py)] it is

0,77:L2(0
clear that {u.}.~¢ is equlcontmuous On the other hand by ﬁ 0)}eso is relatlvely
compact in L2(0). For t €]0,T] we have sup,., %.(u' < o by |(Pi)] so that by Cg ,

{u' (t)}es0 is relatively compact in L?(0). From Ascoli’s theorem it follows that there exists
u' € C([0,T]; L*(O)) such that (up to a subsequence)

. — @ in C([0,T]; L*(0)), (2.36)
which proves .
Roe(m)ark 2.4. Since @2(0) = u.(0) = ug., by we have u%(0) — wuo in L?(0), and so
' (0) = ug.

Let us now prove (2.16). Fix any ¢t €]0, YN”[ and any subsequence {ﬂf,(s)}oo of {u'}.~o given

by (2.36). By there exists £'(t) € L*(O) and a subsequence {ﬂﬁr(ﬁ(e))}5>0 of {ﬂfj(g)}pg
such that

Vo)) (oo (1) — €(t) in L*(O). (2.37)
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Moreover, by (12.36|) we have

Taking |(Cr)| and |[(Cs )| into account, from Theorem |C.4{c) we have

AR
and so, from (2.37) and (2.38)) we deduce that £'(t) = V€ (u(t)). Hence
VE. (T (t)) — VE(@(t)) in L*(O) for all ¢ €]0,T7. (2.39)

Remark 2.5. We have also proved that for Z'-a.e. t € [0,T], w(t) € dom(3%).

On the other hand, consider any subsequence {T, ) }c~o of {@.}c~o given by (2.36). By [(P})
there exists ¥/ € L([0,T]; L2(0)) and a subsequence {V€, () o U (o)) >0 Of {VGy(e) 0
ﬂg(g)}po such that

VG (0e)) © oy — ¥ in L*([0, T1]; L*(0)). (2.40)

Taking (2.39) and into account, from Lebesgue’s dominated convergence theorem we
can assert that

fo (Va0 (Tooey (1)), (1) ) dt — L (VE@ (1)), (1)) dt for all p e C([0,T]; L*(0)),

so that from ([2.40)) we infer that ' = V& ou’. Thus (2.16] holds.
Step 1-2: proving Fix i€ {1, -- ,¢} and assume that (C¥)—(CE) and (P})—(P%) hold
for all ke {0,---,i— 1}.

Proof of [(C%)l As @' is a solution of (%) we have @' (0) = u'(T). Hence

sup €.(u' (0)) = sup €.(u " (T)).

e>0 e>0
From (P{!) we deduce that sup,., %. (% (0)) < o, i.e. is verified.
Proof of |(C). As @ is a solution of (%) we have w:(0) = w:*(T). But by (P 1)-[@2.15

we see that e (T') — @~ Y(T) in L2(0), and so . (0) — w'(0) in L2(0), which implies |(C2)|

Remark 2.6. In fact, we have proved a stronger condition than |[(C5)] i.e.
(C8) @ (0) — wi(0) in L2(O).

£

Proof of [(Ci)l As & e C*([0,T); [0, [), from (2.13) we infer that for every ¢ € [0, 7],

) i—1 ATy
HFEZ(t)HLQ(O) < [Fe(t+ Tl 20y + 1Kl egom) Z L | Ve @*(s - Tk))HL2(0) ds
k=0 YTk

e>0

i—1 AT
< sup [FL(t+ Ti)HLQ(O) + HKHC([O,T]) 2 Jo S;ilg va€<ﬂ§<5)>HL2(o) ds.
k=0
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By and Remark [2.3( we have M := sup (o7 Sup,~ | F=(5)||lz2(0) < 0 and by using (P5)
for all k€ {0,--- ,i— 1}, we deduce that for every t € [O,CZN’],

i = 1
HFE(t>HL2(0) < M + ”?(:HC([O,T]) ];)JO Ck (75 + 1) ds < 0,

and follows.

