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Wasserstein Auto-Encoders of Merge Trees
(and Persistence Diagrams)

Mathieu Pont and Julien Tierny

Abstract—This paper presents a computational framework for the Wasserstein auto-encoding of merge trees (MT-WAE), a novel
extension of the classical auto-encoder neural network architecture to the Wasserstein metric space of merge trees. In contrast to
traditional auto-encoders which operate on vectorized data, our formulation explicitly manipulates merge trees on their associated
metric space at each layer of the network, resulting in superior accuracy and interpretability. Our novel neural network approach can be
interpreted as a non-linear generalization of previous linear attempts [79] at merge tree encoding. It also trivially extends to
persistence diagrams. Extensive experiments on public ensembles demonstrate the efficiency of our algorithms, with MT-WAE
computations in the orders of minutes on average. We show the utility of our contributions in two applications adapted from previous
work on merge tree encoding [79]. First, we apply MT-WAE to merge tree compression, by concisely representing them with their
coordinates in the final layer of our auto-encoder. Second, we document an application to dimensionality reduction, by exploiting the
latent space of our auto-encoder, for the visual analysis of ensemble data. We illustrate the versatility of our framework by introducing
two penalty terms, to help preserve in the latent space both the Wasserstein distances between merge trees, as well as their clusters.
In both applications, quantitative experiments assess the relevance of our framework. Finally, we provide a C++ implementation that
can be used for reproducibility.

Index Terms—Topological data analysis, ensemble data, merge trees, persistence diagrams.

✦

1 INTRODUCTION

W ITH the recent advances in the development of computation
hardware and acquisition devices, datasets are constantly

increasing in size. This size increase induces an increase in the
geometrical complexity of the features present in the datasets,
which challenges interactive data analysis and interpretation. To
address this issue, Topological Data Analysis (TDA) [30] has
shown over the years its ability to reveal, in a generic, robust
and efficient manner, the main structural patterns hidden in com-
plex datasets, in particular for visual data analysis tasks [46].
Successful applications have been documented in multiple fields
(turbulent combustion [19], [43], material sciences [45], [89],
nuclear energy [64], fluid dynamics [53], [70], bioimaging [3],
[14], quantum chemistry [71], [72] or astrophysics [87], [90]).
Among the representations studied in TDA, the merge tree [23]
(Fig. 2) has been prominent in data visualization [14], [19], [25].

In addition to the increase in geometrical complexity discussed
above, a new challenge has recently emerged in many applications,
with the notion of ensemble datasets. Such datasets encode a given
phenomenon not only with a single dataset, but with a collection of
datasets, called ensemble members. In that context, the topological
analysis of an ensemble dataset consequently yields an ensemble
of corresponding topological representations (e.g. one merge tree
per ensemble member).

Then, developing statistical analysis tools to support the in-
teractive analysis and interpretation of ensemble data becomes
an important challenge. Recently, several works explored this
direction, in particular with the notion of average topological
representation [59], [78], [95], [97], [103]. These approaches can
produce a topological representation which nicely summarizes the
ensemble. Moreover, their application to clustering [78] reveal its
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main trends. However, they do not provide any hints regarding the
variability of the features in the ensemble. For this, Pont et al.
[79] recently extended the notion of principal geodesic analysis
to ensembles of merge trees. However, this approach implicitly
assumes a linear relation between the merge trees of the ensemble.
Specifically, it assumes that merge tree branches evolve linearly (in
the birth/death space, Sec. 2) within the ensemble.

This paper addresses this issue with a novel formulation
based on neural networks and introduces the first framework
for the non-linear encoding of merge trees, hence resulting in
superior accuracy. Specifically, we formulate merge tree non-linear
encoding as an auto-encoding problem (Sec. 3). We contribute a
novel neural network called Wasserstein Auto-Encoder of Merge
Trees. This network is based on a novel layer model, capable
of processing merge trees natively, without pre-vectorization. We
believe this contribution to be of independent interest, as it enables
an accurate and interpretable processing of merge trees by neural
networks (without restrictions to auto-encoders). We contribute an
algorithm for the optimization of such a network (Sec. 4). We
illustrate the relevance of our contributions for visual analysis
with two applications, data reduction (Sec. 5.1) and dimensionality
reduction (Sec. 5.2). Similarly to previous linear attempts [79],
since our approach is based on the Wasserstein distance between
merge trees [78], which generalizes the Wasserstein distance be-
tween persistence diagrams [30], our framework trivially extends
to persistence diagrams by simply adjusting a single parameter.

1.1 Related work

We classify the literature related to our approach into two cate-
gories: ensemble analysis and topological methods for ensembles.
(1) Ensemble analysis: Typical approaches to ensemble visualiza-
tion first characterize each member of the ensemble by extracting
a geometrical object representing its features of interest (level

ar
X

iv
:2

30
7.

02
50

9v
2 

 [
cs

.L
G

] 
 9

 N
ov

 2
02

3



2

Fig. 1. Visual analysis of the Earthquake ensemble
(
(a) each ground-truth class is represented by one of its members

)
, with our Wasserstein

Auto-Encoder of Merge Trees (MT-WAE). We apply our contributions to merge tree compression
(
(b), right

)
by simply storing their coordinates in

the last decoding layer of our network. We exploit the latent space of our network to generate 2D layouts of the ensemble (c). In contrast to classical
auto-encoders, MT-WAE explicitly manipulates merge trees at each layer of the network, which results in improved accuracy and interpretability.
Specifically, the reconstruction of user-defined locations

(
(c), purple) enables an interactive exploration of the latent space: the reconstructed curve

(d) enables a continuous navigation between the clusters
(
from dark red to pink and light pink, (c)

)
. MT-WAE also supports persistence correlation

views (e) (adapted from [79]), which reveal the barycenter’s persistent features which exhibit the most variability in the ensemble (far from the
center). Finally, by tracking the persistence evolution of individual features as they traverse the network down to its latent space, we introduce a
Feature Latent Importance measure, which identifies the most informative features within the ensemble

(
(e), red circles).

sets, streamlines, etc). Next, a second step considers the ensemble
of geometrical objects computed in the first step, and estimates
a single representative object, representing an aggregate of the
features of interest found in the ensemble. For example, level-
set variability has been studied with spaghetti plots [29], with
specific applications to weather data [80], [85]. More generally,
the variability in curves and contours have been studied with the
notion of box-plots [100] and its variants [65]. Hummel et al. [51]
analyzed the variability in ensembles of flows with a Lagrangian
approach. The main trends present in an ensemble have been
studied for ensembles of streamlines [36] and level sets [37] via
clustering techniques. Other approaches focused on visualizing the
geometrical variability in the domain of the position of critical
points [35], [42] or gradient separatrices [5]. For ensemble of
contour trees, consistent planar layouts have also been studied
[62], to support the direct visual comparison of the trees. While
the latter approaches have a topological aspect, they focused on
the direct visualization of the variability, and not on the statistical
analysis of an ensemble of topological descriptors.

