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Abstract

The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senes
cence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been 
established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality gen
omic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining 
species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. 
We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 
2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding sig
nificant levels of phylogenetic conflict as expected from a rapid and recent diversification.

Key words: Sordariales, Podospora bellae-mahoneyi, Podospora pseudoanserina, Podospora pseudopauciseta, Podospora 
pseudocomata, chromosomal rearrangements, phylogenomics.

Significance
Here, we provide a data set of 28 annotated genomes from the Podospora anserina species complex, including 
chromosome-level assemblies of 4 species that lacked a reference genome. With this data set in hand, biologists can 
take advantage of the molecular tools available for P. anserina to study evolutionary dynamics at the intersection be
tween micro- and macroevolution, with particular emphasis on trait evolution, genome architecture, and speciation.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
The filamentous fungus Podospora anserina (order 
Sordariales) holds significant importance as a model for un
derstanding ascomycete biology and beyond (Silar 2013). It 
has proved particularly valuable in advancing the study of 

molecular biology, senescence, heterokaryon incompatibil
ity, sexual reproduction, prion biology, meiotic drive, and 
plant biomass degradation (Pinan-Lucarré et al. 2007; Silar 
2013, 2020; Grognet et al. 2014; Hamann and Osiewacz 
2018; Hartmann et al. 2021; Vogan et al. 2022). Its reference 
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genome was published as early as 2008 (Espagne et al. 
2008), followed by chromosome-level assemblies of sev
eral wild-type strains (Vogan et al. 2021, 2019) and short- 
read population genomic data from Wageningen, The 
Netherlands, as well as a few strains from France and 
other localities (Ament-Velásquez et al. 2022). However, 
knowledge of its diversity, geographic distribution, ecology, 
and evolution lags behind. It is generally agreed that 
P. anserina is an obligately sexual coprophilous fungus, 
but there are observations of potential asexual spores 
(Boucher et al. 2017; Silar 2020) and endophytic 
stages (Matasyoh et al. 2011). The name P. anserina itself 
has been riddled with taxonomic uncertainties 
(Ament-Velásquez et al. 2020; Silar 2020), leading to confu
sion regarding the exact identity of the fungal material used 
in some studies. Unsurprisingly, a phylogenetic survey showed 
that many strains commonly regarded as P. anserina actually 
belong to at least 6 additional species scattered around the 
world (Boucher et al. 2017). Representatives of all these spe
cies have been sequenced with short-read technology, which 
was useful to explore the dynamics of recombination sup
pression around the mating-type locus (Hartmann et al. 
2021). However, long-read data are necessary to understand 
the evolution and genetic basis of many traits. For example, 
the development of high-quality genomic resources of 2 of 
these species, Podospora comata and Podospora pauciseta, 
already provided important insights into the evolutionary dy
namics of selfish genetic elements and genome architecture 
(Silar et al. 2018; Vogan et al. 2021, 2019).

As originally defined, only 1 or 2 strains are known for most 
members of the P. anserina species complex (Boucher et al. 
2017), many available at the Westerdijk Fungal Biodiversity 
Institute Collection (identified with CBS numbers). All spe
cies have a similar morphology, mating system, and copro
philous habit, with the exception of the only known strain 
of Podospora pseudocomata, which was isolated from 
soil (Boucher et al. 2017; Hartmann et al. 2021). Despite 
their similarities, they are considered biological species, 
since there is reproductive isolation in the form of low mat
ing success and female sterility in the hybrids (Boucher et al. 
2017). Moreover, they are identifiable by differences at 
the fungal barcode ITS, as well as other nuclear markers 
(Boucher et al. 2017). Previous genomic comparisons showed 
that P. anserina, P. comata, and P. pauciseta are more than 
98% identical in genic regions (Vogan et al. 2019), confirm
ing that they are very closely related. However, their 
exact relationships remain unresolved. In this study, we 
generated chromosome-level annotated genome assemblies 
of the 4 remaining species (Podospora bellae-mahoneyi, 
Podospora pseudoanserina, Podospora pseudopauciseta, 
and P. pseudocomata), as well as short-read data from add
itional strains. In addition, we conducted a phylogenomic 
analysis to provide an evolutionary framework for addressing 
the variety of questions for which Podospora is well suited.

