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Abstract The present paper shows that local similarity theories, proposed for8

the strongly–stratified boundary layers, can be derived as invariant solutions9

defined under the Lie–group theory. A system truncated to the mean momen-10

tum and buoyancy equations is considered for this purpose. The study further11

suggests how similarity functions for the mean profiles are determined from12

the vertical fluxes, with a potential dependence on a measure of the anisotropy13

of the system. A time scale that is likely to characterize the transiency of a14

system is also identified as a non-dimensionalization factor.15

Keywords Stably–stratified turbulence · local similarity theory · invariants ·16

Lie symmetries17

1 Introduction18

Similarity theories are a key methodology for analyzing of flows in the atmo-19

spheric boundary layers (ABLs). They seek universal relationships between20

different physical variables describing the phenomenon, without explicitly solv-21

ing the governing equations (Sorbjan, 2016). The similarity theories rely on22
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the so-called dimensional analyses (Barenblatt, 1996), and identify the charac-23

teristic scales to non-dimensionalize the physical variables, which fit universal24

curves. The first and most celebrated similarity theory of ABLs was proposed25

by Monin and Obukhov (1954). Those authors introduced the Obukhov length26

scale, L, based on the surface momentum and heat fluxes to non-dimensionalize27

the height, z, (Obukhov, 1948).28

The standard Monin-Obukhov similarity theory (MOST) is believed to29

work well in the case that is homogeneous in time and space, with relatively30

weak stratifications. The assumed forms of the similarity functions suggest31

that the gradient Richardson number should tend to a constant, critical value,32

Ricr ≈ 0.2, in the limit of the strong stratification. However, as the stratifi-33

cation further increases, turbulence tends to locally collapse, and as a result,34

intermittent transitions between turbulent and non-turbulent states are ob-35

served (Allouche et al., 2022; Ansorge and Mellado, 2014). This modifies the36

scaling of mean wind and temperature, and the Richardson number no longer37

levels off at Ricr.38

Due to deviations of the experimental results from the MOST predictions,39

different theories were developed: Zilitinkevich and Calanca (2000), Zilitinke-40

vich and Esau (2005), and Zilitinkevich and Esau (2007) introduced addi-41

tional scales characterizing effect of the Earth’s rotation and the stability of42

free-flow. Grachev et al. (2015) considered Dougherty–Ozmidov scale, which43

is constructed from the turbulence kinetic energy dissipation rate. Generaliza-44

tion of MOST accounting for the turbulence anisotropy in ABL was proposed45

recently by Stiperski and Calaf (2023).46

Of particular relevance for this work is the formulation of the ‘local sim-47

ilarity theory’ by Nieuswtadt (1984): instead of the surface values of fluxes,48

this theory uses their local values (i.e. measured at height z) to estimate the49

length scale, Λ(z), with Λ(z) ≈ L when it is close enough to the surface. This50

approach was further advanced by Sorbjan (1989), who assumed more general51

relationships for the variation of fluxes with height.52

As alternatives to the local MOST, Sorbjan (2006, 2016) proposed gradient–53

based similarity theories, which express the fluxes and other statistical quanti-54

ties as functions of the Richardson number, Ri. These alternative formulations55

have advantages, over the flux–based MOST approach, of describing the weak56

turbulence regimes better without invoking a critical Richardson number.57

This work derives the local similarity theories of a form closely following58

those by Sorbjan (2006, 2016), directly from the system of governing equations,59

instead of dimensional analyses. A similar problem was addressed by Yano and60

Wac lawczyk (2022) with the use of the technique of non-dimensionalization61

(cf., Yano and Bonazzola, 2009). Here, we alternatively adopt a concept of62

symmetries, defined by the transformations of variables that do not change63

the form of governing equations. The symmetries lead to invariant solutions64

of the considered system. By analyzing a system of governing equations as a65

starting point, functional relations between different variables can be derived66

methodologically.67
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The symmetry analysis can also reveal relations between the variables, that68

were previously unknown. For example, general formulas are derived for mean69

profiles as functions of flux–related variables. In this manner, the symmetry70

method can provide broader perspectives on similarity theories, by identifying71

assumptions behind them in a systematic way.72

The notion of ‘invariance’ was already remarked by Monin and Obukhov73

(1954), although the symmetry transformations were not explicitly invoked74

therein. Symmetry-based methods were previously used in numerous works to75

obtain solutions for neutrally stratified flows in different flow configurations,76

e.g., Oberlack (2001), Oberlack et al. (2022), Avsarkisov et al. (2014), Sadeghi77

et al. (2021). Among others, the logarithmic law of the wall was derived in78

Oberlack and Rosteck (2010). Ji and She (2021) used symmetry-based gen-79

eralised dilation approach to derive expression for the mixing length in the80

atmospheric surface layer. The Lie symmetries for the surface layer with non-81

zero buoyancy were considered by Yano and Wac lawczyk (2023), in which82

the logarithmic and linear profiles for the mean wind and temperature were83

discussed.84

In this paper, the local similarity theories are derived as functions of Lie85

group invariants of ABL flows. The local Obukhov length naturally appears86

in these solutions, as a combination of invariants, rather than as an externally87

introduced length scale. Moreover, the obtained general solutions contain de-88

pendencies on time, or alternatively, on a measure of anisotropy of the flow.89

Significantly, the derived solutions generalize the gradient-based similarity the-90

ories of Sorbjan (2016): the former reduces to the latter, when the Richardson91

number remains constant with height.92

We consider the two distinct regions of the ABL: the outer layer, where93

fluxes depend on the boundary layer height, h, and the surface layer, where94

no external length scale governs the turbulent transports. We especially take95

into account an intermittency parameter, which indicates a degree that a given96

flow can be presented as a sum of two different contributions, e.g., turbulent97

and laminar, but also e.g., logarithmic and linear. When this parameter is set98

to zero, a solution reduces to the linear forms for mean wind and buoyancy.99

On the other hand, when it is non–zero, it accounts for the variability of the100

Richardson number at strong stratifications.101

Seeking the universal forms of non-dimensionalized gradients of the mean102

wind, φm, and mean buoyancy, φh, which are independent of the local values103

of the intermittency parameter, we arrive, under certain assumptions, at the104

relations φm ∼ ξ/RiG and φh ∼ ξ/RiG2, where ξ = z/L and the Prandtl105

number, G, is a function of the aspect ratio of the Reynolds stresses, which106

we further interpret as a measure of anisotropy of the flow. On the other107

hand, the analysis of experimental data from the Surface Heat Budget of108

the Arctic Ocean (SHEBA) experiment (Persson et al., 2002) suggests more109

general forms, φm ∼ (ξ/RiG)p and φh ∼ (ξ/RiG2)q with p = 1/3 and q =110

−1 for very weak stratifications, and p = 1, q = 1 for strong stratifications.111

Furthermore, we estimate value of the intermittency parameter based on the112

SHEBA data.113
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The paper is organized as follows: Section 2 describes the local similarity114

theories in details. The symmetry methods are introduced in Sections 3 and 4.115

Invariants of ABL flows are discussed in Section 5. Sections 6 and 7 are devoted116

to the derivation of the invariant solutions in the outer and surface layer,117

respectively. Data analyses are performed in Section 8, followed by conclusions118

and perspectives.119

2 Overview of the Local Similarity Theories120

Processes in the atmospheric boundary layer are governed by a closed set of121

partial differential equations. However, due to the complexity of the processes,122

these equations cannot yet be solved numerically for real–world configurations.123

Alternatives are the similarity theories, which propose certain rescaling of the124

variables, that collapse the measurements collected during various experiments125

onto single universal curves.126

The MOST expresses the turbulence moments as functions of the stability127

parameter, ξ = z/L, where128

L = − 1

κ

|uw0|3/2

wb0
=

1

κ

u2∗
b∗

(1)

is the Obukhov length, and uw0 and wb0 are the surface values of momentum129

and buoyancy fluxes, respectively. The buoyancy, b, is defined as130

b = g(θ − θ0(z))/θm, (2)

where θ−θ0(z) denotes deviation of the potential temperature, θ, from a steady131

reference state and θm is a vertical average. In MOST, the scales, L, u∗ =132

|uw0|1/2, and u∗b∗ = −wb0, represent the external conditions. The similarity133

functions, on the other hand, express universal dependencies of turbulence134

moments on stability parameter ξ. In particular, Monin and Obukhov (1954)135

proposed to express the non-dimensional mean wind and buoyancy gradients136

in the stable BL as (cf., Foken, 2006)137

κz

u∗
S = φm(ξ) = 1 + 5 ξ, (3a)