General purpose methods have been documented for non-
linear encoding (e.g. topological auto-encoders [67], or Wasser-
stein auto-encoders [94]). Our work drastically differs from these
methods, in terms of design and purpose. These methods [47],
[67], [94] employ a classical auto-encoder (Sec. 3.1) to which
they add specialized penalty terms. Then, their input is restricted
to point sets (or vectorized data). In contrast, our work focuses
on sets of merge trees (or persistence diagrams). This different
kind of input requires a novel neural network model, capable of
processing these topological objects natively (Sec. 3).

(2) Topological methods: Over the last two decades, the visual-
ization community has investigated, adapted and extended [46],
[102] several tools and notions from computational topology [30].
The persistence diagram [9], [30], [32], [41], the Reeb graph [12],
[40], [74], the merge (Fig. 2) and contour trees [1], [23], [24], [39],

[63], and the Morse-Smale complex [18], [28], [44], [83], [86] are
popular examples of topological representations in visualization.

In order to design a statistical framework for the analysis
of ensembles of topological descriptors, one first needs to de-
fine a metric to measure distances between these objects. The
Wasserstein distance [30] (Sec. 2.2) is now an established and
well-documented metric for persistence diagrams. It is inspired
by optimal transport [52], [66] and it is defined (Sec. 2.2) via a
bipartite assignment problem (open-source software implementing
exact computations [69] or fast approximations [11], [54] is
available [93]). However, as discussed in previous work [10],
[68], [78], [79], [91], the persistence diagram can lack speci-
ficity in its encoding of the features of interest, motivating more
advanced descriptors, like the merge trees (Sec. A.2), which
better distinguishes datasets. The comparison of Reeb graphs and
their variants has been addressed with several similarity measures
[48], [84]. Several works investigated the theoretical aspects of
distances between topological descriptors, in particular with a
focus towards stable distances [8], [15], [16], [68]. However, the
computation of such distances rely on algorithms with exponential
time complexity, which is not practicable for real-life datasets. In
contrast, a distinct line of research focused on a balance between
practical stability and computability, by focusing on polynomial
time computation algorithms. Beketayev et al. [10] introduced a
distance for the branch decomposition tree (BDT, Appendix A).
Efficient algorithms for constrained edit distances [104] have been
specialized to the specific case of merge trees, hence providing
an edit distance for merge trees [91] which is both computable
in practice and with acceptable practical stability. Pont et al.
[78] extended this work to generalize the L2-Wasserstein distance
between persistence diagrams [30] to merge trees, hence enabling
the efficient computation of distances, geodesics and barycenters
of merge trees. Wetzel et al. [98], [99] introduce metrics inde-
pendent of a particular branch decomposition, but this comes
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at the cost of a significantly larger computational effort (with
quartic time complexity instead of quadratic), which prevents their
practical computation on full-sized merge trees.

Once a metric is available, statistical notions can be developed
for topological descriptors. Several methods [59], [95], [97] have
been introduced for the estimation of barycenters of persistence
diagrams (or vectorized variants [2], [22]). Similar approaches
have been specifically derived for the merge trees [78], [103].
Another set of approaches [4], [61], [82] first considers vector-
izations of topological descriptors (i.e. by converting them into
high-dimensional Euclidean vectors) and then leverages traditional
linear-algebra tools on these vectors (e.g. the classical PCA [77]
or its variants from matrix sketching [101]). Several approaches in
machine learning are constructed on top of vectorizations of topo-
logical descriptors [2], [22], [56] or kernel-based representations
[26], [81]. However, such vectorizations have several limitations
in practice. First, they are prone to approximation errors (resulting
from quantization and linearization). Also, they can be difficult to
revert (especially for barycenters), which makes them impractical
for visualization tasks. Moreover, their stability is not always
guaranteed. In contrast, Pont et al. [79] extended the generic notion
of principal geodesic analysis to the Wasserstein metric space of
merge trees, resulting in improved accuracy and interpretability
with regard to the straightforward application of PCA on merge
tree vectorizations. Similarly, Sisouk et al. [88] introduced a
simpler approach for the linear encoding of persistence diagrams,
with a less constrained framework based on dictionaries. However,
these approaches implicitly assume a linear relation between the
topological descriptors of the ensemble. For instance, it assumes
that a given feature (i.e. a given branch of the merge tree) evolves
linearly in the birth/death space (Sec. 2) within the ensemble.
However, this hypothesis is easily challenged in practice (Figs.
5 and 7), potentially leading to inaccuracies. Our work overcomes
this limitation with a drastically different formulation (based on
auto-encoding neural networks) and introduces the first framework
for the non-linear encoding of merge trees, resulting in superior
accuracy. Several approaches [21], [55], [105] investigated the use
of topological methods for the analysis of neural networks. In
contrast, our work targets a different research problem, specifically
the encoding of topological descriptors with neural networks.

1.2 Contributions

This paper makes the following new contributions:
1) An approach to Merge tree non-linear encoding: We formu-

late the non-linear parametrization of the Wasserstein metric
space of merge trees (and persistence diagrams) as an auto-
encoding problem. Our formulation (Sec. 3) generalizes and
improves previous linear attempts [79].

2) A vectorization-free neural network architecture for Merge
Trees: We contribute a novel neural network architecture
called Wasserstein Auto-Encoder of Merge Trees, inspired by
the classical auto-encoder, which can natively process merge
trees (and persistence diagrams) without prior vectorization.
For this, we contribute a novel layer model, which takes a set
of merge trees on its input and produces another set of merge
trees on its output, along with their coordinates in the layer’s
parametrization. This results in superior accuracy (Sec. 6.2)
and interpretability (Sec. 5.2). We contribute an algorithm
for the optimization of this network (Sec. 4). We believe this
contribution to be of independent interest.

Fig. 2. Illustration of the topological descriptors considered in this
work, on a clean (a) and a noisy (b) variant of a 2D toy dataset. For
all descriptors, the color code indicates the persistence of the cor-
responding saddle-maximum pair. Critical points are represented with
spheres (larger ones for maxima). Persistence diagrams, merge trees
and branch decomposition trees (BDTs) are respectively represented in
the left, center and right insets. For both datasets, the four main features
(the larger hills) are represented with salient pairs in the diagram and the
merge tree. To avoid clutter in the visualization, the branches with low
persistence (less than 10% of the function range) are rendered with small
white arcs while larger, and colored arcs represent persistent branches
(more than 10% of the function range). Figure adapted from [78], [79]

3) An application to merge tree compression: We describe how
to adapt previous work [79] to our novel non-linear frame-
work, in merge tree compression applications (Sec. 5.1).
Specifically, the merge trees of the input ensemble are sig-
nificantly compressed, by solely storing the final decoding
layer of the network, as well as the coordinates of the input
trees in this layer. We illustrate the interest of our approach
with comparisons to linear encoding [79] in the context of
feature tracking and ensemble clustering applications.

