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Abstract: Mapping spatial data is essential for the monitoring of flooded areas, prognosis of hazards
and prevention of flood risks. The Ganges River Delta, Bangladesh, is the world’s largest river delta
and is prone to floods that impact social–natural systems through losses of lives and damage to
infrastructure and landscapes. Millions of people living in this region are vulnerable to repetitive
floods due to exposure, high susceptibility and low resilience. Cumulative effects of the monsoon
climate, repetitive rainfall, tropical cyclones and the hydrogeologic setting of the Ganges River Delta
increase probability of floods. While engineering methods of flood mitigation include practical
solutions (technical construction of dams, bridges and hydraulic drains), regulation of traffic and
land planning support systems, geoinformation methods rely on the modelling of remote sensing
(RS) data to evaluate the dynamics of flood hazards. Geoinformation is indispensable for mapping
catchments of flooded areas and visualization of affected regions in real-time flood monitoring, in
addition to implementing and developing emergency plans and vulnerability assessment through
warning systems supported by RS data. In this regard, this study used RS data to monitor the
southern segment of the Ganges River Delta. Multispectral Landsat 8-9 OLI/TIRS satellite images
were evaluated in flood (March) and post-flood (November) periods for analysis of flood extent
and landscape changes. Deep Learning (DL) algorithms of GRASS GIS and modules of qualitative
and quantitative analysis were used as advanced methods of satellite image processing. The results
constitute a series of maps based on the classified images for the monitoring of floods in the Ganges
River Delta.

Keywords: machine learning; deep learning; flood; monsoon; cartography; geoinformatics; remote
sensing; satellite image; geospatial analysis; GRASS GIS

1. Introduction
1.1. Background

The increasing interest in flood hazards among the hydrologic scientific community
has dramatically increased the demand for effective methods of geospatial data processing
aimed at detecting floods. In hydrological studies and the management of coastal regions,
detecting areas prone to floods is an essential issue. The monitoring of Earth observation
data for cartographic visualization of flooded landscapes supports flood hazard assessment.
This includes the processing of Remote Sensing (RS) data for analysis of flood extent, the
consequences of disastrous events and the degree of flood impact, as well as evaluation
of the affected area and estimation of changes in post-flood periods [1–3]. Such analysis
helps to highlight the spatial extent of floods and evaluate spatio-temporal dynamics. The
processing RS data using a Geographic Information System (GIS) has been acknowledged
as one of the most powerful approaches in hydrological hazard monitoring. Indeed, the
analysis of satellite images helps to reveal information on the consequences of floods that
lead to environmental changes such as destroyed areas, inundated areas, affected land
patches, declined vegetation coverage and disrupted ecosystems [4,5].
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Specifically for coastal Asian countries affected by global climate and environmental
changes, as well as regional effects from monsoon seasonality, fieldwork to capture data on
flooded areas is difficult. Moreover, direct observations in the areas affected by floods may
be impossible both financially and practically. Depending on the safety of the inundated
area and the severity of hydrological hazards, on-site surveys might be impossible. There-
fore, the use of RS data for the mapping of flooded landscapes and evaluation of the spatial
dynamics of water extent represent essential tools for the monitoring of floods [6,7].

1.2. Related Works

Evaluating the degree and rates of floods is useful for environmental risk assessment.
For hazard prediction and mitigation of hydrological risks, the processing of RS data is an
effective approach that can be used to reveal the affected areas. More specifically, satellite
images represent valuable sources of information that can be processed for detection of
areas in pre- and post-flood periods. For example, they can be used to reveal climate–
environmental patterns of floods and to evaluate spatio-temporal dynamics in pre- and
post-flood periods. To mention a few examples of such applications, satellite images
have long been used for numerical evaluation of risks [8], hydrological and irrigation
modelling [9], susceptibility mapping of coastal areas [10], detection of affected areas and
estimation of social–economic costs of floods [11,12], hydrogeological modelling [13], land
use mapping and evaluation of climate and environmental impacts on vegetation [14] and
computation of inundated areas [15].

RS data can be processed to retrieve information on floods from satellite images using
diverse software and hydrological applications in geoinformatics. Traditionally, RS data
have been processed by GIS methods. Diverse tools included in GIS allow for the mapping
of the degree and complexity of flood hazards and environmental consequences through
the classification of satellite images. For instance, for coastal regions in deltaic areas prone
to floods, the time series of RS data are useful for visualising the dynamics of the ecological
patterns related to flood events and monsoon cycles [10,16,17]. Moreover, the analysis of
satellite images covering countries located close to shorelines can help to better understand
the effects of climate changes on coastal landscapes.

However, state-of-the-art software severely impedes the timely evaluation and analysis
of RS datasets due to the manual, user-adjusted nature of processing techniques. In view
of this, novel methods of machine learning (ML) represent better alternative to image
processing and RS data analysis. ML emerged recently as a fundamental technique of
image processing and classification. Its current applications include a wide variety of
topics, such as environmental studies [18], earth science [19–21], geological and hazard risk
assessment [22], hydrological monitoring [23] and vegetation analysis [24–26], to mention
a few of them. Technical advantages of ML have been noted previously [27,28] and include
high sensitivity in data analysis, flexibility of image processing and accuracy in detecting
variations in land cover types to evaluate environmental dynamics. Moreover, diverse
parameters of ML techniques can be finely adjusted using different algorithms, such as
Random Forest (RF), Support Vector Machine (SVM) and many more.

1.3. Gap and Motivation

In order to perform environmental monitoring of flooded areas, policy makers and
scientists need effective techniques and approaches. Therefore, flood mitigation measures
include diverse methods and tools. Engineering solutions include, for instance, the con-
struction of infrastructure, dams and bridges, maintaining the hydraulic performance of
drains. Regulating traffic based on geoinformation regarding the locations of buildings and
land planning support systems supports affected communities. Non-engineering methods
mostly include modelling, prediction and prognosis for the implementation and develop-
ment of emergency plans. Such methods enable the assessment of the vulnerability of areas
to flood hazards through warning systems supported by up-to-date geoinformation. In
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this regard, using RS data processed by GIS is indispensable in evaluating the catchment of
inundated areas and visualization of affected regions in real-time flood monitoring.

Currently, the cartographic monitoring of floods in the Ganges River Delta is mostly
based on GIS-based mapping [29–31]. Besides the conventional approaches, recent studies
in the study area have used alternative data such as Sentinel-1 SAR images and data from
the Google Earth Engine [32,33]. Such case studies have raised questions about operative
and accurate methods for data processing aimed at flood prediction and management.
Accurate classification of satellite images for environmental mapping requires advanced
methods and scripting languages that aim at robust detection of patterns [34–38]. Existing
state-of-the-art methods of image processing and classification mostly use traditional GIS
for data handling, which may lead to misclassification and inaccurate labelling of pixels.
Nevertheless, the software that processes RS data for the monitoring of floods must include
intelligent algorithms and techniques to deal with complex spatial patterns of flooded
coastal areas, i.e., advanced computational methods that exploit the spatial variability and
heterogeneity of the affected landscapes rather than visualising particular extents of the
images. In this regard, ML and programming techniques represent advanced solutions
to support real-time flood prognosis systems through the use of artificial intelligence
(AI) algorithms [39]. Such methods can be used for operative monitoring of floods and
identification of landscape patterns within coastal and tidal areas, such as estuaries and
deltas, which is challenging task due to the obscurity and ambiguity of land cover types.

Complimentary to the available traditional tools of satellite image classification, novel
methods of Deep Learning (DL) can now be used as an advanced approach for RS data
processing. For instance, algorithms such as Multilayer Perceptron (MLPClassifier) are
designed to support image partition, classification and analysis through the use of deci-
sion trees and computer vision algorithms [40–42]. The application of such methods in
hydrological studies and coastal risk assessment creates principally new perspectives in
cartography by combining RS data with programming approaches for the mapping of
flooded areas. It is therefore particularly important to apply such advanced technical tools
to regions with high heterogeneity and complexity of landscape patterns, such as coastal
zones, where DL algorithms can generate image classification decisions and detect affected
areas automatically.