κz

b∗
N2 = φh(ξ) = 1 + 5 ξ, (3b)

where S = dū/dz is the mean wind shear, and N2 = db̄/dz is the square138

of the Brunt–Väisälä frequency. Businger et al. (1971) further elaborated the139

formulas, and proposed φm = 1 + 4.7ξ and φh = 0.74 + 4.7ξ.140

The question of whether the MOST correctly describes turbulence statistics141

in stable boundary layers (SBL), especially under weak turbulence, is subject142

of ongoing debate. For weak stratifications, the MOST is believed to work well143

within the surface layer, over which the fluxes are approximately constant with144
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height. Nieuswtadt (1984) reformulated MOST by introducing the local length145

scale146

Λ = − 1

κ

|uw|3/2

wb
(4)

as a similarity scale. In this reformulation, the equations describing relation-147

ships between dimensionless combinations of variables were measured at the148

same height.149

In the outer layer, Nieuswtadt (1984) presented the momentum and buoy-150

ancy fluxes as functions of z/h, where h was the boundary layer height, and151

more specifically, suggested the relations uw = u2∗(1 − z/h)3/2 and wb =152

u∗b∗(1− z/h) based on observations. Sorbjan (1989) proposed further gener-153

alizations of the Nieuwstadt’s approach by assuming the following profiles of154

turbulent fluxes155

uw = uw0

(
1− z

h

)p
, wb = wb0

(
1− z

h

)q
, (5)

where p ≥ q.156

The local scaling is valid only for strong, continuous turbulence, for the157

subcritical values of the flux Richardson number, Ri, and, additionally, un-158

der the assumption that Ri is constant with height (Sorbjan, 2006). These159

conditions are not fulfilled in very stable ABLs, which consist of layered struc-160

tures, representing a ‘sporadic’ turbulence intermittency. To overcome deficien-161

cies of local similarity theory, Sorbjan (2006, 2016) proposed the alternative,162

gradient-based scalings163

uN = LNN, bN = LNN
2, LN = l, (6)

where l is a length scale, which can be defined either as the mixing length164

l = κz (explicit scaling) or as a function of turbulence moments (implicit165

scaling); uN and bN are the velocity and buoyancy scales constructed by using166

LN and the Brunt–Väisälä frequency N . For the implicit scaling, the following167

combination can be considered (Sorbjan, 2016):168

l =
(w2)1/2

N
. (7)

In the gradient-based formulations, the Richardson number, Ri, or the flux-169

based Richardson number, Rf , (rather than z/Λ) plays a role of stability170

parameter. These parameters are defined by171

Ri =
N2

S2
, Rf =

wb

uw S
. (8)

It immediately follows from Eqs. (3a), (3b), and (4) that172

Ri =
z

Λ

φh
φ2m

. (9)
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Thus, Ri becomes a function of z/Λ, and as a result, Ri can be used as a173

vertical coordinate of the system in place of z/Λ.174

Based on this observation, Sorbjan (2012) formulated a generalized form175

of the similarity theory assuming176

l

u∗
S = ψm(Ri),

l

b∗
N2 = ψh(Ri). (10)

With l = κz and expressing Ri explicitly as a function of z/Λ by Eq. (9), the177

local MOST formulation is recovered. Moreover, Sorbjan (2016) postulated178

that non-dimensionalized fluxes can be presented as functions of Ri:179

uw

u2N
= G(Ri),

wb

uNbN
= H(Ri). (11)

Alternatively, non-dimensionalized turbulent fluxes as functions of Rf were180

considered by  Lobocki (2013),  Lobocki and Porretta-Tomaszewska (2021).181

Those authors determined the forms of G and H based on the Mellor–Yamada182

turbulence–closure model. Advantage of the gradient-based scaling is that uN183

is less sensitive to sampling errors and the choice of averaging window than184

u∗. Moreover, spurious self-correlations are avoided, when fluxes are presented185

as functions of Ri.186

3 Symmetry analysis187

3.1 Introduction188

To derive local similarity theories from a system of governing equations, we first189

need to identify the transformations of the variables that leave the equations190

unchanged, i.e. transformations that do not affect the physics of a given system.191

These transformations are called the symmetries of the governing equations;192

the concept was first introduced by a Norwegian mathematician Sophus Lie in193

the second half of the 19th century. In the following, we apply symmetry anal-194

yses for deriving these transformations to the two examples: Monin–Obukhov195

arguments on invariant functions and by analyzing symmetries of the diffusion196

equation.197

3.2 Monin–Obukhov198

Even though the Lie symmetries were not explicitly mentioned by Monin and
Obukhov (1954), those authors used a similar concept, namely the concept of
invariant. Let the variables z and t transform into a new set of independent
variables z∗ and t∗. Also, a dependent variable, say θ(z, t), is transformed to
θ∗(z∗, t∗). An invariant is a function C(θ, z, t), which preserves its form when
it is written in terms of the new variables:

C(θ, z, t) = C(θ∗, z∗, t∗).
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Monin and Obukhov (1954) argued that statistical characteristics of the rela-199

tive movements in a stream are invariant with respect to the following simi-200

larity transformations201

x∗ = λx, y∗ = λy, z∗ = λz, t∗ = λt. (12)

It was also implicitly assumed that the system is conserved by the translation
of the mean wind velocity:

ū∗ = ū+ ū0.

Consequently, Monin and Obukhov (1954) considered difference of velocities
at two different heights. In this case the translation shifts cancel, and

ū∗(z∗2)− ū∗(z∗1) = ū(z2)− ū(z1)

is an invariant with respect to all the above transformations. As argued by202

those authors, the non-dimensional magnitude is a function of both z1 and203

z2, but because it must also be invariant under the scaling (12), it must be a204

function of the ratio z2/z1205

ū(z2)− ū(z1)

u∗
= f

(
z2
z1

)
. (13)

Monin and Obukhov (1954) used the form (13) to derive the logarithmic so-206

lution for the mean wind.207

3.3 Diffusion Equation208

We briefly present the main concepts of the Lie group analysis, taking as an209

example, the one-dimensional heat equation210

∂θ

∂t
=
∂2θ

∂z2
(14)

with the initial condition θ(z, 0) = δ(z).211

It can easily be verified that this equation remains unchanged under the212

transformations of θ, z and t into:213

z∗ = λz, t∗ = λ2t, θ∗ = θ/λ, (15)

where λ > 0 is a constant, i.e., (15) are symmetry transformations, which214

represent symmetries of the problem (14). It can be shown that they form a215

mathematical object called a group.216
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3.4 Group and Invariant Transformations217

Mathematically, a group consists of a non-empty set and a pre–defined opera-218

tion, in which a third element, that is created by combining any two arbitrary219

elements by the given operation, must also be an element of this set. Addi-220

tionally required conditions are: the operation must be associative; an identity221

element must exist; and every element must have an inverse.222

All the properties of the group are satisfied by the transformation (15). It
can be demonstrated by presenting (15) in the exponential form z∗ = λz = eεz,
where ε ∈ R. Combination of two transformations

z∗ = eε1 (eε2z)

is a new transformation

z∗ = eε1+ε2z = eεz.

The unitary element of the transformation is obtained by setting ε = 0. The
inverse element is derived by replacing ε by −ε, so that

z∗ = eεe−εz = z.

