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Hopf Arborescent Links, Minor Theory, and Decidability of the Genus
Defect

Pierre Dehornoy∗ Corentin Lunel‡ Arnaud de Mesmay§

Abstract
While the problem of computing the genus of a knot is now fairly well understood, no algorithm is known for

its four-dimensional variants, both in the smooth and in the topological locally flat category. In this article, we
investigate a class of knots and links called Hopf arborescent links, which are obtained as the boundaries of some
iterated plumbings of Hopf bands. We show that for such links, computing the genus defects, which measure how
much the four-dimensional genera differ from the classical genus, is decidable. Our proof is non-constructive,
and is obtained by proving that Seifert surfaces of Hopf arborescent links under a relation of minors defined by
containment of their Seifert surfaces form a well-quasi-order.

1 Introduction
A (tame) knot is a polygonal embedding of the circle S1 into R3, or equivalently, S3, and a link is a disjoint union
of knots. Knot theory is both an old and very active mathematical field, yet from an algorithmic perspective, many
problems arising naturally in knot theory are still shrouded in mystery. This can be illustrated with arguably the
most fundamental algorithmic question in knot theory: in the Knot Equivalence problem, we are given two knots
K1 and K2 and are tasked with deciding whether they are equivalent, that is, whether one can deform one into
the other continuously without creating self-intersections. The best algorithm for this problem, due to Kuperberg,
is elementary recursive [25], yet the problem is not even known to be NP-hard (see for example [27, Conclusion]).
We refer to Lackenby [28] for a survey on algorithmic problems in knot theory.

Given how seemingly hard testing the equivalence of knots is, a huge body of research has been devoted to
designing and studying knot invariants in order to tell them apart. A classical invariant of a knot is its genus:
this is the smallest possible genus of an embedded oriented surface, called a Seifert surface, having the knot as its
boundary. Computing the genus of a knot turns out to be significantly more tractable: celebrated works of Hass,
Lagarias and Pippenger [21] and Agol, Hass and Thurston [2], building on the normal surface theory of Haken [20],
have shown that deciding if a knot has genus at most g is in NP, while Lackenby has proved that it is also in
co-NP [29]. These algorithms run also well in practice within the software Regina [10].

There are, however, different notions of genus that are much less understood: considering S3 as the boundary
of the 4-dimensional ball B4, the 4-genus of a knot g4(K) is roughly the smallest possible genus of a surface in B4

having the knot as its boundary. This comes in two flavours that are known to not be equivalent: the topological
locally flat 4-genus and the smooth 4-genus depending on the regularity of the surface. We refer to the preliminaries
for precise definitions. A knot is (topologically or smoothly) slice if it bounds a disc in B4, i.e., has 4-genus
zero. One of the motivations for the study of such 4-dimensional invariants comes from algebraic geometry, as such
surfaces arise naturally around singularities of algebraic curves in C2 [23, 42]. Another motivation is the slice-ribbon
conjecture [14] which states that a knot is smoothly slice if and only if it is ribbon, i.e., it bounds an immersed
disc with only ribbon-type singularities in S3. Unfortunately, no algorithmic framework at all is known to attack
topological problems in 4-dimensional topology, and indeed many of these problems are known to be undecidable,
e.g., the homeomorphism of 4-manifolds [31]. For some other problems, the decidability is a well-known open
problem: this is the case for 4-sphere recognition [48] or embeddability of 2-dimensional complexes in R4 [32].
Similarly, no algorithm is known to decide the 4-genus of a knot or even to decide whether it is slice. To illustrate
how hard these problems are, it is only in a recent breakthrough of Picirillo [40] that it was proved that the Conway
knot is not smoothly slice, although it only has 11 crossings. From the perspective of lower bounds, recent work of
de Mesmay, Rieck, Sedgwick and Tancer [12] has proved that an analogue of the 4-genus for links, the 4-ball Euler
characteristic, is NP-hard to compute, but it is also not known to be decidable.
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Figure 1: Top: A positive Hopf band and a plumbing. Bottom: An Hopf arborescent link and an associated planar
tree.

Our results. The goal of this paper is to investigate the structure of a particular class of links, which we call
Hopf arborescent links, in order to prove the decidability of some of their 4-dimensional invariants. This family
of links is informally defined as follows (we refer to Section 2 for more precise definitions). A Hopf band is the
surface pictured in Figure 1 (top left), it can be either positive or negative depending on how it twists. If they
are unlinked, i.e., there exists a sphere separating them, two Hopf bands can be plumbed together by identifying a
square in one to a square in the other, as pictured in Figure 1 (top). The class of Hopf arborescent links is the class
of links arising as the boundary of some iterated tree-like sequence of plumbings of Hopf bands. Hopf arborescent
links can naturally be described using labelled trees, see Figure 1 (bottom), and are a subfamily of the more general
arborescent links [8, 17]. The (topological or smooth) genus defect of a knot is defined as ∆g(K) = g(K)− g4(K).
It measures how much its 4-genus differs from its classical genus, and this definition can be extended to oriented
links by considering surfaces having that oriented link as their boundary. Our main result is the following:

Theorem 1.1. For any fixed k, deciding whether an Hopf arborescent link L has genus defect at most k is decidable.
This holds both in the topological and smooth categories.

The proof of Theorem 1.1 is not constructive. It is obtained as a corollary of another result, which establishes a
well-behaved minor theory for Hopf arborescent links. A subsurface Σ′ ⊆ Σ of a Seifert surface Σ is incompressible
if the complement Σ \Σ′ has no open disc component. Given two Seifert surfaces Σ1 and Σ2 in R3, we say that Σ1

is a surface-minor of Σ2 (or minor for short), denoted by Σ1 ≼ Σ2, if Σ1 is isotopic to an incompressible subsurface
of Σ2. This minor relation was introduced by Baader [3] (see also [4, 5]) with the goal of characterising those links
that are closure of positive braids and whose signature is equal to twice their genus. The underlying question, still
open today, is whether the canonical Seifert surfaces associated to positive braid closures form a well-quasi-order.
A particularity of Hopf arborescent links is that they are fibred (see the definition in Section 2), which implies that
to each link is associated a canonical Seifert surface (see Theorem 2.2), that we call a Hopf arborescent surface.
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The notion of surface-minor naturally implies a minor relation for Hopf arborescent links. Our second result proves
that Hopf arborescent surfaces are well-quasi-ordered under surface-minors.

Theorem 1.2. The minor relation ≼ is a well-quasi-order for the set of Hopf arborescent surfaces, that is, for any
infinite sequence (Σn)n∈N of Hopf arborescent surfaces, there exists i < j in N such that Σi ≼ Σj.