When applied to a series of satellite images, ML methods can effectively discover the
properties of landscapes through comparative analysis [43,44]. Moreover, ML enables quan-
tification of patches of landscapes on raster images using computer vision algorithms [45–49]
or determination of landscape dynamics for environmental monitoring [50,51]. Finally,
another advantage of the ML approach is that it is a resource- and time-effective method
based on advanced programming methods that largely involves scripting techniques.
Such an approach enables the automation of data processing and cartographic analysis,
as mentioned earlier [52–54]. Hence, using ML enables the indication of flood risk and
the development of crisis strategies in flood-prone areas such as the Ganges River Delta,
Bangladesh. Moreover, such methods are especially effective for detecting correlations
between environmental processes in coastal areas and the effects of climate change over
time, which are especially relevant for tropical regions that are subject to monsoon activity.
Nevertheless, among the most serious deficiencies scientists face with current GIS is the lack
of appropriate ML-based methods of RS data processing. In this regard, the Geographic
Resources Analysis Support System (GRASS) GIS represents advantageous software that
includes methods of ML for the manipulation of satellite images using advanced algorithms
such as deep learning (DL) and Artificial Neural Networks (ANNs).

1.4. Goals and Objectives

This paper presents the use of advanced DL tools of GRASS GIS for satellite image
classification. Moreover, it addresses a particular problem of monitoring flooded areas
around the Ganges River Delta, Bangladesh. Several Landsat satellite images are used,
processed, classified, compared and analysed to evaluate pre- and post-flood periods in
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coastal Bangladesh. The potential of the ML modules of GRASS GIS for the mapping of
consequences of hydrological hazards is exemplified by the case of the affected landscapes
of coastal Bangladesh and associated climate dynamics related to the monsoonal climate of
the Indian Ocean. The focus of this manuscript is a holistic approach to accurate satellite
image processing with the help of open-source software GRASS GIS. The methodology
applied to the subject of the study can be applied to the other relevant countries located in
coastal regions with flood-prone areas.

2. Study Area
2.1. Current Landscape

This study presents a case of the Ganges River Delta, an area regularly affected by
floods and located in southern Bangladesh (Figure 1).

Figure 1. Topographic map of Bangladesh and the study area showing the placement of the Landsat
data over the Ganges River Delta. Digital elevation data: SRTM/GEBCO, 15 arc sec resolution
grid [55,56]. Software: GMT version 6.4.0 [57]. Map source: author.



Water 2024, 16, 1141 5 of 29

The Ganges River Delta is the largest river delta in the world. It has a population
of hundreds of millions of people in its total catchment area. Located in a region with a
monsoon climate and a seasonally changing environmental setting, it is subject to regularly
repeating floods, occasional tropical cyclones, tidal waves and related inundations [58].
The complex hydrology of the Ganges River Delta increases the consequences of floods
through a dense network of streams, rivers and tributaries where water remains for a
long period [59]. Alluvial clayey sediments dominating in the riverbed contribute to the
stagnation of water during floods, since they accumulate in numerous interconnected
channels, inner lakes, wetlands and flood plains of the Ganges River Delta [60–62]. The
monsoon climate regulates the repeatability of rainfall and floods in the Ganges River Delta,
which normally increase in the period between March and September.

2.2. Problem Formulation

Repetitive floods in the Ganges River Delta negatively impact social–natural systems.
They cause losses of lives and damage to infrastructure [63], as well as fragmentation and
disruption in natural landscapes [64] and increased salinity due to the intrusion of oceanic
water during storms. Moreover, floods affect crop agriculture [65,66] and negatively
influence the sustainability of coastal ecosystems [67–69]. Millions of people living in
southern Bangladesh and neighbouring regions of India are vulnerable to such hazards
due to exposure, high susceptibility and low resilience to repetitive floods [70,71].

Examples of social effects of floods include restricted or limited access to clean drinking
water, damage to the electricity network and broken transport and communication systems.
Furthermore, flood hazards disrupt regular education and normal working environments,
as well as healthcare support for the population [72,73]. The long-term effects of floods
and their consequences, which may last for months, seriously affect the social–economic
system of Bangladesh. The coastal area of the Ganges River Delta supports a population of
approximately 56.7 M , which encompasses the study area [74], where many settlements
are located. This includes both small villages and large cities such as the capital, Dhaka;
Khulna (the third-largest city in the country); Comilla; and Narayani. Supporting such
flood-prone areas requires geospatial monitoring of flood risks in order to visualise the
affected areas on flood maps [75,76].

The uncertainty of flood prediction in the Ganges River Delta has an impact on
vulnerability to risk and information dissemination among the local population. Hence,
preventive prediction raises a question of using reliable data and advanced methods for
operative monitoring of floods and assessment of environmental sustainability using flood
maps [77]. Various techniques have been developed to produce flood maps. Among
them, satellite-based flood maps tend to provide real-time, contiguous representations
with varying spatial resolution over time and higher accuracy. The main approach that a
country can take to assess flood risk is to map areas that are susceptible to flooding based
on their geographic setting and comprehensive flood risk assessment. Such analysis can be
performed when satellite images are integrated with geospatial information, e.g., frequency
of floods, topographic relief, population density, locations of cities and climate setting. In
this regard, flood maps should be prepared by the relevant authorities, and remote flood
monitoring should be used to reduce risk during weather events.

Notably, no prior study has explored the deep learning (DL) methods available in
GRASS GIS [78] for the mapping of floods in the Ganges River Delta, Bangladesh. As
a response to this gap, this study presents a comprehensive evaluation of multispectral
imagery as a report of the use of such an approach. Specifically, the methodology of
this research is based on the use of DL methods of satellite image processing in GRASS
GIS scripting software. Deep learning is highly scalable for image processing purposes,
since it can analyse large datasets, such as times series of RS data, and conduct numerous
computations in a cost- and time-effective way using scripting software such as GRASS GIS.
Hence, the application of DL for environmental monitoring increases the productivity of
RS data processing by speeding up image processing using different algorithms (Figure 2).
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Figure 2. Conceptual structure of ML and DL algorithms in geospatial data analysis and image
processing by GRASS GIS. Graphical software: Inkscape version 1.2 [79]. Scheme source: author.

Moreover, DL also increases the flexibility of image processing by allowing trained
models to be applied to various environmental and hydrological problems. The imple-
mentation of such an approach is realised through the MLPClassifier algorithm from the
embedded Scikit-Learn library of Python [80,81].

3. Materials and Methods

The data and software used in this study have been obtained from the following
sources. Software include the following programs: GRASS GIS version 8.3.2 from GRASS
Development Team (National Research Council, USA), GMT version 6.4.0 (School of Ocean
and Earth Science and Technology of the University of Hawai’i at Mānoa, Honolulu, HI,
USA), Inkscape version 1.2 (Sodipodi developers, University of California, Berkeley, CA,
USA), R software environment for statistical computing and graphics (R Foundation for
Statistical Computing, Vienna, Austria). Data include the following sources: General
Bathymetric Chart of the Oceans by GEBCO Guiding Committee (British Oceanographic
Data Centre (BODC), Liverpool, UK), Landsat 8-9 OLI/TIRS satellite images from the
United States Geological Survey (John Wesley Powell Center for Analysis and Synthesis,
USGS, Reston, VA, USA)

3.1. Deep Learning

As a branch of machine learning (ML), deep learning (DL) is increasingly used in the
earth sciences as a tool for automatic processing of geospatial data. DL can be applied
by a variety of tools, using programming libraries, embedded plugins and modules in
geographic information systems (GIS). However, the problem remains with the technical
approach of such methods, specifically for RS data and satellite image processing. Among
the geoinformation software that operates with RS data, GRASS GIS [78,82,83] proposes
effective solutions to satellite image processing with the valuable option of utilising diverse
choices of models for image classification.

