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Multi-UAVs end-to-end Distributed Trajectory Generation over Point
Cloud Data

Antonio Marino, Claudio Pacchierotti, Paolo Robuffo Giordano

Abstract—This paper introduces an end-to-end trajectory plan-
ning algorithm tailored for multi-UAV systems that generates
collision-free trajectories in environments populated with both
static and dynamic obstacles, leveraging point cloud data. Our
approach consists of a 2-branch neural network fed with sensing
and localization data, able to communicate intermediate learned
features among the agents. One network branch crafts an
initial collision-free trajectory estimate, while the other devises a
neural collision constraint for subsequent optimization, ensuring
trajectory continuity and adherence to physical actuation limits.
Extensive simulations in challenging cluttered environments,
involving up to 25 robots and 25% obstacle density, show a
collision avoidance success rate in the range of 100 − 85%.
Finally, we introduce a saliency map computation method acting
on the point cloud data, offering qualitative insights into our
methodology.

Index Terms—distributed control, graph neural network, tra-
jectory generation

I. INTRODUCTION

The domain of multi-agent Unmanned Aerial Vehicle (UAV)
trajectory planning has garnered significant attention, given
its diverse range of applications [1], [2], [3]. In these set-
tings, planning algorithms play a pivotal role in calculating
trajectories that are both safe and directed towards a defined
goal. These algorithms have to consider the dynamic state
of the environment and the presence of neighbouring agents.
In practical applications involving drones, trajectory planning
is crucial to navigate around obstacles and accommodate
limitations in the drone’s actuators [4], [5], [6].

Despite possessing more theoretical guarantees, centralized
approaches are often less appealing than decentralized coun-
terparts due to their computationally intensive nature and
the dependence on full-state information of each robot at
every algorithm iteration which renders them impractical for
real-world execution [7]. In contrast, decentralized planning
not only demonstrates enhanced scalability but also provides
robustness against potential failures in a centralized architec-
ture [8].

For more effective coordinated planning, the planning algo-
rithm must consider not only local sensing data but also the
planning decisions of a few neighbouring team members [9].
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Thus, communication emerges as a critical element in realiz-
ing distributed solutions for multi-agent systems. Within this
context, one of the focuses of this article is to integrate local
sensing and communication strategies to achieve end-to-end
distributed multi-UAV motion planning.

For UAV navigation, learning-based control from point
clouds or images offers computational advantages [10], [11],
[12]. Recently, distributed learning methods for multi-agent
scenarios have emerged, using reinforcement learning [13],
[14], [15] and Graph Neural Networks (GNNs) [16], [17].
GNNs, by exploiting the communication graph, excel in en-
coding distributed policies, as demonstrated by Blumenkamp
et al. [18], who showed multi-robot coordination in narrow
passages. However, learning-based control needs additional
safety guarantees, as seen in GLAS [19], which uses a
local safety function to ensure stability and safety. Most
results apply to static environments without considering real
robot dynamics. A recent work [20] combines safety control
strategies with learning over a graph of agents and obstacles,
using a GNN-based network to predict control estimates and
a constraint function for Control Barrier Function (CBF)
optimization from LiDAR data.

However, all these methods are susceptible to trapping
robots in local minima as they compute only a local control
action. To explicitly tackle this problem, a contribution of
this work is to propose a trajectory planning algorithm that
takes into account spatio-temporal predictions and can avoid
trapping the robots in deadlocks. Planning for multi-drone
coordination inherently poses a high-dimensional challenge,
even when safety is the sole requirement. Moreover, planning
algorithms often necessitate access to map data for obstacle
information, as noted in prior work [21]. This map should
be updated online to tackle environmental changes which
in large-scale environments can become cumbersome, bring-
ing a computational bottleneck. Furthermore, optimization-
based approaches may need to relax collision constraints
as team density increases. Potentially, this relaxation leads
to collisions, as discussed in [22] which reports real-time
motion planning for a swarm of up to 20 drones. The recent
literature [23], [24], [25], [26] has presented notable results
for robust multi-drone large-space travelling that take into
account physical size, actuator limitations, alongside track-
ing disturbances, communication delay, and asynchronous
communication. However, these algorithms typically rely on
perfect sensing and tracking of obstacles at all times or a
pre-available obstacle map, which, generally, is unavailable
in real-world scenarios. Furthermore, these algorithms require
tuning the map grid size to find collision-free paths and,
despite implementing a decentralized approach, each drone
must communicate with all other drones in the team, which
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reduces scalability.
In this paper, we present a novel data-driven approach for