Results and Discussion

Genome Assemblies and Annotation

We isolated haploid cultures (of mating type + or −) from 
dikaryotic strains. From those, we selected 1 strain of each 
of the 4 species that lack a reference genome (hereafter, the 
focal strains) for Oxford Nanopore MinION and Illumina 
HiSeq sequencing (supplementary table S1, Supplementary 
Material online). In addition, we sequenced with Illumina 
HiSeq a known strain of P. pauciseta (CBS 451.62+), the 
type strain of P. pseudoanserina (CBS 253.71+), and 2 newly 
collected P. comata strains (Wageningen Collection num
bers Wa132+ and Wa133−). Along with previously pub
lished assemblies and sequencing data of other members 
of the species complex, we assembled and annotated a 
total of 28 Podospora genomes, including the type strains 
of all 7 species (supplementary table S1, Supplementary 
Material online).

Whole genome assemblies of Oxford Nanopore MinION 
data from the focal strains recovered mostly chromosome- 
level scaffolds that are highly collinear with the reference 
genome of P. anserina (Fig. 1), although P. pseudocomata 
(strain CBS415.72−) has slightly more rearrangements. 
Thus, all species in the complex likely have 7 chromo
somes, a similar genome size of around 35 Mb, and a re
peat content ranging from more than 3% (P. comata) to 
around 7% (P. pseudopauciseta; supplementary table S1, 
Supplementary Material online) that is mostly concen
trated in clusters (Fig. 1). Genome annotation using previ
ously published RNA-seq data of P. anserina and P. comata 
(Vogan et al. 2021; Lelandais et al. 2022) resulted in simi
lar protein-coding gene numbers for assemblies produced 
with long-read data, from 11,033 (P. bellae-mahoneyi 
strain CBS112042+) to 11,727 (P. anserina strain TG+) 
genes, while the P. anserina reference itself has 10,803 
predicted protein-coding genes (supplementary table S1, 
Supplementary Material online). The discrepancy in gene 
numbers with the reference is likely due to differences 
in the annotation method (with our pipeline, we recov
ered 11,660 genes in the P. anserina reference assembly). 
Similarly, the annotation of long-read assemblies gave 
comparable BUSCO numbers to the reference genome 
of P. anserina (supplementary table S1, Supplementary 
Material online), specifically 96.6% to 98.2% conserved 
proteins present. The annotation of short-read assemblies 
resulted in 90% to 93.5% conserved proteins, although 
assemblies alone reached BUSCO values more in line 
with the long-read assemblies (supplementary table S1, 
Supplementary Material online).

Phylogenomics and Comparative Genomics

We aimed at providing a phylogenetic context of the 
P. anserina species complex by using the 28 genome 
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FIG. 1.—Circos plots comparing the reference assembly of P. anserina (strain S+, right side of each plot) to the best genome assembly of each of the 
other members of the species complex (left side). Light colors correspond to NUCmer alignments (larger than 5 kb) of the different chromosomes as de
fined in P. anserina (chr. 1: red; chr. 2: turquoise; chr. 3: yellow; chr. 4: blue; chr. 5: orange; chr. 6: olive green; chr 7: gray). Red solid links mark chromo
some inversions or inverted translocations. The internal track in black is a histogram of repetitive element abundance calculated in sliding windows of 
50 kb with steps of 10 kb. The stars and triangles mark shared structural variants (relative to P. anserina). The location of the insertion in chr. 5 discussed 
in the text is marked with a red square.
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assemblies (Fig. 2; supplementary table S1, Supplementary 
Material online). The closest known relative of the 
P. anserina species complex is Cercophora samala, strain 
CBS 307.81 (Ament-Velásquez et al. 2020). Preliminary 
phylogenomic analyses using CBS 307.81 as the outgroup 
placed the clade of P. anserina and P. pauciseta as sister 
to the other Podospora species (supplementary fig. S1, 
Supplementary Material online). However, this C. samala 
strain is in fact too divergent (around 86% identity in nu
clear genic regions to any Podospora species) relative to 
the species complex (>98% identical to each other), po
tentially creating long-branch attraction (Felsenstein 
1981; Emms and Kelly 2017). Hence, only Podospora 

strains were considered below, and we tentatively rooted 
the phylogeny using P. anserina and P. pauciseta.

