
HAL Id: hal-04552420
https://hal.science/hal-04552420v1

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Sampling of Summaries from Public SPARQL
Endpoints

Thi Hoang Thi Pham, Pascal Molli, Hala Skaf-Molli, Brice Nédelec

To cite this version:
Thi Hoang Thi Pham, Pascal Molli, Hala Skaf-Molli, Brice Nédelec. Online Sampling of Summaries
from Public SPARQL Endpoints. WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore,
ACM, May 2024, Singapore, Singapore. �10.1145/3589335.3651543�. �hal-04552420�

https://hal.science/hal-04552420v1
https://hal.archives-ouvertes.fr

Online Sampling of Summaries from Public SPARQL Endpoints
Thi Hoang Thi Pham

thi-hoang-thi.pham@univ-nantes.fr
Nantes Université
Nantes, France

Hala Skaf-Molli
hala.skaf@univ-nantes.fr

Nantes Université
Nantes, France

Pascal Molli
pascal.molli@univ-nantes.fr

Nantes Université
Nantes, France

Brice Nédelec
brice.nedelec@univ-nantes.fr

Nantes Université
Nantes, France

ABSTRACT
Collecting statistics from online public SPARQL endpoints is ham-
pered by their fair usage policies. These restrictions hinder several
critical operations, such as aggregate query processing, portal de-
velopment, and data summarization. Online sampling enables the
collection of statistics while respecting fair usage policies. However,
sampling has not yet been integrated into the SPARQL standard.
Although integrating sampling into the SPARQL standard appears
beneficial, its effectiveness must be demonstrated in a practical
semantic web context. This paper investigates whether online sam-
pling can generate summaries useful in cutting-edge SPARQL fed-
eration engines. Our experimental studies indicate that sampling
allows the creation and maintenance of summaries by exploring
less than 20% of datasets.

CCS CONCEPTS
• Information systems→ Database query processing.

KEYWORDS
SPARQL, Sampling, Federation, Summary

ACM Reference Format:
Thi Hoang Thi Pham, Hala Skaf-Molli, Pascal Molli, and Brice Nédelec. 2024.
Online Sampling of Summaries from Public SPARQL Endpoints. In Compan-
ion Proceedings of the ACM Web Conference 2024 (WWW ’24 Companion),
May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3589335.3651543

1 INTRODUCTION
Public SPARQL endpoints like DBPedia or Wikidata serve thou-
sands of queries daily. However, the fair usage policies of SPARQL
endpoints block the collection of simple statistics or basic informa-
tion online about DBPedia and Wikidata. For example, consider the
query QB2 of SPORTAL [7] in Figure 1. QB2 counts the number of
available classes. The execution of this simple query is stopped after
60s on DBPedia and Wikidata, delivering no results. Consequently,
many downstream tasks such as processing aggregate queries [6],

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution.
WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0172-6/24/05
https://doi.org/10.1145/3589335.3651543

SELECT(COUNT(DISTINCT ?c) as ?count) { ?s a ?c }

Figure 1: Query QB2 of SPORTAL [7] times out after 60s on
DBPedia and Wikidata due to time quotas.

creating portals [7, 8] or computing summaries for federation en-
gines [1, 3, 10, 11, 13, 15–17], cannot be done online.

Collecting offline statistics can be done by downloading data-
sets [12]. This supposes that datasets are available offline and raises
the issue of the freshness of statistics. It is also recommended for
SPARQL endpoint providers to pre-compute some statistics using
the VOID vocabulary1. However, such practice is poorly adopted
on the Web [8]. It is also possible to rely on new RDF interfaces
for online SPARQL query processing, such as TPF [18] and web
preemption [9]. If such approaches preserve fair usage by design,
they require a new kind of RDF server that is not standard and,
consequently, is poorly adopted. The question is: "What enhance-
ments to the SPARQL standard are necessary for online computation
of statistics?”. This question is challenging as any proposal faces
the problem of fair usage policies and possible adoption by the
Semantic Web community.