4) An application to dimensionality reduction: We describe how
to adapt previous work [79] to our novel non-linear frame-
work, in the context of dimensionality reduction applications
(Sec. 5.2). Specifically, each tree of the ensemble is embed-
ded as a point in a planar view, based on its coordinates in our
auto-encoder’s latent space. To illustrate the versatility of our
framework, we introduce two penalty terms, to improve the
preservation of clusters and distances between merge trees.

5) Implementation: We provide a C++ implementation of our
algorithms that can be used for reproducibility purposes.

2 PRELIMINARIES

This section presents the background of our work. First, we
describe the input data and its topological representation. Second,
we recap the Wasserstein metric space of merge trees [78], used
by our approach. We refer to textbooks [30] for an introduction to
computational topology.

2.1 Input data

The input data is an ensemble of N piecewise linear (PL) scalar
fields fi :M→R, with i∈ {1, . . . ,N}, defined on a PL d-manifold
M, with d ≤ 3 in our applications. Each ensemble member fi is
represented by a topological descriptor. In this work, we focus on
the Persistence Diagram (PD), noted D( fi), as well as a variant
of the Merge Tree (MT), called the Branch Decomposition Tree
(BDT), noted B( fi). A formal description of these descriptors is
given in Appendix A.
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Fig. 3. Illustration of the computation of the Wasserstein distance WT
2

[78] between the BDTs B( fi) (white, top) and B( f j) (blue, bottom). WT
2 is

computed by solving an optimal assignment problem in the birth/death
plane (right), whose search space is constrained to partial rooted iso-
morphims (the optimal solution is represented with a cyan halo on the
BDTs and with cyan arrows in the birth/death plane). When ε1 = 1, all
the saddles are collapsed and the structure of the BDT is completely
ignored. In that case, WT

2 is equal to the Wasserstein distance between
persistence diagrams WD

2 (the optimal assignment is shown with red
arrows, right). In this example, WD

2 reports a small distance whereas
two hills have been swapped in the datasets. Figure adapted from [79].

In short, D( fi) is a 2D point cloud (Fig. 2), where each off-
diagonal point p = (x,y) denotes a topological feature in the data
filtration (e.g. a connected component, a cycle, a void, etc.). x
and y denote the birth and the death of p (i.e. the scalar values
for the creation and destruction of the corresponding topological
feature in the data). The persistence of p is given by its height
to the diagonal (Fig. 2, vertical cylinders, left insets). Important
features are typically associated with a large persistence, while
low amplitude noise is in the vicinity of the diagonal.

The Merge Tree (MT, Fig. 2, center insets) is a slightly more
informative descriptor, as it additionally encodes the merge history
between the topological features. To mitigate a phenomenon called
saddle swap [78], [91], it is often pre-processed to merge adjacent
forking nodes whose relative scalar value difference is smaller
than a threshold ε1 ∈ [0,1]. The merge tree can be represented in
a dual form called the Branch Decomposition Tree (BDT) B( fi)
(Fig. 2, right insets), where each persistent branch of the merge
tree (vertical cylinder, center insets) is transformed into a node in
the BDT (sphere, right insets) and where each horizontal segment
of the merge tree is transformed into an arc. Given an arbitrary
BDT B, since each node b ∈ B embeds its own birth/death values
(numbers in Fig. 2), it is possible to reconstruct the corresponding
merge tree, as long as B respects the Elder rule [30].

2.2 Wasserstein metric space

In this section, we first formalize the Wasserstein distance between
persistence diagrams [30]. Next, we recall its generalization to
merge trees [78]. This generalization enables our approach to sup-
port both topological descriptors (persistence diagrams and merge
trees). This section includes elements adapted from [79], which
have been considered to make this manuscript self-contained.

The evaluation of the distance between two diagrams D( fi)
and D( f j) is typically preceded by a pre-processing step aiming at
transforming the diagrams, such that they admit the same number
of points, which will facilitate the evaluation of their distance. This
procedure augments each diagram with the diagonal projection of

the off-diagonal points of the other diagram:

D′( fi) =D( fi)∪{∆(p j) | p j ∈ D( f j)}
D′( f j) =D( f j)∪{∆(pi) | pi ∈ D( fi)},

where ∆(pi) = ( xi+yi
2 , xi+yi

2 ) is the diagonal projection of the off-
diagonal point pi = (xi,yi). Overall, this augmentation procedure
inserts dummy features in the diagram (with zero persistence, on
the diagonal), hence preserving the topological information of the
diagrams, while guaranteeing that the two diagrams now have the
same number of points (|D′( fi)|= |D′( f j)|).

In order to compare two points pi = (xi,yi) ∈ D′( fi) and p j =
(x j,y j) ∈ D′( f j), a ground distance needs to be introduced in the
birth/death plane. Specifically, we consider the distance dq (q> 0):

dq(pi, p j) = (|x j− xi|q + |y j− yi|q)1/q = ∥pi− p j∥q.

In the special case where both pi and p j are dummy features
located on the diagonal (i.e. xi = yi and x j = y j), dq(pi, p j) is
set to zero (such that these dummy features do not intervene
in the distance evaluation between the diagrams). Then, the Lq-
Wasserstein distance WD

q can be introduced as:

WD
q
(
D( fi),D( f j)

)
= min

φ∈Φ

(
∑

pi∈D′( fi)
dq
(

pi,φ(pi)
)q
)1/q

, (1)

where Φ is the set of all possible assignments φ mapping a
point pi ∈ D′( fi) to a point p j ∈ D′( f j). Note that it is possible
that φ maps a point pi ∈ D′( fi) to its diagonal projection (i.e.
φ(pi) = ∆(pi) = p j ∈ D′( f j)), which indicates the destruction of
the corresponding feature (or symmetrically, its appearance).

Pont et al. recently generalized this metric to BDTs [78].
The expression of this distance, noted WT

2
(
B( fi),B( f j)

)
, is the

same as Eq. 1 (for q = 2), with the important difference of the
search space of possible assignments, noted Φ′ ⊆ Φ. Specifically,
Φ′ is constrained to the set of (rooted) partial isomorphisms [78]
between B( fi) and B( f j) (cyan halo on the BDTs of Fig. 3).

This novel metric comes with a clear interpretation. The con-
trol parameter ε1 (Sec. A.2) balances the importance of the BDT
structure in the distance. Specifically, when ε1 = 1, all saddles are
collapsed and we have WT

2
(
B( fi),B( f j)

)
= WD

2
(
D( fi),D( f j)

)
.