A summary of our results is found in Fig. 2a. We inferred 
groups of single-copy orthologous (SCO) genes and used 
them to produce 3 different phylogenetic analyses (Fig. 2b 
to d). All phylogenies resulted in well-supported species-level 
clades separated by very short internal branches, suggesting 
rapid diversification. Most relationships were congruent 
among analyses, except with regard to the relative positions 
of P. comata and P. bellae-mahoneyi. In the first analysis, a 
maximum likelihood (ML) phylogeny produced from a 
supermatrix of 1,000 nuclear SCO genes, P. bellae-mahoneyi 
was inferred as sister to the clade containing 
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FIG. 2.—Phylogenetic relationships of the Podospora strains with genomic resources and their geographic distribution. a) Summary cladogram based on 
the phylogenomic analyses and the detected structural variants, with dotted branches illustrating an alternative topology. Fruiting body cartoons mark the 
country where the different strains were sampled. Phylogenetic relationships were inferred from a supermatrix ML analysis b) or a MSC analysis c) of nuclear 
genes, as well as a ML analysis of concatenated mitochondrial genes d). Rooting is tentative based on analyses with C. samala as an outgroup. Branch lengths 
of the phylograms are drawn to scale as indicated by the scale bar (nucleotide substitutions per site in b) and d) and coalescent units in c)). Different support 
metrics are shown next to their corresponding branches (within-species values are removed for clarity). The EQP-IC value of the conflicting branch is highlighted 
in bold. MSC, multispecies coalescent; UFBoot, ultrafast bootstrap; EQP-IC, extended quadripartition internode certainty; LPP, local posterior probability; NB, 
nonparametric bootstrap.
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P. pseudopauciseta, P. pseudoanserina, and P. pseudocoma
ta (Fig. 2b). In contrast, a multispecies coalescent (MSC) ana
lysis of all the 8,596 SCO genes recovered P. comata and 
P. bellae-mahoneyi as sister taxa (Fig. 2c). Lastly, a ML phyl
ogeny of 8 mitochondrial genes was in support of the nuclear 
supermatrix tree, albeit with modest bootstrap values 
(Fig. 2d). To further explore this phylogenetic conflict, we ob
tained extended quadripartition internode certainty (EQP-IC) 
values (Zhou et al. 2020) for the 2 competing topologies. 
The EQP-IC score can range from 1 to −1. A score of 1 im
plies that all the SCO gene trees agree with a given branch, 
while a value of −1 reveals that all trees support an alternative 
topology. The score approaches 0 if the alternative topolo
gies have similar frequencies among the gene trees (Zhou 
et al. 2020). As expected, we found intermediate positive va
lues in most internal branches, which might be explained by 
incomplete lineage sorting (ILS) or introgression. The contest
ing branches in particular obtained values very close to 0, but 
there is slight support for the existence of a clade containing 
P. comata and P. bellae-mahoneyi (Fig. 2b and c).

Taking advantage of the extensive collinearity between 
genomes, we also attempted to find phylogenetically in
formative structural variants. In support of the MSC ana
lysis, we found a medium-scale (33.89 kb, 13 genes) 
inversion in chromosome 5, relative to P. anserina’s 
genome, that is shared between P. comata and 
P. bellae-mahoneyi (Figs. 1 and 2a). In addition, we de
tected a shared translocation from chromosome 5 to 
chromosome 3 between P. pseudoanserina and P. pseudo
pauciseta, supporting their close sister relationship already 
observed in the phylogenetic analyses (Figs. 1 and 2a). 
However, in contradiction with our phylogenies, we found 
a region in chromosome 5 that is only present in P. anser
ina, P. comata, and P. pseudocomata (Figs. 1 and 2a). This 
region ranges from over 40 kb in P. anserina to just over 
6 kb in P. pseudocomata and contains a number of genes 
and different transposable elements (TEs). Upon closer in
spection, we found that the edges of this region are 
flanked by directed repeats of 4 bp, suggesting that this 
region represents a TE-mediated insertion, resembling 
the behavior of large TEs found in Pezizomycetes, including 
Podospora (Vogan et al. 2021; Gluck-Thaler et al. 2022). Its 
phylogenetic distribution might also be a consequence of 
ILS or introgression.