distributed trajectory generation and safety collision avoidance
under LiDAR-based observations. Our main contributions are:

• A decentralized and asynchronous end-to-end trajectory
planning method using attention-based GNNs to learn
a decentralized policy from point cloud data. Unlike
existing methods requiring prior knowledge of the en-
vironment, our approach allows each drone to plan its
trajectory directly from sensed data.

• An optimization process that generates collision-free tra-
jectories by predicting collision constraints from point
cloud data and inter-drone communication. This method
allows real-time updates and adjustments, ensuring higher
reliability and safety in dynamic, uncertain environments.

• Leveraging the point cloud saliency map computed by a
variation of VisBackProp [27], we propose a qualitative
analysis of the predicted trajectories and how the point
cloud contributes to it.

II. PROBLEM STATEMENT

Consider a distributed trajectory generation problem for
a set of UAVs V := {1, . . . N} modelled at time t in
SE(3) with second-order dynamics. The UAV team operates
within a three-dimensional workspace containing static and
dynamic obstacles Ot. Each drone’s objective is to navigate
the environment toward its target without colliding with other
agents. A team mission is the collective traversing of the space
such that every drone satisfies its objective. We make the
following assumptions

Assumption 1. Each drone is controlled via a trajectory-
tracking algorithm and equipped with a 3D range sensor, such
as a LiDAR, with 360◦ field of view.

Assumption 2. At time t, we assume perfect state estimation,
i.e. the quaternion orientation quati(t) and the triplets of
position ri(t), velocity vi(t) in world frame are available to
agent i.

Assumption 3. Each drone can communicate with a limited
number of neighbours at a given frequency without communi-
cation loss

The observation data for a drone i is denoted by pci ∈
Rm×3, which includes the relative positions of the m “hit”
points in the scanned environment. The trajectory generated
must comply with the following constraints:

• collision avoidance: each pair of drones and drone-
obstacle maintains a safety distance of 2d throughout the
whole trajectory, where d > 0 is the radius of a sphere
containing the physical body of the agents.

• limited sensing and communication: each agent has
a limited sensing and communication range radius R.
We define the neighbours of agent i as Ni = {j ∈
V | ∥ri − rj∥2 ≤ R, j ̸= i}; therefore, the agents can
only sense other agents or obstacles inside a sphere of
radius R originating on the agent.

• physical limitations: The generated trajectory must sat-
isfy the drone’s velocity and acceleration limits and must
be smooth and continuous relative to the actual state.

III. METHOD

This section presents the proposed policy as a neural net-
work that fulfils the above requirements. We start by presenting
the trajectory encoding used by the proposed approach. Then,
we present the privileged expert used for training and how
we process the input features. Subsequently, we describe the
neural network architecture depicted in Fig. 1 and deployed on
the drone composed of input features processing, communi-
cated variables aggregation and the optimization layer to cope
with physical limitations. Finally, we describe the algorithm to
compute the saliency map, used to analyze the neural network
behaviour in the results.

A. Trajectory Representation

The trajectory used by each drone is a polynomial-based
curve, e.g., B-Splines, which allows us to impose velocity and
higher derivatives limitation through linear constraints on the
trajectory Control Points (CP). In fact, the convex hull of the
curve CP leads to the representation of the outer trajectory
polyhedron and, by imposing constraints on the CP, we ensure
they are satisfied throughout the trajectory.