The associativity property is also satisfied by z∗ = (eε1eε2)eε3z = eε1(eε2eε3)z.223

The Lie group analysis is a method of determining Lie symmetry trans-224

formations of a given differential equation system. This, in turn, allows us to225

derive invariants and invariant solutions. Details of the Lie group analysis are226

beyond the scope of this paper, and an interested reader is referred to text-227

books, e.g. Bluman and Kumei (1989). Also computer algebra systems can be228

used to identify all symmetries of a given, closed system of equations. The229

next important step is a derivation of invariant solutions from a given set of230

symmetry transformations. This study focuses on this second step.231

For this purpose, we introduce infinitesimal forms by expanding the global232

transformation forms, z∗, t∗ and θ∗, in the Taylor series around ε = 0:233

z∗ = z +
dz∗

dε

∣∣∣
ε=0

ε+O(ε2), t∗ = t+
dt∗

dε

∣∣∣
ε=0

ε+O(ε2),

θ∗ = θ +
dθ∗

dε

∣∣∣
ε=0

ε+O(ε2); (16)

The first–order derivatives at ε = 0 are called “infinitesimals”, and will be
denoted by ξz, ξt and η. As the Lie’s theorem states, the global forms of
transformations, z∗, t∗ and θ∗, are obtained by integrating the infinitesimal
forms:

dz∗

dε
= ξz(z

∗, t∗, θ∗),
dt∗

dε
= ξt(z

∗, t∗, θ∗),
dθ∗

dε
= η(z∗, t∗, θ∗)

with the initial conditions z∗ = z, t∗ = t, and θ∗ = θ at ε = 0. In this manner,234

the infinitesimal and global forms become equivalent.235
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The infinitesimal generator, X, of the transformations for the heat equation236

is defined by237

X = ξz(z, t, θ)
∂

∂z
+ ξt(z, t, θ)

∂

∂t
+ η(z, t, θ)

∂

∂θ
. (17)

The solution θ = Θ(z, t) is an invariant solution of the heat equation (14), if238

and only if it satisfies equation239

X (θ −Θ(z, t)) = ξz(z, t, θ)
∂Θ

∂z
+ ξt(z, t, θ)

∂Θ

∂t
+ η(z, t, θ) = 0, (18)

and solves Eq. (14).240

The condition (18) can be solved by a method of characteristics, solving241

the corresponding characteristic equation:242

dz

ξz(z, t, θ)
=

dt

ξt(z, t, θ)
=

dθ

η(z, t, θ)
. (19)

As an example, let us consider the scaling transformations (15), and rewrite243

them as z∗ = eεz, t∗ = e2ε t, θ∗ = e−εθ. Infinitesimal forms of these transfor-244

mations are, as defined by Eq. (16),245

z∗ = z + ξzε+O(ε2) = z + zε+O(ε2), (20a)

t∗ = t+ ξtε+O(ε2) = t+ 2tε+O(ε2), (20b)

θ∗ = θ + ηε+O(ε2) = θ − θε+O(ε2), (20c)

and the corresponding characteristic equation (19) reads246

dz

z
=

dt

2t
=

dθ

−θ
. (21)

3.5 Invariant Solutions247

Solving for the two equalities in Eq. (21), we find two invariants X and C248

X =
z√
t
, C =

√
t θ, (22)

which remain unchanged when written in new variables (15). The relations249

(22) correspond e.g. to characteristic curves obtained by Riehman’s method250

in wave dynamics (Lighthill, 1978). The solution of Eq. (21) is given implicitly251

by the invariant form252

C = F (X), hence θ =
1√
t
F

(
z√
t

)
, (23)

where F is an arbitrary function. Here, an invariant, X, from now on, plays a253

role of an independent variable of the system.254
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Substituting (23) into the heat equation (14), we obtain a reduced equation255

with one independent variable X,256

2F ′′ + C1F
′ + F = 0, (24)

which determines the form of the function F .257

Note that invariance under the scaling groups is linked to the dimensional258

analysis and the Buckingham Pi–theorem (Buckingham, 1914). As argued by259

Bluman and Kumei (1989), if a dimensional analysis leads to a reduction of260

the number of independent variables, then such a reduction is always possible261

through invariance under scalings; however, the opposite is not always true.262

In this manner, the invariance of variables under scaling groups is considered263

a generalization of the dimensional analyses.264

The main goal of this work is to present a solution of a boundary–265

layer system as a function of invariant variables. Here, considered dependent266

variables are: the mean velocity and buoyancy gradients, S, N2, as well as the267

mean pressure p, fluxes uw, wb and the variance w2. As a consequence, the268

local similarity theory is directly derived from the set of governing equations269

in an invariant form as given by Eq. (23).270

4 Lie group analysis of the governing equations271

4.1 Governing equations272

We consider flows in the atmospheric boundary layer, governed by the Navier-273

Stokes system under the Boussinesq approximation and in the inviscid limit.274

We perform ensemble averaging of the prognostic equations, and as a result,275

any physical variable, φ, is decomposed into mean and fluctuation, i.e., φ = φ+276

φ′, as usually considered in turbulence studies. However, by following Oberlack277

et al. (2022), we consider ensemble averages of total quantities, e.g. uw rather278

than of fluctuations, u′w′, because the equation system becomes linear in terms279

of those total averages. In some cases, the averages of instantaneous variables280

will be identical to the correlations of fluctuations, e.g. if w = 0, we have uw =281

u′w′ and wb = w′b′. However, the same does not automatically apply to the282

other statistics. Furthermore, we assume that horizontal gradients of velocity283

moments are smaller than the vertical gradient by an order of magnitude, and284

that the Coriolis force is balanced by the horizontal pressure gradients, thus by285

subtracting the geostrophic–pressure component, the Coriolis force no longer286

plays an explicit role. In the following, the horizontal coordinate, x, is taken287

as the direction of the mean wind.288
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Under those assumptions, the governing equation system reads289

∂u

∂t
+
∂uw

∂z
= 0, (25a)

∂w2

∂z
= − 1

ρ0

∂p

∂z
+ b̄, (25b)

∂b

∂t
+
∂wb

∂z
= 0, (25c)

where ρ0 is a constant mean density, and p is the pressure.290

The system (25a)–(25c) is unclosed, because there are more depedent vari-291

ables than an available number of equations. It is well known in the boundary–292

layer meteorology that for solving this differential equation system, a certain293

closure is required. Yet, it is still possible to consistently identify the transfor-294

mation rules to all the dependent variables as well as coordinates (independent295

variables) of the system that conserves the given equation set (Oberlack and296

Rosteck, 2010). From those identified transformation rules, it is also possible297

to derive the invariant solutions of the system. Importantly, those obtained298

invariant solutions still constitute special solutions of a given system, even299

though the system is underdetermined.1300

4.2 Groups of transformations: List301

The purpose of this subsection is to present the symmetry transformations sat-302

isfied by this system one by one with the considerations of their characteristics.303

We consider the symmetries of the Navier-Stokes equations with zero viscos-304

ity (cf., Pukhnachev, 1972), and, additionally, the invariance under scaling305

and groups of translations of an infinite hierarchy of equations for moments306

(Oberlack and Rosteck, 2010).307

Eqs. (25a)–(25c) are invariant under the time and space translations:308

t∗ = t+ t0, (26a)

x∗ = x + f(t), ū∗ = ū +
df(t)

dt
, p̄∗ = p̄− x · d2f(t)

dt2
, (26b)

where u = (u, v, w), x = (x, y, z), and f(t) is an arbitrary vector function of309

time. It is invariant furthermore, under a rotations on the x-y plane, under310

pressure translations p̄∗ = p̄+ g(t) with g(t) an arbitrary function of time, as311

well as under the translations312

b̄∗ = b̄+ b0, p̄∗ = p̄+ zρ0b0. (26c)

1 Formal mathematical issues yet still remain due to the more dependent variables than
available equations. These issues may be avoided by treating an excess of dependent variables
as external functions: those external functions must also be transformed in a similar manner
as proper dependent variables. To elucidate those mathematical subtleties, Frewer et al.
(2015) suggest to call the invariances for these external functions to be “equivalence” rather
than “symmetry” transformations.
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The two further scaling–group symmetries are included for the considera-313

tions:314

t∗ = t, z∗ = eazz, ū∗ = eazu, b̄∗ = eazb, p∗ = e2azp, (26d)

uw∗ = e2azuw, w2
∗

= e2azw2, wb
∗

= e2azwb,

t∗ = eatt, z∗ = z, u∗ = e−atu, b̄∗ = e−2atb, p∗ = e−2atp, (26e)

uw∗ = e−2atuw, w2
∗

= e−2atw2, wb
∗

= e−3atwb,

They will become particularly important for the derivation of scaling laws in315

the following.316

When the buoyancy b̄ can be neglected in the momentum equation (25b),317

e.g., under the neutral stratifications, an additional, independent scaling group318

for the buoyancy exists:319

b̄∗ = eabb. (26f)