Remark 2.7. In fact, we have proved a stronger condition than |(C})} i.e
(C5) sup sup [FZ(t)l|pa(0) < o0
te[0,T] €
Proof of |(C%)| For every k € {0,--- ,i — 1}, by using (P¥)-(2.16]), we see that

KA T ) VG (T (s—Ty))ds — | K(-+Ti— ) VE(@ (s—Ty))ds in L2([0, T]: L2(0)).

T Tk
Hence, taking (2.13)) into account and by using [(Cy)|
Fi — F'in L*([0,T]; L*(0)),
where F' : [0,T] — L2(O) ifie {1,--- ,£—1} and F': [0,T — T};] — L2(O) if i = ¢, is given
by

Fi(t):= F(t + T}) — j JT K(t+ T — 5)VE(T (s — Ty))ds, (2.41)

k=0 Tk
which implies
Remark 2.8. In fact, we have proved a stronger condition than |(C})| i.e.
(Ci) F — Fin L2([0,T]: L*(0)

with F given by ([2.41]).
Proof of [(Ci)l For #'-a.c. te[0,T], by deriving (2.13), we have
dF? dF, Ther gk

o () =

hence, since K € C*([0,T7; [0, o0[),

dte (t+1T;) — ];)f o —=(t + Ty — s)VG (@ (s — Ti))ds,

dF! dF. dx
‘ Z O, e, H% Zsﬁgg V. 0T 20 2000
Consequently, we get
T
dF! dF, L
f il f E(FFT dt+TH SE}? IV%e 0T 120 29,120
0 L2(0) Jo
dF ~ d?(
< sup +T|— sup |V&. ou .
e>0 | dt LI([0.T]:22(0)) dt ol Z 4 e=0 H HL2 [0,T];L2(0))
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By using|(Cs)|and (P¥) for all k € {0, --- ,i—1}, we deduce that ‘dF <o
y using [(Cs)|and (P7) for all k € { }, we deduce that sup.., 0P (O)
for all t € [0,T1], i.e. is verified.
Step 2: existence of a solution of (%*) for each ¢. Fix any i € {0,--- , ¢} and consider
the following problem:
du’ , . . ~

o] (t) + VE&(u'(t)) = Fi(t) — K« (V€ o) (t) for L'-a.a. te[0,T]

ui(0) = YT
with F* given by (2.41)), where for each k € {0,---, ¢}, " € C(]0, T); IﬁO)) is given by

(P¥)-(2.15). Recall that by convention, w*(T) = ug if i = 0 (see Remark [2.4). The problem
(P") can be equivalently rewritten as follows:

du’
(g,z) dt
ui(0) = @ ~Y(T)
with G* : [O,f] — L*(O) given by
G'(t) := F'(t) — K + (V& oT")(2). (2.42)

We are going to prove that u' is a solution of (%7).

(t) + VEW (1)) = G'(t) for Ll-a.a. te[0,T]

Step 2-1: Legendre-Fenchel transform of (9’;) Fix any € > 0 and denote the Legendre-
Fenchel conjugates of &. and & by &* and &* respectively. Recalling that u’ is a solution

£

of (P1), from Fenchel’s extremality relation (see Proposition [A.4(b)) we see that (%) is
equivalent to

&.(T (1)) + & (G () — d;‘_f (t))+<dCZ (t) — G (t), @ (¢ )> 0 for Llaa tel0,7T]

7(0) =74 (T)

3 3

with G given by (2.14]). Using Legendre-Fenchel’s inequality (see Theorem|A.2{(b)) it follows
that

0

- j @)+ 860 - o) + (G0 - G a0

a.(0) = (7).

3 3

On the other hand, we have

[0 - qmo ) = [ [ 4w - me)]

SUTDPE =[O - | (Gio.am)a.
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Hence, for every € > 0,

[ [son + i - GEen]| ae+ Samide - o
(P =1 — f ' (GL(t), T (t)ydt =0 (2.43)
(7(0) = w (7).