In this paper, we adopted a MINVO basis [28] expression
for the curve. MINVO bases are recently introduced in the
literature and, compared to B-spline or Bernstein bases, form
a simplexM enclosing the given polynomial curve with min-
imum volume by construction. Hence, these bases lead to less
conservative polyhedron representations. Given a polynomial
order, we can pass from MINVO to B-Spline CP and vice-
versa by a linear transformation. For these reasons, it is ideal
to generate and apply constraints on MINVO CP for trajectory
descriptions. In particular, we define two linear mappings,
hv(·) and ha(·), to pass from MINVO CPs position to their
velocity and acceleration, respectively.

B. Privileged Expert

Our trajectory planner is trained via privileged learning [29].
Specifically, we generate a dataset from an expert controller:
MADER [23]. MADER employs a decentralized and asyn-
chronous approach to generate feasible and safe trajectories,
leveraging a combination of path planning and Quadratic Pro-
gramming (QP) optimization. We can consider this algorithm
as a privileged expert for two reasons: first, MADER exploits
comprehensive knowledge of the physical dimensions of ob-
stacles and drones, as well as the trajectories of both, which
is a piece of information typically unavailable in real-world
scenarios; second, MADER ensures to find feasible trajectories
only for unlimited time budget available in simulation. The
optimization proposed by MADER focuses on determining the
separation planes between the drone and potential obstacles
throughout the trajectory, facilitating motion within a safe
region. Moreover, the same reasoning is applied to trajectories
committed by the other drones, leveraging the trajectory outer
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Fig. 1. neural network architecture deployed on each drone.

simplex as a cluttered area. However, the growth of the
decision variables is proportional to the number of obstacles
and other drones within the decision horizon. This renders
the optimization more difficult to solve within a limited time
budget, leading to potential infeasibility and hazardous halts.
However, in simulation where full obstacle information is
available and no time constraints are present, we can fully
exploit MADER to generate a dataset of safe trajectories.

In our approach, to construct a dataset, we chose MADER
over centralized alternatives as its features of asynchrony and
decentralization align well with the objectives of our trajectory
planner. Moreover, learning over an already decentralised
expert policy eases the training process. After the training
process, at execution time, the learned policy does not rely
on any privileged information and synthesizes the trajectory
from sensor inputs only.

C. Neural Network Input Features

Every drone i in the team shares the same neural network
architecture that accepts as input raw point clouds normalized
in a unitary sphere and transformed into the world frame using
quati. Additionally, the proposed neural network uses also the
current velocity, vi, and the current desired acceleration, ai,
normalized by the maximum velocity vmax and the maximum
acceleration amax allowed. We also include the goal location
(goali) in the drone i frame, projected on the sensing sphere
with radius R if the distance to the goal is greater than R.
Then, the goali is divided by R to have coordinates in the
range [−1, 1]. Drone i can communicate intermediate neural
network features with drones in its neighbourhood Ni. We
enclose the drone initial conditions in xi0 = [03,vi,ai] for
a generated trajectory starting from the ego location, 03 =
[0, 0, 0]. In the final deployment, we add to the learnt control
point q the current drone location ri(t) to track the trajectory.

D. Neural Network Structure

The neural network consists of two main branches that
process the point cloud pci, combine it with localization

data [goali,vi,ai], and communicate features to compute a
trajectory guess vector q∗

i (described by MINVO CPs) and a
vector of collision coefficients gi for drone i. The latter is used
to define a linear combination of CPs composing qi, thereby
classifying its safety. Specifically,

Definition III.1. Given pc := [pcT1 . . . pcTN ]T , the joined point
clouds from N drones, for drone i, the scalar value gT

i qi is
gT
i qi < 0 if and only if the control points vector qi belongs

to the safe set Si, where Si = {qi | ∥pi − pj∥2 > 2d ,pi ∈
M(qi),pj ∈ pc} and M(qi) is the outer simplex of qi.