Refer to the discussions in the Appendix of Yano and Wac lawczyk (2023) for320

more details.321

As shown by Oberlack and Rosteck (2010), Eqs. (25a)–(25c) are invariant322

under additional translations due to their linearities: see also Wac lawczyk et al.323

(2017). Generally, arbitrary known solutions of a linear system can be added to324

the variables by a linear superposition principle. However, we will only include325

translations by a constant in the following, because this form of translation326

for the mean velocity leads to the logarithmic solution identified by Monin327

and Obukhov (1954):328

u∗ = u+ u0, b
∗

= b+ b0, (27a)

uw∗ = uw + uw0, wb
∗

= wb+ wb0, w2
∗

= w2 + w2
0 (27b)

A further statistical scaling group is identified in Khujadze and Oberlack329

(2004), Oberlack and Rosteck (2010) :330

t∗ = t, z∗ = z, ū∗ = easu, b̄∗ = easb, p∗ = easp,

uw∗ = easuw, w2
∗

= easw2, wb
∗

= easwb. (27c)

The invariance of the system (25a)–(25c) under the above transformations can331

be verified in a straightforward manner by direct substitutions. Transforma-332

tions (27b) and (27c) have no correspondence in symmetries of the instanta-333

neous velocity u and buoyancy b. For this reason, they are referred “statistical334

groups”. The statistical scaling basically represents the fact that if the set of335

variables u, uw, wb, w2, p, b solves equations (25a)–(25c), then, due to their336

linearity, also does the set γu, γuw, γwb, γw2, γp, γb where337

γ = eas . (28)

Wac lawczyk et al. (2014) related the statistical scaling to the phenomenon338

of intermittency, understood as alternating occurence of laminar and turbulent339

flows. If we consider two different types of solutions of the equations (e.g.340
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turbulent and laminar), denoting them by indices 1 and 2, a solution can be341

presented by a weighted sum of conditional statistics:342

u∗ = γu1 + (1− γ)ū2, b
∗

= γb1 + (1− γ)b̄2, (29)

where 0 ≤ γ ≤ 1 becomes an intermittency factor, if as ≤ 0. γ is equal to343

the unity when the flow is fully turbulent, and vanishes when it is purely344

laminar. Because as is restricted to as < 0, the transformations (27c) form a345

semi-group.346

Such a representation is linked to observations in very stable atmospheric347

boundary layers. As discussed by Allouche et al. (2022), the analysis in the348

intermittent regime cannot rely on bulk statistics, but may require conditional349

analysis. More generally, conditional statistics with indices 1 and 2 could refer350

to some limit cases, e.g., a logarithmic function in neutral limit and a linear in351

the strongly stratified limit. The final solution can be represented as a weighted352

sum of these two limiting solutions.353

Finally, when the Coriolis force is taken into account, the rotation, time354

scaling, and the statistical scaling group are modified to a more complex form,355

(cf., Rosteck, 2014). It is left for a future study to consider these modifica-356

tions. Here, we assume that the statistics are not influenced by the Earth’s357

rotation, although for large stratifications this assumption may be too strong.358

In this work, horizontal transports are also neglected. This simplification does359

not affect the scaling symmetries (26d)–(26e), which are the same as in the360

underlying Navier-Stokes system. Furthermore, the invariance due to the sta-361

tistical scaling group (27c) is a property of equations for moments in their362

general form, i.e. with the horizontal transport terms (cf., Oberlack and Ros-363

teck, 2010).364

5 Invariants of boundary–layer flows365

5.1 Characteristic system366

In deriving the invariants of the boundary–layer flows, we take into account367

the time translation symmetry (26a) and the space translation (26b), assuming368

that f(t) = x0 is a constant vector, the scaling groups (26d)–(26e), as well as369

the statistical scaling and translations (27b), (27c). Consequently, we obtain370
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the following characteristic system:371

dt

at(t− t0)
=

dz

az (z − z0)
=

dwb

(2az − 3at + as)(wb− wb0)
=

duw

(2az − 2at + as)(uw − uw0)
=

dw2

(2az − 2at + as)(w2 − w2
0)

=

db

(az − 2at + as)(b− b0)
=

dū

(az − at + as)(ū− u0)
=

=
dp̄

(2az − 2at + as)(p̄− p0 − zb0ρ0α)
, (30)

where α = (az−2at+as)/(2az−2at+as). Solving the system (30), we obtain372

the 7 invariants:373

t− t0 = Xt |z − z0|β (31a)

ū− u0 = Cu |z − z0|1−β+χ , (31b)

b̄− b0 = Cb |z − z0|1−2β+χ , (31c)

p̄

ρ0
− p0
ρ0

= Cp |z − z0|2−2β+χ −
b0α[z0 − (2− 2β + χ)z]

1− 2β + χ
, (31d)

uw − uw0 = C1 |z − z0|2−2β+χ , (31e)

w2 − w2
0 = C2 |z − z0|2−2β+χ , (31f)

wb− wb0 = C3 |z − z0|2−3β+χ , (31g)

where374

β = at/az, and χ = as/az. (31h)

5.2 Invariant solutions375

The invariants, Cu, Cp, Cb, C1, C2 and C3 are functions of the new variable376

Xt, introduced by Eq. (31a), so that the invariant solutions (23) are generated377

as:378

Cu = F (Xt), Cp = G(Xt), Cb = H(Xt), (32a)

C1 = C1(Xt), C2 = C2(Xt), C3 = C3(Xt). (32b)

After introducing these invariants into the system (25a–(25c), the relations379

between Cu, Cb, Cp and remaining invariants can be derived.380

In the following, we analyze the invariant solutions in the outer and surface381

layers of ABL separately: we expect that the statistics in the outer layer are382

influenced by the boundary layer height, h, but not the statistics of the surface383

layer.384
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6 Local similarity — outer layer385

6.1 Invariants386

The constant z0 in Eqs. (31a)–(31g) can be chosen in various ways, depending387

on the flow configuration. For the outer layer, we assume that z0 = h, and that388

u0 = ū(h) and b0 = b̄(h) play the roles of the velocity and buoyancy scales.389

With this choice, the heat and momentum fluxes change with the height as390

proposed by Sorbjan (1989), cf., his Eqs. (5). These forms are obtained as391

invariants by setting z0 = h in Eqs. (31a) – (31g). Then, the fluxes read392

uw = C1(Xt)
(

1− z

h

)2−2β+χ
, (33a)

w2 = C2(Xt)
(

1− z

h

)2−2β+χ
, (33b)

wb = C3(Xt)
(

1− z

h

)2−3β+χ
. (33c)

Those invariants can be rearranged to more convenient forms:393

S =
dū

dz
= C̃u(Xt)

(
1− z

h

)χ−β
, (34a)

N2 =
db̄

dz
= C̃b(Xt)

(
1− z

h

)χ−2β
, (34b)

uw

w2
=
C1(Xt)

C2(Xt)
= f(Xt), (34c)

wb

uw

(
1− z

h

)β
=
C3(Xt)

C1(Xt)
= g(Xt), (34d)

wb

uw
(t− t0) =

C3(Xt)Xt

C1(Xt)
= q(Xt). (34e)

Here, we have skipped the expression for the pressure, which is usually not394

considered as a part of similarity theories. Eqs. (34a) and (34b) together with395

formulas (34c)–(34e) lead to local similarity formulas as going to be shown396

below. The ratios of fluxes in Eqs. (34c) – (34e) become functions of Xt.397

Moreover, the ratio C3/C1 from Eq. (34d) can be rearranged as follows398

C3(Xt)

C1(Xt)
= −

√
|uw| wb

|uw|3/2
(

1− z

h

)β
=

√
|uw|
κΛ

(
1− z

h

)β
. (35)

Remarkably, in Eq. (35), we find the local Obukhov length, Λ, defined in399

Eq. (4), which is one of the possible local length scales suggested in the local400

similarity theories (Nieuswtadt, 1984). The ratio between the buoyancy and401

momentum fluxes is also found in Eq. (34e) as a factor to non-dimensionalize402

the time. All invariants can additionally depend on the characteristic scales of403

the system: h, u0 and b0 when needed for dimensional consistency.404
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6.2 Similarity solutions405