Step 2-2: passing to the limit. First of all, by we have
w’(0) — @'(0) in L*(O). (2.44)

On the other hand, u’(0) = ﬂ?l(f) and, by using (P )-(2.15) if i € {1,--- , ¢} and if
1 =0,

7 YT) — @ NT) in L*(0).

3

Hence:
@ (0) =7 Y(T):; (2.45)
tim [7:(0)] 30, = [7/(0) (0. (2.46)
In the same way, by we have
lim |7 (D) [Z2(0) = @ (1) 720, (2.47)

By we can assert that (up to a subsequence)

du. du' . o~ o

o — n L7([0,T]; L*(0)). (2.48)
Taking (2.14) and (2.42) into account, from |(C?)| and [(P%)}(2.16) we infer that

GL— G in L*([0,T]; L*(O)). (2.49)

From |(C%), (2.44) and |[(C;)| we have &(u'(0)) < lim. ,%.(u(0)) < sup..,Z. (7' (0)) < oo,

=
hence

7' (0) € dom(%). (2.50)
Let E, E* : L2([0,T]: L*(0)) — [0, ] be defined by
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and, for each ¢ > 0, let E., E* : L2([0,T]; L2(0)) — [0, 0] be defined by

From |(Cg)| and

F*(u) = f &* (u(t))dt.

\ 0

Theorem [B.4 we have & 2, &*. Hence E. 25 E and E* M, by

Theorem [B.5| From |(P%)}(2.15)), (2.48) and (2.49) it follows that:

lim E. () > E(@), ie.

e—0

lin | (@) > [ E@ o) (2.51)
e—0Jo 0

lim E* ( GP — LD W e LU I

e—0 dt dt

lim | & (Gg(t) L, (t)) dt > J & (G‘(t) - i(t)) dt. (2.52)
e—0Jo dt 0 dt

Taking (2.44)), (2.45)), (2.46)), (2.47), (2.50), (2.51) and (2.52)) into account, letting ¢ — 0 in

(2.43)) we obtain

5t
\U

1.e.

0

)

[ w0y +& (G0 - G0 ) |ar 50w @R - o
< —LT<Gi(t),E“'(t)>dt <0

(0) = @ YT € dom(%),

JT [g(ﬂi(t)) 4+ &t (Gi(t) — Z—?(t)) + <CZ (t) — Gi(t),ui(t)>] dt < 0

~

u'(0) =u~HT) € dom(¥).
But, by using again Legendre-Fenchel’s inequality (see Theorem |[A.2{(b)), we have

(@ (1) + & (Gi(t) _ (t)) + <dw () — Gi(t),ui(t)> > 0 for Z'aa. te0,T],

hence

~

dt dt

u'(t) + &* (G"(t) — C%(t)) - CZ (t) — Gi(t),ai(t)>] dt =0
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Using again Fenchel’s extremality relation (see Proposition [A.4(b)) we see that (2.53) is
equivalent to

du’

—-(t)+ VE(@(t)) = G'(t) for Pr-aa. te0,T]

w(0) = @ Y(T) € dom(¥),

which shows that @' is a solution of (%%).

Step 3: existence of a solution of (). Let u: [0,T] — L*(O) be defined by
u(t) :=u'(t —T;) if t € [T}, Ty41] with i € {0,--- £}

For each i € {1,--- , ¢}, as @ is a solution of (%) we have w(0) = w1(T), i.e. (T} —T}) =

@ (T; — Tj_1), which means that w(7;") = w(Z;"). Since @ e C([0,T]; L2(0)) for all
ie{l,-- ¢}, it follows that w e C([0,T]; L*(O)).

On the other hand, we have u(0) = u°(0), and @°(0) = uy because @ is solution of (P?).
Moreover, for every i € {0,--- , ¢}, taking and into account, as ' is a solution
of (#"), for Ll-a.e. t € [T}, T;11], we have

du L aw .
O )+ V8 1) = (¢ — T+ @ (¢~ Th)
(-1
=F'(t —T)—%K* (V€ ou)(t — Ty)
o Zﬁ{lt—s VG (s — Tp))ds— tg€<t_ Ty — $)VE (@ (s))ds
_ F(t)—z Kt — $)VE (T(s))ds— f K(t — $)VE (U(s))ds
k=0 Tk Ty

_ F(t)—L K(t — $)VE (a(s))ds
~ F(t)-% - (VF o)1)