The idea behind the proof of Theorem 1.2 is to study a specific subset of the possible surface-minors that
interacts nicely with an encoding of Hopf arborescent surfaces via labelled plane trees. We can then leverage the
celebrated Kruskal tree theorem [24] to prove that the minor relation is a well-quasi-order. The connection from
Theorem 1.2 to Theorem 1.1 follows from the fact the genus defect is minor-monotone, i.e., if Σ1 ≼ Σ2 are Seifert
surfaces of minimal genus for links K1 and K2, then ∆g(K1) ≤ ∆g(K2). This is not a new observation (see [6,
Lemma 6]), we provide a proof in Proposition 4.1 for completeness. Therefore, for Hopf arborescent links, having
genus defect at most k is characterized by a finite number of forbidden minors, and the algorithm of Theorem 1.1
proceeds by checking those. However, testing whether a surface is a minor of another one seems to be a very hard
problem: even testing whether two tori are isotopic is already as hard a knot equivalence and an algorithm for
genus two surfaces was only very recently found [7]. This problem is circumvented thanks to our restriction of the
minor relation to one that is well-tailored to the arborescent structure of our links, which allows us to work entirely
at the level of trees. In particular, Theorem 1.1 does not strictly follow from Theorem 1.2 but rather from its proof
(see Proposition 3.7).

While the algorithms behind Theorem 1.1 are not explicit, we would like to offer three reasons to motivate
our results. First, Theorem 1.1 proves that the corresponding problems are not undecidable, which is significant
in the landscape of 4-dimensional topology. Second, this kind of existential algorithmic result has been a strong
guiding light in algorithm design in the past decades: for a vast family of graph problems, the fact that an
algorithm merely exists follows from Robertson-Seymour theory, and this has provided a strong impetus to actually
look for explicit algorithms and optimise their complexity. This has been particularly influential in parameterized
algorithms, we refer for example to the discussion in Chapter 6.3 in the book on parameterized algorithms [11],
where it is conjectured that a result like our Theorem 1.1 precludes W[1]-hardness. Similarly, we are hopeful that our
results can inspire future work aiming at developing explicit algorithms in 4-dimensional topology. Additionally, our
framework directly proves that any property that is stable with respect to our link-minor relation (see Section 3.4)
is decidable on the class of Hopf arborescent links. Finally, while it is certainly not the case that minor-based
approaches can encompass the entirety of knot theory, it is fruitful to delineate exactly the classes which they can
illuminate. In that respect, we find it interesting that our proof of Theorem 1.2 strongly relies on the structure of
Hopf bands and does not seem to generalize to the wider family of arborescent knots, even when one bounds the
number of twists in each band (see Remark 3.8).

Related work. It was observed by Baader and Dehornoy [4] that the natural Seifert surfaces for another class
of knots, the positive braid knots with bounded braid index (we refer to the papers for the relevant definitions)
also form a well-quasi-order. Furthermore, Liechti [30] proved that even without bounding the braid index, the
set of positive braid knots of bounded genus defect is characterized by a finite number of forbidden minors. Since
the minor relation in that setting simply amounts to removing letters in the braid presentation, this readily yields
decidability as in our Theorem 1.1. While the two results are incomparable, we emphasize that our result also
applies to links, and also features negative crossings (coming from negative Hopf bands): this extends the impact
of our result to the smooth category, while for strongly quasipositive knots (and thus positive braid knots), the
smooth defect is zero since the smooth 4-genus and the classical genus coincide [42].

All the knots and links we consider, as well as those considered by various authors in the context of surface-minor
theory, are fibred (see again the definition in Section 2). This property is important as it brings control on the
classical genus of the links. Also it is easy to construct infinite families of incomparable surfaces when dropping
this assumption: the set (An)n∈Z of those unknotted annuli in S3 with n twists forms an infinite antichain. In this
direction, an optimistic conjecture would be that the collection of all fibred surfaces in S3 is a well-quasi-ordered
set. If true, that would provide a strong generalisation of Theorem 1.2. However no strategy of proof is known to
the authors for such a statement.

Also, it follows from a result of Giroux and Goodman [18] that any fibred link can be obtained from the unknot
from a sequence of plumbings and deplumbings (a natural reverse operation to plumbing) of Hopf bands. While
these (de)plumbings might not have the arborescent structure that characterizes ours, this shows that Hopf bands
can be considered as basic building blocks for a wide class of three-dimensional objects.
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Organization of this paper. After providing background and going through basic concepts of knot theory,
fibred surfaces and well-quasi-orders in Section 2, we focus on Hopf arborescent links in Section 3. There, we define
a precise construction of these links from plane trees, investigate this class of links, and prove Theorem 1.2. In
Section 4, we prove Theorem 1.1. Finally, in Section 5, we first provide examples of Hopf arborescent links with
non zero defect, and then explain how to combine them to obtain examples with arbitrarily large defect.

2 Preliminaries
Knot theory. We only recall the definitions that are critical to this paper, and refer to the textbooks of

Burde and Zieschang [9] or Rolfsen [41] for a more general introduction to knot theory, and to Teichner [46] for a
beginner-friendly introduction to its 4-dimensional aspects. A knot, respectively a link, is a polygonal embedding of
the circle S1, respectively of a disjoint union of circles, into S3. Every knot and every component of a link inherits
an orientation from the orientation of S1. For algorithmic purposes, we assume that an input link is given as a link
diagram, i.e., a directed plane 4-valent graph with decorations at vertices indicating which strands are going over
and under. Since our article focuses on decidability problems, switching to a different input (e.g., polygonal curves
in R3) makes no difference. A Seifert surface for a link L is a compact connected oriented surface Σ embedded
in S3 such that the oriented boundary of Σ is L. Throughout this article, we consider knots, links, and surfaces
embedded in S3 up to isotopies (continuous deformations without self-crossings). The (classical) genus of a link L,
denoted by g(L), is the smallest possible genus of a Seifert surface for L.

The 3-dimensional sphere can be seen as the boundary of the 4-dimensional ball B4. Being embedded in S3,
a knot or a link can also be obtained as the boundary of surfaces embedded in B4. However, any knot K in S3
can be used as a base that tapers to a point, the apex, inside B4 to define a cone that bounds K. Hence, any
knot in S3 bounds a topological disc in B4. This motivates the following definition: a surface Σ embedded in B4

is locally flat if for each point x ∈ Σ, there is a neighbourhood U in Σ and a neighbourhood V in B4 such that
the pair (U, V ) is homeomorphic to the standard (B̊2, B̊4). In the coning construction above, the latter condition
is not satisfied at the apex, where the boundary of a disc is the knot instead of a standard S1. The topological
(respectively smooth) 4-dimensional genus, or simply 4-genus of a link L, denoted by1 g4(L) is the smallest possible
genus of a compact connected oriented surface that is locally flat (respectively smoothly) embedded in B4, and that
has L as its boundary.

A knot is topologically (resp. smoothly) slice if it bounds a locally flat (resp. a smooth) disc in B4. The
(topological or smooth) defect of a link L is the quantity ∆g(L) = g(L)−g4(L), where g4(L) denotes the topological
or smooth 4-genus of L.