The term gT
i qi can be used as a linear constraint to

generate a safe trajectory. The collision coefficients gi serve
to fortify the learned policies against collisions but also to
ensure their applicability and reliability in unseen scenarios
where the expert policy is unavailable or not included in the
dataset. We formulate a QP layer as the final stage within
the neural network that optimizes qi to closely align with
the initial guess q∗

i , while concurrently ensuring adherence to
predefined maximum drone velocity (vmax) and acceleration
(amax) constraints. This combination not only refines trajec-
tory predictions but also strengthens the system’s resilience in
navigating complex environments. The QP formulation is the
following:

min
qi

∥qi − q∗
i ∥22

s.t.
xi(t0) = xi0

abs(v) ≤ vmax ←− ∀v ∈ hv(qi)

abs(a) ≤ amax ←− ∀a ∈ ha(qi)

gT
i qi ≤ 0

(1)

The point cloud is processed by a PointNet layer [30] compris-
ing three filters of 64, 128, 256, respectively. PointNet employs
sequences of point transformations through a compact trans-
formation network and 1D-CNN with a unitary kernel size to
generate spatially-permutation invariant features. The output of
this layer, m× 256 with m points, splits to serve distinct pur-
poses within the collision coefficients branch and the trajectory
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generation branch. To generate gi, i.e., assigning a safety score
to trajectories crossing the environment, we require global
features extracted from the point cloud. Consequently, the
PointNet output is transformed into a 256-dimensional vector
through global max pooling over the features.
Conversely, within the trajectory generation branch, our ap-
proach involves further clustering of the point cloud based on
the features learned by PointNet. Clusters prove advantageous
in classifying spatial regions that hold crucial information
for trajectory generation. Clustering was already adopted in
the design of PointNet++, which consists of spatial cluster-
ization coupled with smaller PointNet modules. We adopted
DMoN [31], a clustering methodology based on a graph neural
network, approximating spectral modularity maximization to
recover high-quality features and spatial-based clusters. Unlike
PointNet++, DMoN’s approach does not solely rely on spatial
displacement and does not require a nested architecture of
PointNets. The adjacency matrix required by DMoN is repre-
sented as a binary sparse map encoding the spatial proximity of
the points. This strategic combination of PointNet and DMoN
very well captures intricate spatial structures for trajectory
generation tasks, as we show in the results of Sec. V. We chose
a number of clusters (51) that, together with the localization
data, form a 64-dimensional vector for the next layer.
Both branches exchange the local features with the neigh-
bouring agents using a message-aware graph attention network
(MAGAT) [16]. Assuming that each drone i can communicate
with its set of neighbours Ni, the communication graph can be
represented by a binary sparse matrix A. We let A ∈ RN×N

be the adjacency matrix of the communication graph. Given a
graph signal x ∈ RN×F distributed over the drones, we can
define a graph filter as

HA(x) =

K∑
k=0

AkxHk. (2)

which combines the elements of x over the adjacency matrix
of the communication graph and applies the graph filter
weights Hk ∈ RF×F ′

. The quantity K ≥ 1 represents the
filter length, which implies repeated 1-hop communications
over the graph. Therefore, the filter can be executed distribu-
tively over the graph. The filter in eq. (2) transforms the graph
signal from an F -features space into a signal of an F ′-features
space. MAGAT enhances this framework by incorporating an
attention mechanism to weigh the relative importance of drone
features. Specifically:

HAE(x) =

K∑
k=0

(E ◦A)kxHk.