Consequently @ is a solution of (&), and the proof is complete. B

3. STOCHASTIC HOMOGENIZATION FOR INTEGRODIFFERENTIAL NONLOCAL DIFFUSION
PROBLEMS OF GRADIENT FLOW TYPE

3.1. Random nonlocal integrodifferential diffusion problems of gradient flow type.
From now on we consider a complete probability space (2, #,P) and a family {7}},czq
satisfying the following three properties:

o (mesurability) 7% : Q — € is F-measurable for all z € Z¢;
e (group property) T, 0o Ty =T, and T_, = T ! for all 2,2’ € Z4;
e (mass invariance) P(T,A) = P(A) for all Ae F and all 2 € Z?.
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Definition 3.1. The family {T}},czq is said to be a (discrete) group of P-preserving transfor-
mation on (Q, #,P) and the quadruplet (2, F,P,{T.}.czq) is called a (discrete) dynamical
system.

Let 5 := {Ae F : P(T,LAAA) = 0 for all z € Z¢} be the o-algebra of invariant sets with
respect to (Q, F, P, {T,},czq).

Definition 3.2. When P(A) € {0,1} for all A € .#, the measurable dynamical system
(Q, F P AT, },cza) is said to be ergodic.

Remark 3.3. A sufficient condition to ensure the ergodicity of (2, F, P, {T.}.czq) is the so-
called mixing condition, i.e. for every (E,F) e F x F,

lim P(T.E n F) = P(E)P(F).

|2|—a0

For each X € LL(Q), EZ(X) denotes  the conditional mathematical expectation of X with
respect to .7, i.e. the unique (%, %(R))-measurable function in L}(2) such that for every

EFes,
L E7 (X)(w)dP(w) = L X (w)dP(w)

Remark 3.4. If (Q, F P, {T.}.czq) is ergodic then ]EJ(X) is constant and equal to the math-
ematical expectation E(X) of X, i.e. E7(X) = = §, X

Let J:QxRYx R?x R — [0, [ be a (?@%(]Rd) ®95’(1Rd) ®93(]Rd), AB(R))-measurable
satisfying the following conditions:

(NL;) J is symmetric, i.e. for every (w,z,y,£) € 2 x RY x R x RY,
J(w’ x’ y7 g) = J(w’ y7 x’ 5)7

and J is bi-stationary with respect to (71%),cza, i.e. for every z € Z¢ and every
(w,z,y,6) € 2 x RY x RY x RY,

Jw,z+ 2,y + 2,8 = J(T.w, 2,y,8);
(NLy) there exist J : RY — [0, 0] and J € L*(R%; [0, oo[) with

J#0
for every (&,¢) e R? x RY, if |¢] < |¢| then J(€) = J(() (3.1)
supp(J) = Bg,(0) is compact with Ry > 0,

such that for every (w,z,y,£) € Q x R? x R? x RY,

J(§) < J(w,z,y.6) < J()-
Let O = R? be an open set and, for each € > 0, define £ : Q x L*(O) — [0, o[ by

=g, ] (e 58 (u(x);u(y)fdwdy (32)
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and let F. : Qx L*(O) — L*(O) be such that for every w € Q, F.(w,-) € Hmy For each w €

and each € > 0, let us consider the following nonlocal integrodifferential diffusion problem:
d w

;; (t) + VI (w,u?(t)) + K * (VE(w,) ou?)(t) = Fo(w,t) for Lla.a. te]0,T]

(72)

u?(0) = uf . € L*(0)

£

with % € C*([0,T1;[0, o0[). The following result is a consequence of Theorem [2.1]
Corollary 3.5. For each w € Q) and each & > 0, there exists u* € C([0,T]; L*(O)) such that:

o WY is the unique solution of (P¥);
o VI(w,-) 0w € L*([0,T]; L*(0));
. dgts e L*([0,T]; L*(0)); - i
o u¥ admits a right derivative ddfg (t) at every t € [0,T[ which satisfies dd—?g(t) +
VL@ (1) + K+ (VI(w, ) o) (t) = Fe(w, ).
Proof of Corollary [3.5] It suffices to apply Theorem with F' = F.(w,") and & = & =
F(w, ), where w € Q and e>0. As F.(w,-) € we only need to prove that Z(w, )