Recently, RAW-JENA [2] proposed sampling for computing sta-
tistics online. An extension of Apache Jena has been released to
prove the feasibility of sampling in a reference implementation of
SPARQL. Sampling avoids the problem of fair usage policies by
allowing sampling to continue even if stopped, i.e., sampling is in-
terrupted, partial results are usable, and sampling may continue in
another sampling query. Concerning standardization, sampling has
been part of SQL standard since 2005, with the TABLESAMPLE syntax.
Surprisingly, sampling is still not supported in the SPARQL standard
in 2024. Although incorporating sampling into the SPARQL stan-
dard appears to be beneficial, its actual effectiveness for real-world
semantic web applications must be verified. Sampling inherently
faces accuracy issues stemming from the processing of incomplete
data, which can have substantial implications for subsequent tasks.

In this paper, we evaluate the effectiveness of a sampling-based
approach for computing summaries online for federation engines,
a mainstream approach for keeping the semantic web decentral-
ized [3]. If these summaries can be computed with SPARQL queries
online, they cannot terminate in real settings due to fair usage
policies, preventing the deployment of federation engines.

1https://www.w3.org/TR/void/

https://orcid.org/0000-0003-0176-2245
https://orcid.org/0000-0003-1062-6659
https://orcid.org/0000-0001-8048-273X
https://orcid.org/0000-0003-4238-5060
https://doi.org/10.1145/3589335.3651543
https://doi.org/10.1145/3589335.3651543
https://www.w3.org/TR/void/

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Thi Hoang Thi Pham, Hala Skaf-Molli, Pascal Molli, and Brice Nédelec

1 http://v16.fr/Offer42 isa bsbm:Offer http://v16.fr/
2 http://v16.fr/Offer42 bsbm:price 549.29 http://v16.fr/
3 http://v16.fr/Offer42 bsbm:prod http://v16.fr/Prod75992 http://v16.fr/
4 http://v16.fr/Prod75992 rdf:label SamSoung 24 http://v16.fr/
5 http://v16.fr/Prod75992 owl:sameAs http://ocp/Prod75992 http://v16.fr/
6 http://v16.fr/Offer1337 isa bsbm:Offer http://v16.fr/
7 http://v16.fr/Offer1337 bsbm:price 1549.29 http://v16.fr/
8 http://v16.fr/Offer1337 bsbm:prod http://v16.fr/Prod73 http://v16.fr/
9 http://v16.fr/Prod73 rdf:label PommePhone 14 http://v16.fr/
10 http://v16.fr/Prod73 owl:sameAs http://ocp/Prod73 http://v16.fr/

1 http://r0.fr/Review2466 isa bsbm:Review http://r0.fr/
2 http://r0.fr/Review2466 bsbm:rating1 5 http://r0.fr/
3 http://r0.fr/Review2466 bsbm:reviewFor http://r0.fr/Prod75992 http://r0.fr/
4 http://r0.fr/Prod75992 owl:sameAs http://ocp/Prod75992 http://r0.fr/

(a) Federation 𝐹1 made of 2 SPARQL endpoints: Vendor16 and RatingSite0.

1 http://v16.fr/ isa bsbm:Offer http://v16.fr/
2 http://v16.fr/ bsbm:price any http://v16.fr/
3 http://v16.fr/ bsbm:prod http://v16.fr/ http://v16.fr/
4 http://v16.fr/ rdf:label any http://v16.fr/
5 http://v16.fr/ owl:sameAs http://ocp/ http://v16.fr/

1 http://r0.fr/ isa bsbm:Review http://r0.fr/
2 http://r0.fr/ bsbm:rating1 any http://r0.fr/
3 http://r0.fr/ bsbm:reviewFor http://r0.fr/ http://r0.fr/
4 http://r0.fr/ owl:sameAs http://ocp/ http://r0.fr/

(b) FedUP’s summary for 𝐹1.

Figure 2: A summary is a compact representation of a federation made of quads.

SELECT * WHERE {

?offer bsbm:price ?price . #tp1

?offer bsbm:product ?lp1 . #tp2

?lp1 owl:sameAs ?product . #tp3

?lp2 owl:sameAs ?product . #tp4

?review bsbm:reviewFor ?lp2 . #tp5

?review bsbm:rating1 ?rating }#tp6

(a) Federated Query Q1 that
finds Offer with Reviews.

SELECT * WHERE {

SERVICE <http://v16.fr> {

?offer bsbm:price ?price . #tp1

?offer bsbm:product ?lp1 . #tp2

?lp1 owl:sameAs ?product } #tp3

SERVICE <http://r0.fr> {

?lp2 owl:sameAs ?product . #tp4

?review bsbm:reviewFor ?lp2 . #tp5

?review bsbm:rating1 ?rating }}#tp6

(b)𝑄1𝑠 Service Query for𝑄1 af-
ter decomposition.