Generally speaking, as illustrated experimentally by Pont et al.
[78], ε1 acts as a control knob balancing the practical stability of
the metric with its discriminative power. This generalized metric
enables our framework to support both topological descriptors. For
persistence diagrams, we set ε1 = 1, while for merge trees, we set
it to the default recommended value (i.e. ε1 = 0.05 [78]). In the
following, the metric space induced by this metric is noted B.

For interpolation purposes, Pont et al. introduce a local nor-
malization [78] in a pre-processing step (to guarantee the invert-
ibility of any interpolated BDT into a valid MT). We will use the
same procedure in this work to guarantee that the projected BDTs
(Sec. 3.2) indeed describe valid MTs. Specifically, we normalize
the persistence of each branch bi ∈ B( fi) with regard to that of
its parent b′i ∈ B( fi), by moving bi in the birth/death plane from
(xi,yi) to N (bi) =

(
Nx(bi),Ny(bi)

)
:

Nx(bi) = (xi− x′i)/(y
′
i− x′i)

Ny(bi) = (yi− x′i)/(y
′
i− x′i).

(2)

This pre-normalization procedure guarantees that any interpolated
BDT can indeed be reverted into a valid MT, by recursively
applying Eq. 2, which explicitly enforces the Elder rule [30]
on BDTs ([xi,yi] ⊆ [x′i,y

′
i], Sec. A.2), hence the validity of the
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Fig. 4. Geometric interpretation of Euclidean Auto-Encoders (EAE,
Sec. 3.1). In its simplest form (one encoding and one decoding layer,
d′ = 2), an EAE can be viewed as the composition of a linear transfor-
mation ψ1

(
(a) to (b)

)
defined with respect to a first basis B1, followed

by a non-linearity σ
(
here ReLU, (b) to (c)

)
, followed by a second linear

transformation ψ2
(
(c) to (d)

)
defined with respect to a second basis

B2. Specifically, both ψ1 and ψ2 are optimized (via the optimization of B1
and B2) to minimize the reconstruction error between the input (a) and
the output (d). In the case where σ is the identity, this reconstruction
optimization is equivalent to Principal Component Analysis [17].

reconstructed MT. Two additional parameters were introduced
by Pont et al. [78] in order to control the effect of this pre-
normalization procedure (ε2 balances the normalized persistence
of small branches, selected via the threshold ε3). These parameters
are set to their default recommended values (ε2 = 0.95, ε3 = 0.9).
In the following, we consider that all the input BDTs are pre-
normalized with this procedure.

3 FORMULATION

This section describes our novel extension of the classical auto-
encoder neural network architecture to the Wasserstein metric
space of merge trees, with the novel notion of Merge Tree Wasser-
stein Auto-Encoder (MT-WAE). First, we describe a geometric
interpretation of the classical auto-encoders (Sec. 3.1), which we
call in the following Euclidean Auto-Encoders (EAE). Next, we
describe how to generalize each geometrical tool used in EAE
(Sec. 3.1) to the Wasserstein metric space of merge trees (Sec. 3.2).
Finally, once these tools are available, we formalize our notion of
MT-WAE with a novel neural network architecture (Sec. 3.3), for
which we document an optimization algorithm in Sec. 4.

3.1 An interpretation of Euclidean Auto-Encoders
Let P = {p1, p2, . . . , pN} be a point set in a Euclidean space
Rd (Fig. 4a). The goal of Euclidean Auto-Encoders (EAE) is to
define a d′-dimensional parameterization of P (with d′ ≤ d) which
describes well the data (which enables its accurate reconstruction).
Let B1 = {b1,b2, . . . ,bd′} be a basis of linearly independent
vectors in Rd (Fig. 4a). B1 can be written in the form of a d×d′

matrix, for which each of the d′ columns is a vector of the basis.
Then, one can express the coordinates ψ1(pi) ∈ Rd′ of each point
pi ∈ P with the basis B1:

ψ1(pi) = argmin
α i
||pi−B1α

i||22 +o1, (3)

where o1 is an offset vector of Rd′ , and where α i ∈ Rd′ can be
seen as a set of d′ coefficients, to apply on the d′ vectors of the
basis B1 to best estimate pi. Note that Eq. 3 can be re-written as a
linear transformation:

ψ1(pi) = B+
1 pi +o1, (4)

where B+
1 is the pseudoinverse of the matrix B1 (Figs. 4a-b).

Given this new parameterization ψ1, one can estimate a
reconstruction of the point pi in Rd , noted p̂i. For this, let us

Fig. 5. Comparison between PCA (a) and EAE (b) for the 1-dimensional
encoding of a 2D point set sampling a 1-manifold (color: rotation angle).
In its latent space

(
(a), bottom

)
, PCA linearly projects the input points

to a line, hence interleaving points from the upper and lower parts of the
circle. This results in a poor reconstruction

(
(a), right

)
, where points are

interleaved along the axis B1. In contrast, EAE optimizes a composition
of non-linear transformations, which consistently unwraps the circle onto
a line in its latent space

(
(b), bottom

)
, while nicely preserving the

intrinsic parameterization of the circle (rotation angle). This results in
an accurate reconstruction

(
(b), right

)
: the embedding of the axis Bne in

the data defines a faithful 1-dimensional parameterization of the circle.

consider another, similar, linear transformation ψ2 (Figs. 4c-d),
defined respectively to a second basis B2 (given as a d′×d matrix)
and a second offset vector o2 (in Rd). Then, the reconstruction p̂i
of each point pi is given by:

p̂i = ψ2 ◦ψ1(pi) = B+
2 (B

+
1 pi +o1)+o2.

To get an accurate reconstruction p̂i (Fig. 4d) for all the points
pi ∈ P, one needs to optimize both ψ1 and ψ2, to minimize the
following data fitting energy:

EL2 =
N

∑
i=1
||pi− p̂i||22 =

N

∑
i=1
||pi−ψ2 ◦ψ1(pi)||22. (5)

As discussed by Bourlard and Kamp [17], this formulation
is a generalization of Principal Component Analysis (PCA) [77],
a seminal statistical tool for variability analysis. However, PCA
assumes that the input point cloud can be faithfully approximated
via linear projections. As shown in Fig. 5, this hypothesis can
be easily challenged in practice. This motivates a non-linear
generalization of PCA, capable of faithfully approximating point
clouds exhibiting non-linear structures (Fig. 5).

Specifically, to introduce non-linearity, the above linear trans-
formations ψ are typically composed with a non-linear function
σ , called activation function, such that the transformation of each
point pi, noted Ψ(pi), is now given by: Ψ(pi) = σ

(
ψ(pi)

)
. For

example, the rectifier activation function (“ReLU”) will take the
jth coordinate of each data point (i.e.