Satisfios with & = £ (w,). From || we see that for every u € L*(0),
1 Ty r—y
ng(w, u)(a:) = _8d+2 ,[O J (wa IR > (u<y) - U(l’))dy (33)

g £ 9

Hence V #(w,0) = 0, i.e. [(D;) holds with € = Z(w,-). On the other hand, taking (3.3
and into account, for every u,v € L?(O), we have

V00) = V) ) = [ IV 0(a) = VA 0@ de

<of U (10(y) — ()P + fu(z) - v<x>|2)dy]dx

C.2%0 (J lv(y) — u(y |dy+f|u — o |da:)

= 20.2%0) Hu—vHLz

with C. == Z:Z40)|J]%. (Ra)> Which proves (Dy)| with € = Z(w,-), and the proof is
complete.

3.2. Stochastic homogenization theorem. For cach 0 € R? each R > 0 and each A €
By (RY), set

L2 cona(RY) = {ue L (RY) s u = in p(A)], (3.4)

where £y : R? — R is the linear map defined by fy(z) = 6z and dr(A) denotes the R-
neighborhood of the boundary dA of A, i.e.

On(A) = {x e RY : dist(z, 0A) < R} (3.5)
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Let & : B,(RY) x Q x RY — [O o[ be defined by
Sa(w,0) :=inf {F(w,u, R, A):ue L op 4(R)},
where R; > 0 is given bym (NLy)|and £ : Qx L2 (R?) x By (RY) x B, (R?) — [0, 00| is defined
by
P B) = 1 [ | T =) - ul)Pedy

Let fuom : © x RY — [0, o[ be defined by
St (-5 0)
L 7 [0,k[2\"s
Jhom(w, ) := kle%\lf*E <—kd ) (w).

Remark 3.6. It is easy to see that fiom(w, ) is quadratic, i.e. there exists a symmetric d x d
matrix AY such that for every 6 € RY,

hom
fhom(w7 9) <Ahom0 9>a (3'6)

where (-, -) denotes the scalar product in R? (see [AHMM?24l, Propositions 3.14 and 3.17] for
more details on the definition of fyom)-

Let fhom : © x L*(O) — [0, 0] be defined by

J Jrom(w, Vu(z))dz if ue H(O)
o0 if ue L*(O)\H*(O).

In [AHMM?24, Lemma 4.2 and Theorem 4.8] we proved the following Mosco-convergence
result.

Theorem 3.7. There exists ) € F with P(QY) = 1 such that for every w € ', we have:
(a) for every {v.}.=0 < L*(O), if sup Z(w,v.) < o0 then {v.}.~¢ is relatively compact in
e>0
L2(0);
(b) {F(w,")}e=0 Mosco-converges to Fhom(w, ).

Remark 3.8. By Remark [3.6] fiom(w,") is proper, convex and lower semicontinuous, and
Fréchet-differentiable on dom(0 fom(w,-)).

Let F:[0,T] x Q — L*(O) be a Borel measurable map. As a consequence of Theorem
we obtain the following stochastic homogenization result.

Corollary 3.9. For P-a.e. we Q and every e > 0, let u¥ € AC([0,T]; L*(O)) be the unique
solution of (P¥), see CorollaryB.5, and assume that:

(HY) supja(w ug ) < o0;

Fhom (w, 1)

(HS) uOE — Uy m L2(0)7

(H %’) sup | F2(w, 0)] 2(0) < 903

(HY) F. ( ) = F(w,-) in L*([0,T]; L*(0));
(Hg) f“w ) < .