Conclusion
Here, we present high-quality annotated genome assemblies 
of 4 members of the P. anserina species complex. Together 
with the already available genomic resources, these new 
data build an evolutionary framework for further in-depth 
studies of this group of fungi. We provide a general idea of 
the genomic architecture and relationships between the 
sampled Podospora lineages, while illustrating the high levels 

of phylogenetic conflict that are typical of rapid species radia
tions. Moreover, we make available a comprehensive genomic 
data set of 28 strains for the study of fungal biology and evo
lution at shallow divergence scales. Combined with the wealth 
of molecular biology tools available for the model species 
P. anserina, this data set can be used to explore the evolution 
and function of pangenome content including metabolic clus
ters, selfish genetic elements like meiotic drivers and TEs, and 
the buildup of reproductive barriers in filamentous fungi.

Materials and Methods
All bioinformatic pipelines were done in Snakemake 
v. 7.25.0 or v. 7.32.3 (Mölder et al. 2021) and are available 
at https://github.com/SLAment/PodosporaGenomes, unless 
otherwise stated. Some of these pipelines rely on the 
Environment for Tree Exploration (ETE3) toolkit v. 3.1.3 
(Huerta-Cepas et al. 2016).

Fungal Material

For detailed information about the strains used, see 
supplementary table S1 and Supplementary Material, 
Supplementary Material online. The strains with code 
starting with “CBS” were originally obtained from the 
CBS-KNAW Collection (https://wi.knaw.nl/Collection). In 
addition, we isolated 2 new strains of P. comata from rab
bit dung collected in the area between Wageningen and 
Arnhem, The Netherlands (51°58′41.8″N, 5°50′39.6″E, lo
cality Unksepad Oosterbeek) in September of 2016, which 
were deposited in the Wageningen Collection at the 
Laboratory of Genetics of the Wageningen University and 
Research (codes Wa132 and Wa133).

DNA Extraction and Sequencing

For Illumina sequencing, we grew the haploid strains 
on Petri dishes of either M2 medium (CBS124.78+ and 
CBS307.81−) or PASM0.2 (other strains) for 3 to 4 d 
(Vogan et al. 2019; Silar 2020). We scraped mycelium off 
the plates in order to obtain about 80 to 200 mg of myce
lium per strain and stored it in 1.5-mL Eppendorf tube at 
−80 °C for at least 24 h before extraction. For most strains, 
whole genome DNA was extracted with the Fungal/Bacterial 
Microprep kit (Zymo; https://zymoresearch.eu/). In the case 
of CBS124.78+ and CBS307.81−, the mycelium was lyo
philized for about 20 h, and DNA was extracted using 
the commercial Nucleospin Soil kit from Macherey Nagel. 
Paired-end libraries (150 bp reads) were sequenced by ei
ther the SNP and SEQ Technology platform (SciLifeLab, 
Uppsala, Sweden) on the Illumina HiSeq X platform (most 
strains) or by the high-throughput sequencing core facility 
of I2BC, Université Paris-Saclay (Centre de Recherche de 
Gif—http://www.i2bc.paris-saclay.fr/) on the Illumina 
NextSeq500 platform (CBS124.78+ and CBS307.81−).
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For MinION Oxford Nanopore sequencing, we grew the 
strains in liquid cultures of 3% malt extract solution as in 
Vogan et al. (2019). High-molecular-weight DNA was ex
tracted as in Sun et al. (2017), using the Genomic Tip 
G-500 columns (Qiagen) and the PowerClean DNA 
Clean-Up kit (MoBio Labs). The strain CBS 411.78− was 
prepared and sequenced with the ligation kit SQK108 in a 
1-pot reaction using 500 ng DNA for end-prep and ligation 
(NEB Ultra-II ligase) and sequenced on an R9.4.1 flow cell. In 
addition, a rapid barcoding (RBK004) was made for CBS 
411.78− to get sufficient coverage for assembly. Similarly, 
CBS 415.72− was also sequenced using both the RBK004 
and LSK108 kit on an R9.4.1 flow cell to maximize yield. 
CBS 112042+ and CBS 124.78+ were sequenced on 
R9.4.1 flow cells using the LSK108 kit with 3 μg DNA as 
input for the end-prep reaction (NEB Ultra-II EP, 20 min 
at 20 °C and 20 min at 65 °C). Bead purification 
(SpeedBeads, GE) was done before ligation to deplete short 
fragments, and 1.5 μg DNA per sample was ligated to 20 μL 
AMX 1D using Blunt/TA ligase (30 min).