To derive formulas for S and N2 in terms of fluxes , we substitute the factor406

(1− z/h)
β

calculated from Eq. (35) into Eqs. (34a) and (34b). We also assume407

that relations (34c) and (34e) can be inverted over a time interval, ∆t = t−t0,408

so that409

u0
h
Xt = f−1

(
uw

w2

)
,

u0
h
Xt = q−1

(
wb

uw
(t− t0)

)
, (36)

where the factor u0/h has been included for the dimensional consistency. We410

take into account the first from relations (36). With this we obtain411

S =

√
|uw|
κΛ

(
1− z

h

)χ
F

(
|uw|
w2

)
, (37a)

N2 = − wb√
|uw|

1

κΛ

(
1− z

h

)χ
H

(
|uw|
w2

)
. (37b)

In addition to the local Obukhov length Λ, S and N2 also depend on a412

height–dependent prefactor, (1 − z/h)χ and the non-dimensional parameter,413

|uw|/w2 through the similarity functions, F and H. Alternatively, F and H414

can be written as functions of the non-dimensional time, (t−t0)wb/uw. In this415

manner, standard similarity solutions for the shear, S, and the stratification,416

N , are obtained formally under a quasi–stationary state as invariant solutions.417

Yet, it is worthwhile to note a crucial role played by a time–dependent char-418

acteristic, Xt, in deriving these quasi–stationary solutions; it further suggests419

that a weak transiency of the system, represented by Xt, plays a crucial role420

in determining those standard quasi–stationary state of the boundary layer.421

The parameter, |uw|/w2, can be interpreted as an aspect ratio of turbu-422

lent eddies in anisotropic flows. Stiperski et al. (2021) and Stiperski and Calaf423

(2023) suggest that departure of the scaling from the MOST is strongly cor-424

related to the anisotropy of the Reynolds stress tensor. Some studies propose425

additional dependencies representing degrees of turbulence to the similarity426

functions under strong stratifications. For example, Klipp and Mahrt (2004)427

introduce a vertical–velocity variance threshold to filter out weak turbulence428

regimes. The analysis here points out more objectively that |uw|/w2 is an429

additional dependent variable that characterizes the similarity functions.430

The non-dimensional time, (t − t0)wb/uw, represents a time dependence431

of the similarity functions for the mean wind shear and the stratification.432

We expect that the transiency characterized by this non-dimensional time433

becomes important under strong stratifications. Importantly, the time is non-434

dimensionalized by the scale, uw/wb, thus a frequency distribution of uw/wb435

should reveal the actual characteristic time scales of the system.436
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6.3 Richardson and Prandtl numbers437

As an important direct consequence from Eqs. (37a) and (37b), we derive the438

Richardson number as:439

Ri =
N2

S2
=
(

1− z

h

)−χ H

F 2
. (38)

By inverting the above relation, uw/w2 is extracted into:440

|uw|
w2

= G
[
Ri
(

1− z

h

)χ]
, (39)

where G is a function obtained by an inversion. Furthermore, by introducing441

the definitions of the local non-dimensional functions φh and φm into Eqs.442

(37a) and (37b), we obtain443

φm =
κz√
|uw|

S =
z

Λ

(
1− z

h

)χ
F, (40a)

φh = κz

√
|uw|
−wb

N2 =
z

Λ

(
1− z

h

)χ
H. (40b)

It follows from these two relations that the turbulent Prandtl number, Prt =444

φh/φm, is not a constant, but is a function of the non-dimensional ratio445

|uw|/w2, or the non-dimensionalized time i.e.,446

Prt =
φh
φm

=
H

F
6= const. (41)

A standard similarity theory for the surface layer predicts that the universal447

functions, φm and φh, are linear in their argument ξ = z/L for weak strati-448

fications. If we assume the same for the local similarity, i.e. that φm and φh449

are proportional to z/Λ, it then follows that the turbulent Prandtl number450

should be constant. Here, the derived solutions (40a, b) and (41) predict the451

deviations from those predictions in the outer layer.452

6.4 Relations to the gradient-based similarity theory453

Equation (39) with the dependence on Ri suggests a link to the Sorbjan’s454

gradient-based similarity theory (cf., Sorbjan, 2006, 2010, 2016). We now455

examine under what conditions the derived relationships reduce to this theory.456

For this purpose, we adopt the scales u2N = w2 and bN = uNN defined by457

Eqs. (6) and (7). The relation (39) defined in the previous subsection already458

presents the momentum flux, uw, non-dimensionalized by the scale uN :459

|uw| = u2NG
[
Ri
(

1− z

h

)χ]
. (42)
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To derive a formula for the buoyancy flux, we replace the ratio C3/C1 defined460

in Eq. (34d) by the ratio C3/C2461

C3

C2
=
wb

w2

(
1− z

h

)β
=
wb

u2N

(
1− z

h

)β
, (43)

and rewrite Eq. (37b) as462

N2 =
wb

2

u4N

(
1− z

h

)χ
H

(
|uw|
u2N

)
. (44)

Applying the square root on (44) and after some rearrangements, we obtain463

wb = Nu2N

(
1− z

h

)−χ/2
H
[
Ri
(

1− z

h

)χ]
, (45)

where we have also replaced the first argument of the function H in Eq. (44)464

by taking into account of Eq. (42). Finally, when χ = 0, Eqs. (42) and (45)465

become functions of Ri only, as predicted by Sorbjan (2016), cf., Eq. (11):466

uw = uNG (Ri) , wb = Nw2H (Ri) = bNuNH (Ri) . (46)

7 Local similarity — surface layer467

The surface layer is a region adjacent to the Earth’s surface, where turbu-468

lent fluxes are believed to remain approximately constant with height. In this469

layer, we can assume that the statistics are not influenced by the boundary470

layer height, h, except for the case with strong stratifications. A local sim-471

ilarity theory can be derived from the given symmetries, but by proceeding472

differently: instead of h, the characteristic surface roughness, d, is introduced473

as an external length.474

By deriving a local similarity from the given symmetries, the Obukhov475

length enters the solution as a combination of invariants, but this time only in476

the limit of the weak stratification when the local Obukhov length is approx-477

imately equal to its surface value.478

7.1 Neutral stratification479

A region adjacent to the Earth’s surface is affected by the surface roughness480

with the characteristic length, d. On the other hand, the statistics at higher481

altitudes are affected by another length scale — the boundary layer height,482

h. We assume that between these two regions, there exists a transition layer,483

where turbulent transport is affected neither by d nor h. We will hence expect484

that the gradient of velocity as well as the fluxes in the transition layer will485

not depend on d. Under the neutral stratification this requirement leads to the486

logarithmic solution. Logarithmic solution for near-wall flows was derived by487
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Oberlack (2001) and Oberlack and Rosteck (2010) based on the symmetries488

of Navier–Stokes and statistical scaling and translation groups. Here, we first489

address the arguments of Monin and Obukhov (1954), who stated that the490

statistical characteristics of the relative movements in the neutral ABL are491

invariant with respect to space and time scaling prescribed by Eqs. (12). Their492

transformations for space and time are written in the global form, with λ =493

eaz = eat . Hence, these transformations are equivalent to setting az = at, thus494

β = 1. The invariance of the relative movements is further obtained by setting495

as = 0. It follows that, instead of Eq. (30), we consider the following reduced496

characteristic system for velocity statistics497

dt

az(t− t0)
=

dz/d

az(z − z0)/d
=

dū

−ũ0
=

duw

0
=

dw2

0
, (47)

where we have defined ũ0 = ū0/(az−at+as). As ū0 is an arbitrary constant, we498

can assume that ū0/(az−at+as) remains finite in the limit of az−at+as → 0.499

We also assume the zero translational constants, uw0 = 0 and w2
0 = 0, as500

suggested by division by zero in the last two terms. Furthermore, we have501

introduced d as an external length scale. Solving Eq. (47), we obtain the 4502

invariants, Cu, C1, C2 and Xt, which express a logarithmic profile for the503

mean velocity:504

ū =
−ū0
az

ln
(z − z0)

d
+ Cu(Xt),

uw = C1(Xt), w2 = C2(Xt), Xt =
(t− t0)d

z − z0
. (48)

The translation coefficient, z0, can be interpreted as the zero-plane displace-505

ment height. Here, for the sake of our own self–consistency, the notations, d506

and z0, are other way round from those commonly–adopted in the atmospheric507

boundary–layer literature. We now choose the constant −u0/az = u∗/κ, and508

assume stationarity so that Cu, C1 and C2 do not depend on Xt. We further509

set Cu = Cu∗ with C a constant.510

Under these assumptions, the logarithmic profile reduces to:511

ū =
u∗
κ

ln

[
(z − z0)

d

]
+ Cu∗. (49)