A positive, resp. negative, Hopf band is an unknotted annulus with a positive, resp. negative, full twist, as
pictured in Figure 2. A Hopf link is the boundary of a Hopf band. Note that the two components of a positive
Hopf link have linking number +1, while the two components of a negative Hopf link have linking number −1. A
Hopf band naturally retracts to a trivial knot, which we call its core.

>

>

>

>

Figure 2: A negative Hopf band on the left and a positive one on the right with its core in red.

A link is fibred if the complement S3 \L fibres over S1, that is, if there exists a one-parameter continuous family
of Seifert surfaces (Σt)t∈S1 for L which are disjoint except for their boundaries, and whose interiors together foliate
S3 \ L. These are called fibres or fibre surfaces (note that they are all isotopic by definition).

1Our notation is intentionally ambiguous with respect to smooth or topological genus, because all our arguments will apply equally
well in both categories.
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A positive, resp. negative, Hopf link is fibred, with fibre the positive, resp. negative, Hopf band. Indeed, seeing
S3 as the unit sphere {(z1, z2) | |z1|2 + |z2|2 = 1} in C2, a positive Hopf link is given by the equation z1z2 = 0. For
every argument θ ∈ S1, the equation arg(z1z2) = θ describes a Seifert surface bounded by the Hopf link, and the
collection of these surfaces describes the desired fibration.

It is a folklore result that goes back at least to Stallings [45] that a fibre surface of a fibred link is a Seifert
surface of minimal (classical) genus, and moreover this surface is unique up to isotopy (see next paragraph). So,
for fibred links (and all links in this paper will be fibred), it makes sense to speak of the canonical Seifert surface,
by which we mean the unique (up to isotopy) fibre surface for that link.

Fibre surface, minimal genus, and uniqueness. Here, we comment on the following statements, which
are considered as folklore in the knot theoretical community. The first one is fundamental for this paper since it
brings control over the 3-genus of Hopf arborescent links. The second one justifies the notion of canonical Seifert
surface for fibred links.

Theorem 2.1. Fibred surfaces minimise the 3-genus over surfaces with the same oriented boundary.

Theorem 2.2. Two fibred surfaces with the same oriented boundary are isotopic, relatively to the boundary.

Theorem 2.1 is often presented as a consequence of Stallings’ Theorem [45]. Here we present a semi-elementary
proof (for which we claim no novelty), in the sense that it only uses basic notions and results from homology theory.

Proof of Theorem 2.1. Consider L = (L1 ⊔ · · · ⊔ Lk) an oriented link in S3. We consider the 3-manifold NL which
is the complement of an open tubular neighbourhood of L in S3. It has k boundary components, which are all tori.

Note the following isomorphisms, from elementary algebraic topology: by excision [22, p119], one has H2(S
3, L;Z) ≃

H2(NL, ∂NL;Z); in the long exact sequence · · · → H2(S
3;Z) → H2(S

3, L;Z) → H1(L;Z) → H1(S
3;Z) → . . . the

first and last term are trivial so the boundary map gives an isomorphism ∂ : H2(S
3, L;Z) → H1(L;Z); and by

Alexander duality [22, p254], H1(S3 \ L;Z) is isomorphic to H1(L;Z) ≃ Zk.
The second isomorphism states that a class in H2(S

3, L;Z) is described by its boundary. That means that,
when we restrict our attention to oriented Seifert surfaces for L, i.e., surfaces S so that ∂S = L, all such surfaces
lie in the class ∂−1(1, . . . , 1). In particular they are homologous. Given two such surfaces, one can consider their
restrictions S1, S2 to NL, where they are also homologous. Their boundaries are curves on the tori ∂NL, which
therefore have the same homology class. With an isotopy it is thus possible to make S1, S2 parallel and disjoint in
a neighbourhood of ∂NL.

The class of the Seifert surfaces bounded by L is dual to the class Lk(·, L1) + · · · + Lk(·, Lk) ∈ H1(S3 \ L;Z).
We denote the latter by ℓL. We then consider the infinite cyclic covering N̂L → NL associated to ℓL. This is the
covering associated to the morphism ℓL : π1(S

3 \ L) → Z, so that π1(N̂L) = ker(ℓL).
One way to construct N̂L is to consider an arbitrary Seifert surface S for L, cut N̂L along S, thus obtaining

a 3-manifold with boundary NL,S . This boundary consists of three parts: two copies of S that we denote by S+

and S− and call the “horizontal part” of the boundary, and a “vertical part” coming from ∂NL which consists of k
annuli (or sutures) connecting S+ to S−. Now consider Z copies (Nn

L,S)n∈Z of NL,S . Call S+
n and S−

n the horizontal
part of the boundaries, and for every n ∈ N glue S+

n to S−
n+1. The resulting 3-manifold ∪n∈ZN

n
L,S has a natural

projection to NL and the loops in NL that lift to closed loops in N̂L are exactly those in the kernel of ℓL. Therefore
we indeed constructed N̂L.

Now suppose that S3 \ L fibres over the circle with fibres having L as oriented boundary. Then the previous
construction can be made by choosing for the surface S a fibre. In this case NL,S is the product manifold S× [0, 1],
and N̂L is homeomorphic to S ×R.

Consider now an arbitrary Seifert surface S′ for L with oriented boundary L. Then S′ is homologous to S, and
in particular it is also dual to ℓL. So S′ lifts in N̂L as Z parallel copies (S′

n)n∈Z. Take any such component S′
0.

Since it lies in N̂L ≃ S × R, the projection on the first coordinate induces a map f : S′
0 → S. Looking at the

neighbourhood of the common boundary ∂S = L = ∂S′
0 we see that f has degree 1. Degree 1 maps induce

surjections in homology, which implies the desired inequality. More concretely one can argue as follows: if there
was a class a ∈ H1(S;Z) in the kernel of f∗, then there would be a class b such that the cup-product a ⌣ b
is the fundamental class [S] ∈ H2(S;Z), and therefore one would have f∗([S]) = f∗(a) ⌣ f∗(b) = 0 ̸= [S′

0], a
contradiction. Therefore there is linear injection from H1(S;Z) ≃ Z2g(S)+k−1 into H1(S

′
0;Z) ≃ Z2g(S′

0)+k−1. This
implies g(S) ≤ g(S′

0), and proves the statement.

Theorem 2.2 is sometimes also attributed to Stallings, but we did not find a corresponding statement in Stallings’
articles. However a proof is proposed by Whitten [49], which relies on the fundamental work of Waldhausen [47].
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Indeed if S1 is a fibre surface for a link L, then the infinite cyclic covering N̂L constructed in the proof of Theorem 2.1
is homeomorphic to S1 ×R. If S2 is a Seifert surface for L that is also a fibred surface, then Theorem 2.1 implies
that it is of minimal genus. Therefore any of its lifts in N̂L is incompressible (for otherwise it would not minimize
the genus). One can pick a lift S′

2 that is disjoint of S1 × {0} and assume it lives in S1 × (0, N) for some large
enough N . Proposition 3.1 of Waldhausen [47] then implies that S′

2 is isotopic to S1 × {0}. Projecting back in NL

yields an isotopy from S2 to S1. The proof of [47, Proposition 3.1] seems too long to be detailed here. We only
mention that it works by an induction on the complexity of the surface S1 and by cutting it along curves until it is
a disc.