Among the existing ML methods, the most widely used approach is DL, with many
examples of applications for satellite image processing in environmental studies [84–86].
For example, DL presents an advanced technique for evaluating environmental dynamics
during climate change assessed through the satellite image analysis [87]. There are many
DL algorithms that have various parameters and functionalities for image classification.
Overall, such algorithms train the computer model using knowledge derived from the
input layers and processed in hidden layers, which results in accurate modelling of data.
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Moreover, DL considers existing conditions in geospatial data that are commonly expressed
in terms of spatial relations and the topology of objects.

Existing algorithms of the ML modules of GRASS GIS use neural networks (NNs) [88–90]
to learn semantic representations of features as indicated by pixels in images derived
from Earth observation (EO) data. This enables evaluation of landscapes dynamics and
assessment of environmental properties [91], as well as the application of advanced methods
of segmentation [92], feature extraction and classification [93] for data analysis. Further
development of DL methods aims at achieving high-precision image processing using
information obtained from spectral reflectances of the land cover types detected in images,
as well as the use of complex programming algorithms, e.g., NNs [94].

3.2. Workflow

The methodological workflow consists of several steps aimed at geospatial analysis
and image processing (Figure 3).

Figure 3. Workflow scheme illustrating the methodology used in this study for image process-
ing by GRASS GIS. Software: R version 4.3.3, library DiagrammeR version 1.0.11 [95]. Diagram
source: author.



Water 2024, 16, 1141 8 of 29

This study mainly uses the DL methods available in the GRASS GIS modules for
satellite image processing to detect flooded areas in the Ganges River Delta, Bangladesh.
The methodology also includes the processing of diverse data obtained from different
sources. While the purpose of the EO data was to provide information on objects and
features of the land surface visible from space, the choice of methods varied according to
the purpose, including specific DL algorithms and techniques of image processing [96,97].

3.3. Theoretical Fundamentals of MLP

The multilayer perceptron (MLP) is a class of DL and a conceptual theoretical back-
ground for the data analysis performed in this study. MLP represents a feedforward
artificial neural network (ANN), a branch of the DL methods [98]. It consists of fully
connected neuronswith a nonlinear activation function organised in at least three layers
(Figure 4).

Figure 4. General methodological scheme for the DL method of satellite image classification and
EO data processing. Software: R version 4.3.3, library DiagrammeR version 1.0.11 [95]. Diagram
source: author.

These layers are used to distinguish the data that are not linearly separable and, for
time series of satellite images, variables that are changing over time. This results in different
values of pixels recognised by the model as Digital Numbers (DNs). Such characteristics
are caused by spatio-temporal variability of the spectral reflectance of pixels that constitute
the image. Since physical properties of landscape and vegetation patches vary significantly,
such a mosaic of landscape patches is reflected on the raster matrix and can be identified
on the satellite images accordingly [99–101].

3.4. Data

In this study, we used eight Landsat 8-9 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) multispectral satellite images for environmental mapping of the
Ganges Delta, Bangladesh. The images were selected for flood and post-flood periods
(March and November, respectively) covering the periods of 2021, 2022 and 2023. The
images taken in March and November of 2014 were used as a seed for training pixels in
deep learning classification. The generated dataset is collected from https://earthexplorer.
usgs.gov/ [102] (accessed on 2 March 2024), with image samples openly available for
download, processing and data reuse. The original Landsat images included multispectral,
panchromatic and SWIR bands (Figure 5).

The images were in GeoTIFF format and contained the seven multispectral bands
for each image. Hence, the image recordings received from the USGS source include

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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RS datasets. The metadata were explored, and the records are available in Table A1 in
Appendix A. The most essential technical characteristics of the images are summarised
in Table 1. Besides quality, coverage and availability, another advantage of the Landsat
archives consists of their economic values; these data are reusable for further distribution
and future research. Thus, in similar studies, these scenes can be utilised as input data
for similar tasks in image analysis, such as classification, detection of land cover types
and image segmentation. The presented GRASS GIS workflow model of other technical
methods described in this study can be utilised for image processing.

The datasets are available in EarthExplorer [102] and originate from the NOAA Land-
sat collections [103]. The images were pre-projected as original data and had the following
technical characteristics: Datum and Ellipsoid World Geodetic System 84 (WGS84), stored
in Universal Transverse Mercator (UTM) Zone 46 for southern Bangladesh, and Worldwide
Reference System (WRS) Path/Row 137/44. The data were collected at Nadir in daytime.
The Landsat Collection category is T1, Number 2 for all the scenes. The Landsat Station
Identifier is LGN with sensor identifier Landsat OLI TIRS for all the images. Data Type L2
is OLI TIRS L2SP. The remaining essential characteristics of the images are summarised in
Table 1.

Table 1. Attribute table of the main characteristics of the Landsat 8-9 OLI/TIRS images.

Dataset Attribute Attribute Value Attribute Value Attribute Value

Date Acquired 7 March 2023 20 March 2022 17 March 2021

Land Cloud Cover 3.12 0.01 0.03

Scene Cloud Cover L1 2.97 0.01 0.03

Sun Elevation L0RA 51.70012312 56.10505202 55.19368850

Sun Azimuth L0RA 134.86314148 129.90704446 131.01649112

Satellite 8 8 8

Dataset Attribute Attribute Value Attribute Value Attribute Value

Date Acquired 26 November 2023 23 November 2022 28 November 2021

Land Cloud Cover 0.02 0.20 0.40

Scene Cloud Cover L1 0.02 0.19 0.38

Sun Elevation L0RA 41.83496249 42.43660966 41.36291892

Sun Azimuth L0RA 154.44654325 154.42300606 154.52745495

Satellite 9 9 8

The selection of these data is explained by the reputation and reliability of the Landsat
satellite imagery widely used for environmental studies. Landsat images are openly
available free of charge and have a high frequency of orbit (8-day repeat coverage of
Landsat scene area) and high quality. Hence, these images represent a reliable source of
information for the detection of the extent of floods and visualisation of inundated areas
using time series analysis. Their applications are reported in many existing studies with
a focus on environmental monitoring [104–108]. The data were collected from the freely
available repository of the United States Geological Survey (USGS)—EarthExplorer [102].
The original data are visualised in Figure 5.
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(a) March 2014 (b) November 2014 (c) March 2021 (d) November 2021

(e) March 2022 (f) November 2022 (g) March 2023 (h) November 2023

Figure 5. Data sources: Landsat 8-9 OLI/TIRS images of the Ganges River Delta, Bangladesh,
collected during the flood period (March) and post-flood period (November) in 2014, 2021, 2022 and
2023 and used for analysis of flood dynamics. Data source: USGS [103]. Compilation source: author.

3.5. Software

The workflow used in this research employs a chain of modules that utilise GRASS
GIS scripting software version 8.3.2 [78] for image processing. The technical details of
such an approach are described in earlier works [109,110]. For the installation and use of
the machine learning (ML) modules of GRASS GIS, we recommend using Python version
3.8.5 or higher. Specifically, the installation of our framework can be performed using the
available packages in the shared data. The additional Python libraries required by GRASS
GIS are included in the modules through the embedded links and include the following:
Matplotlib version 3.8.4, NumPy version 1.26.4, Pandas version 2.2.1, Scikit-Learn version
1.4.2 and SciPy version 1.13.0 .

Additionally, the XCode needs to be installed for writing the scripts. These libraries
can be installed using ‘pip install’, with more details in the online resources of GRASS GIS.
Finally, using GitHub version 3.12.1 is recommended for backup of scripts and revision.The
methodology of the time series analysis includes the unsupervised and supervised classifi-
cation of the multispectral satellite images with the aim of detecting changes in landscapes
around the Ganges River Delta in the pre- and post-flood periods. The map in Figure 1 was
prepared using Generic Mapping Tools (GMT) version 6.4.0 [57,111] with a raster grid of
the General Bathymetric Chart of the Oceans (GEBCO).