(
ψ(pi)

)
j) and snap it to

zero if it is negative (Fig. 4b-c). We call the above non-linear
transformation Ψ a transformation layer. It is characterized by its
own vector basis B and its own offset vector o.

Next, to faithfully approximate complicated non-linear input
distributions, the above transformation layer is typically composed
with a number (ne + nd) of other transformation layers, defined
similarly. Then, the initial data fitting energy (Eq. 5) can now be
generalized into:

EL2 =
N

∑
i=1
||pi−Ψne+nd ◦ · · · ◦Ψne+1 ◦Ψne ◦ · · · ◦Ψ2 ◦Ψ1(pi)||22, (6)

where each transformation layer Ψk is associated with its own
dk-dimensional vector basis Bk and its offset vector ok. Then,
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Fig. 6. Low-level geometrical tools in the Wasserstein metric space of
merge trees (Sec. 3.2). Given an origin MT and its BDT O

(
counting |O|

nodes (a)
)
, a BDT vector V1(O) is defined in the birth/death space as a

concatenation of |O| 2D vectors
(
blue arrows (b)

)
. Given a second BDT

vector V2(O)
(
cyan arrows (c)

)
, a basis B(O) can be defined

(
(d), here

with d′ = 2
)
. For a given set of coefficients α ∈Rd′ , a new merge tree and

its BDT (e) can be reconstructed by applying a sum of 2D displacements
∑

j=d′
j=1 α j

(
V j(O)

)
i to each branch bi of O

(
(d), black dashes

)
.

the notion of Auto-Encoder is a specific instance of the above
formulation, with:

1) d1 > d2 > · · ·> dne , and
2) dne < dne+1 < · · ·< dne+nd = d, and
3) σne+nd is the identity.

Specifically, ne and nd respectively denote the number of Encoding
and Decoding transformation layers, while dne is the dimension of
the so-called latent space. In practice, dne is typically chosen to
be much smaller than the input dimensionality (d), for non-linear
dimensionality reduction purposes (each input point pi is then
represented in dne dimensions, according to its coordinates in Bne ,
noted α i

ne ∈ Rdne ).
Eq. 6 defines an optimization problem whose variables (the

ne + nd bases and offset vectors) can be efficiently optimized
(e.g. with gradient descent [57]) by composing the transformation
layers within a neural network. Then, the gradient ∇EL2 of EL2 can
be estimated by exploiting the automatic differentiation capabili-
ties of modern neural network implementations [76], themselves
based on the application of the chain-rule derivation on the above
composition of transformation layers.

3.2 From EAE to MT-WAE

When the input data is not given as a point cloud in a Euclidean
space (Sec. 3.1) but as an abstract set equipped with a metric,
the above EAE formulation needs to be extended. For this, we
redefine in this section the low-level geometrical tools used in
EAE (Sec. 3.1), but within the context of the Wasserstein metric
space B [78]. In particular, we formalize the following notions:

1) BDT vector (Fig. 6b);
2) BDT basis (Fig. 6d);
3) BDT basis projection (Fig. 6d);
4) BDT transformation layer (Fig. 7b).

(1) BDT vector: Given a BDT B with |B| branches, a BDT vector
V(B) ∈ B is a vector in R2|B|, which maps each branch b ∈ B to a
new location in the 2D birth/death space. B is the origin of V(B).
This is illustrated for example in Fig. 6b), where the branches of
a given merge tree

(
Fig. 6a

)
are displaced in the birth-death plane

(light blue vectors from the spheres of matching color).
(2) BDT basis: Given an origin BDT O, a d′-dimensional basis of
BDT vectors, noted B(O), is a set {V1(O),V2(O), . . . ,Vd′(O)} of
d′ linearly independent BDT vectors, having for common origin
O. This is shown in Fig. 6d), where two BDT vectors (from

Fig. 6b), and Fig. 6c), blue and green arrows) are combined into a
basis. Sec. 4.3 clarifies the basis initialization by our approach.
(3) BDT basis projection: Given an arbitrary BDT B, its projec-
tion error e(B) in a d′-dimensional BDT basis B(O) is:

e(B) = min
α

(
WT

2
(
B,O+B(O)α

))2
, (7)

where α ∈ Rd′ can be interpreted as a set of coefficients to apply
on the d′ BDT vectors of B(O) to best estimate B. Then, the
projection of B in B(O), noted ψ(B), is given by the optimal
coefficients α associated to the projection error of B (Eq. 7):

ψ(B) = argmin
α

(
WT

2
(
B,O+B(O)α

))2
. (8)

The above equation is a re-interpretation of Eq. 3 (Sec. 3.1),
where the L2 norm (used for EAE) is replaced by the Wasserstein
distance WT

2 . This projection procedure is illustrated in Fig. 6d).
Given a BDT basis B(O) (blue and green arrows), the projection
of an arbitrary BDT B is the linear combination ψ(B) of the BDT
vectors of the basis which minimizes its Wasserstein distance WT

2
to B. In the birth-death space, the branches of the basis origin O
are represented by the colored spheres at the intersection between
the blue and green arrows, while the branches of ψ(B) are rep-
resented by the other spheres of matching color. In this example,
the linear combination ψ(B) which minimizes its distance to B is
obtained for the coefficients α = (0.5,1). Then, to go from O to
ψ(B), each branch bi of O is displaced by 0.5 V1(O) (intersection
between the dashed lines and the blue arrows) and then by 1 V2(O)
(intersection between the dashed lines and the green arrows). The
resulting merge tree is shown in Fig. 6e). In contrast to the merge
tree of the basis origin

(
Fig. 6a)

)
, the persistence of the cyan

branch has increased while that of the black branch has decreased.
(4) BDT transformation layer: Once the above tools have been
formalized, we can introduce the novel notion of BDT transfor-
mation layer. Similarly to the Euclidean case (Sec. 3.1), a non-
linear activation function σ (in our case, Leaky ReLU) can be
composed with the above projection, yielding the new function
Ψ(B)=σ

(
ψ(B)

)
. Note that, at this stage, Ψ(B) can be interpreted

as a set of coefficients to apply on the BDT basis B(O) to best
estimate B. In other words, Ψ(B) is not a BDT yet, but simply
a set of coefficients, which can be used later to reconstruct a
BDT. Thus, a second transformation needs to be considered, to
transform the set of coefficients Ψ(B) back into a BDT. Then, we
define the notion of BDT transformation layer, noted Π(B), as the
composition Π(B) = Ψout ◦Ψin(B) (Fig. 7b):

Ψin(B) = σ

(
argminα

(
WT

2
(
B,Oin +Bin(Oin)α

))2
)

Ψout(α) = γ
(
Oout +Bout(Oout)α

)
,

Fig. 8. Projection γ en-
suring the Elder rule.

where γ(B) is a projection which trans-
forms B into a valid BDT, i.e. which
respects the Elder rule (Sec. A.2). Given
a branch b ∈ B, γ enforces that: γ(b)x <
γ(b)y and [γ(b)x,γ(b)y]⊆ [0,1] (Fig. 8).