Eij =
exp(LeakyReLU(xT

i Wxj))∑
k∈Ni

exp(LeakyReLU(xT
i Wxk))

(3)

where E is the matrix of attention weights. Considering the
need to communicate graph signals over the network, the size
of F affects network congestion. To address this, we extend
the scheme by introducing an encoding-decoding mechanism
to compress the graph signal before communication and recon-
struct its original dimension afterwards. This involves point-

wise learnable encoding and decoding functions, denoted as
eθ(·) : RF → RG and dθ(·) : RG → RF , respectively:

HAed(x) =

K∑
k=0

dθ((E ◦A)keθ(x))Hk. (4)

Here, G << F reduces the number of communicated vari-
ables, with eθ and dθ functions implemented as MLP with
ReLU activation functions. The resulting GNNed layer,

x = ReLU(HAed(x)) (5)

is employed 3 times in the trajectory generation branch (with
filter dimensions 512, 256, 30) and twice in the collision
branch (with filter dimensions 512, 256), totalling L = 5
layers. Set parameters include K = 1 and G = 5. We can use
the unit-delay communication model [32] and communicate
unit-time delayed signals to compute the graph filters in (4)
in one shot, by sending [xi(t), . . . , A

K−1
i x(t−K − 1)] for

each agent. This model allows releasing a new output at each
communication iteration but at the cost of more communi-
cated variables. Therefore, each drone communicates LGK
variables, i.e. 25 in our implementation.

E. Point Cloud Saliency Map

A saliency or attention map, denoted as s = [0, 1]m,
serves as a feature map unveiling the relevance of input data
in the decision-making process. This map is instrumental
in inspecting and interpreting neural networks, particularly
under distribution shifts. Existing studies on point cloud
saliency maps [33], [34] predominantly rely on gradient-based
methods or incorporate additional neural network modules.
As highlighted by the authors of VisBackProp [27], for au-
tonomous navigation, it is convenient to dispose of a gradient-
free method that can be evaluated online. Addressing this
gap, we applied the same reasoning of VisBackProp to the
PointNet layer in our architecture, proposing a variation of
VisBackProp that can handle point cloud. We focus on the
PointNet layer in our architecture, as it processes the point
cloud and is dynamically shaped during training to enhance
the representation of points for trajectory generation. The 1D-
CNNs composing the PointNet draw a direct parallelism with
VisBackProp that is applied to 2D-CNNs. For a PointNet made
of P sequences of feature transformations and 1D-CNN, we
save the average map h̄i computed over the features generated
after each sequence. Starting from h̄P , we loop over the list of
h̄i by multiplying the actual element with previous element of
the list and normalize between [0, 1] after each multiplication.
The algorithm is summarized in Algorithm 1.

IV. TRAINING

Our model training dataset D encompasses UAV around
16k trajectories under the control of the expert controller
within a simulated environment. The simulation environment
incorporates a 10% obstacle density organized in a forest-like
setting and confined within a sphere of 10m radius centred
in the world origin. The obstacles are partitioned equally
into static and dynamic elements, with the dynamic obstacles
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Algorithm 1 PointBackProp
Require: point cloud (pt ∈ Rm×3), PointNet

h1, h2, . . . , hP ← get the P intermediate features computed
by PointNet
h̄1, h̄2, . . . , h̄P ← compute average of the features
s := h̄P ▷ saliency map s = [0, 1]m

for i = P-1 ... 1 do
s := h̄i· s
Normalize s between {0, 1}

end for
compose point cloud values {s, pt}

Algorithm 2 Training Algorithm
Require: D batch size b

for point cloud in D do
Combine point clouds of the N drones
Generate random trajectories q̂
Solve QP to constraint q̂ with the initial conditions and

physical limitations
add q̂ to Si according to the Definition III.1
Append trajectories and collision indexes to the dataset

D̂ ← D̂ ∪ {q̂}
end for
calculate adjacency matrix of drones A ▷ This step is only
needed in centralized training
calculate adjacency of point clouds Apt

for i = 1 . . . epochs do
collect b batches {pt, v, a, quat, goal, q} ← D
compute q∗, g ← model
if i > epochsi then

prepare QP in eq (1) with constraint gT q∗ < 0
Solve QP −→ q
if QP feasible then

q −→ q∗
end if

end if
extract {q̂} in D̂
Compute constraint Lg(g, q̂) using eq (7)
Compute loss Lq(q, q∗) in eq (6)
Update model weights