Figure 3: Federated Query 𝑄1 with its decomposition 𝑄1𝑠 .

In this paper, we present the following contributions:
• We computed summary queries using online sampling in
two representative federated benchmarks: FedShop [5], a
synthetic benchmark and LargeRDFBench [14], a benchmark
based on real datasets.

• We evaluated the completeness of summaries per sample
size.

• Experimental results show that 90% of summaries can be
acquired with a sample size less than 3% of the dataset size.

• Experimental results show that when the federated workload
is known, sample efficiency can be greatly increased.

This paper is organized as follows: Section 2 presents the problem
of getting summaries for federation engines from online SPARQL
endpoints. Section 3 describes how online sampling works with
RAW-JENA [2]. Section 4 presents our experimental results con-
ducted on LargeRDFBench and FedShop. Section 5 concludes and
outlines future works.

2 FEDERATION ENGINES AND SUMMARIES
Consider the federation 𝐹1 in Figure 2a composed of 2 SPARQL
endpoints: Vendor16 and RatingSite0. Following the FedShop use-
case [5], vendors sell products through offers while rating sites
provide reviews for products. Consider the federated query 𝑄1 of
Figure 3a defined on FedShop schema [5], 𝑄1 finds offers with re-
views. A federation engine can evaluate 𝑄1 over the federation of
Vendor16 and RatingSite0. During query processing, 𝑄1 is decom-
posed into subqueries executable on SPARQL endpoints of 𝐹1. A

CONSTRUCT { ?ps ?p ?o }WHERE {
?s ?p ?o . FILTER (isIRI(?s))
BIND(URI(REPLACE(STR(?s),"^(http ?://?.∗?/.∗ " , "$1")) AS ?ps)
BIND(IF(isIRI (?o),URI(REPLACE(STR(?o), "^(http ?://?.∗?/.∗ " , "$1")),

"any") AS ?po)}

Figure 4: FedUP’s summary query 𝑄 𝑓 .

CONSTRUCT { ?p <SA> ?ps . ?p <OA> ?po } WHERE {
?s ?p ?o . FILTER (isIRI(?s))
BIND(URI(REPLACE(STR(?s),"^(http ?://?.∗?/.∗ " , "$1")) AS ?ps)
BIND(IF(isIRI (?o),URI(REPLACE(STR(?o), "^(http ?://?.∗?/.∗ " , "$1")),

"any") AS ?po)}

Figure 5: HiBISCuS’ summary query 𝑄ℎ .

correct decomposition for evaluating 𝑄1 on 𝐹1 is to evaluate 𝑡𝑝1,
𝑡𝑝2, and 𝑡𝑝3 on the SPARQL endpoint of Vendor16 and join with
𝑡𝑝4, 𝑡𝑝5 and 𝑡𝑝6 on RatingSite0 as shown by the SPARQL service
query 𝑄1𝑠 in Figure 3b.

Federation engines [3, 4, 16] rely on summaries obtained from
endpoints to make this decomposition. Figure 2b presents the sum-
mary of the recent federation engine FedUP [3]. Such a summary
only keeps the subject authority and object authority of URLs and
projects all literals to a single literal “any” (except for isa predi-
cates). This summary can be computed online using the SPARQL
summary query 𝑄 𝑓 in Figure 4. However, 𝑄 𝑓 will not terminate
on public SPARQL endpoints such as Wikidata or DBPedia. As 𝑄 𝑓

scans all triples in the SPARQL endpoints; there is no chance to
scan more than 1B triples in less than 60s.
We have the same issue for HiBISCuS-like summaries used in HiBIS-
CuS itself [15] or CostFed [16]. A suitable summary query 𝑄ℎ for
HiBISCuS is presented in Figure 5. In contrast to FedUP summaries,
an HiBISCuS summary does not keep the link between subjects
and objects. Again, 𝑄ℎ scans all triples of the SPARQL endpoints
and cannot terminate in less than 60s on large graphs.

To overcome this problem, we study if𝑄 𝑓 or𝑄ℎ can be sampled,
and then, the sample size required for high accuracy.