L([0,T];L2(0))
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Then, there exists Qe F with ]P’((AZ) = 1 such that for every w € Q there exists U €
C([0,T]; L*(0O)) such that (up to a subsequence)
w —u* in C([0,T]; L*(O))
and u® s a solution of the following local integrodifferential diffusion problem of gradient
flow type:
du”
(g,(l:om) dt
u?(0) = ug € dom( Fom(w,-)).
Proof of Corollary [3.9} Let Q" € & be such that P(Q") = 1 and |[(HY) (in Corollary
hold. Set Q = Q' n O Where e F, with P(Y) = 1, is given by Theorem . Then
Q € F and IP’(Q) — 1. Fixwe Q. We are going to apply Theorem

Firstly, it is easy to see that M hold with €. = Z(w,-), upe = uf ., up = ug, U = u?,
F. = F.(w,-) and F = F(w,-). Secondly, by Theorem [3 - ), |(Ce)] are satisfied with

& =9 = f(w,-)and & = & = Fom(w,). Thirdly, by Theorem 3.7(a), [(Cg)| is verified
with €. = £ (w, '), and the proof is complete. [ |

— () + V Fom (w, v (1)) + K * (V Fom(w, *) o u)(t) = F(w,t) for £1-a.a. t € [0,T]
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APPENDIX A. ELEMENTS OF LEGENDRE-FENCHEL CALCULUS

Let X be a normed space and let X™* be its topological dual. In what follows, for any u € X
and any u* € X*, we write u*(u) = (u*, u). We begin with the following definition.

Definition A.1. Let ® : X —] — w0, 0] be a propexﬂ function. The Legendre-Fenchel
conjugate (or the conjugate) of ® is the function ®* : X* —] — 0, 0] defined by
&*(u*) = sup {(u*,uy — P(u) : ue X}.
(As @ is proper and ® > —o0 we have ®* > —o0.) The Legendre-Fenchel biconjugate (or
the biconjugate) of ® is the function ®** : X — [—00, 0] defined by
& (u) := sup {(u*, u) — ®*(u*) : u* € X*}.

(Since ®* > —o0, u* € dom(®*) if and only if there exists a € R such that ®*(u*) < a, i.e.
®(u) = (u*,u) — o for all u e X. Hence, if ® admits a continuous affine minorant functionf]
then ®* is proper and ®** > —o0.) The following theorem gives the main properties of the
Legendre-Fenchel conjugate and biconjugate (see [ABM14] §9.3, pp. 343] for more details).

Theorem A.2. Let & : X —| — o0, 0] be a proper function.

3We say that ® : X —] — 00, 0] is proper if (its effective domain) dom(®) := {ue X : ®(u) < 0} + &.
4This is true if ® : X —] — o0, 0] is a proper, convex and lower semicontinuous function, because P is
then equal to the supremum of all its continuous affine minorant functions.
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(a) If ® is convex and lower semicontinuous then ®* is proper, conver and lower semi-
continuous.
(b) (Legendre-Fenchel’s inequality.) For every u € X and every u* € X*,

O (u) + ¢*(u*) — (u*,uy = 0.

(¢) (Fenchel-Moreau-Rockafellar’s theorem.) If ® is convex and lower semicontinuous

then
O** = P,
(d) If @ is conver and admits a continuous affine minorant function then
P** = @

where ® denotes the lower semicontinuous envelope of .
Here is the definition of the subdifferential of a function.

Definition A.3. Let ® : X —] — o0, 0] be a proper function. The subdifferential of ® is
the multivalued operator 0® : X—=X* defined by

00(u) := {u* € X*: @(v) = ®(u) + (u*,v —w) for all ve X}.
(Note that dom(®) > dom(0®) := {ue X : 0®(u) + &}.)

For the subdifferentials of convex functions we have the following result (see [ABMI14] §9.5,
pp. 355 and Lemma 17.4.1, pp. 737] for more details).

Proposition A.4. Let  : X —] — o0, o] be a proper and convez function.
(a) If @ is Fréchet-differentiable at uw € X then

0P(u) = {V®(u)}.
(b) (Fenchel’s extremality relation.) If ® is lower semicontinuous then
u* € 0®(u) — ®(u) + ¢*(u*) — (u*,uy = 0.
(c) (Bronsted-Rockafellar’s lemma) If @ is lower semicontinuous then

dom(0®) = dom(P).