BDT transformation layers can be
seen as local auto-encoders (Fig. 7b):
the first step Ψin converts an input BDT
into a set of coefficients with a basis
projection and a non-linearity, while the second step Ψout converts
these coefficients into a BDT. Note that each BDT transformation
layer is associated with its own input and output d′-dimensional
bases Bin(Oin) and Bout(Oout).



7

Fig. 7. Overview: given an input ensemble, with its merge trees and BDTs (a), our Wasserstein Auto-Encoder of Merge Trees (MT-WAE) optimizes
an auto-encoder (for this example, ne = nd = 2) where each layer Πk natively processes BDTs (without pre-vectorization). Specifically, each layer Πk
can be interpreted as a local auto-encoder (b), where an input sub-layer Ψin

k transforms the input BDT Bk−1( fi) into a set of coefficients α i
k ∈ Rdk

and where an output sub-layer Ψout
k transforms these coefficients back into a valid BDT Bk( fi). The aggregated views

(
(c),(d),(e),( f ),(g)

)
, which

overlap all the BDTs in the birth/death space (one color per BDT), show the ability of MT-WAE to progressively unwrap non-linear structures (circles)
as the BDTs progress down the network, resulting in faithful local parameterizations in latent space

(
(e), the individual angular parameterizations of

the circles are well preserved
)
, as well as accurate reconstructions (g). This native support of BDTs results in a superior accuracy (Sec. 6.2) and an

improved interpretability: individual features can now be tracked as they traverse the network, enabling new visual analysis capabilities (Sec. 5.2).

The processing of an ensemble of BDTs by a BDT transfor-
mation layer is illustrated in Fig. 7. Specifically, Fig. 7c) shows
a zoom of the birth-death space, where all the BDTs have been
aggregated (one color per BDT, each BDT has two branches,
hence two patterns appear, one circle per branch). The left inset
of Fig. 7b) shows the non-linearly transformed set of BDTs after
the first BDT transformation layer, Π1. Next, the first step Ψin

2 of
the next BDT layer Π2 converts each BDT Π1

(
B( fi)

)
into a set

of coefficients α i
2. Finally, the second step Ψout

2 of the layer Π2
converts each of these set of coefficients into a new, non-linearly
transformed BDT Π2 ◦Π1

(
B( fi)

) (
Fig. 7b), right inset

)
.

3.3 MT-WAE formulation

Now that the above geometrical tools have been introduced for the
Wasserstein metric space of merge trees, we can now formulate
MT-WAE by direct analogy to the Euclidean case (Sec. 3.1).
Given a set SB = {B( f1), . . . ,B( fN)} of input BDTs, a MT-WAE
is a composition of BDT transformation layers Πk(B) (Fig. 7),
minimizing the following energy:

EWT
2

=
N

∑
i=1

(
WT

2

(
B( fi),Πne+nd ◦ · · · ◦Πne ◦ · · · ◦Π1

(
B( fi)

)))2

,

(9)
where each BDT transformation layer Πk is associated with its
own dk-dimensional input and output vector bases Bin

k (Oin
k ) and

Bout
k (Oout

k ). Moreover, the dimensions of the successive bases are
chosen such that:

1) d1 > d2 > · · ·> dne , and
2) dne < dne+1 < · · ·< dne+nd ,

where ne and nd denote the number of Encoding and Decoding
layers and where dne is the dimension of the MT-WAE latent
space. Eq. 9 is a direct analog to the classical EAE (Eq. 6): the
standard transformation layers Ψk have been replaced by BDT
transformation layers Πk and the L2 norm by the distance WT

2 .

Algorithm 1 Wasserstein Auto-Encoder (algorithm overview).
Input: Set of BDTs SB = {B( f1), . . . ,B( fN )}.
Output1: Set of (ne +nd ) input origins θOin = {Oin

1 ,Oin
2 , . . . ,Oin

ne+nd
};

Output2: Set of (ne +nd ) input bases θBin = {Bin
1 (Oin

1 ),Bin
2 (Oin

2 ), . . . ,Bin
ne+nd

(Oin
ne+nd

)};
Output3: For each of the input BDTs (i ∈ {1,2, . . . ,N}), set of (ne +nd ) input coefficients:

θ i
α = {α i

1 ∈ Rd1 ,α i
2 ∈ Rd2 , . . . ,α i

ne+nd
∈ Rdne+nd };

Output4: Set of (ne +nd ) output origins θOout = {Oout
1 ,Oout

2 , . . . ,Oout
ne+nd

};
Output5: Set of (ne +nd ) output bases θBout = {Bout

1 (Oout
1 ),Bout

2 (Oout
2 ), . . . ,Bout

ne+nd
(Oout

ne+nd
)};

1: θ ←{θOin ,θBin ,θOout ,θBout }; / / Overall set of optimization variables.

2: Initialize(θ); / / Initialization of the optimization variables (Sec. 4.3).

3: while EWT
2
(θ) decreases do

4: ŜB ← Forward(SB ,θ); / / Forward propagation of the BDT ensemble SB (Sec. 4.4).

5: θ ← Backward(SB ,ŜB); / / Backward propagation (Sec. 4.5).

6: end while

Fig. 7 illustrates a network of BDT transformation layers
optimized on a synthetic ensemble (our optimization algorithm
is described in Sec. 4). As mentioned in the previous section, each
input BDT (spheres in the aggregated birth-death views, one color
per BDT) is non-linearly transformed by the BDT transformation
layers

(
see for instance Fig. 7d) and Fig. 7f)

)
. As a result, in this

example, the BDT transformation layers progressively unwrap the
non-linear structures in the birth-death plane

(
circles in Fig. 7c)

)
as the BDTs traverse the network down to the latent space(
Fig. 7e)

)
, where the resulting layout in the birth-death plane (line

segments) manages to faithfully encode the purposely designed
parameterization of the ensemble: the order of rotation angles
(colors) is well preserved along the segments in latent space.

4 ALGORITHM

This section presents our algorithm for the minimization of Eq. 9.