Online Sampling of Summaries from Public SPARQL Endpoints WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

3 SAMPLINGWITH RAW-JENA
RAW-JENA [2] is an online sampling open-source extension of
Apache Jena. Given a SPARQL conjunctive query and a number
of draws, RAW-JENA returns a sample of query results with its
cardinality estimation. The number of sampled results and the
accuracy of the cardinality estimation increase over draws.

Thanks to RAW-JENA, we can now sample 𝑄 𝑓 and 𝑄ℎ and get
random results with cardinalities. To compute the summary of
Figure 2b, we sample 𝑄 𝑓 on the SPARQL endpoints of Vendor16
and RatingSite0 of the federation 𝐹1. As 𝑄 𝑓 has only one single
triple pattern ?s ?p ?o, RAW-JENA returns random triples from
endpoints, with the cardinality estimation of ?s ?p ?o.

Suppose we evaluate 𝑄 𝑓 with 2 draws on the endpoint of Ven-
dor16 powered by RAW-JENA, and we randomly select the price
of Offer42 (Triple 2 of Figure 2a) and the sameAs predicate of Prod-
uct73 (Triple 10 of Figure 2a). RAW-JENA returns the following two
triples with a cardinality estimation of 10:

(1) http://v16.fr/ bsbm:price any
(2) http://v16.fr/ owl:sameAs http://ocp/

Consequently, we know that we explored 20% of Vendor16 and
obtained 2

5 of its summary. When the number of draws increases,
we eventually converge to the complete summary of Vendor16.
However, it remains impossible to know when completeness is
reached. Therefore, we empirically evaluate the number of draws
required in real situations to approximate complete summaries.

Interestingly, sampling is very practical for summary mainte-
nance, i.e., it allows continuous sampling of the federation with
time-to-live attached to the summary entry. In this way, the addi-
tion or deletion of federation members, or the modification of the
content of one member, will eventually be reflected in the summary.

4 EXPERIMENTAL STUDY
The goal of this experimental study is to empirically answer the
following questions: (1) How many draws are required to reach a
complete summary for two representative federated benchmarks,
namely FedShop200 [5] and LargeRDFBench [14]? (2) Does the
knowledge of the query workload improve sample efficiency?

The client code of the experiment is available on GitHub at
https://github.com/phamthi1812/online-endpoint-summaries.

4.1 Experimental Setup

Dataset and Queries. We used two benchmarks for our study:
LargeRDFBench [14] is a federated benchmark based on 13

real-world datasets with more than 1B of quads. The benchmark
includes different sets of queries; we used the 14 simple queries (𝑆)
and 10 complex queries (𝐶).

FedShop [5] is a federated synthetic benchmark based on an
e-commerce use-case. We reused the largest configuration of 200
vendors and rating sites with more than 43M quads. The query
workload is based on 12 template queries with 10 random instanti-
ations totaling 120 queries.

Federation configuration. We install the federations as named
graphs into RAW-JENA using the TDB2 backend of Apache-Jena.
As hardware, we used a local cloud instance with Ubuntu 20.04.4

Table 1: Characteristics of summaries.

#Quads Distinct

Benchmark Dataset Summary subjects predicates objects

FedShop-200 43 159 409 5800 200 38 203
LargeRDFBench 1 003 893 350 6070 208 2030 3227

LTS, an AMD EPYC 7513-Core processor with 16 vCPUs allocated
to the VM, 1TB SSD, and 64GB of RAM.

Approaches. We consider the following summaries:
Complete summaries: For each SPARQL endpoint 𝐸𝑖 of the

federation, we evaluate𝑄 𝑓 over 𝐸𝑖 and append results in the named
graph 𝑁 (𝐸𝑖). The summary of a federation is the dataset composed
of all named graphs.

SPO-Sampling For each SPARQL endpoints 𝐸𝑖 of the federa-
tion, we sample the 𝑄 𝑓 with one draw over 𝐸𝑖 and append results
in the named graph 𝑁 (𝐸𝑖). The completeness of the sampled sum-
mary is measured by dividing the sample summary’s size by the
complete summary’s size. We repeat sampling until reaching 100%
of completeness or when the number of draws reaches 20% of the
number of the triples in the federation.