Genome Assembly

The paired-end HiSeq Illumina reads were cleaned from 
adapters using cutadapt v. 1.13 (Martin 2011) and 
Trimmomatic v. 0.36 (Bolger et al. 2014) with the following 
options: ILLUMINACLIP:adapters.fasta:1:30:9 LEADING:20 
TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:30, as in 
Vogan et al. (2019). We used both forward and reverse 
paired-end reads in downstream analyses. De novo assem
blies were produced as in Vogan et al. (2019). Specifically, 
we assembled the MinION reads with mean Phred qual
ity (QV) above 9 and longer than 1 kb using Minimap2 
v. 2.11 and Miniasm v. 0.2 (Li 2018, 2016). Racon v. 1.3.1 
(Vaser et al. 2017) was used twice to polish the resulting as
semblies based on the unfiltered reads. We further polished 
5 times using the Illumina reads with Pilon v. 1.22 (Walker 
et al. 2014), which were mapped using BWA v. 0.7.17 
(Li and Durbin 2009), with PCR duplicates marked by 
Picard v. 2.18.11 (http://broadinstitute.github.io/picard/) and 
with local indel realignment from the Genome Analysis 
Toolkit (GATK) v. 3.7 (Van der Auwera et al. 2018). For the 
strains without long-read data, we ran SPAdes v. 3.12.0 
(Bankevich et al. 2012) with the k-mers 21,33,55,77 (most 
strains) or 21,29,37,45,53,61,79,87 (CBS307.81−) and 
the --careful option. Due to high numbers of read pairs 
with read mates mapping on different chromosomes during 
the read mapping procedure (about 20% of mapping read 
pairs), we used each paired-end sequencing run as 2 inde
pendent single-end sequencing runs for read mapping and 
de novo assembly of CBS124.78+ and CBS307.81−, re
spectively (see Hartmann et al. 2021).

In the case of samples with long-read data, the scaffolds 
were assigned to chromosomes and reoriented by mapping 

them to the reference genome of the strain S (Espagne et al. 
2008), which is available at the Joint Genome Institute 
MycoCosm website (https://mycocosm.jgi.doe.gov/Podan2/ 
Podan2.home.html) as “Podan2”. Mapping was performed 
with the NUCmer program from the MUMmer package 
v. 4.0.0beta2 (Kurtz et al. 2004) using the parameters -b 
2000 -c 200 --maxmatch. Contigs smaller than 100 kb 
that contained rDNA repeats or mitochondrial sequences 
were discarded (except for the largest mitochondrial con
tig). Genome quality statistics were calculated with QUAST 
v. 4.6.3 (Mikheenko et al. 2016). Mean depth of coverage 
was obtained using Qualimap v.2.2 (Okonechnikov et al. 
2016). We also used BUSCO v. 5.3.1 (Manni et al. 2021) 
with the 3,817 Sordariomycetes_odb10 ortholog set to as
sess assembly completeness. As dependencies, we used 
BLAST suit 2.12.0+ (Camacho et al. 2009), AUGUSTUS 
v. 3.4.0 (Stanke and Waack 2003), and HMMER v. 3.2.1 
(Mistry et al. 2013).

We verified the correct assembly of the mitochondrial 
contig in the focal strains CBS 112042+, CBS 124.78+, 
CBS 411.78−, and CBS 415.72−, by visual inspection of 
long- and short-read mapping. We found a misassembly 
in the contig of CBS 415.72− around the first exon of the 
cox1 gene. Hence, we extracted the long reads mapped 
to this mitochondrial contig using the bam2fq option of 
SAMtools v. 1.17 (Danecek et al. 2021) and reassembled 
them with Flye v. 2.9.1 (Kolmogorov et al. 2020) with the 
arguments --iterations 2 --meta --keep-haplotypes. We re
covered 2 circular contigs, 1 of which proved to be formed 
by multiple tandem repeats of the first part of cox1, a con
figuration known as α senDNA or plDNA (Cummings et al. 
1985; Hamann and Osiewacz 2018). The other contig cor
responded to the full mitochondrion. We polished the 
mitochondrial contig 3 times using the Illumina reads as 
above and discarded the plDNA. We manually recircular
ized the mitochondrial contigs of the focal strains to avoid 
breaking genes.