3.6. Implementation

We used a workflow in that GRASS GIS platform as a container of diverse modules
to run the scripts on MacOS using the approach presented in Figure 5. GRASS GIS uses
algorithms of ML/DL methods of image processing derived from Python’s Scikit-Learn
library [80] via the integrated libraries in the machine. For the GRASS GIS platform, this
is performed using the containers of modules via the sequence of commands presented
in Listings 1–3. The processes include the import and pre-processing of the multispectral
bands of the given image, image analysis and classification. The classification is based on
fundamental properties of the RS data on differences in the spectral reflectance of pixels
that are associated with land patches on the land surfaces visible from space. Here, each
patch of the Ganges River Delta contributes to the mosaic of landscapes evaluated for the
March (flood) and November (post-flood) periods of 2021, 2022 and 2023.

The following is an outline of the essential details regarding the approaches and
techniques of the algorithms that compose the GRASS GIS framework used for image
analysis. Full codes are presented below and explained with the essential details. In all the
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GRASS GIS modules and functions, as well as for post-processing of the satellite images
using the DL approach, it is necessary to apply the module that implements the required
functionality for data processing of each image. In this sense, the parameters of scripts are
adjusted in terms of the identifiers of functions and specifications of image processing. For
this purpose, we adopted and modified the approaches of the ML modules of GRASS GIS,
which rely on Python’s Scikit-Learn library for DL techniques.

3.7. Image Processing

The images were first imported into the GRASS GIS system using the ‘r.import’ module,
then pre-processed. Afterwards, the colour composites were created using ‘r.composite’.
The images were then displayed using a combination of the ‘d.mon’ and ‘d.rast’ mod-
ules. The files were saved in bitmap format using the ‘d.out.file’ module. The binary
results of the DL mapping and programming scripts used for DL image analysis are avail-
able in the GitHub repository using the following web link (accessed on 3 March 2024):
https://github.com/paulinelemenkova/Floods_Ganges_GRASS_GIS_DL_Image_Analysis.

The results of the generated colour composites are presented in Figure 6.

(a) Bands 3–4–7 (b) Bands 3–4–5

(c) Bands 2–4–7 (d) Bands 3–7–4
Figure 6. Examples of different false colour composites generated by the GRASS GIS ‘r.composite’
module using the multispectral bands of the Landsat 8-9 OLI/TIRS scenes. Here, the band numbers
correspond to the following channels of the Landsat 8-9 OLI/TIRS images: band 2—blue; band
3—green; band 4—red; band 5—near infrared (NIR); band 7—shortwave infrared-2 (SWIR-2).

https://github.com/paulinelemenkova/Floods_Ganges_GRASS_GIS_DL_Image_Analysis
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This step is implemented using the GRASS GIS syntax (an example is presented for
November 2023) presented in the codes of Listing 1.

The unsupervised classification is based on a clustering technique using k-means and
maximum likelihood embedded in GRASS GIS. Practically, it was performed using the
‘i.group’, ‘i.cluster’ and ‘i.maxlik’ modules. The latter creates the signature file and performs
accuracy assessment using the ‘reject’ function. This function evaluates the rejection
probability of the pixels using a chi-square test, which is used to examine the dependence
of categorical variables, i.e., pixels, on the raster scene. This step is implemented using the
GRASS GIS syntax (an example is presented below for November 2023) in the codes of
Listing 2.

Listing 1. GRASS GIS code for data import and the creation of a colour composite algorithm.

1 #importing the image subset with 7 Landsat bands and display the raster map
2 r.import input=/Users/polinalemenkova/grassdata/Bangladesh/

LC09_L2SP_137044_20231126_20231128_02_T1_SR_B1.TIF output=L8_2023_N_01 extent=
region resolution=region --overwrite

3 r.import input=/Users/polinalemenkova/grassdata/Bangladesh/
LC09_L2SP_137044_20231126_20231128_02_T1_SR_B2.TIF output=L8_2023_N_02 extent=
region resolution=region

4 r.import input=/Users/polinalemenkova/grassdata/Bangladesh/
LC09_L2SP_137044_20231126_20231128_02_T1_SR_B3.TIF output=L8_2023_N_03 extent=
region resolution=region

5 r.import input=/Users/polinalemenkova/grassdata/Bangladesh/
LC09_L2SP_137044_20231126_20231128_02_T1_SR_B4.TIF output=L8_2023_N_04 extent=
region resolution=region

6 r.import input=/Users/polinalemenkova/grassdata/Bangladesh/
LC09_L2SP_137044_20231126_20231128_02_T1_SR_B5.TIF output=L8_2023_N_05 extent=
region resolution=region

7 r.import input=/Users/polinalemenkova/grassdata/Bangladesh/
LC09_L2SP_137044_20231126_20231128_02_T1_SR_B6.TIF output=L8_2023_N_06 extent=
region resolution=region

8 r.import input=/Users/polinalemenkova/grassdata/Bangladesh/
LC09_L2SP_137044_20231126_20231128_02_T1_SR_B7.TIF output=L8_2023_N_07 extent=
region resolution=region

9 g.list rast
10 # false color
11 r.composite blue=L8_2023_N_07 green=L8_2023_N_05 red=L8_2023_N_03 output=

L8_2023_N_753
12 d.mon wx0
13 d.rast L8_2023_N_753
14 d.out.file output=Bangladesh_753 format=jpg --overwrite
15 # false color: NIR band B05 in the red channel , red band B04 in the green channel and

green band B03 in the blue channel
16 r.composite blue=L8_2023_N_03 green=L8_2023_N_04 red=L8_2023_N_05 output=

L8_2023_N_345
17 d.mon wx0
18 d.rast L8_2023_N_345
19 d.out.file output=Bangladesh_345 format=jpg --overwrite
20 # true color
21 r.composite blue=L8_2023_N_02 green=L8_2023_N_03 red=L8_2023_N_04 output=

L8_2023_N_234
22 d.mon wx0
23 d.rast L8_2023_N_234
24 d.out.file output=Bangladesh_J_234 format=jpg --overwrite

Listing 2. GRASS GIS code for unsupervised image classification method using k-means cluster-
ing algorithm.

1 g.region raster=L8_2023_N_01 -p
2 i.group group=L8_2023_N subgroup=res_30m \
3 input=L8_2023_N_01 ,L8_2023_N_02 ,L8_2023_N_03 ,L8_2023_N_04 ,L8_2023_N_05 ,L8_2023_N_06

,L8_2023_N_07 --overwrite
4 # Clustering: generating signature file and report using k-means clustering algorithm
5 i.cluster group=L8_2023_N subgroup=res_30m \
6 signaturefile=cluster_L8_2023_N \
7 classes =10 reportfile=rep_clust_L8_2023_N.txt --overwrite
8 # Classification by i.maxlik module
9 i.maxlik group=L8_2023_N subgroup=res_30m \

10 signaturefile=cluster_L8_2023_N \
11 output=L8_2023_N_cluster_classes reject=L8_2023_N_cluster_reject --overwrite

The results of this step are used as training data for supervised classification using
a deep learning approach. The resulting maps are demonstrated in Figure 7. Moreover,
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selected example of accuracy analysis for 2014 that was used as a training dataset is shown
in Figure 8. This step includes the procedures of clustering that generate a signature file
and a report using the k-means algorithm through the ‘i.cluster’ module of GRASS GIS.
Unsupervised classification was performed using the ‘i.maxlik’ module. The results of this
step provided the seed data and training map for the next step of DL modelling. The maps
are presented in Figure 2.

The results of the accuracy assessment are presented in Figure 8, which shows the
reject threshold map layer created using the ‘i.maxlik’ module of GRASS GIS. The maps are
computed for each satellite image and contain the index to one calculated confidence level
for each classified pixel in the classified images. The values range from 0 to 100 %, which
indicate the predefined confidence intervals. For interpretation of the reject maps, lower
values 0.1 = keep, and those close to 100% indicate reject. The application for this map layer
is as a mask indicating raster pixels in the classified images that have a low probability of
flood categorisation (that is, a high rejection index) and being assigned to the correct class.