Change of the surface roughness, d, produces a shift of the mean velocity,512

although the velocity gradient does not explicitly depend on d. The fluxes,513

uw and w2, do not depend on d, either, by assuming both C1 and C2 are514

constants. These conclusions are compatible with a standard assumption of515

constant (in time and space) fluxes in the surface layer, i.e., uw = uw0 = −u2∗516

and w2 = w2
0.517

We use the analogous arguments to solve a hyperbolic system for the buoy-518

ancy, taking into account of the additional symmetry (26f), that holds under519
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the neutral stratifications. Thus,520

wb = wb0, (50)

b̄ =
b∗
κ

ln

[
(z − z0)

d

]
+ C′b∗ (51)

with ab = 0, as = 0 and at = az, where C′ is another constant.521

Alternatively, we can consider the case with non–zero translational con-522

stants uw0 6= 0 and w2
0 6= 0 in the system Eq. (47). These choices lead to523

logarithmic solutions for the fluxes, as observed by e.g., for the variance and524

higher-order statistics of longitudinal velocity (Katul et al., 2016) and for uw525

in case of strong accelerations (Araya et al., 2015).526

7.2 Stratified flows527

The presence of non–zero buoyancy in the momentum equations leads to a528

two–way coupling between the velocity and the buoyancy. As a result, the529

transformation (26f) is further constrained by an additional condition ab =530

az−2at, as discussed in Yano and Wac lawczyk (2023), and transformations of531

b̄ are described by Eqs. (26d)–(26e). The fluxes will be constant in time and532

with height under the condition at = az = as = 0, which implies β = χ = 0533

from Eq. (31h). Thus, the mean wind and buoyancy follow the linear profiles.534

With β = 0 and χ < 0, the similarity functions increases more slowly with535

height. This was observed by Grachev et al. (2013), who found φm ∼ ξ0.3. After536

removing data with Ri > 0.2 and Rf > 0.2, Grachev et al. (2013) concluded537

that the remaining results follow the MOST predictions very closely. This538

indicates a local collapse of turbulence at a very large stratification, leading539

to a significant departure from the MOST prediction.540

General invariant solutions in the surface layer can be derived from the541

invariants (31a)–(31g) in the following manner. Unlike the outer–layer scaling542

in Section 6, the shift, z0, is no longer related to any external length scale, and543

it can be assumed small. To arrive at the similarity solutions with the local544

Obukhov length, Λ, as before, we rearrange these coefficients as follows:545

S = C̃u(z − z0)χ−β , N2 = C̃b(z − z0)χ−2β , (52a)

C1 = uw′(z − z0)2β−2−χ, (52b)

C1

C2
=
uw′

w2′
, (52c)

C3

C1
=
wb
′

uw′
(z − z0)β , (52d)

Xt
C3

C1
= (t− t0)

wb
′

uw′
, (52e)
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where the prime indices suggest deviations of fluxes from the surface values:546

uw′ =uw − uw0, (53a)

wb
′

=wb− wb0, (53b)

w2
′

=w2 − w2
0. (53c)

The invariant relations (52a)–(52e) can be deduced in analogous manner as in547

the outer layer, as presented in Sec. 6.2, with a major difference of the mean548

profiles being represented in terms of the flux perturbations defined by Eqs.549

(53a)–(53c). The results are rather unintuitive, and full implications are still550

to be fully investigated.551

Alternatively, Eqs. (52b)–(52e) can be presented in terms of the vertical552

derivatives of fluxes or their gradients, assuming that the time dependence is553

weak. Thus,554

C1

C2
=

duw

dw2
, (54a)

C3

C1
=

dwb

duw
(z − z0)β , (54b)

Xt
C3

C1
= (t− t0)

dwb

duw
. (54c)

Even though relations (54a)–(54c) contain gradients rather than the fluxes,555

under certain conditions there may exist a relationship between the gradients556

and the Obukhov length, Λ. To see this, first recall the definition of the local557

Obukhov length, Λ, given by (4), and assume that this length remains approx-558

imately constant in the surface layer Λ ≈ L so that its differential is close to559

zero:560

−dΛ = d

[
|uw|3/2

wb

]
=

3

2

(|uw|)1/2

wb
d|uw| − (|uw|)3/2

wb
2 dwb ≈ 0. (55)

It follows from the above expression that under the assumption Λ ≈ L,561

(
dwb

duw

)
≈ −3

2

wb

uw
= −3

2

√
|uw|
κΛ

, (56)(
dwb

duw

)2

≈ 9

4

wb
2

uw2 = −9

4

wb√
|uw|

1

κΛ
. (57)

Similar arguments apply for the ratio duw/dw2. Under the assumption uw ≈562

w2 we obtain563

duw

dw2
≈ uw

w2
. (58)
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Proceeding similarly as in Section 6.2, we obtain the following functional564

forms of S and N2:565

S = −
(

dwb

duw

)(
z − z0
L

)χ
F

(
duw

dw2

)
, (59a)

N2 =

(
dwb

duw

)2(
z − z0
L

)χ
H

(
duw

dw2

)
, (59b)

where we introduced the Obukhov length L = −|uw0|3/2/(κwb0) for dimen-566

sional consistency. The definition Ri = N2/S2 now implies567

Ri =
H

F 2

(
z − z0
L

)χ
. (60)

Solving Eq. (60) for (z−z0)/L, and substituting back to Eqs. (59a) and (59b),568

we obtain569

S = −
(

dwb

duw

)
1

Ri
G

(
duw

dw2

)
, (61a)

N2 =

(
dwb

duw

)2
1

Ri
G2

(
duw

dw2

)
, (61b)

where G = H/F . Eqs. (61a) and (61b) do not depend explicitly on χ.570

Functions (61a) and (61b) reduce to the Monin and Obukhov (1954) scaling571

predictions at large stratification limit, if Eqs. (56) and (57) hold and F =572

const, H = const, Ri = 0.2. In this case, by setting G = 2/3, we obtain573

S ≈ 5

√
|uw|
κΛ

≈ 5
u∗
κL

, N2 ≈ −5
wb√
|uw|

1

κΛ
≈ 5

b∗
κL

. (62)

Equations (61a) and (61b) are more general than (62), because they take574

into account of possible variations of the fluxes and dependence on duw/dw2.575

However, for G > 0, S is positive only if dwb/duw < 0. Recall the sign576

convention for S (cf., Eq. 56). The condition Λ ' L breaks down, when the577

gradient dwb/duw changes its sign: this happens with strong stratifications, as578

reported by Grachev et al. (2005). In this case, either of the solutions presented579

in Section 6, for the outer layer scaling should be used, or alternatively, we can580

consider that wb is increasing from its minimum value and change the sign in581

the formula (59a).582

In the surface layer, where Eqs. (56) and (58), are satisfied, formulas (61a)583

and (61b) can be rewritten in terms of φm and φh as:584

φm ∝
ξ

Ri
G

(
uw

w2
,

)
, (63a)

φh ∝
ξ

Ri
G2

(
uw

w2

)
. (63b)
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The resulting turbulent Prandtl number in the surface layer is not constant,585

but is expressed as a function of the aspect ratio, uw/w2:586

Prt =
φh
φm

= G

(
uw

w2

)
. (63c)

8 Data analysis587

8.1 Estimation of scaling exponents588

The first goal of the data analysis is to evaluate the scaling exponents, β and589

χ, in Eqs. (31b) and (31c). The theory does not predict their values. However,590

non-zero χ has implications for the scaling laws derived in Sections 6 and591

7. Note that the exponents, β and χ, should remain the same regardless of592

whether surface or local scaling is used.593

In the analysis, we adopt a hypothetical log–linear profile as a reference,594

and compare it with the experimental data from SHEBA campaign (Persson et595

al., 2002). We expect that β and χ estimated from the SHEBA data will differ596

from the corresponding reference estimates, especially at large stratifications.597