APPENDIX B. MOSCO-CONVERGENCE

[43 b

Let X be a Banach space and let X* be its topological dual. In what follows, “—” (resp.
“—~7) denotes the strong (resp. the weak) convergence. We begin with the definition of De
Giorgi I'-convergence (see [DM93), BD9S, [BraO6] for more details).

Definition B.1. Let ® : X —] — o0, 0] and, for each ¢ > 0, let . : X —] — o0, 0]. We say
that {®.}.~o strongly I'-converges (resp. weakly I'-converges) to ®, and we write

o = Fs—lir%q)s or &, LN (resp. & = Fw-lir%cbg or &, Tw, D),

if the following two assertions hold:
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o for every u € X, I'-lim @, (u) = ®(u)(resp. ['y-lim @ (u) = ®(u)) with

e—0 e—0

[s-lim @, (u) := inf {li_mq)e(us) DU — u}

e—0 e—0

e—0 e—0

(resp. T'y-lim @, (u) := inf {h_m D (ue) : ue — u})

or equivalently, for every u € X and every {u.}.-o < X, if u. — u (resp. u. — u) then

lim ®(u:) = P(u);

e—0

e for every ue X, FS-@)(I%(U) < O (u)(resp. FW-@)(I)Q(U) < ®(u)) with
I‘S—ﬁ(l)(]?e(u) = inf {@Cbg(us) DU — u}
(resp. FW—@(I)E@L) = inf {@ D (ue) : ue — u})

or equivalently, for every u € X there exists {u.}.~o < X such that u. — wu (resp.
ue — u) and
lim @, (u.) < ®(u).

e—0

From I'-convergence we can define Mosco-convergence (which was introduced by Mosco, see
[MosT1]).

Definition B.2. Let ® : X —] — o0, 0] and, for each ¢ > 0, let &, : X —] — o0, 0]. We say
that {®.}.~o Mosco-converges to ®, and we write

= M-lim . or o M, g,
£—
if & = I'y-lim ®, = I'y- lim @, or equivalently Ts- lim &, < & < I'y,-lim ®,.
e—0 e—0 e—0 e—0

From Definition [B.2], it is easy to see that under a suitable compactness condition strong
I'-convergence is equivalent to Mosco-convergence.
Proposition B.3. Let ® : X —]| — o0, ®] and, for each ¢ > 0, let &, : X —] — o0, 00].
Assume that the following compactness condition hold:

o for all {uz}eso © X, if sup @.(u.) < 0 then {u.}eso is strongly relatively compact in X.

e>0

Then, ®. Lo if and only if . NS

As stated in the following theorem due to Mosco (see [Mos71, Theorem 1]), in the reflex-
ive case and for lower semicontinuous, convex and proper functions, the Legendre-Fenchel
transform is continuous with respect to Mosco-convergence.

Theorem B.4. Let & : X —]|—o0, 0] be a proper, convex and lower semicontinuous function
and, for each ¢ > 0, let . : X —| — 00, 0] be a proper, conver and lower semicontinuous

function. If X is reflexive then ®, Mg if and only of ®F M, P,
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The following result allows to pass from Mosco-convergence in X to Mosco-convergence in
L([0,T]; X) (see [AHMM22, Lemma 2.6, pp. 50| for a proof).

Theorem B.5. Fiz T > 0 and assume that X is a Hilbert space. Let ® : X — [0,0] be a
proper, convex and lower semicontinuous function, let © : L*([0,T]; X) — [0, ] be defined

by

and, for each ¢ > 0, let ®. : X — [0,0] be a lower semicontinuous, proper and convex

function and let ©, : L*([0,T]; X) — [0, 0] be defined by

Ifo. L @ then 0. -5 O.

APPENDIX C. GRAPH-CONVERGENCE

Let (X,9) and (X*,9*) be two topological spaces. We begin with the definition of
Kuratowski-Painlevé convergence.