The computed maps are based on the evaluated reject raster map, which indicates
the results of the evaluated reject thresholds. The reject thresholds were calculated using a
chi-square test, which is a statistical approach that tests the goodness of fit of the datasets.
This test was used to determine whether the computed pixels and assignments to various
land cover classes are acceptable or should be rejected. The approach of the chi-square test
is based on the hypothesis that the resulting data have a specified distribution of land cover
classes at the specified level of significance. Hence, an accuracy assessment was conducted
on each satellite image, showing the discriminant results at various threshold confidence
levels for the assigned pixels. The maps shown in Figure 8 are used to determine at what
confidence level each classified pixel is correctly categorised to among the diverse land
cover classes.

(a) March 2014 (b) November 2014

Figure 7. Image processing of the Landsat 8 OLI/TIRS scene in March and November 2014 using
unsupervised classification through clustering and Maximal Likelihood method: (a) March 2014;
(b) November 2014. The ten land cover types correspond to the following categories: (1) water;
(2) wetlands and mudflats; (3) mangrove forests; (4) sandy areas; (5) forests; (6) croplands; (7) grass-
lands; (8) urban settlements; (9) orchards; (10) aquaculture.
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(a) March 2014 (b) November 2014

Figure 8. Accuracy assessment of image classification of the Landsat 8 OLI/TIRS scenes: (a) March
2014; (b) November 2014.

The deep learning (DL) analysis was performed using the Multilayer perceptron
(MLPClassifier) algorithm for automated classification of the series of satellite images.
First, the extent of the spatial region was defined using the ‘g.region’ module, which sets
up the coordinates of the maps within the project using the target map. Afterwards, the
training pixels from an older (2014) land cover classification were generated using the
‘r.random’ module of GRASS GIS and used as seeds. Next, the imagery group with all
Landsat-8 OLI/TIRS bands was created to include all the multispectral bands (since we do
not need panchromatic bands in this case, they were excluded from data analysis). Then,
the training pixels were applied to perform a classification using the ‘MLPClassifier’ of DL
approach applied to recent Landsat images (in the presented code below, the image for
November 2023). This method trains an MLPClassifier model using ‘r.learn.train’.

After this step, the prediction of the pixel assignments to each land cover class in
the Ganges River Delta was performed using the ‘r.learn.predict’ module. The raster
categories were automatically applied to the classification output and checked again using
the ‘r.category’ module. Following that, the color scheme was assigned from the land class
training map and visualised using the ‘r.colors’ and ‘d.rast’ modules. Technically, the DL
approach was realised using the ‘r.learn.train’ module of GRASS GIS and demonstrated in
the script of Listing 3.

Listing 3. GRASS GIS code for supervised image classification using Artificial Neural Network
(ANN) model with multi-layer neural network approach of MLPC algorithm.

1 g.region raster=L8_2023_N_01 -p
2 r.random input=L8_2014_N_cluster_classes seed =100 npoints =1000 raster=training_pixels
3 i.group group=L8_2023_N input=L8_2023_N_01 ,L8_2023_N_02 ,L8_2023_N_03 ,L8_2023_N_04 ,

L8_2023_N_05 ,L8_2023_N_06 ,L8_2023_N_07 --overwrite
4 r.learn.train group=L8_2023_N training_map=training_pixels \
5 model_name=MLPClassifier n_estimators =500 save_model=mlpc_model.gz --overwrite
6 r.learn.predict group=L8_2023_N load_model=mlpc_model.gz output=

mlpc_classification_Ganges --overwrite
7 r.category mlpc_classification_Ganges
8 d.mon wx0
9 d.rast mlpc_classification_Ganges

10 r.colors mlpc_classification_Ganges color=roygbiv -e
11 d.legend raster=mlpc_classification_Ganges title="MLPClassifier: 11/2023"

title_fontsize =14 font="Helvetica" fontsize =12 bgcolor=white border_color=white
12 d.out.file output=MLPC_2023_11 format=jpg --overwrite
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Each image of the produced dataset contained seven multispectral bands processed
automatically by the GRASS GIS ‘r.learn.train’ and ‘r.learn.predict’ modules for each image.
The total processing time for one image is ca. 30 min, which demonstrates a high time
efficiency of the proposed GRASS GIS DL algorithm. The MLPClassifier algorithm was
tested initially on a single image processed as a complete workflow for the March and
November 2021, 2022 and 2023 datasets, then analysed for changes in the evaluated period.
Changes detected using the repeatability pattern of land cover types in the Ganges River
Delta were evaluated for the flood- and post-flood periods. Noise background related to
cloudiness is ignored, since the images were collected under high visibility (below 10%
cloudiness), which ensured that land cover types are clearly visible and identified by the
ML algorithm.

4. Results

The Landsat satellite images evaluated in this study cover the regions of southern
Bangladesh and the periods of March and November for the years 2021, 2022 and 2023.
The analysed images included multispectral bands and were collected on cloud-free dates,
which enabled the detection of notable changes in the flooded areas. Land cover changes
during flood and post-flood periods were measured using the advanced ‘MLPClassifeir’
DL approach, as described in the previous section. The scripting approach was developed
in GRASS GIS and employs the Python algorithms of the Scikit-Learn ML library. The
variations in the flooding characteristics in the mapped region show an increase in the
water level, which is associated the pre-monsoon and monsoon rainfall over the river
catchments of the Ganges, Brahmaputra and Meghna rivers. Another factor in addition
to the water flow is the intake from the snow melt in February, which is reflected in early
March levels.

The hydrological peaks of the Brahmaputra River in late August or September show
that the maximum flow of a stream in response to a rainstorm event coincides with the
Ganges River peak in 2022. In contrast, sandy areas in the inlet of the Ganges River are more
pronounced in 2023 due to the changed conditions and the local climate setting, which is
visible in the scenes of the classified Landsat images. The increase in inundated areas in the
wetlands of the Ganges River, the development of mangrove forests and the fragmentation
of the forest land cover types were detected in the images of the processed scenes using the
DL modules of GRASS GIS. The hydrological contribution from the Meghna tributary to
the Ganges River stream follows a similar hydrological pattern to that of the Brahmaputra
River. Since the Meghna River has high water levels that extend into September due of
a backwater effect, the contribution of the Meghna to the Ganges River’s flow is more
pronounced in the images for November. Hence, as shown in the images, the categories of
land cover types were visualised and evaluated using image classification methods. The
flooding periods impacted the hydrology of the Ganges River as a result of the monsoon
effects in southern Bangladesh.

4.1. K-Means Classification Outcomes

Flooded areas in the Ganges River Delta detected and mapped using MaxLike methods
are presented as a series of the resulting maps in Figures 9 and 10, and deep learning (DL)
results are presented in Figures 11 and 12.

The classified images show the pre- and post-flood inundation maps for the region
of the Ganges River Delta during March and November in 2021, 2022 and 2023 based on
the Landsat images. The findings reveal a changing pattern of expanded floods in the
post-flood period in the Ganges River Delta and inequality in the distribution of inundated
areas covered by water in consequent years (2021, 2022 and 2023).

The flood periods in 2022 in southern Bangladesh caused significant deluges and
inundations, which affected cropland areas as well as settlements in rural and urban
districts. Selected areas also experienced extended periods of inundations, while coastal
areas were continuously inundated. Finally, land cover types related to orchards were
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affected by floods. Thus, the results show the distribution of continuing water bodies in
March, which increases in November, covering an area of southern Bangladesh. In March
2021, the total flood-inundated area was lower, with most inundation occurring in cropland
(Class 6); followed by urban settlement (Class 8); orchard areas (Class 9); and other areas,
such as wetlands, mangroves and aquaculture (Classes 2, 3 and 10, respectively).