Genome Annotation

The annotation of all genomes was done with a modified 
version of a previous pipeline (Vogan et al. 2021). Briefly, 
we used previously produced (Vogan et al. 2019) training 
files for SNAP release 2013-11-29 (Lomsadze et al. 
2005) and GeneMark-ES v. 4.38 (Lomsadze et al. 2005; 
Ter-Hovhannisyan et al. 2008) within the program MAKER 
v. 3.01.04 (Holt and Yandell 2011; Campbell et al. 2014) 
to generate gene models for all species. MAKER was run 
with the following dependencies: BLAST suit 2.13.0+, 
tRNAscan-SE v. 1.3.1 (Lowe and Eddy 1997), Exonerate 
v. 2.4.0 (Slater and Birney 2005), and RepeatMasker v. 4.1.0 
(http://www.repeatmasker.org/). As external protein evidence, 
we used the sequences from the PODANS_v2016 annota
tion (Lelandais et al. 2022) and from the reference 
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genome of P. comata (PODCO; Silar et al. 2018), along 
with a small set of manually curated proteins (available 
in the GitHub repository). We also used transcript models 
as external evidence from 2 sources: the curated set of 
transcripts with defined transcription starts and ends 
from PODANS_v2016 and transcript models of published 
RNA-seq data of P. anserina and P. comata (Vogan et al. 
2021, 2019). The latter were produced as in Vogan 
et al. (2021), using STAR v. 2.7.10b (Dobin et al. 2013), 
Cufflinks v. 2.2.1 (Trapnell et al. 2010), and TransDecoder 
v. 5.7.0 (Haas et al. 2013). Additionally, we used the custom 
library “PodoTE-1.00” (https://github.com/johannessonlab/ 
SpokBlockPaper/blob/master/Annotation/data/) to anno
tate repeated elements in all species using RepeatModeler 
v. 1.0.8 (http://www.repeatmasker.org/RepeatModeler/).

The gene models produced by the MAKER pipeline were 
functionally annotated with Funannotate v. 1.8.15 (Palmer 
and Stajich 2020) using the annotate function with the de
pendencies HMMER 3.3.2 (Mistry et al. 2013), Diamond 
v. 2.1.6 (Buchfink et al. 2021) with the UniProt DB version 
2023_01, InterProScan v. 5.62-94.0 (Jones et al. 2014; Blum 
et al. 2021), bedtools v. 2.30.0 (Quinlan and Hall 2010), 
Eggnog-mapper v. 2.1.10 (Cantalapiedra et al. 2021) with 
the database emapperdb-5.0.2, and the fungal version 
of antiSMASH v. 6.1.1 (Blin et al. 2021). The input assem
blies were soft masked with RepeatModeler as above. 
Mitochondrial annotation was done with the online ver
sion of MFannot (Lang et al. 2023), setting the genetic code 
to 4 (https://megasun.bch.umontreal.ca/apps/mfannot/; con
sulted in July 2023; see Supplementary Material for details.

Comparative Genomics

In order to explore collinearity among the Podospora 
species, we used NUCmer with parameters -b 2000 -c 
2000 --maxmatch to align the long-read assembly of a 
representative of each species against Podan2 (Fig. 1). 
We further calculated the coverage distribution of repetitive 
elements along chromosomes using the RepeatMasker an
notation and by dividing the genome in windows of 50 kb 
with steps of 10 kb using the utilities makewindows and 
coverage of BEDTools v. 2.29.0 (Quinlan and Hall 2010; 
Quinlan 2014). Both the alignments and coverage distribu
tions were plotted using Circos v. 0.69.6 (Krzywinski et al. 
2009). We removed all alignments smaller than 5 kb to ex
clude the most abundant TEs.

Phylogenomic Analyses

In order to resolve the relationships between the Podospora 
species, we inferred SCO groups by running OrthoFinder 
v. 2.5.2 (Emms and Kelly 2019) with a single representative 
per species: strains S+ (Podan2), PODCO, CBS 237.71−, 
CBS 124.78+, CBS 411.78−, CBS 415.72, and CBS 112042+. 
OrthoFinder was run with the proteins predicted for the 