Well-quasi-orders. We refer to Diestel [13, Chapter 12] for an introduction to well-quasi-orders and graph
minor theory. An order ≼ on a set X is said to be a well-quasi-order if for every infinite sequence (xn)n∈N there
exist i, j ∈ N such that i < j and xi ≼ xj . Equivalently, ≼ is a well-quasi-order if it is well-founded and has no
infinite antichain that is, no infinite sequence (xn)n∈N such that no two elements of (xn) are comparable for ≼. A
property P is said to be stable for an order ≼ if for any x satisfying P and y ≼ x, then y satisfies P . It is well-known
that if ≼ is a well-quasi-order and P is a property that is stable for ≼, then there exists a finite family F of elements
of X such that x ∈ X satisfies P if and only if there is no f in F such that f ≼ x. The family F is called a family
of excluded minors for the property P . Therefore, if a parameter p : X → N is monotone with respect to ≼, i.e.
x ≼ y implies p(x) ≤ p(y), then for each k ∈ N the property p(·) < k is stable for ≼ and hence is characterized by
such finite family of excluded minors for X.

In this paper, a plane tree is a rooted tree where each vertex v has a label ℓ(v) from an alphabet A, and the
tree is provided with the combinatorial data of an embedding in the plane: each vertex is additionally given a
permutation recording the ordering of the edges to its children. The root induces an orientation on the tree: every
edge {u, v} is directed from u to v, written u → v, when u is closer to the root of the tree than v (i.e., edges go
toward the leaves), we refer to the trees of Figure 4 for examples. In this paper, the alphabet A is {+,−} endowed
with the empty ordering ≤.

A plane tree T1 has a homeomorphic embedding into T2, written T1 ↪→ T2, if T1 can be obtained from T2 by
iteratively (i) removing a leaf and its adjacent edge, (ii) removing a root with a single child, its adjacent edge
and rerooting at that child, (iii) reducing labels (with respect to ≤) and (iv) contracting paths into edges while
preserving the labels of the endpoints, where all these operations must be consistent with the plane embedding.
Throughout this paper, the relation ≤ will be trivial, so that (iii) will never apply. Notice that this definition
extends the notion of topological minor on graphs to a setting where vertices are labelled. In particular, it is more
restrictive than the notion of minor, which allows to contract any edge to a point: in our case we can only contract
paths to at least one edge. This property turns out to be critical in order to make our proofs work. The famous
theorem of Kruskal [24] (see Nash-Williams [38] for a simpler proof) shows that this order is a well-quasi-order on
the set of labelled plane trees.

Theorem 2.3 ([24, 38]). The homeomorphic embedding on the set of labelled plane trees labelled by a well-quasi-
order forms a well-quasi-order.

3 Hopf arborescent links
Arborescent links are a class of knots and links originally defined and studied by Conway2. This class has received
much attention from knot theorists [8, 17, 44]. In this paper we study a subclass that we call Hopf arborescent
links.

3.1 Hopf plumbing
The links that we investigate in this paper are boundaries of surfaces which are defined iteratively from Hopf bands
using an operation called plumbing.

Let H be a Hopf band and Σ be an oriented surface with boundary, and let us assume that they are unlinked,
that is, that there exists a sphere S in S3 separating them. To plumb H on Σ, pick an arc α on Σ whose endpoints
lie on ∂Σ and which is not boundary parallel (i.e., α is not isotopic relatively to its endpoints, to an arc in ∂Σ).
Let D be a small neighbourhood of α in Σ that we see as a rectangle with two sides on ∂Σ and two sides in the
interior of Σ. Isotope Σ within S3 \ S so that it intersects S exactly on D, see Figure 3, left. Then, define similarly
D′ a neighbourhood of the unique (up to isotopy) non boundary parallel arc in H with endpoints in ∂H. The

2Conway called them algebraic links, but this denomination is now more used for the links that come from algebraic curves in C2.
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orientations of Σ and H induce an orientation of the normal direction to the surface (so that concatenating the
orientation of the surface with the positive normal direction gives a positive basis in S3). Finally, isotope H within
its component of S3 \ S, so that D and D′ are identified on S in a way that the sides of D that are on ∂S are
matched with the sides of D′ that are not on ∂H and the orientations of both rectangles match. The resulting
surface is said to be obtained from Σ by Hopf plumbing H on top of Σ along α, see Figure 3.

S

D
α

Σ

H

D′ Hopf
Plumbing

S

Figure 3: A Hopf plumbing of a Hopf band H on top of a Seifert surface Σ along α.

Hopf plumbing is a special case of a more general operation called a Murasugi sum, see [37, 39]. A key property
of Murasugi sums, proved by Gabai [16], is that it preserves fibredness. In the above setting, since Hopf bands are
fibred, if Σ is fibred, then the surface obtained from Σ by Hopf plumbing H on Σ along any arc is also fibred.

3.2 From plane trees to Hopf arborescent surfaces and links
Recall that in this article, a plane tree is a rooted tree that is embedded in the plane and such that every vertex has
a label + or −. If v is a vertex, we denote by ℓ(v) its label. Let T be a plane tree. The associated surface Σ(T ) we
construct is an oriented surface with boundary that retracts on the union of a finite set of oriented simple curves CT
parametrized by the vertices of T , such that every α ∈ CT is the core of a Hopf band embedded on Σ and whose
sign is the label of the corresponding vertex in T . For a vertex v in T , the curve α(v) intersects another curve α(v′)
if and only vv′ is an edge of T , and the two curves intersect exactly once. Moreover, following α(v) with its given
orientation, the cyclic ordering of the intersection points with the curves α(v′) coincides with the cyclic orderings
of the neighbours of v in the plane tree T .

We now describe the construction inductively, see Figure 4 for an illustration.

1. Start from a Hopf band H(vr) where vr is the root of T , and whose sign is the label ℓ(vr).

2. For the induction step, assume that the tree T ′ is obtained from T by adding at a leaf v a finite number of
leaves v1, . . . , vk appearing in the plane in this order around v, and that the surface Σ(T ) is already constructed
with its set of core curves CT .

(a) Since v is a leaf in T , the curve α(v) intersects only one curve α(v′): the curve associated to v′, the
parent of v in T .

(b) Starting from this intersection point we place k points p1, . . . , pk on α(v) in this order. Then we draw
on Σ(T ) a family of k arcs β1, . . . , βk from ∂S to itself that correspond to those arcs that retracts
on p1, . . . , pk. Each such arc βi intersects the collection CT exactly at the point pi.