(a) 2021 (b) 2022 (c) 2023
Figure 9. Flooded landscapes in the Ganges River Delta, Bangladesh, mapped using k-means
clustering and MaxLike classification in GRASS GIS applied to Landsat 8-9 OLI/TIRS images:
(a) March 2021; (b) March 2022; (c) March 2023. The ten land cover types correspond to the following
categories: (1) water; (2) wetlands and mudflats; (3) mangrove forests; (4) sandy areas; (5) forests;
(6) croplands; (7) grasslands; (8) urban settlements; (9) orchards; (10) aquaculture.

(a) 2021 (b) 2022 (c) 2023
Figure 10. Post-flood landscapes in the Ganges River Delta, Bangladesh, mapped using k-means
clustering and MaxLike classification in GRASS GIS applied to Landsat 8-9 OLI/TIRS images:
(a) November 2021; (b) November 2022; (c) November 2023. The ten land cover types correspond to
the following categories: (1); water; (2) wetlands and mudflats; (3) mangrove forests; (4) sandy areas;
(5) forests; (6) croplands; (7) grasslands; (8) urban settlements; (9) orchards; (10) aquaculture.

The maps were generated using the classified images for March showing the flooding
event (Figures 9 and 11), as well as the images for November (Figures 10 and 12) showing
the post-flood landscapes. Comparing these two periods, all crop-related land cover
types represent areas notably affected by floods, which also occurred in the regions of
residential property. Correspondingly, larger areas were inundated, including affected
public infrastructure during the catastrophic November months when heavy monsoon
rains continued to pummel the affected districts in close proximity to the Ganges River.
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(a) 2021 (b) 2022 (c) 2023
Figure 11. Flooded landscapes in the Ganges River Delta, Bangladesh, mapped using deep learning
(DL) classification MLPC in GRASS GIS applied to Landsat 8-9 OLI/TIRS images: (a) March 2021;
(b) March 2022; (c) March 2023. The ten land cover types correspond to the following categories:
(1) water; (2) wetlands and mudflats; (3) mangrove forests; (4) sandy areas; (5) forests; (6) croplands;
(7) grasslands; (8) urban settlements; (9) orchards; (10) aquaculture.

(a) 2021 (b) 2022 (c) 2023
Figure 12. Post-flood landscapes in the Ganges River Delta, Bangladesh, mapped using deep learning
(DL) classification MLPC in GRASS GIS applied to Landsat 8-9 OLI/TIRS images: (a) November
2021; (b) November 2022; (c) November 2023. The ten land cover types correspond to the following
categories: (1) water; (2) wetlands and mudflats; (3) mangrove forests; (4) sandy areas; (5) forests;
(6) croplands; (7) grasslands; (8) urban settlements; (9) orchards; (10) aquaculture.

4.2. Deep Learning Outcomes

The supervised learning models of GRASS GIS based on MLPClassifier demonstrated
accurate results in flood mapping and refined visualisation functionality. The outcomes
of DL show that for the March-to-November time frame, some patterns were common for
both months, while autumn months were newly inundated (Figures 11 and 12).

In contrast, the spring period demonstrated that areas in selected northern regions
recovered following continuous inundation, while southern areas located in the proximity
of the Ganges River Delta were progressively inundated. While the DL method was
developed to serve a specific goal of image processing, its is applicable as a solution for the
monitoring of the outcomes of floods in the detected inundated areas, as presented above.
Hence, the research outcomes provide valuable insights into the monitoring of changing
landscapes comparing flooded and post-flood periods in the Ganges River Delta.

A time series analysis of the Ganges River Delta was used to plot and graphically
display changes in the flood and post-flood periods for southern Bangladesh. The analysis
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of data for three test periods (2021, 2022 and 2023) illustrates that some areas recovered
from flood waters as time progressed, in contrast with the inundated areas. The data for
2014 were used as a training polygon for DL modelling, which requires a classification seed.
The derived maps were produced from the cloud-free Landsat images processed by the DL
methods between the flooded period in March and the post-flooded period in November,
when some areas had recovered from inundation. The results of numerical analysis are
summarised in tables showing the extent of areas occupied by diverse land cover classes
in the flood period (Table 2) and post-flood period (Table 3). The maps generated using
GRASS GIS show high potential environmental monitoring. The methods of deep learning
support accurate image classification through the use of advanced computer vision and
pattern recognition algorithms.

Table 2. Flood period: estimated classes of land cover types for the March period for the years 2021,
2022 and 2023 in the Ganges River Delta.

Year
Classes of Land Cover Types in March Pixels: Ganges–Brahmaputra River Delta

1 2 3 4 5 6 7 8 9 10

2021 717 252 434 758 1005 1035 758 744 927 219
2022 749 236 489 803 1030 1100 557 744 800 336
2023 707 343 1055 381 1032 997 702 649 796 180

Table 3. Post-flood period: estimated classes of land cover types for the November period for the
years 2021, 2022 and 2023 in the Ganges River Delta.

Year
Classes of Land Cover Types in November Pixels: Ganges–Brahmaputra River Delta

1 2 3 4 5 6 7 8 9 10

2021 689 402 579 565 1228 1109 571 849 647 208
2022 700 468 365 587 1066 1048 683 942 683 326
2023 715 511 231 599 1351 1132 718 707 685 310

The time series flood data made using scripting models of GRASS GIS with open-
source specifications catalyse further innovation in risk management and represent so-
lutions for state-of-the-art mapping of floods using programming approaches and ML
modules. The following 10 land cover types were identified around the Ganges River
Delta, Bangladesh: (1) water, (2) wetlands and mudflats, (3) mangrove forests, (4) sandy
areas, (5) forests, (6) croplands, (7) grasslands, (8) urban settlements, (9) orchards and
(10) aquaculture. Information on land cover types was derived from Rahman et al. [112],
Sousa and Small [113] and Paszkowski et al. [114] and applied to the extent of the current
study area. The presented maps of floods can be used as a broad base for environmen-
tal applications and flood hazard assessment. Their application potential ranges from
academia and research, industry and development to governmental and social services for
risk prevention.

The maps derived using the deep learning approach were produced from the cloud-
free Landsat scenes collected between the March and November periods and are shown in
Figures 11 and 12. The presented land cover maps are intended for potential flood damage
assessment in southern Bangladesh. Corrections of the presented framework and the
Python-based algorithm of GRASS GIS derived using a machine learning (ML) approach
with the deep learning (DL) MLPClassifier represent an advanced tool for automated
recognition of land cover types in satellite images and the monitoring of floods in flood-
prone regions of southern Bangladesh. The percentage of correctly classified images was
calculated summarised in the matrices showing class separability (Figures 13–15 for the
years 2021, 2022 and 2023, respectively) and evaluated in the accuracy assessment.

The class separability matrices of land cover classes identified in the Ganges River
Delta are presented in Figures 13–15. Figure 13 shows class separability matrices for March
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and November 2021, Figure 14 shows class separability matrices for March and November
2022 and Figure 15 shows class separability matrices for March and November 2023.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9 10
1 0
2 1.3 0
3 2.2 1.0 0
4 3.0 1.5 0.7 0
5 3.2 1.2 1.2 1.2 0
6 3.4 1.9 1.3 0.7 1.1 0
7 3.6 2.4 1.7 1.2 1.6 0.7 0
8 3.7 1.7 1.8 1.7 0.7 1.4 1.7 0
9 3.4 1.6 2.3 2.5 1.3 2.3 2.6 1.0 0

10 3.8 2.2 2.8 2.8 2.0 2.7 3.0 1.8 1.1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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1 2 3 4 5 6 7 8 9 10
1 0
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3 2.6 1.0 0
4 2.9 2.2 1.4 0
5 3.9 2.0 0.9 1.2 0
6 4.6 2.4 1.4 1.5 0.6 0
7 4.2 2.8 1.9 1.3 1.3 1.0 0
8 4.1 2.9 1.8 0.8 1.3 1.3 0.7 0
9 3.9 3.3 2.5 1.0 2.2 2.3 1.5 1.1 0

10 3.5 3.3 2.6 1.5 2.3 2.3 1.8 1.5 0.9 0
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Figure 13. Class separability matrices computed for classified Landsat 8-9 OLI/TIRS satellite images
for March and November 2021.
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8 4.1 2.5 1.0 1.5 1.1 1.2 0.7 0
9 3.9 2.9 0.8 2.3 2.2 2.3 1.4 1.2 0

10 3.0 2.8 1.2 2.3 2.3 2.4 1.8 1.7 0.8 0
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Figure 14. Class separability matrices computed for classified Landsat 8-9 OLI/TIRS satellite images
for March and November 2022.
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Figure 15. Class separability matrices computed for classified Landsat 8-9 OLI/TIRS satellite images
for March and November 2023.