chosen strains. However, the low level of divergence with
in the species complex makes the proteins largely unin
formative. Hence, once SCO groups were defined, we 
used the ortholog of the reference S+ as a BLASTn query 
to retrieve the nucleotide sequences of the corresponding 
homologs (including introns) in all the Podospora strains in 
our data set (supplementary table S1, Supplementary 
Material online). We kept only the orthogroups with a sin
gle sequence per strain, resulting in a total of 8,596 SCO 
groups. These were then aligned with MAFFT v. 7.407 
(Katoh and Toh 2008) with the options --adjustdirection 
--anysymbol --maxiterate 1000 --retree 1 --localpair. We 
inferred ML trees of each alignment using IQ-TREE v. 2.2.3 
(Nguyen et al. 2015; Hoang et al. 2017) with parameters 
-m MFP -seed 1234 -bnni --keep-ident -bb 1000. To reduce 
noise in our data set, we collapsed branches with ultrafast 
bootstraps (UFBoots) support lower than 95% into poly
tomies using Newick utilities v. 1.6 (Junier and Zdobnov 
2010). These trees were then given to ASTRAL v. 5.7.3 
(Zhang et al. 2018) to construct a MSC phylogeny. In add
ition, we randomly selected 1,000 of the SCO to form a con
catenated alignment (supermatrix) of 1,732,364 sites 
(39,771 [2.4%] informative) and produced a ML phylogeny 
with IQ-TREE as above. In order to evaluate the level of con
flict within the SCO trees with respect to both the superma
trix ML and MSC phylogenies, we calculated the EQP-IC 
score with the program QuartetScores v. 1.0 (Zhou et al. 
2020) using the unrooted reference trees and the SCO trees 
with collapsed low-support branches from above as the 
evaluation set (see Supplementary Material for details).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo gen
ome assembly from long uncorrected reads. Genome Res. 
2017:27(5):737–746. https://doi.org/10.1101/gr.214270.116.

Vogan AA, Ament-Velásquez SL, Bastiaans E, Wallerman O, Saupe SJ, 
Suh A, Johannesson H. The Enterprise, a massive transposon carry
ing Spok meiotic drive genes. Genome Res. 2021:31(5):789–798. 
https://doi.org/10.1101/gr.267609.120.

Vogan AA, Ament-Velásquez SL, Granger-Farbos A, Svedberg J, 
Bastiaans E, Debets AJ, Coustou V, Yvanne H, Clavé C, Saupe SJ, 
et al. Combinations of Spok genes create multiple meiotic drivers 
in Podospora. eLife 2019:8:e46454. https://doi.org/10.7554/ 
eLife.46454.

Vogan AA, Martinossi-Allibert I, Ament-Velásquez SL, Svedberg J, 
Johannesson H. The spore killers, fungal meiotic driver elements. 
Mycologia 2022:114(1):1–23. https://doi.org/10.1080/00275514. 
2021.1994815.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. Pilon: 
an integrated tool for comprehensive microbial variant detection 
and genome assembly improvement. PLoS ONE. 2014:9(11): 
e112963. https://doi.org/10.1371/journal.pone.0112963.

Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time 
species tree reconstruction from partially resolved gene trees. BMC 
Bioinformatics. 2018:19(S6). https://doi.org/10.1186/s12859- 
018-2129-y.

Zhou X, Lutteropp S, Czech L, Stamatakis A, Looz MV, Rokas A. 
Quartet-based computations of internode certainty provide robust 
measures of phylogenetic incongruence. Syst Biol. 2020:69(2): 
308–324. https://doi.org/10.1093/sysbio/syz058.

Associate editor: Li-Jun Ma

Ament-Velásquez et al.                                                                                                                                                    GBE

10 Genome Biol. Evol. 16(3) https://doi.org/10.1093/gbe/evae034 Advance Access publication 22 February 2024

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/16/3/evae034/7612620 by guest on 19 April 2024

https://doi.org/10.1038/s41467-017-01317-6
https://doi.org/10.1101/gr.081612.108
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1101/gr.267609.120
https://doi.org/10.7554/eLife.46454
https://doi.org/10.7554/eLife.46454
https://doi.org/10.1080/00275514.2021.1994815
https://doi.org/10.1080/00275514.2021.1994815
https://doi.org/10.1371/journal.pone.0112963
10.1186/s12859-018-2129-yhttps://doi.org/10.1186/s12859-018-2129-y
10.1186/s12859-018-2129-yhttps://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1093/sysbio/syz058

	High-Quality Genome Assemblies of 4 Members of the Podospora anserina Species Complex
	Introduction
	Results and Discussion
	Genome Assemblies and Annotation
	Phylogenomics and Comparative Genomics

	Conclusion
	Materials and Methods
	Fungal Material
	DNA Extraction and Sequencing
	Genome Assembly
	Genome Annotation
	Comparative Genomics
	Phylogenomic Analyses

	Supplementary Material
	Acknowledgments
	Funding
	Data Availability
	Literature Cited