end for

following a three-dimensional trefoil knot motion spanning a
width of 1m. For each mission, we randomly placed 8 drones
around the surface of the 10-m sphere, with each drone target
located on the opposite side of the sphere surface, forcing
the traversal of the sphere centre. The sensing/communication
radius is fixed at R = 4 m. At a sampling rate of 15Hz,
we capture point cloud data, localization information, and
current control trajectory in MINVO control points, starting
from the current drone location. The trajectories are saved
as clamped spline with 10 equally spaced internal knots
for each axis starting from the current timestamp t0 to tf .
Therefore, the trajectories are defined solely by 10 CPs for
each axis for segment polynomials of degree 3. This helps the
training process by focusing on learning the control points.

Fig. 2. Experimental environments: dynamic corridor (right) and dynamic
forest (left).

In addition, we generate 560k random trajectories q̂ offline,
originating from the initial robot location, and categorize them
as successful or unsuccessful based on definition III.1 within
the joint point cloud space, i.e. successful if the trajectory does
not collide with obstacles or agent. Moreover, we introduce
a diminishing safety distance d along the trajectory, ranging
from the drone’s actual size at the trajectory’s initiation to
0 at its termination. This approach optimizes the safe set by
progressively reducing conservatism, thereby prioritizing the
safety of the trajectory’s initial location:

Lq =
∑
i∈V

1

30
||qi − q∗i ||22 qi ∈ D, (6)

Lg =
∑
i∈V

∑
q̂i∈Si

[gT
i q̂i]

+
∑
q̂i /∈Si

[−gT
i q̂i]

+, (7)

where [·]+ = Softplus(·) stands for a continuous ReLU
function ensuring strict constraint satisfaction. We split the
dataset into training, validation, and testing at ratios of 0.6, 0.3,
and 0.1 respectively. We solve the imitation learning problem
by using behavioural cloning with ADAM optimizer [35]
employing a learning rate 1e − 3 and forgetting factors 0.9
and 0.999. We trained for 200 epochs of which in the first
50 = epochsi the loss of eq. (6) is computed on the trajectory
guess, without solving the QP. This solution helps to ease the
learning and predict a good initial guess. The rest of the 150
epochs use the QP optimization as last layer as explain in
Sec. III. If the QP is unfeasible, we used the initial guess to
train our neural network. We exploit OptNet [36] to realize
a differentiable quadratic programming layer and use classic
backpropagation methods during training. We summarize the
training process in the Algorithm 2.

V. EXPERIMENTS

All simulations and training were conducted on a machine
running Ubuntu 22.04. with Intel Core i7-9750H @ 2.60GHz
CPU, Nvidia RTX 2080Ti and 32G RAM. The communication
between the drones is employed through ROS with a commu-
nication rate of 100Hz while a new trajectory is calculated
when a new point cloud is sensed at 15Hz. As specified in the
assumption, we do not consider communication loss but, being
the trajectory computation at a lower rate, we can guarantee
a communication delay margin of 0.056 s. We first provide
an ablation study and analysis results for a general quadrotor
model with a perfect controller tracking trajectories with a
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Fig. 3. Success rate and safety rate increasing obstacles and agents in the
range of obstacle density [5%−25%] and number of robots between [5−25]
for our approach, ours without GNN, ours without collision constraint, ours
with Pointnet++, ours without DMoN and MADER algorithm.

Fig. 4. Saliency map in a scenario with two drones for our approach and
ours without GNN. The two drones (black and blue) sense each other and a
pilar through their point cloud while moving toward the target. The saliency
map is displaced by the alpha channel of the points.

maximum twist equal to 3.5 m/s in any directions and maxi-
mum acceleration equal to [20, 20, 9.6] m/s2. We assume the
quadrotor size to be confined in a sphere of radius d = 0.15m.
Moreover, we chose tf = 1s which offers a good compromise
between knots resolution and prediction horizon. in this set-
ting, the obstacle reaches a maximum velocity of 2 m/s. Then,
we provide experimental results using Crazyflies drones in a
physical simulation with maximum velocity [1.0, 1.0, 1.0] m/s
and maximum acceleration [2.0, 2.0, 2.0] m/s2. We leveraged
a simulator built in Unity+Mujoco and software in the loop
(SITL)1 to mimic the real drone behaviour. In this setting, we
reduce the obstacle maximum velocity to 1 m/s and tf = 3s
because of the drone’s reduced velocity.