Definition C.1. We say that {E.}.-qg € P(X x X*) converges to £ € (X x X*) in the
sense of Kuratowski-Painlevé with respect to the product topology I x I *, and we write

. KP
E = KP—hH(l) E.or E. — FE,
E—

if the following two assertions hold:
e F c Kp-lim F. with

e—0

g ok
KP-lim F, := {(u,u*) € X x X*: I (ug,ul)eso € HEa s.t. u,. 2w and u’ AN u*}

e—0 e>0

or equivalently, for all (u,u*) € E there exists (u.,u})es0 € [ [, E- such that u, T u
gk
and u* Z— u*.
e kP-lim E. c E with

e—0

KP_E% Ee:= {(u’ u*)EX X X*:H(UU(E)’ u:(€)>€>oen EU(E) S.t. Ug(e) < uand u:;(s) = u*}
E—
e>0

or equivalently, for all (u,u*) € X x X* and all subsequence (uq(.), Uj;(g))oo €10 Eoe)

if Ug(e) Z, w and (O 7%, u* then (u,u*) € E.

Remark C.2. it is clear that the sets kp-lim__, E. and Kp-lim. o E. are closed subsets of

2220
X x X* and Kp-lim__( E, < KP-lim._,o E.. Hence E. KB if and only if kp-lim__, E. =

KP-lim._,o E. = E. In particular, the Kp-limit of a set is its closure.
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From now on, X is a Banach space and X* is its topological dual. Here is the definition of
graph-convergence for sequences of subdifferentials.

Definition C.3. Let 0® : X—=X* and, for each ¢ > 0, let 0P, : X=X*, where &, P, : X —
| — o0, 0] are proper functions We say that {0®.}.~o graph-converges to 0® with respect to
the product topology I , and we write

graph

0P, 09,

if {G(0P.)}.~0 KP-converges to G(0P) with respect to the product topology I x T* i.e.
G(0®.) 25 G (o),
where G(0®.) and G(0®) denote the graph of 0P, and 0P respectively, i.e.
G(0D,) := {(u, u*) € dom(®.) x X*:u* e aog(u)};
G(0D) := {(u, u*) € dom(®) x X*: u* e acp(u)}.
In other words, 0®. graph,
e for all (u,u*) € X x X* with u* € 0®(u) there exists {(ue,u)}c=0 < X x X* with

g g *
u¥ € 09(u.) for all € > 0 such that u,. 2w and ul AN

0® if and only if the following two assertions hold:

o for all (u,u”) € X x X* and all subsequence {(uq (), U ))}e>0 © X x X* with uj . €

0P (uy(e)) for all € > 0, if ug( Z, u and Uy SAN then u* € 0P(u).

h h, h
In what follows, we use the notation  (oo)grep (v grap and « ow)graph to denote the
graph-convergence with respect to the product topology Pf *with (7,9%) = (97 T,
(7,9%) = (9%, 9) and (7,5 *) = (T, TF) respectively, where I; and I_* (resp. T, and

T.F) the strong topology (resp. the weak topology) on X and X* respectlvely.

For convex, lower semincontinuous and proper functions, links between graph-convergence
and T'-convergence can be established (for a proof we refer to [Att84, Proposition 3.68, pp.
378]).

Theorem C.4. Let ® : X —]|—o0, 0] be a proper, convex and lower semicontinuous function
and, for each e > 0, let . : X —| — 00, 0] be a proper, conver and lower semicontinuous
function. Then:

(a) @. _><1>=a<1> Lo)granh 5.

(b) . 2 & — 0. Mao;

(c) (X is reflexive, ®. D, & and {® Y0 is equicoercz’veﬂ) = 00, {eiw)-graph, 0.

SWe say that {®.}.~0 is equicoercive if the following assertion holds: for every {v.}.~o < X, if
sup..o P (ve) < 00 then sup,. g [|vellx < 0.
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APPENDIX D. GRONWALL’S LEMMA

In the paper we use the following version of so-called Grénwall’s lemmas (for the proof we
refer to [AHMM?22, Lemma A.2 pp. 277]).

Lemma D.1. Let pe [1,00, let T > 0, let a € [0, [, let m € L*([0,T]) be such that m(s) >
0 for '-a.a. s €[0,T] and let ¢ € C([0, T]; R) be such that ;¢P(s) < saP + §j o*~' (t)m(t)dt
for all s € [0,T]. Then ¢(s) < a+ §ym(t)dt for all s € [0,T].

1
p
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