(c) For i = 1, . . . , k, perform the Hopf plumbing of a Hopf band H(vi) of sign ℓ(vi) on top of Σ(T ) along the
arc βi. The resulting surface is Σ(T ′).

(d) Finally for every i orient the core of H(vi) so that when going from α(v) to α(vi), we follow this rule:
if ℓ(v) is positive, one turns to the left (with respect to the orientation of Σ(T )), and if ℓ(v) is negative,
one turns to the right (once again with respect to the orientation of Σ(T )), see Figure 5. The set CT ′ is
the union of CT with α(v1), . . . , α(vk).
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Figure 4: A 3D-view of a Hopf arborescent link and its construction from two different plane trees. The chosen
orientation of the root of each tree is indicated on the coloured core of the matching Hopf band. The orientation of
the plane is counter-clockwise.
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▶

Figure 5: Orientation of the green core when its associated Hopf band (unsigned as it does not matter for the rule)
is plumbed on top of the Hopf band with the red core.

Definition 3.1. A Hopf arborescent surface is a surface Σ(T ) obtained from a plane tree T by this construction,
see Figure 4 for an example. A Hopf arborescent link is the boundary of a Hopf arborescent surface.

Since Hopf bands are fibred and this property is preserved under plumbing, Hopf arborescent surfaces are fibres
for their boundaries, and are thus of minimal (classical) genus. The arbitrary-looking rule that we use to orient
the cores of the Hopf band in Step 2d is new and will turn out to be key for our proofs of Theorem 1.2 and
Proposition 3.2.

3.3 Connections to other classes of knots
Here, we provide some additional background on Hopf arborescent links, their plumbing structure and their relations
to other classes (arborescent links and fibred links). In particular one may think that considering rooted trees and
always plumbing the new Hopf bands on top of the surface is a strong restriction. We will show that this is not the
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case, i.e. that the family of surfaces and links obtained with less restriction on the sides on which one plumbs is
the same as the family considered here.

Arborescent knots. Our definition differs from the classical definition(s) of arborescent links (e.g., in [8, 17])
and their encoding via plane trees in three ways. Firstly, we restrict our attention to Hopf bands and not general
unknotted annuli, hence the name Hopf arborescent links. This restriction is essential to our approach and the
minor theory we develop does not extend when one drops this assumption, as Remark 3.8 shows.

Secondly, an arborescent surface is, in general, defined as a surface that retracts on a collection of core curves
whose intersection pattern is a tree. One can show that in this case, the surface can be reconstructed using an
algorithm similar to the one we propose in Section 3.2. The main difference is that when gluing a new band to the
surface, it may be glued on top or below the surface. This difference could let one think that our construction is
more peculiar than the standard one. However, it was remarked by Misev [35] that gluing a Hopf band on top or
below an arc yields isotopic surfaces, see Figure 6. The only difference is that the orientation of the core curves of
the glued band is then reversed. This change of orientation then implies that all vertices of the subtree subsequently
glued to this band should be reversed to have the same surface. This argument shows that the set of surfaces we
construct actually coincides with the set of surfaces obtained by the classical construction of arborescent links using
Hopf bands only. The reason why we chose our presentation (i.e., always gluing on top when going away from the
root of the tree) is that it behaves more nicely with respect to our minor theory, and in particular it simplifies the
proof of Lemma 3.6.

Thirdly, the usual encoding of arborescent knots with plane trees [8, Chapter 12] is more detailed in that it
puts the number of twists between each pair of adjacent edges around each vertex. Here, since bands have either 2
positive crossings or 2 negative, Figure 7 shows that we do not need to specify where the twists are on the band,
and thus indicating the sign of the band on each vertex is sufficient.

= =

Plumbing on
bottom

Plumbing on
top

Figure 6: Surfaces obtained by plumbing a Hopf band inside or outside a Seifert surface are isotopic.

⊤ ⊥ ⊤= =

Figure 7: The surface does not depend on where the twists are.

As noticed in Section 4.2 with the set T (L), it may happen that several trees yield the same (isotopy class of)
oriented link and the same surface. In other words, our construction induces a well-defined map from plane trees
to isotopy classes of surfaces in S3, but this map may not be injective. This lack of injectivity is not an issue for
the problems we address in this paper, for the preimage of a given link or surface is finite. However, it is carefully
studied by Bonahon and Siebenmann [8] who give a recipe to detect (in the more general case of arborescent links)
when two Z-labelled plane trees yield isotopic links.

More general plumbing structures. By construction, the tree T involved in defining a Hopf arborescent
surface Σ(T ) is the intersection graph of the set of core curves CT . It may well happen that a surface retracts on
different collections of Hopf curves [36, 8] whose intersection pattern is very different from T , and in particular is
not a tree. In that case, the surface can still be obtained by a sequence of Hopf plumbings, but some plumbing are
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made on arcs that intersect the core of more than one Hopf band. On Figure 8 for example, the green curve on the
right is indeed the core of a Hopf band, see top of Figure 9 to picture how a tubular neighbourhood of the core is
a band with two positive crossings.

Figure 8: A Hopf arborescent plumbing with a cyclic plumbing graph.

3.4 Minors on surfaces, links, and plane trees
Since we focus our investigation on Hopf arborescent links, we define a stronger notion of minor that is well-tailored
to these links. We say that a Hopf arborescent link L1 is a link-minor of L2 if there exist T1 and T2, two labelled
plane trees such that Σ(T1) and Σ(T2) are canonical Seifert surfaces of L1 and L2 respectively and T1 ↪→ T2. The
main result of this section is the following one, establishing that if L1 is a link-minor of L2 then the Seifert surface
of L1 is a surface-minor of the Seifert surface of L2.

Proposition 3.2. Let T1 and T2 be two plane trees such that T1 admits a homeomorphic embedding into T2. Then
the Hopf arborescent surface Σ(T1) is an incompressible subsurface of Σ(T2).

The proof relies on Lemmas 3.4, 3.5, and 3.6, which correspond respectively to the operations (i), (ii), and (iv)
defining homeomorphic embeddings of trees. We first prove:

Lemma 3.3. Let Σ be surface and γ be an arc that is not boundary-parallel in Σ with both extremities in ∂Σ. Then
cutting Σ along γ yields a surface Σ′ = Σ∖ γ such that Σ′ ≼ Σ.

Proof. By definition of Σ′, there is a natural map h : Σ′ → Σ that is injective except on h−1(γ) = γ1 ∪ γ2. Let T
be a tubular neighbourhood of γ in Σ. Its boundary can be decomposed into t1, t2, two arcs isotopic to γ in Σ and
two open arcs of ∂Σ. Isotope h within Σ so that h(γ1) = t1, h(γ2) = t2, and h(Σ′) ∩ T = t1 ∪ t2. It follows that
h(Σ′) is a subsurface of Σ such that Σ∖ Σ′ is not an open disc since γ is not boundary-parallel.