We consider two experimental conditions: a variable number
of agents in a range of [4, 25], with dynamic and static obstacle
density of 10% of the space; a fixed number of agents to
8 and increasing obstacle density from 5% to 25%. In both

1https://gitlab.inria.fr/amarino/crazyswarm2 unity sim

Fig. 5. Saliency map (on the left) of collision case using our approach for a
trajectory starting from the drone and traversing the obstacle.

conditions, we evaluate the average success rate and average
travel time for the agents to reach their respective targets. We
tested the approach in two settings shown in Fig. 2: the forest-
like used during training and a corridor-like environment 8m×
20m including also horizontal pillars. In the second setting,
the drones are required to traverse the corridor from end to
end. For each experimental condition (number of drones in
team, obstacle density), we carried out 50 repetitions of the
travelling mission, equally distributed in the two scenarios. We
consider a mission to be successful if all the agents reach their
target without colliding. We proceeded with an ablation study
to evaluate our approach:

• ours w/o GNN: we replaced GNN layers with normal
MLP, to evaluate the impact of communication over the
predictions.

• ours w/o opt: we did not use the predicted constraint g
to test the impact of this introduced feature.

• Pointnet++: we replaced our solution of Pointnet-DMoN
with Pointnet++ and max pooling.

• ours w/o DMoN: we removed DMoN clustering and used
max pooling to predict the trajectory guess, as for the
constraint prediction branch.

Additionally, for comparison, we also consider MADER, pro-
viding full obstacle trajectories but a limited time budget of
0.35s for each optimization according to the original paper
to guarantee a real-time execution. Our approach reaches an
average computational time of 1.3ms with a maximum of
1500 points sensed. The computational time in real scenarios
can change based on the LiDAR sensor resolution and the
solver used for the last optimization layer which might be
different from OptNet as, after the training, there is no need
for the optimization to be differentiable. Note that, the sensing
frequency dominates the computational time.

A. Results

We present an analysis of the average success rate and
average travel time on successful trajectories, as illustrated
in Fig. 3. Our proposed neural network consistently achieves
a remarkable success rate of 100% for obstacle densities up
to 15% and 16 robots, gradually decreasing to 85% for the
highest obstacle density of 25%. Notably, the effectiveness
of our model is closely tied to point cloud processing, as
evidenced by the success rates of Pointnet++ and ours w/o
DMoN, ranging from 90% to 40%. The clustering capabilities
of Pointnet++ contribute to an average 8.3% higher success
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Fig. 6. Distance from points sensed in a range of 4 m for flight tests with
Crazyflie drones. The red dashed lines denote the physical safe distance.

rate compared to ours w/o DMoN, emphasizing its impact on
the environment processing.

When the model does not exploit the learnt collision con-
straint g, it encounters difficulties in finding collision-free
trajectories, especially in high-constraint spaces populated by
both cooperative and non-cooperative agents where the success
rate diminishes to 80% for an obstacle density of 25% and
25 robots. The integration of GNN enhances the model’s
resilience to collisions and traversal time as the number of
drones increases, showcasing the advantages of cooperative
trajectory predictions. Our approach shows advantages also
compared to MADER with a high density of obstacles and
robots primarily because when the optimization in MADER
does not find a feasible trajectory the algorithm keeps using the
previously computed trajectory. When the drone reaches the
end of the trajectory, it breaks remaining exposed to obstacle
collision until the optimization becomes feasible again because
of the dynamical changes in the environment. Notably, ours
w/o opt and MADER reach the same success rate of 85% with
25% obstacle density which we speculate is due to the drone
coordination through GNN.