4.1 Overview
Alg. 1 provides an overview of our main algorithm. The set of
optimization variables, noted θ and declared line 1, includes the
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(ne + nd) input and output BDT bases, along with their origins.
The optimization of these variables follows the standard overall
procedure for the optimization of a neural network.
(1) Initialization: First, θ is initialized, as detailed in Sec. 4.3.
(2) Forward propagation: Then, the input ensemble of BDTs
SB, illustrated in Fig. 7a, traverses the network to generate a
reconstructed ensemble of BDTs, noted ŜB. This occurs line 4
of Alg. 1 and it is illustrated from Fig. 7c to Fig. 7g with the
dark blue arrows. This is traditionally denoted as the Forward
propagation. This part of our approach is documented in Sec. 4.4.
(3) Backward propagation: Given ŜB, the energy EWT

2
(θ),

detailed in Eq. 9, can be evaluated and its gradient ∇EWT
2
(θ) can

be estimated by automatic differentiation, based on the application
of the chain-rule on the composition of BDT transformation layers.
Given the gradient ∇EWT

2
(θ), a step of gradient descent can

be achieved to update the optimization variables θ . This occurs
line 5 of Alg. 1. This is traditionally denoted as the Backward
propagation. This part of our approach is detailed in Sec. 4.5.
(4) Stopping condition: The two steps of forward and backward
propagations are then iterated until the energy stops decreasing, in
practice until it decreases by less than 1% between two iterations.

4.2 Basis projection

We start by describing an efficient Assignment/Update algorithm
for the projection of a BDT B into a BDT basis B(O) (Eq. 8), as
it is a core geometrical component used throughout our approach.

The purpose of the projection (Eq. 8) is to find a set of
coefficients α ∈ Rd′ to apply on the d′ BDT vectors of B(O) to
best estimate B. The geodesic analysis of merge trees [79] faces
a similar issue, but its formulation (restricting α to [0,1]d

′
) allows

for an iterative, brute-force optimization. Here, we introduce a
more general and efficient strategy.
(1) Assignment step: Let us assume that we are given an initial
set of coefficients α . Then, the estimation B̂ of B is given by
B̂ ← O+B(O)α . The purpose of the assignment step is to refine
the evaluation of WT

2 (B, B̂). For this, we first compute the optimal
assignment1 φ∗ between B and B̂, w.r.t. Eq. 1. Then, WT

2 (B, B̂)
can be re-written as:

WT
2 (B, B̂) =

|B|

∑
i=1
||bi−φ∗(bi)||22. (10)

(2) Update step: Given the above estimation B̂, the goal of the
update step is to improve the coefficients α , in order to decrease
WT

2 (B, B̂). Let B̂′ be a vector representation of B̂. Specifically, B̂′
is a vector in R2|B̂| which concatenates the coordinates in the 2D
birth/death plane of each branch bi of B̂. B̂′ can be decomposed
into O′ +

(
B(O′)

)′
α , where

(
B(O′)

)′ is a (2|B̂|)× d′ matrix.
Additionally, let B′ be a similar vector representation of B, but
where the entries have been specifically re-ordered such that, for
each of its 2D entries, we have:

(B′)i = φ
−1
∗

(
(B̂′)i

)
. (11)

Intuitively, B′ is a re-ordered vector representation of B, such
that its ith entry exactly matches though φ∗ with the ith entry
of B̂′. Given this vector representation, the Wasserstein distance

1. This discussion describes the case where φ∗ is a bijection between off-
diagonal points of the 2D birth/death plane. Appendix B details the general
case, where φ∗ may send points of B to the diagonal of B̂, and reciprocally.

WT
2 (B, B̂) for a fixed optimal assignment φ ∗ (Eq. 10) can then be

re-written as an L2 norm:

WT
2 (B, B̂) = ||B′−B̂′||22. (12)

Then, given the optimal assignment φ∗, the optimal α∗ ∈ Rd′ are:

α∗ = argminα ||B′−B̂′||22
α∗ = argminα ||B′−

(
O′+

(
B(O′)

)′
α

)
||22

α∗ = argminα ||B′−O′−
(
B(O′)

)′
α||22.

Similarly to the Euclidean case (Eq. 4), it follows then that α∗ can
be expressed as a function of the pseudoinverse of

(
B(O′)

)′:
α∗ =

((
B(O′)

)′)+
(B′−O′). (13)

At this stage, the estimation B̂ can be updated with the above
optimized coefficients α∗: B̂ ← O+B(O)α∗.

The above Assignment/Update sequence is then iterated. Each
iteration decreases the projection error e(B) constructively: while
the Update phase (2) optimizes α (Eq. 7) to minimize the pro-
jection error under the current assignment φ∗, the next Assignment
phase (1) further improves (by construction) the assignments (term
WT

2 in Eq. 7), hence decreasing the projection error overall. In our
implementation, this iterative algorithm stops after a predefined
number of iterations nit .

4.3 Initialization

Now that we have introduced the core low-level procedure of our
approach (Sec. 4.2), we can detail the initialization step of our
framework, which consists in identifying a relevant initial value
for the overall optimization variable θ (line 2, Alg. 1). The BDT
transformation layers Πk are initialized one after the other, i.e. for
increasing values of k.
(1) Input initialization: For each BDT transformation layer Πk,
its input origin Oin

k is initialized as the Wasserstein barycenter B∗
[78] of the BDTs on its input. Next, the first vector of Bin

k , is
given by the optimal assignment (w.r.t. Eq. 1) between Oin

k and
the layer’s input BDT B which maximizes WT

2 (Oin
k ,B), i.e. which

induces the worst projection error e(B) (Eq. 7) given an empty
basis. Next, the remaining (dk− 1) vectors of Bin

k are initialized
one after the other, by including at each step the vector formed by
the optimal assignment between Oin

k and the layer’s input BDT
B which induces the maximum projection error e(B) (Eq. 7),
given the already initialized vectors. Note that this step makes an
extensive usage of the projection procedure introduced in Sec. 4.2.
Finally, if the dimension dk of Πk is greater than the number of
input BDTs, the remaining vectors are initialized randomly, with a
controlled norm (set to the mean of the already initialized vectors).
(2) Output initialization: For each BDT transformation layer Πk,
its output origin Oout

k and basis Bout
k are initialized as random

linear transformations of its input origin and basis. Specifically,
let W be a random matrix of size (2|Oout

k | × 2|Oin
k |). Given the

vector representation Oin
k
′ of Oin

k (see Sec. 4.2), we initialize Oout
k

such that: Oout
k
′ ←WOin

k
′. Similarly, the output basis of Πk is

initialized such that: Bout
k
′←WBin

k
′.

4.4 Forward propagation

Alg. 2 presents the main steps of our forward propagation. This
procedure follows directly from our formulation (Sec. 3.2). Each
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Algorithm 2 Forward propagation in our Wasserstein Auto-
Encoder.

Input1: Set of input BDTs SB = {B( f1), . . . ,B( fN )}.
Input2: Current value of the overall optimization variable θ .

Output: Set of reconstructed BDTs ŜB = {B̂( f1), . . . ,B̂( fN )}.

1: for B ∈SB do
2: B0 ←B.