Lemma 3.3 essentially states that our surfaces behave well with respect to the surface-minor relation when cut
along any essential arc. An important point is that cutting along an arc that is the diagonal of a plumbing rectangle
merges two bands into one new band with two extra crossings that are either negative or positive depending on the
diagonal, see Figure 9. So, cutting the plumbing of two positive Hopf bands along the diagonal that produces two
negative crossings yields a positive Hopf band. Symmetrically, one can merge two negative Hopf bands into one
negative by cutting along the other diagonal. Furthermore, when having a plumbing of two bands with opposite
signs, one can merge them into a band with either sign depending on which cut one chooses.

Lemma 3.4. Assume that T1 is obtained from T2 by deleting a leaf. Then Σ(T1) is an incompressible subsurface
of Σ(T2).

Proof. Let D be the plumbing rectangle of the Hopf band H associated to the additional leaf v of T2 compared to
T1. By definition, D has two sides γ1, γ2 in ∂Σ(T1). Thus γ1 is also an arc of Σ(T2) with its extremities in ∂Σ(T2).
By Lemma 3.3, Σ(T2) cut along γ1 is an incompressible subsurface Σ′ of Σ(T2). Furthermore, the remaining of H
is a disc that can be isotoped into a neighbourhood of γ2 so that Σ(T1) = Σ′ ≼ Σ(T2), see Figure 10.
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γ1 Cut along γ1 =

γ2
Cut along γ2 =

γ2

γ1

flat
drawing

R1 R3 R1

R1 R3 R1

Figure 9: Cutting a Hopf plumbing of two positive Hopf bands along the diagonal γ2 (resp. γ1) induces 2 positive
(resp. negative) crossings. The Reidemeister moves are showed to help understand which crossings are obtained.
The top right surface is a Hopf band while the bottom right one is a band with 3 positive full twists.

A very similar proof yields the following lemma.

Lemma 3.5. Assume that T1 is a plane tree whose root has only one child, T2 is the subtree rooted at that child.
Then Σ(T1) is an incompressible subsurface of Σ(T2).

Proof. The proof is identical to the previous one: in that situation, Σ(T1) is obtained from Σ(T2) by plumbing
a Hopf band, and cutting along one of the boundaries of the plumbing disc provides the needed incompressible
subsurface, as in Figure 10.

Lemma 3.6. Assume that T2 is a plane tree in which u → v → w are three consecutive vertices where v has
degree 2, and that T1 is obtained from T2 by contracting u → v → w into a single edge u → w, while preserving the
labels of the endpoints. Then Σ(T1) is an incompressible subsurface of Σ(T2).

Proof. By the construction of Hopf arborescent surfaces, the edge between u and v in T2 corresponds to a plumbing
rectangle D. It is important to recall here our orientation convention: if u is labelled positively, the cores α(u) and
α(v) are oriented so that one turns to the left when going from u to v at the rectangle D, while if v is labelled
negatively, one turns to the right, see Figure 5. Now, we consider two diagonal arcs γ1 and γ2 on the plumbing
rectangle D as pictured in Figure 9. When cutting along such a diagonal arc, we obtain a new surface in which the
cores α(u) and α(v) merge into a single core. However, their orientations might mismatch, depending on whether
we cut along γ1 or γ2. We take the convention that γ1 is the arc the preserves the orientations, while γ2 induces an
orientation mismatch, see Figures 9 and 11.

Now, let us first consider the case where the labels of u and v are the same. In this case, we consider the
subsurface Σ′ of Σ(T2) obtained by cutting along γ1. This has the effect of merging the core curves α(u) and α(v)
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Σ(T2)

H
γ2

γ1

cut
along γ1

Σ′

H
γ2

= Σ(T1)

Figure 10: Deleting a leaf yields a surface-minor.

in a way that respects their orientations. However, it might seem that since each curve α(u) and α(v) corresponds
to a Hopf band, merging them like that yields a band that twists too much. But a key observation is that cutting
along γ1 adds a twist between these two bands, as pictured in Figure 9, and this twist is negative when the bands are
positive, while it is positive when the bands are negative (indeed, this is the reason for our orientation convention).
Therefore, the resulting surface Σ′ is exactly the same as the one corresponding to the tree T1, and therefore Σ(T1)
is an incompressible subsurface of Σ(T2) by Lemma 3.3. See the top and bottom pictures of Figure 11 for an
illustration.

Now, let us consider the case where the label of u is + while the label of v is −. In that case, we consider the
surface Σ′ of Σ(T2) obtained by cutting along γ2. This has the effect of merging the core curves α(u) and α(v)
but with an orientation mismatch. We take the convention that the resulting core curve α′ is oriented by α(u),
and therefore disagrees with the orientation of α(v) while it follows it. Since u and v are labelled with opposite
signs the two twists on their Hopf bands cancel out, but cutting along γ2 adds a new positive twist, therefore we
can consider α′ as being the core curve of a positive Hopf band. Now, let us consider the plumbing rectangle D′

corresponding to the edge between v and w. Due to the orientation mismatch, arriving at this rectangle from α′,
we are oriented in the direction opposed to the one we would arrive with if we were arriving from α(v). But due to
the orientation convention, when going from α(v) to α(w) in Σ(T2) we turn to the right since v is negative, while
when going from α′ to α(w) in Σ′ we turn to the left since α′ is a positive band. Therefore, this effect cancels out
the orientation mismatch, and Σ′ coincides exactly with the surface Σ(T1) corresponding to the tree T1. Therefore
Σ(T1) is an incompressible subsurface of Σ(T2) by Lemma 3.3. See the third picture of Figure 11 for an illustration.

The same cancellation effect happens when the label of u is − and the label of v is +: when cutting along γ2
we have an orientation mismatch which is cancelled out by the the fact that the new band is negative, and thus
the orientation convention makes it turn in the opposite direction in the plumbing rectangle between v and w.
Therefore, in that case Σ(T1) is also an incompressible subsurface of Σ(T2) thanks to Lemma 3.3. This is illustrated
in the second picture of Figure 11.

As a corollary, contracting any path of T1 into an edge whose labels match with the labels of the extremities of
the path produces a tree T2 such that Σ(T1) ≼ Σ(T2).

Proof of Proposition 3.2. By definition, if T1 admits a homeomorphic embedding into T2, it can be obtained itera-
tively from T2 by (i) removing a child leaf, (ii) removing a parent leaf, (iii) reducing a label or (iv) contracting a
path while preserving the labels of the endpoints. Since no two elements on the alphabet {+,−} are comparable,
case (iii) cannot happen. Then the cases (i), (ii) and (iv) are handled respectively by Lemma 3.4, Lemma 3.5 and
Lemma 3.6.

On the other hand, the Kruskal Tree Theorem directly yields the following proposition.