The covariance matrices signify the values of class separability, which are composed of
the cluster means based on the values of the spectral signatures of pixels. They demonstrate
the results of the cluster’s means obtained from the computed covariance matrices. The
matrices were generated using the ‘i.maxlik’ function of GRASS GIS during the image
classification process. The columns signify 10 generated land cover classes, and the rows
signify the number of pixels correctly assigned to those classes. Hence, the class separability
matrices show the error matrix for the pixel-based maximum-likelihood classification,
which indicates the correctness of the pixels assigned to the land cover classes from 1 to 10.
The results of image clustering using values of spectral classes are related to the land cover
types identified in the Ganges River Delta and the surroundings.

The matrices consist of ten classes and computed pixels for each land cover class. The
land categories are defined as follows: water bodies, wetlands and mudflats indicating
inundated areas, mangrove forests and associated swamps, sandy areas on riverbanks,
forests (e.g., tree cover, hill forests), croplands and homestead croplands, grasslands, urban
and rural settlements, orchards and aquaculture. Class separability matrices evaluate
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the assignment of pixels to various land cover classes in the landscapes of the Ganges
River Delta. Hence, the matrices serve the function of regularisation parameters used to
determine the distinguishability of pixels according to their spectral reflectances. In this
way, class separability matrices perform iterative searches for cells within the raster matrix
of the image considering a range of values of pixels assigned to different land cover types.

Through the applied automatic DL-based image processing and mapping workflow,
flood inundation mapping of southern Bangladesh has the potential to provide information
on inundated areas. Time series of Landsat images are essential for flood management
in real-time regimes. Using the techniques of deep learning applied to flood mapping, a
significant difference in values of spectral reflectance for land cover classes in inundated
areas (containing high percentages of water and moisture) and non-water (dry) areas
enables a distinct separation between these land cover categories. Automatically derived
ranges for inundated areas in Landsat images show a clear discrimination of the affected
areas from other classes, as presented in the figures supporting this research.

It is well known that Bangladesh is a country particularly vulnerable to hydrological
hazards and flood disasters. Therefore, testing and implementation of novel cartographic
methods for RS-based mapping of flooded areas are essential for operative monitoring of
areas at risk, such as coastal areas of the Ganges River Delta. The cumulative effects of
the flat topographic relief and monsoon climate result in the high level of vulnerability
of Bangladesh to floods, with over 80% of the population exposed to flood risks. Diverse
measures have been undertaken by the authorities and government of this coastal country
to protect the population from devastating flood disasters. The construction of engineered
infrastructure to protect against floods includes flood shelters, hydrologic sluice gates and
river regulators, dredged drainage channels, etc.

Earth observation data represent indispensable resources for flood monitoring from
space, as demonstrated in this study. The technical advantage of the demonstrated novel
methods of flood mapping consists of an automated approach of deep learning applied to
inundated areas in Bangladesh. More specifically, this paper contributes to the development
of cartographic methods for visualisation of flooded areas using satellite images and
deep learning (DL) techniques available in GRASS GIS. The presented and discussed
programming codes can be reused for flood mapping in similar studies.

5. Discussion

Floods are a major threat to human communities all over the world, with serious
socio-economic and environmental consequences, given that they are the leading cause
of natural disaster losses. Related research shows that one in four people worldwide is
considered to be at significant risk from flooding. Bangladesh, which occupies low-lying
flood and tidal plains, has one of the world’s largest and most disaster-prone deltas. In
particular, the absolute number of people at risk of flooding in Bangladesh is 94.42 million,
or 57.5% of the country’s population (the second highest in the world). Consequently,
floods in the Ganges River Delta represent one of the most catastrophic problems at the
national level [115]. In this regard, preventive mapping of flooded areas is of societal
importance for the social system of Bangladesh and contributes to the maintenance of the
sustainability of both natural landscapes and social infrastructure.

Social awareness of flood hazards can help in mitigating the risk associated with
floods. Remote sensing (RS) data processed using advanced methods and visualised on
maps are essential in addressing environmental challenges. Processing of RS data is useful
in mapping areas at risks, as well as for cartographic display of inundated coastal areas and
prognosis of floods in deltaic areas based on time series analysis. To this end, the advanced
methods of deep learning (DL) used for operative mapping of flooded areas support
publicly accessible, modifiable and distributable open-source cartographic products. Such
products can be used for preventive monitoring of areas at risk, prognosis of flood events
and hydrologic modelling. Hence, operative monitoring and forecasting of flood hazards
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using RS data can effectively reduce the catastrophic consequences of floods in the Ganges
River Delta.

The use of advanced DL methods for accurate processing of satellite images is possible
using open-source GRASS GIS, which represents an effective method of retrieving geoin-
formation. This study presents the use of such a DL-based image analysis using GRASS
GIS for mapping of flooded areas in the coastal region of the Ganges River Delta. Through
comparison of the multi-temporal RS data, the areas affected by floods were detected and
compared for the flood and post-flood periods. The presented workflow demonstrated
that the DL techniques of GRASS GIS have significant advantages for image classification
because DL increases the accuracy and automation of mapping through the use of AI
algorithms in the cartographic workflow. Automated detection of similar spectral charac-
teristics was applied to different land categories, assigning them to distinct classes, which
helps to overcome the challenges of misclassification. Second, heterogeneous landscapes
with highly dense mosaics of landscape patterns, which are typical for coastal Bangladesh,
were identified by ML with regard to the resolution of the Landsat images and defined
classes. Spectral properties of the multispectral satellite images were evaluated for land
cover changes in the inundated areas of the Ganges River Delta.

Flooded areas in the Ganges River Delta were determined over the target dates using
time series analysis of Landsat satellite images and compared for flood and post-flood
periods. The results indicated an increase in wetlands and inundated areas during the
later period detected by the DL methods and cartographic scripts. The obtained results
comprise a series of maps of the Ganges River Delta that show that flood periods reached
a peak in November and affected coastal landscapes of the Ganges River, demonstrating
an increase in flooded areas. The presented time series of maps showing floods in March
and post-flooded landscapes in November highlight the benefits achieved by RS data
visualisation for analysis and comparison of flood extent.

Floods have varied effects on the behaviour of landscapes differ over the years as
indirect indicators of climate effects and monsoon processes. In fact, the combination of
the regional hydrologic behaviour of the Ganges River, the structure of sediment and the
proportions of clayey sediments in the soil resulted in a significant increase in the degree
of water stagnation in inundated areas. The behaviour of coastal areas was evaluated
within three years (2021, 2022 and 2023) to demonstrate the effects of floods on landscapes,
as reflected in the maps prepared using clustering (Figures 9 and 10) and DL techniques
(Figures 11 and 12). Similar to existing studies discussed in earlier sections, the flooded
period of the Ganges River resulted in the highest level of inundation of the coastal regions
of southern Bangladesh in the November period compared to March.