Our approach exhibits the lowest average travel time of
11.8s with 25 robots even if MADER and ours w/o opt find
faster trajectories to traverse the space with fewer drones
([5 − 10]) and travel times comparable to ours as obstacle
density increases. Moreover ours w/o opt has the lowest travel
time when the obstacle increases with 12.4s ± 2.1, at the
expense of less safe trajectories. In contrast, Pointnet++ and
ours w/o DMoN have similar travel times, approximately 17.3s
with a high variance of 2s, facing drone deadlock situations
or predicting longer paths to reach the goal.

Our approach reaches a similar average time to MADER
as we used it to generate the dataset. However, we note that
MADER does not generate global optimal time trajectories
due to its asynchronous communication strategy, aiding the
first drone committing the trajectory. As a result, subsequent
drones must adapt to avoid collisions, resulting in non-optimal
trajectories.

We use Algorithm 1 to generate saliency maps, which help
interpret the network’s behaviour and provide insights into
the point cloud’s contribution to trajectory prediction. The
saliency map allows us to qualitatively assess how well the
neural network uses the sensing data for decision-making.
We expect that the relevance of each point in the cloud is

influenced by its distance from the drone, as the network
predicts spatio-temporal commands and potential collisions
around the drone, independent of the goal location. Initially,
we focus our analysis on a scenario involving two drones
and a static obstacle, as illustrated in Fig. 4. To highlight
the contribution of different observations, we assign distinct
colours (blue and black) to points sensed by individual drones,
with the alpha channel representing saliency values—more
transparent points indicate less impact on predictions. It is
evident from the saliency map that each drone perceives the
obstacle from only one side. As expected, points closer to
the drones are more transparent since the first part of the
trajectory is predefined by the continuity with the current
motion. Compared to ours w/o GNN, the saliency map for
our approach shows a balanced distribution of points between
the two drones, resulting in more uniform trajectories across
the environment. In contrast, when deploying ours w/o GNN,
we note an unbalanced use of the drone point cloud with the
black drone relying more heavily on its sensed points than the
blue drone, leading to distinct behaviours. This discrepancy
indicates more potential conflicts between the drones due
to differences in the perceptions of the environment, while
GNN helps to reach coherent observations across different
viewpoints. Additionally, saliency maps serve as valuable tools
for analyzing failure cases. Figure 5 showcases a collision
scenario with ours. The trajectory intersects a pillar, with its
points appearing transparent in the saliency map, suggesting
that the network is ”blind” to the obstacle, although perceived
through the point cloud. Conversely, other obstacles are clearly
visible and incorporated into the trajectory planning.

B. Physical Simulation

In a physical simulator, We tested our approach with
Crazyflie drones. We recorded a mission for each experimental
scenario: obstacle density ranging from 5% to 25% and
numbers of agents ranging from 4 to 25. Moreover, as for
the non-physical simulation, the missions were conducted for
the two scenarios of a dynamic forest and a dynamic corridor.
Figure 6 illustrates the distribution of accumulated drone-to-
obstacle distances during the flights. Notably, no collisions
were observed, as all recorded distances remained above the
safety threshold of 0.1 meters.

VI. CONCLUSION

This work introduces a decentralized end-to-end trajectory
planner that addresses static obstacles, dynamic obstacles, and
other agents. By learning a collision constraint alongside the
trajectory, we ensure the safety and dynamic feasibility of
the trajectories in a QP framework. We extensively validate
our approach in simulation against variations of our approach
and demonstrate robustness to team scalability and varying
obstacle densities in the environment. Additionally, we derived
an algorithm to compute the saliency map of the point cloud,
which we used as a tool to interpret and understand both
failure and success cases. Future work could explore how to
exploit the saliency map to enhance prediction performance
and consider alternative learning frameworks that do not
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rely on privileged experts. Furthermore, future research will
examine additional robustness metrics under conditions such
as sensor noise, tracking deviations, dynamic environmental
changes, and hardware experiments.
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