Proposition 3.7. Hopf arborescent links are well-quasi-ordered under the link-minor relation.

Proof. Take an infinite sequence (Ln)n∈N of Hopf arborescent links, let (Tn)n∈N a sequence of plane trees such that
for all n ∈ N, Σ(Tn) is a Seifert surface of Ln. Then, by Theorem 2.3, there exists i < j such that Ti admits a
homeomorphic embedding into T2. Hence Li is a link-minor of Lj .

We can deduce Theorem 1.2 as a direct corollary of Proposition 3.2 and Proposition 3.7.
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Figure 11: All cases of contraction of a 3-path to an edge preserving the labels of the endpoints.
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Proof of Theorem 1.2. Take an infinite sequence (Σn)n∈N of canonical Seifert surfaces of Hopf arborescent links.
Then by Proposition 3.7, ∂Σi ↪→ ∂Σj for some i < j. By Proposition 3.2 we have Σi ≼ Σj , i.e. the surface-minor
order is a well-quasi-order on Hopf arborescent surfaces.

Remark 3.8. The proof of Proposition 3.2 highlights that the minor relation on the set of Hopf arborescent surfaces
is more subtle and fragile than one might expect. Indeed, the cuts involved when taking an incompressible subsurface
in the proof of Lemma 3.6 inevitably merge Hopf bands and thus one needs to be careful in order to control the
number of resulting twists. In particular, the proof does not seem to generalise to the more general classes of
surfaces obtained by plumbing bands with a bounded number of twists (even though everything works well at the level
of trees).

4 Decidability of the genus defect for Hopf arborescent links

4.1 Monotonicity of the genus defect
Now that we proved that link-minor is a well-quasi-order on the set of Hopf arborescent links, we want to highlight
a property that is stable for this minor relation. Recall that the genus defect ∆g(L) of an oriented link L is the
difference g(L) − g4(L) between its classical genus and its 4-dimensional genus. The latter can be either in the
topological locally flat or in the smooth category. All statements in this section (and in particular Theorem 1.1)
hold in both categories. We reprove Lemma 6 of [6] in the form of Proposition 4.1 using the fact that link-minor
implies that the associated Seifert are surface-minors.

Proposition 4.1. The genus defect ∆g is monotone on the family of Hopf arborescent links with respect to the
link-minor relation, i.e., if L1 is a link-minor of L2, then ∆g(L1) ≤ ∆g(L2).

We rely on the following lemma that highlights how the 4-genus behaves with respect to surface-minors. It uses
a cut-and-paste construction and an Euler characteristic argument.

Lemma 4.2. Let Σ be an oriented surface of S3 and Σ′ be a surface-minor of Σ. If we write L = ∂Σ and L′ = ∂Σ′,
then we have g(Σ)− g4(L) ≥ g(Σ′)− g4(L

′).

Proof. Seeing S3 as the boundary of the 4-ball B4, consider a surface S′ in B4 such that ∂S′ = L′ and S′ ∩S3 = L′.
Gluing the remaining pieces of Σ∖ Σ′ to S′ along L′ yields a surface S in B4 such that ∂S = L, see Figure 12.

L

Σ

L

Σ′

L′

L

L′

S′

L

S

Figure 12: Illustration of the construction of Σ, Σ′, L′, S, and S′. Purple surfaces are in S3 while blue one are
considered to be in B4.

By definition of g4(L), we have g4(L) ≤ g(S), and thus g(Σ)− g4(L) ≥ g(Σ)− g(S). Furthermore, the genus of
S is given by g(S) = g(Σ) − g(Σ′) + g(S′). Thus one has g(Σ) − g4(L) ≥ g(Σ′) − g(S′). Now if we assume S′ to
minimise the 4-genus over surfaces bounded by L′, we conclude: g(Σ)− g4(L) ≥ g(Σ′)− g4(L

′).

As Hopf arborescent surfaces are of minimal genus for Hopf arborescent links, Lemma 4.2 can be used to prove
Proposition 4.1.

Proof of Proposition 4.1. Let L and L′ be two Hopf arborescent links such that L′ is a link-minor of L. Consider Σ
and Σ′ the corresponding canonical Seifert surfaces. Since Hopf arborescent links are fibred, Σ is a Seifert surface
of L of minimal genus (see Theorem 2.1), i.e. g(L) = g(Σ) and similarly, g(Σ′) = g(L′). By Proposition 3.2 one has
Σ ≼ Σ′. Hence, by Lemma 4.2, one gets ∆g(L) ≥ ∆g(L

′).
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4.2 Proof of Theorem 1.1
We first show that the link-minor relation can be decided using the decidability of link equivalence. For knots,
equivalence can be tested as a combination of an algorithm that allows to decide whether two 3-manifolds with
boundary are homeomorphic [25, 33] and the Gordon-Luecke Theorem [19] that states that two knots are equivalent
if their complements, which are 3-manifolds with boundaries, are equivalent. In the case of links, we additionally
need to keep track of a longitude of each torus boundary component in the complement of the link. We refer to the
survey of Lackenby [26, Section 2] for a summary of the techniques that allow to prove the following theorem:

Theorem 4.3 (Link equivalence). Given two links L1 and L2, the problem of testing whether L1 is ambient isotopic
to L2 is decidable.

Given a Hopf arborescent link L, denote by T (L) the set of plane trees T whose associated Hopf arborescent
surface Σ(T ) has L as oriented boundary. As a corollary, we obtain:

Lemma 4.4. Given a Hopf arborescent link L, the set T (L) is computable.

Proof. For increasing k ∈ N, we enumerate all plane trees Ti with k vertices labelled by {−,+} and store the trees
Ti such that ∂Σ(Ti) is isotopic to L, where we test isotopy using Theorem 4.3. If we find a k for which such a
tree exists, we finish the enumeration for this value and return the stored trees. Indeed, plumbing n Hopf bands
produces a surface with Betti number n. By Theorem 2.1, all the trees Ti such that ∂Σ(Ti) = L produce surfaces
Σ(Ti) with the same genus, hence have the same number of vertices. As the entry is a Hopf arborescent link, there
exists a tree T such that ∂Σ(T ) = L. So the algorithm terminates.

Alternatively, and if one wants some control on the complexity of that algorithm, one can avoid blindly testing
for increasing k by first computing the genus of the link [21, 33], or just computing an upper bound to it using, e.g.,
Seifert’s algorithm, and then enumerate only the trees that produce surfaces up to that genus. From Lemma 4.4,
we obtain:

Lemma 4.5. Given two Hopf arborescent links L1 and L2, testing if L1 is a link-minor of L2 is decidable.

Proof. Using Lemma 4.4, we compute T (L1) and T (L2). The trees in T (L1) (resp. T (L2)) all have the same
number k1 (resp. k2) of vertices. Then we brute force every possible path contraction to an edge and iterated leaf
deletion on trees of T (L2) such that the result is a tree with k1 vertices, and test whether it is equal to a tree of
T (L1). If such a test succeeds, we output yes, otherwise we return no. There is a finite number of trees in both
T (L1) and T (L2) and a finite number of a trees with k1 vertices that homeomorphically embed into a tree of T (L2).
Hence that algorithm eventually terminates. Its correctness follows directly from the definition of link-minor.