6. Conclusions

This study demonstrated the capacity of sequential analysis of RS data to identify
changes in the coastal and wetland landscapes of the Ganges River Delta over the last three
years for comparison of flood events with post-flood landscapes. The results illustrated the
effectiveness of satellite images in the identification of flood extent and detecting affected
areas. Moreover, the results show the technological advantages of DL for satellite image
processing with a case of GRASS GIS. The demonstrated and discussed codes can be used
in similar studies including vulnerabilityanalysis and flood risk assessment in the future.
In relation to previous studies and working hypotheses, the results of this study can be
integrated with related geoinformation, such as hydrologic models, satellite altimetry, aerial
imagery, topographic maps and hydrodynamic flood models. These data can then be be
used for flood forecasting, simulation of flood models in southern Bangladesh, to provide
information on the spatial extent of flooded areas and to estimate possible impacts of floods.
The integrated use of such information is useful in undertaking adaptive measures and
mitigating floods in the Ganges River Delta.

Importantly, this paper presents a case of flood mapping in the Ganges River Delta
integrating open-source data and methods. The dataset was obtained from the publicly
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available repository of the USGS and processed using freely available GRASS GIS soft-
ware. Such an approach is essential for policy makers from developing countries such as
Bangladesh, since free data and tools can motivate further studies to continue and expand
spatial analysis using the proposed techniques. In future studies involving environmental
monitoring, this research can be further extended for larger spatio-temporal extents of
the Ganges River Delta. For example, a series of maps covering extended periods can be
produced using complementary RS data. Moreover, upscaling of the data for a basin or
sub-basin level can support more general estimation of flood impacts for hydrological risk
assessment. Finally, spatial analysis based on ML-based image processing can be included
as a cartographic support for community-based water resource management in southern
Bangladesh to monitor areas prone to flood disasters.

In conclusion, this research has demonstrated an example of using the advanced
approach of ML in cartography and RS data processing. Thus, it has led to a greater
understanding of the importance of using advanced methods of machine learning for
environmental monitoring. The application of ANNs as a branch of machine learning
methods, presented here as a case of the MLP classifier algorithm, demonstrated that
such a technique can be successfully applied in similar studies that require RS data for
spatio-temporal analysis. The promise of the ML methods of GRASS GIS remote sensing
software for image processing and environmental data analysis was demonstrated. We
evaluated the proposed ML framework of GRASS GIS on Landsat scenes; however, other
satellite images can also be applied in future similar studies.
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SVM Support Vector Machine
SWIR Shortwave Infrared
USGS United States Geological Survey
UTM Universal Transverse Mercator
WGS84 World Geodetic System 84
WRS Worldwide Reference System

Appendix A. Metadata for Satellite Images

Table A1. Metadata for the Landsat 8-9 OLI/TIRS images obtained from the USGS.

Dataset Attribute Attribute Value Attribute Value Attribute Value

Landsat Scene Identifier LC81370442023066LGN00 LC81370442022079LGN00 LC81370442021076LGN00

Date Acquired 7 March 2023 20 March 2022 17 March 2021

Roll Angle −1 0 0

Start Time 7 March 2023 04:24:33 20 March 2022
04:24:26.058914

17 March 2021
04:24:23.120295

Stop Time 7 March 2023 04:25:05 20 March 2022
04:24:57.828914

17 March 2021
04:24:54.890294

Land Cloud Cover 3.12 0.01 0.03

Scene Cloud Cover L1 2.97 0.01 0.03

Ground Control Points Model 732 771 776

Ground Control Points Version 5 5 5

Geometric RMSE Model 5683 5615 5694

Geometric RMSE Model X 3887 3857 3585

Geometric RMSE Model Y 4146 4081 4424

Processing Software Version LPGS_16.2.0 LPGS_15.6.0 LPGS_15.4.0

Sun Elevation L0RA 51.70012312 56.10505202 55.19368850

Sun Azimuth L0RA 134.86314148 129.90704446 131.01649112

TIRS SSM Model FINAL FINAL FINAL

Data Type L2 OLI_TIRS_L2SP OLI_TIRS_L2SP OLI_TIRS_L2SP

Satellite 8 8 8

Scene Center Lat DMS “23°06′46.58′′ N” “23°06′45.29′′ N” “23°06′46.01′′ N”

Scene Center Long DMS “90°23′29.83′′ E” “90°23′14.57′′ E” “90°24′53.42′′ E”

Corner Upper Left Lat DMS “24°09′00.29′′ N” “24°09′00′′ N” “24°09′02.38′′ N”

Corner Upper Left Long DMS “89°13′54.73′′ E” “89°13′44.11′′ E” “89°15′19.58′′ E”

Corner Upper Right Lat DMS “24°11′21.62′′ N” “24°11′21.52′′ N” “24°11′22.45′′ N”

Corner Upper Right Long DMS “91°30′23.18′′ E” “91°30′12.56′′ E” “91°31′48.22′′ E”

Corner Lower Left Lat DMS “22°01′28.45′′ N” “22°01′28.20′′ N” “22°01′30.32′′ N”

Corner Lower Left Long DMS “89°17′26.70′′ E” “89°17′16.22′′ E” “89°18′50.22′′ E”

Corner Lower Right Lat DMS “22°03′36.04′′ N” “22°03′35.93′′ N” “22°03′36.76′′ N”

Corner Lower Right Long DMS “91°31′47.39′′ E” “91°31′36.95′′ E” “91°33′11.12′′ E”
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Table A1. Cont.

Dataset Attribute Attribute Value Attribute Value Attribute Value

Landsat Scene Identifier LC91370442023330LGN00 LC91370442022327LGN01 LC81370442021332LGN00

Date Acquired 26 November 2023 23 November 2022 28 November 2021

Roll Angle 0 0 0

Start Time 26 November 2023 04:24:51 23 November 2022 04:25:01 28 November 2021
04:24:54.925489

Stop Time 26 November 2023 04:25:23 23 November 2022 04:25:32 28 November 2021
04:25:26.695489

Land Cloud Cover 0.02 0.20 0.40

Scene Cloud Cover L1 0.02 0.19 0.38

Ground Control Points Model 750 782 768

Ground Control Points Version 5 5 5

Geometric RMSE Model 6651 6490 6697

Geometric RMSE Model X 4185 4191 4329

Geometric RMSE Model Y 5170 4955 5110

Processing Software Version LPGS_16.3.1 LPGS_16.2.0 LPGS_15.5.0

Sun Elevation L0RA 41.83496249 42.43660966 41.36291892

Sun Azimuth L0RA 154.44654325 154.42300606 154.52745495

TIRS SSM Model N/A N/A FINAL

Data Type L2 OLI_TIRS_L2SP OLI_TIRS_L2SP OLI_TIRS_L2SP

Satellite 9 9 8

Scene Center Lat DMS “23°06′45.65′′ N” “23°06′46.48′′ N” “23°06′45.22′′ N”

Scene Center Long DMS “90°22′20.75′′ E” “90°23′11.94′′ E” “90°24′08.21′′ E”

Corner Upper Left Lat DMS “24°08′48.98′′ N” “24°08′50.28′′ N” “24°09′01.33′′ N”

Corner Upper Left Long DMS “89°12′51.37′′ E” “89°13′44.40′′ E” “89°14′37.14′′ E”

Corner Upper Right Lat DMS “24°11′11.26′′ N” “24°11′11.80′′ N” “24°11′22.06′′ N”

Corner Upper Right Long DMS “91°29′19.50′′ E” “91°30′12.67′′ E” “91°31′05.70′′ E”

Corner Lower Left Lat DMS “22°01′27.01′′ N” “22°01′28.20′′ N” “22°01′19.67′′ N”

Corner Lower Left Long DMS “89°16′24.02′′ E” “89°17′16.22′′ E” “89°18′08.71′′ E”

Corner Lower Right Lat DMS “22°03′35.46′′ N” “22°03′35.93′′ N” “22°03’′26.64′′ N”

Corner Lower Right Long DMS “91°30′44.60′′ E” “91°31′36.95′′ E” “91°32′29.36′′ E”
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