Particularly, the estimated χ would be non-zero with strong stratifications,598

due to the presence of intermittency, in SHEBA data. The standard local599

similarity theory assumes χ = 0.600

The SHEBA campaign, from which data are taken from, took place from601

Oct 1997 to Oct 1998 on board of a Canadian icebreaker frozen into the Arctic602

ice pack. Turbulent fluxes and mean meteorological data were collected at five603

levels on a 20m tower. Turbulent covariances available in the database are604

calculated with the 1–h averaging window. The measurement carried out on605

the Arctic offers several advantages in SBL studies over those on the mid-606

latitudes. During the polar night, a long–lasting SBL can be quasi stationary.607

Moreover, a surface covered with snow and ice is usually flat, uniform, and608

with no large-scale slope. Thus, data is not contaminated by katabatic flows.609

The data are post–processed as outlined in Grachev et al. (2005): especially,610

the low–frequency components of covariances are removed to filter–out the611

effect of gravity waves.612

According to MOST, the states with non-zero stratifications are described613

by a sum of the linear and logarithmic profiles:614

ū

u∗
=

1

κ
ln
(z
d

)
+ 5

z

L
,

b̄

b∗
=
Pr

κ
ln
(z
d

)
+ 5

z

L
. (64)

In contrast, this work predicts that the mean wind and buoyancy depend on615

height by power laws (cf., Eqs. 31b and 31c). They may approximate Eqs.616

(64) locally. Particularly, with the coefficient β = 0, the power-law solutions617

approach linear function as χ → 0. On the other hand, as χ → −1, the618

solutions approach logarithmic, as in this case S ∝ z−1 and N2 ∝ z−1. If619

experimental data do not follow the log-linear profile, χ will not reach zero620
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Fig. 1 Log-linear wind speeds (64) marked as symbols: L = 0.5 m (circles), L = 1 m
(squares) and L = 10 m (triangles) and respective profiles fitted according to formula (65a)
marked as curves.

at large stratifications. We verify these expectations first by referring to the621

numerically–generated MOST solution (64) and next using experimental data622

of SBL.623

By focusing on the surface layer, we assume that u0 = b0 = 0 in Eqs. (31b)624

and (31c). In this case, Eqs. (31b) and (31c) reduce to:625

ū = C1(z − z0)1−β+χ = Cu(z − z0)Au , (65a)

b̄ = C2(z − z0)1−2β+χ = Cb(z − z0)Ab . (65b)

The forms (65a), (65b) are fitted to the solution (64) locally, i.e. in the vicinity626

of certain height z = z1, such that optimal values of β and χ are chosen.627

When fitting the power-law solutions (31b) and (31c) to the reference, log-628

linear profile, the exponents Au = 1−β+χ and Ab = 1−2β+χ in Eqs. (65a)629

(65b) should change from values close to zero in the neutral state to unity in630

the stratified case (typically for ξ > 1). This is illustrated in Fig. 1, in which631

log-linear wind speeds (64) with d = 10−4 m and L = 0.5 m, 1 m and 10 m632

are presented by varying symbols at five vertical levels, z . The curves fitted633

to Eq. (65a) are also plotted: the estimated exponents Au are equal to 0.89,634

0.73 and 0.28 for L = 0.5 m, 1 m and 10 m, respectively.635

The same procedure can be used to analyze buoyancy profiles, and estimate636

the exponent Ab from Eq. (65b). Having the two exponents Au and Ab, we637

can next calculate values for β and χ from the two-equation system:638

β = Au −Ab, (66)

χ = 2Au −Ab − 1. (67)

Since our interest here is to estimate the exponents, β and χ, and not the639

coefficients Cu and Cb in Eqs. (65a), (65b), we consider the ratios of respective640
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quantities at two different heights. We also take z0 ≈ 0 to simplify the analysis,641

because our preliminary test concluded that a finite z0 does not influence the642

estimates of scaling coefficients considerably. Thus, we set:643

ū(zi)

ū(zj)
=

(
zi
zj

)Au

,
b̄(zi)

b̄(zj)
=

(
zi
zj

)Ab

. (68)

As a reference to compare with the observational data, we first generate the644

values of ū and b̄ at 5 levels, using the hypothetical “perfect” log-linear profiles645

as given in Eqs. (64), i.e., MOST data. The adopted heights are comparable646

to those of SHEBA instruments. We assume d = 10−3 m and test values of647

L in the range [0.1, 100]. The data was divided into 20 logarithmically spaced648

bins based on the value of the similarity parameter at the first level ξ1 =649

z1/L. In every bin, all possible ratios of values at different vertical levels are650

calculated according to the formulas (68). The function f(z) = azp was fitted651

to these data using the nonlinear least squares algorithm in MATLAB Fitting652

Toolbox. We mark the fitting error based on a 95% confidence parameter in653

the following.654

The obtained Au and Ab values for MOST data are presented in Fig. 2 by655

circles. As expected, both coefficients are small with weak stratifications, where656

the solution is close to logarithmic and increase with the increasing stratifica-657

tions towards unity as the MOST solution (64) asymptotically approaches to658

the linear profile.659

The corresponding coefficients β and χ calculated from Eqs. (66) and (67)660

for MOST data are presented in Fig. 3 by circles: β remains close to zero for661

a full range of ξ; χ is always negative, and approaches −1 with the decreasing662

stratifications. As argued by Yano and Wac lawczyk (2023), these solutions663

allow both ū and b̄ to be logarithmic in stratified flows. Here, non-zero χ does664

not represent the intermittency understood as alternating laminar-turbulent665

regimes, but merely reflects a fact that the solution (64) is a sum of two666

different contributions: logarithmic and linear. As the stratification increases,667

χ approaches 0.668

In real atmospheric boundary layer flows, the solutions deviate from the669

MOST predictions with strong stratifications, where turbulence locally col-670

lapses (Klipp and Mahrt, 2004). As a result, the coefficient χ should be smaller671

than the one calculated from the MOST profile Eq. (64). To investigate this672

possibility, we have performed an equivalent analysis for data from the SHEBA673

experiment. We have calculated the buoyancy based on the definition (2). Here,674

θ is the 1-hour averaged air temperature measured at the instrument heights675

zn (n =1–5); θ0 is taken as the 1-hour averaged surface temperature; θm is the676

average over the five instrument measurements.677

As before, the data was divided into 20 logarithmically spaced bins based678

on the non-dimensionalized value of the first measurement level, ξ1 = z1/L.679

We used the same MATLAB Fitting Toolbox to fit the data according to Eqs.680

(68). Resulting Au and Ab exponents for varying ξ1 are shown in Fig. 2 by681

squares. With weak stratifications, Au ≈ 0.1, and with increasing ξ1, Au in-682

creases to approximately 0.4. It does not reach the value of 1 predicted by683
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Fig. 2 Exponents a) Au b) Ab defined in Eqs. (65a) and (65b) calculated for the theoretical
profile (64) (circles) and from SHEBA data (squares) together with 95% confidence intervals.

the MOST. With very weak stratifications, ξ1 ∼ 10−2, the estimated Ab expo-684

nent becomes close to zero. In this case, calculating a gradient of temperature685

becomes difficult, as the temperature varies only weakly with height. As ξ1 in-686

creases, Ab also increases towards 0.3−0.4. Here again, deviation of the profile687

from the MOST solution (64) is visible: both Au and Ab start to deviate from688

the theoretical predictions at ξ1 in the range between 10−1 and 100. According689

to Grachev et al. (2005), it is the range where the buoyancy flux wb start to690

increase with height.691

Corresponding β and χ values are plotted in Fig. 3: β remains close to692

zero for a full range of ξ1, whereas χ ≈ −0.8 towards the weak stratifications,693

and it tends to increase with increasing ξ1, although it is not easy to draw a694

definite conclusion from Fig. 3 due to the large uncertainty in the estimates.695

Nevertheless, it is evident that for ξ1 > 1, χ estimated from the SHEBA data is696

significantly smaller than MOST data assuming the profile (64). We interpret697

it as a result of global intermittency, in which turbulence has a tendency to698

form layers with smaller gradients of mean wind and buoyancy than predicted699

by MOST.700
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Fig. 3 Same as in Fig. 2 but for exponents β and χ calculated from Eqs. (66) and (67).