Finally we prove Theorem 1.1 by using the stability of the genus-defect by link-minor, the previous algorithms,
and the well-quasi-order properties.

Proof of Theorem 1.1. By Proposition 3.7, the order defined by link-minors is a well-quasi-order on the set of Hopf
arborescent links. Hence, the set of Hopf arborescent links Hk that have defect at most k is characterized by a
finite family Fk of forbidden minors. It follows, by Proposition 4.1 that ∆g(L) ≤ k if and only if for all f in Fk, f
is not a link-minor of L. Using Lemma 4.5 we test for each f ∈ Fk if f is a link-minor of L. If such a test succeeds,
output no, otherwise the input link has ∆g(L) ≤ k.

As said in the introduction, our proof in not constructive as it relies at its core on the existence of a set of
forbidden minors for having defect at most k. This set of forbidden minors is not explicit and hard-coded in the
algorithm. Furthermore, the sets of excluded minors will be different for the two different notions of defect (smooth
and locally flat). It is likely that computing them is a topological challenge requiring arguments of different nature.

Theorem 1.2 provides the existence of a set of forbidden minors for having defect at most k but for a different
and stronger definition of minors on links that relies only on the surface-minor relation on the Seifert surface and
not the trees. However deciding this relation, even by a brute force argument, seems challenging: in addition to
the fact that no algorithm seems to be known for testing isotopy of surfaces, one would also need to control the
complexity of the cutting arcs. Even with positive Hopf arborescent links only, this seems delicate [34].
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5 Examples: Hopf arborescent links with non-trivial defect
It is not clear a priori that the topological and/or smooth defects of Hopf arborescent links are nonzero. For instance,
our building block, the Hopf band, has both defects equal to 0 since it bounds an annulus in S3; which has genus
0. Furthermore, as mentioned in the introduction, when Hopf arborescent links are only made with positive Hopf
bands, they belong to a class of links called positive links, which implies that they are strongly quasi-positive [43],
and this implies in turn that their smooth 4-genus equal their 3-genus [42]. So for this class of links, the smooth
defect is always zero. In contrast, in this section, we provide an example of a Hopf arborescent knot for which both
the topological and the smooth defect are nonzero, and an argument explaining how to use this knot to provide
examples with arbitrarily large defects.

Example 1. A Hopf arborescent link with non trivial topological defect is given by Baader, Feller, Lewark
and Liechti [6, Example 4]. It consists in plumbing 6 positive Hopf bands in a latin cross-like pattern. Since it
is positive, its smooth defect is zero. However, one can find a torus sub-surface of SX such that the restricted
Alexander polynomial vanishes. By Freedman’s Disc Theorem [15], this implies that one can remove this subsurface
and glue along its boundary a locally flat disc in the 4-ball. This means that the topological defect is at least 1.
We refer to the article [6] for more details.

Example 2. By the aforementioned result of Rudolph, in order to obtain a Hopf arborescent link with nonzero
smooth defect, we need to use both positive and negative Hopf bands. Here is such an example: the Hopf arborescent
link obtained from the tree pictured in Figure 13 is in fact a knot, named 810 in the Rolfsen table [41]. One can
readily check from knot censuses (for example from the Knot Atlas [1]) the smooth and topological genera of this
knot, and we have ∆smooth

g (810) = ∆top
g (810) = 2. For completeness, we provide here another argument to explain

why the defects are nonzero.

+

+

+

−

−

+

=

=

Figure 13: The Hopf arborescent knot 810 (from the Rolfsen table).

The genus-minimizing surface is the Hopf arborescent surface pictured in Figure 14, whose genus is 3, and with
1 boundary component. The red curve on the left of Figure 14 is the core of an embedded annulus and its two
boundaries are unlinked. Replacing this annulus by two discs glued on its two boundary components yields an
immersed surface with genus 1 less, still bounded by K810 . The singularities of this immersion are of a particular
type called ribbon singularities [41, p.225] (right side of Figure 14). Such singularities can be resolved in the 4-ball,
and thus this implies that the Hopf arborescent surface can be pushed into a smoothly embedded surface in the
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4-ball so that its smooth defect is at least 1. Furthermore, for any link L, we have that gsmooth
4 (L) ≥ gtop4 (L) so

that its topological defect is also at least 1.

−2

+2

+2

−2

Figure 14: Left: A simple red curve on the surface associated to Σ(810). The intersection number in green show
that the boundaries of the corresponding annulus are unlinked. Right : A ribbon intersection.

One can also check in the censuses that these two examples are hyperbolic.

Arbitrarily large defect. We can use the previous examples to create Hopf arborescent links with arbitrarily
large (smooth or topological) defect. The following proposition proves that the defect coming from tree patterns
add up if they are isolated enough.

Proposition 5.1. Let L be an arborescent link associated to a plane tree T . Let T1, . . . , Tn be disjoint subtrees of
T that are pairwise at distance at least two within T . Denote Li = ∂(Σ(Ti)), then

∑
1≤i≤n

∆g(Li) ≤ ∆g(L).

Proof. For each i, identifying the Hopf bands of the vertices of Ti within Σ(T ) provides a family of embeddings of
the Σ(Ti). These embeddings are disjoint by the distance assumption.

We can now repeat the proof of Lemma 4.2 and Proposition 4.1 with a family of links to obtain the desired
inequality. Since the Σ(Ti) are disjoint subsurfaces of Σ(L),

⋃
Σ(Ti) is a surface-minor of Σ(L). As in the proof of

Lemma 4.2, we define for each Li, a surface S′
i in B4 that has Li as its boundary. Gluing each S′

i to the pieces of
Σ(T )∖

⋃
Σ(Ti) along its associated Li yields a surface S in B4 such that ∂S = L.

Now we have g(S) = g(Σ(T ))−
∑

i g(Σ(Ti)) +
∑

i g(S
′
i). It follows, by definition of g4 that g(Σ(T ))− g4(L) ≥

g(Σ(T )) − g(S) =
∑

i g(Σ(Ti)) − g(S′
i). By Theorem 2.1, and taking each S′

i to be of minimal genus, ∆g(L) =
g(L)− g4(L) ≥

∑
i g(Li)− g4(Li) =

∑
i ∆g(Li).

Consider a Hopf arborescent link L associated to some tree T such that L has non zero defect. By identifying
the roots of n copies of T with the leaves of a n-star graph (one vertex of degree n, n vertices of degree 1), we create
a tree T ′ such that the link L′ = ∂Σ(T ′) has defect at least n∆g(L) by Proposition 5.1, therefore obtaining links
with arbitrarily large topological and smooth defect.
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