Workload-Aware (WA) Sampling We suppose that we know
all triple patterns 𝑡𝑝1, ..., 𝑡𝑝𝑘 of the workload. We build 𝑄

𝑡𝑝𝑖
𝑓

by
rewriting the query𝑄 𝑓 with 𝑡𝑝𝑖 , i.e., we replace the ?s ?p ?o triple
pattern of 𝑄 𝑓 with 𝑡𝑝𝑖 by variable substitutions. For each SPARQL
endpoint 𝐸𝑖 of the federation, for each 𝑡𝑝𝑖 of the workload, we
sample 𝑄𝑡𝑝𝑖

𝑓
with one draw over 𝐸𝑖 and append the results in the

named graph 𝑁 (𝐸𝑖). We repeat sampling as with SPO-sampling.

Summaries. Table 1 describes the characteristics of the complete
summaries for both federated benchmarks. The size FedUP’s sum-
maries is tiny compared to the size of original datasets. For each
summary, we measured the number of distinct predicates, distinct
subject authorities, and distinct object authorities. LargeRDFBench
has much more distinct predicate authorities and object authorities
than FedShop.

4.2 Experimental results
Figure 6a presents the sample efficiency of SPO and WA sampling
to build the complete summary of LargeRDFBench. The x-axis
represents the ratio of draws over the dataset size, while the y-axis
shows the summary size.

As expected, the overall evolution of the completeness is as-
ymptotic. Finding 90% of the complete summary is very fast, but
finding the remaining missing elements requires much more draws.
SPO-sampling fails to find complete summaries before reaching
the limit of draws. WA-sampling is significantly more efficient, i.e.,
a complete summary is reached after drawing 18% of the dataset
size. SPO-sampling is biased by predicate frequency, i.e., as some
predicates are less frequent than others, they are more difficult
to find. WA-sampling requires no effort to find all predicates in
the workload. However, as the triple pattern ?s ?p ?o is in the
workload, the remaining predicates may be difficult to find.

Figure 6b describes the sample efficiency of SPO and WA sam-
pling on FedShop.We observe the same general asymptotic behavior
observed with LargeRDFBench. As for the previous experiment,

https://github.com/phamthi1812/online-endpoint-summaries

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Thi Hoang Thi Pham, Hala Skaf-Molli, Pascal Molli, and Brice Nédelec

(a) Online sampling for summary on LargeRDFBench. (b) Online sampling for summary on FedShop200.

Figure 6: Sample efficiency on sampling FedUP summaries with RAW-JENA.

WA-sampling is more efficient than SPO-sampling and reaches
completeness after drawing less than 3% of the dataset size.

If we compare the two experiments on LargeRDFBench and
FedShop, both sampling methods are much more efficient with
FedShop. This is explained by the large difference between distinct
predicate and distinct object authority described in Table 1.

5 CONCLUSION
The current state of SPARQL standards hinders the utilization of
SPARQL endpoints for essential downstream tasks, including ag-
gregate query processing, portals, and federation engines. For the
first time, we have introduced a sampling approach capable of com-
puting and maintaining summaries online across a federation of
SPARQL endpoints. This method aligns with the fair usage policies
of SPARQL endpoints and has proven effective for federation en-
gines. Similarly to the SQL standard, the integration of sampling
into the SPARQL standard warrants serious considerations.

For future work, federation summaries should also include car-
dinalities, which are essential for query optimization and join or-
dering. RAW-JENA can already provide cardinalities for sampled
queries, enabling the integration of each predicate’s cardinality
into the summaries. However, accessing the cardinality of distinct
results is often useful, as illustrated in Figure 1. Approximate count-
distinct queries are challenging and currently not supported by
RAW-JENA. Further research is needed to efficiently compute the
count-distinct queries using sampling in RAW-JENA.

ACKNOWLEDGMENTS
This work is supported by the French Labex CominLabs project
MiKroloG (The Microdata Knowledge Graph), and the French ANR
project MeKaNo (ANR-22-CE23-0021).

REFERENCES
[1] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna

Ruckhaus. 2011. ANAPSID: an adaptive query processing engine for SPARQL
endpoints. In 10th International Semantic Web Conference (ISWC2011). Springer,
Bonn, Germany, 18–34.

[2] Julien Aimonier-Davat, Minh-Hoang Dang, Pascal Molli, Brice Nédelec, and
Hala Skaf-Molli. 2023. RAW-JENA: Approximate Query Processing for SPARQL
Endpoints. In 22nd International Semantic Web Conference (ISWC’23). CEUR-
WS.org, Athens, Greece, 5.