8.2 Estimation of φm and φh and Prt701

Next, we verify the prediction (63c) on the turbulent Prandtl number. Ac-702

cording to Eq. (63c), this non-dimensional parameter is not constant, not as703

predicted by MOST, but it is a function of uw/w2 or time. Unfortunately, the704

time dependence, (t−t0)wb/uw, is difficult to investigate with only one–hourly705

data available. The Prt–dependence on the ratio, uw/w2, is plotted in Fig. 4: it706

increases with the increasing uw/w2. To investigate how the argument changes707

with stratification, we also color-code the logarithm of non-dimensional height,708

ln(ξ), in this figure, where ξ = z/L. Small uw/w2 tends to correspond to large709

ξ. As ξ decreases, the parameter uw/w2 increases towards the value 0.9 at710

neutral conditions; Prt decreases with increasing stratifications, which was711

also confirmed in an earlier study by Sorbjan and Grachev (2010). Those au-712

thors plotted Prt calculated from SHEBA data as a function of Ri. Larger713

scatters of Prt with weaker stratifications stem from the increasing difficulties714

in estimating gradients of temperature and temperature fluxes in this limit.715

We further verify the formulas (63a, b) rewritten here for clarity:716

φm =
ξ

Ri
G

(
uw

w2

)
, φh =

ξ

Ri
G2

(
uw

w2

)
. (69)

Assumptions needed to arrive at (69) are that Λ ≈ const and duw/dw2 ≈717

const, so that duw/dw2 ≈ uw/w2. Formulas (69) should remain true also718
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Fig. 4 Prt as a function of uw/w2. Color coded is the logarithm log10(ξ).

with non-zero parameter χ. The dependence of Prt on uw/w2, as defined719

as a function, G, by Eq. (63c), was roughly estimated from Fig. 4 as G ≈720

1.1(uw/w2)0.7721

In Figs. 5 and 6, we plot φm and φh against the right–hand sides of Eqs.722

(69). All terms are calculated from the SHEBA data for all measurement levels.723

The predictions of Eq. (69) are plotted as solid lines. Data points corresponding724

to larger stratifications follow the predictions more closely than those of smaller725

ξ. However, some of the points clearly follow a different power laws, marked726

by dashed lines on both plots, which are defined by:727

φm ∝
(
ξ

Ri
G

)1/3

, φh ∝
(
ξ

Ri
G2

)−1
. (70)

These power laws actually correspond to logarithmic solutions for G ≈ const,728

which can be verified after substituting definitions of φm, φh, ξ = z/L and Ri729

into (70):730

N2 ≡ db̄

dz
∼ b∗
κz
, S ≡ dū

dz
∼ u∗
κz
. (71)

The formula (70) is consistent with (69) when z/L ∼ Ri. The former condition731

is not fulfilled exactly with weak stratifications due to large relative errors of732

wb and N2, resulting in large estimation uncertainties of Ri and L. In this733

regime, the solutions still follow the scaling (70), which is satisfied by the734

logarithmic function, in spite of the errors in estimating L and Ri. Also note735

that the relations (70) do not result directly from the Lie group analysis, but736

they are rather considered a generalization of Eq. (69). Other possible reasons737

for the deviations in Figs. 5 and 6 is that the assumption of Λ ≈ const may no738

longer be satisfied with very strong stratifications, where a scatter of data is739

also considerable. Variability of duw/dw2 may also contribute to the observed740

deviations.741



Local similarity theory as the invariant solution 29

Fig. 5 φm as a function of ξ/RiG. SHEBA data: symbols, predictions (69): solid line,
predictions (70): dashed line. Color coded is the logarithm log10(ξ).

Fig. 6 φh as a function of ξ/RiG2. SHEBA data: symbols, predictions (69): solid line,
predictions (70): dashed line. Color coded is the logarithm log10(ξ).

9 Conclusions742

In this work, we have shown that the local similarity theories of ABL can be743

derived by analysis of a governing set of equations in invariant Lie–group744

forms, for example, given by Eq. (23) for the heat equation (14). Our investi-745

gation also takes into account of a possible presence of intermittency due to a746

local collapse of turbulence (Ansorge and Mellado, 2014).747

We have examined the two different regimes of ABL by adopting the two748

different approaches. First, we have assumed that the buoyancy and momen-749
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tum fluxes follow the outer–layer scaling, and increase with height from nega-750

tive values close to the surface towards zero at z = h. The characteristic length751

scale, h, has been taken as the ABL height. The derived solutions, (40a, b), for752

the non-dimensional similarity functions, φm and φh, are not universal, since753

they contain the intermittency parameter χ, which cannot be determined a754

priori, and is constant only locally. On the other hand, the turbulent Prandtl755

number, Prt, in the invariant form, Eq. (41), obtained from the ratios between756

the two similarity functions, φm and φh, does not depend on χ. Yet, the form757

also predicts that the turbulent Prandtl number, Prt, is not constant, either,758

but depend on the ratio of the Reynolds stresses, uw/w2, or alternatively,759

the non-dimensional time, (t− t0)wb/uw. Identifying these two invariants as760

arguments of the similarity functions is remarkable, especially considering an761

adopted truncation of the system into the mean momentum and buoyancy762

prognostic equations. The ratio, uw/w2, may be considered a measure of flow763

anisotropy, or alternatively to be an aspect ratio of eddies. Furthermore, the764

same dependency can be re–interpreted in terms of a transiency of the sys-765

tem. This further suggests an intimate link between the transiency and the766

anisotropy of the flows. We have also demonstrated that our solutions reduce767

to the gradient-based similarity theory by Sorbjan (2006) by setting χ = 0.768

In the second approach, we have considered the surface–layer scaling, in769

which the fluxes vary only little with height. Typically, close to the surface,770

uw will increase with height, and wb will decrease with increasing ξ = z/L.771

No external length scale is introduced in this case. We obtain relations for S772

and N2 as functions of gradients of fluxes, as in Eqs. (61a) and (61b): they are773

key results from Section 7. When dependence on duw/dw2 and a contribution774

of the intermittency is neglected, derived functions reduce to the common775

scaling φm ∝ ξ and φh ∝ ξ, predicted by Monin and Obukhov (1954) for large776

stratifications.777

A goal of data analysis in Section 8 has been to estimate values of exponents778

β and χ found in the identified invariant solutions, Eqs. (31a)–(31g), for a full779

set of both independent and dependent variables of the boundary–layer system780

under considerations. We have compared the data from the SHEBA experi-781

ment against the theoretical log-linear profiles (64) predicted from MOST. The782

coefficient, χ, estimated for the theoretical profiles (64) increases from −1 at783

small ξ = z/L to zero towards large ξ, over which the solution is purely linear.784

On the other hand, the coefficient χ estimated from SHEBA data levels-off at785

around −0.5. This confirms that both the wind shear and the stratification are786

predicted by algebraic scaling laws (34a) and (34b). A difference between the787

MOST and experiment increases with the increasing ξ; it can be attributed to788

the presence of global intermittency, which is quantified in our analysis by a789

non-zero parameter, χ.790

In Section 8.2, we have further investigated the validity of the similarity791

solutions for φm, φh and Prt in the surface layer, as derived as Eqs. (63a,792

b, c). As predicted, the turbulent Prandtl number, Prt, is not constant, but793

depends on the measure, uw/w2, of the anisotropy. Interestingly, data with794

stronger stratifications follows the predictions of Eqs. (63a, b) for φm and φh795
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quite closely, whereas for the smaller non-dimensional height, ξ = z/L, data796

rather follows the scalings φm ∝ (ξ/RiG)1/3 and φh ∝ (ξ/RiG2)−1: these797

forms correspond to logarithmic solutions when G ≈ const.798

There exist various intriguing directions for further studies based on the799

symmetries of the ABL flows. First, the identified time dependence on so-800

lutions (cf., Eq. 36) in this study requires further attentions. Second, the801

outer-layer scaling investigated in Section 6 and the role of exponent χ should802

be investigated in more detail based on experimental data and by comparison803

with existing analyses, e.g., Allouche et al. (2022). Hopefully, derived invariant804

functions will improve parametrizations of the stable atmospheric boundary805

layers and provide the basis for turbulence closures which account for the in-806

termittent structure of ABL, such as the stochastic model by Allouche et al.807

(2021). Finally, the effect of Coriolis force and the resulting modification of808

symmetries should be accounted for. This may improve predictions at very809

large stratifications, where the ABL height is relatively small, and the statis-810

tics of the whole ABL are influenced by the Earth’s rotation.811
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