[3] Julien Aimonier-Davat, Minh-Hoang Dang, Pascal Molli, Brice Nédelec, and Hala
Skaf-Molli. 2024. FedUP: Querying Large-Scale Federations of SPARQL Endpoints.
In The ACM Web Conference (WWW’24). ACM, Singapore, Singapore, 10.

[4] Angelos Charalambidis, Antonis Troumpoukis, and Stasinos Konstantopoulos.
2015. SemaGrow: Optimizing federated SPARQL queries. In 11th International
Conference on Semantic Systems. ACM, New York, NY, USA, 121–128.

[5] Minh-Hoang Dang, Julien Aimonier-Davat, Pascal Molli, Olaf Hartig, Hala Skaf-
Molli, and Yotlan Le Crom. 2023. FedShop: A Benchmark for Testing the Scalability
of SPARQL Federation Engines. In International Semantic Web Conference (ISWC).
Springer, Springer Nature Switzerland, Athens, Greece, 285–301.

[6] Arnaud Grall, Thomas Minier, Hala Skaf-Molli, and Pascal Molli. 2020. Processing
SPARQL Aggregate Queries with Web Preemption. In 17th Extended Semantic
Web Conference (ESWC 2020). Springer, Heraklion, Greece, 235–251.

[7] Ali Hasnain, Qaiser Mehmood, and Syeda Sana e Zainab ang Aidan Hogan. 2016.
SPORTAL: Profiling the Content of Public SPARQL Endpoints. Int. J. Semantic
Web Inf. Syst. 12, 3 (2016), 134–163.

[8] Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, and FranckMichel.
2023. IndeGx: A model and a framework for indexing RDF knowledge graphs
with SPARQL-based test suits. J. Web Semant. 76 (2023), 100775.

[9] Thomas Minier, Hala Skaf-Molli, and Pascal Molli. 2019. SaGe: Web Preemption
for Public SPARQL Query Services. In The World Wide Web Conference 2019
(WWW’19). ACM, San Francisco, USA, 1268–1278.

[10] Gabriela Montoya, Hala Skaf-Molli, and Katja Hose. 2017. The Odyssey ap-
proach for optimizing federated SPARQL queries. In International Semantic Web
Conference (ISWC). Springer-Verlag, Maui, Hawaii, USA, 471–489.

[11] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. 2017.
Decomposing federated queries in presence of replicated fragments. Journal of
Web Semantics 42 (2017), 1–18.

[12] Emmanuel Pietriga, Hande Gözükan, Caroline Appert, Marie Destandau, Šejla
Čebirić, François Goasdoué, and Ioana Manolescu. 2018. Browsing Linked Data
Catalogs with LODAtlas. In International Semantic Web Conference. Springer,
Springer, Monterey, United States, 137–153.

[13] Bastian Quilitz and Ulf Leser. 2008. Querying Distributed RDF Data Sources
with SPARQL. In Extended Semantic Web Conference (ESWC). Springer Berlin
Heidelberg, Tenerife, Canary Islands, Spain, 524–538.

[14] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. 2018. Large-
RDFBench: A billion triples benchmark for SPARQL endpoint federation. J. Web
Semant. 48 (2018), 85–125.

[15] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014. HiBISCuS:
Hypergraph-based source selection for SPARQL endpoint federation. In European
Semantic Web Conference (ESWC). Springer, Cham, 176–191.

[16] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-
Cyrille Ngonga Ngomo. 2018. CostFed: Cost-based query optimization for
SPARQL endpoint federation. In 14th International Conference on Semantic Sys-
tems (SEMANTICS). Elsevier, Amsterdam, The Netherlands, 163–174.

[17] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
2011. FedX: Optimization techniques for federated query processing on linked
data. In International Semantic Web Conference (ISWC). Springer, Bonn, Germany,
601–616.

[18] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-
rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. 2016.
Triple Pattern Fragments: A low-cost knowledge graph interface for the Web. J.
Web Sem. 37-38 (2016), 184–206.

	Abstract
	1 Introduction
	2 Federation Engines and Summaries
	3 Sampling with RAW-JENA
	4 Experimental Study
	4.1 Experimental Setup
	4.2 Experimental results

	5 Conclusion
	Acknowledgments
	References