3: for k ∈ {1,2, . . . ,ne +nd} do
4: // For each BDT transformation layer Πk .

5: ψ in
k (Bk−1)←basisProjection(Bk−1 ,Oin

k ,Bin
k ). / / Sec. 4.2.

6: Ψin
k (Bk−1)← σ

(
ψ in

k (Bk−1)
)
. / / Sec. 3.2.

7: Bk ←Ψout
k

(
Ψin

k (Bk−1)
)
= γ

(
Oout

k +Bout
k (Oout

k )Ψin
k (Bk−1)

)
. / / Sec. 3.2.

8: end for
9: ŜB ← ŜB ∪Bne+nd

10: end for

input BDT B ∈ SB is processed independently (line 1). Specif-
ically, B will traverse the network one layer Πk at a time (line
3). Within each layer Πk, the projection through the input sub-
layer Ψin

k is computed (line 6) by composing a non-linearity
σ with the basis projection (Sec. 3.2). This yields a set of
coefficients representing the input BDT. Next, following Sec. 3.2,
these coefficients are transformed back into a valid BDT with
the output sub-layer (line 7). At the end of this process, a set of
reconstructed BDTs ŜB is available, for a fixed value of θ .

4.5 Backward propagation

Given the set of reconstructed BDTs ŜB for the current value of θ

(Sec. 4.4), the data fitting energy (Eq. 9) is evaluated. Specifically,
for each input BDT B ∈ SB, the optimal assignment φ∗ w.r.t. Eq. 1
is computed between B and its reconstruction, Bne+nd , provided
on the output of the network. Next, similarly to Sec. 4.2 for basis
projections, the vector representation B′ of B is constructed and
re-ordered such that the ith entry of this vector corresponds to the
pre-image by φ∗ of the ith entry of B′ne+nd

(c.f. Eq. 19). Then, given
the optimal assignment φ∗, similarly to Sec. 4.2, WT

2 (B,Bne+nd )
can be expressed as an L2 norm (Eq. 12). Given the set Φ∗ of all
the optimal assignments between the input BDTs and their output
reconstructions, EWT

2
(θ) is then evaluated:

EWT
2
(θ) =

N

∑
i=1
||B( fi)

′−Bne+nd ( fi)
′||22. (14)

At this stage, for a given set Φ∗ of optimal assignments, the
evaluation of Eq. 14 only involves basic operations (as described
in the previous sections: vector re-orderings, pseudoinverse com-
putations, linear transformations, and compositions). All these op-
erations are supported by the automatic differentiation capabilities
of modern neural frameworks (in our case PyTorch [76]), enabling
the automatic estimation of ∇EWT

2
(θ). Then, θ is updated by

gradient descent [57].
Our overall optimization algorithm (Alg. 1) can be interpreted

as a global instance of an Assignment/Update strategy. Each
backward propagation updates the overall variable θ to improve
the data fitting energy (Eq. 9), while the next forward propagation
improves the network outputs and hence their assignments to the
inputs. In the remainder, the terms PD-WAE and MT-WAE refer
to the usage of our framework with persistence diagrams or merge
trees respectively. We refer the reader to the Appendix C for a
detailed discussion of the meta-parameters of our approach (e.g.
layer number, layer dimensionality, etc).

Fig. 9. Application of our merge tree compression to feature tracking
(experiment adapted from [78], [79] for comparison purposes). The 5
most persistent maxima (spheres) of three time steps (ion density during
universe formation [73]) are tracked through time (left, f1, f2 and f3) by
considering the optimal assignment (Eq. 1) between the corresponding
merge trees (inset, left). The same tracking procedure is applied to the
merge trees compressed by WAE (inset, right). Similarly to PGA [79],
the resulting tracking is identical with the compressed trees. However,
in comparison to PGA [79], for a target compression factor of 13.44, the
relative reconstruction error (right) is clearly improved with WAE.

5 APPLICATIONS

This section illustrates the utility of our framework in concrete
visualization tasks: merge tree compression and dimensionality
reduction. These applications and use-cases are adapted from [79],
to facilitate comparisons between previous work on the linear
encoding of merge trees [79] and our novel non-linear framework.

5.1 Merge tree compression

As discussed by Pont et al. [79], like any data representation,
merge trees can benefit from lossy compression. For example,
for the in-situ analysis of high-performance simulations [6], each
individual time-step of the simulation can be represented and
stored to disk in the form of a topological descriptor [20]. In
this context, this lossy compression eases the manipulation of the
generated ensemble of topological descriptors (i.e. it facilitates its
storage and transfer). Previous work has investigated the compres-
sion of an ensemble of merge trees via linear encoding [79]. In
this section, we improve this application by extending it to non-
linear encoding, thereby enabling more accurate compressions.
Specifically, the input ensemble SB of BDTs is compressed, by
only storing to disk:
(1) the output sub-layer of the last decoding layer of the net-
work, noted Ψout

ne+nd
(i.e. its origin, Oout

ne+nd
, as well as its basis,

Bout
ne+nd

(Oout
ne+nd

))
(2) the corresponding N BDT coefficients α i

ne+nd
∈ Rdne+nd .

Note that an alternative compression strategy would consist
in storing the N BDT coefficients in latent space directly (i.e.
α i

ne ∈ Rdne ), which would be typically more compact than the N
BDT coefficients in the last output sub-layer (α i

ne+nd
∈ Rdne+nd ).

However, in order to decompress this representation, one would
need to store to disk the entire set of nd decoding layers. This
significant overhead would only be compensated for ensembles
counting an extremely large number N of members. In our exper-
iments (Sec. 6), N = 48 for the largest ensemble. Thus, we focus
on the first strategy described above (storing potentially larger sets
of coefficients, but a smaller number of decoding layers).

The compression factor can be controlled with two input
parameters: (i) dne+nd controls the dimensionality of the last
decoding layer (hence its ability to capture small variabilities) and
(ii) |Oout

ne+nd
| controls the size of the origin of the last decoding

sub-layer (hence its ability to capture small features). The resulting
reconstruction error (Eq. 9) will be minimized for large values of
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Fig. 10. Application of our merge tree compression to topological cluster-
ing (experiment adapted from [78], [79] for comparison purposes). The
ensemble is clustered [78] based on the merge trees (top left insets)
of the ensemble members (each column represents a member from
one of the 4 clusters). The same clustering procedure [78] is applied
to the merge trees compressed by WAE (top right insets). Similarly
to PGA [79], the resulting clustering is identical with the compressed
trees (it exactly matches the ground-truth classification [78]). However,
in comparison to PGA [79], for a target compression factor of 15.09, the
relative reconstruction error (top) is clearly improved with WAE. Visually,
the compressed trees look very similar to the original ones: the promi-
nent features (in colors, non-prominent features are shown with small
white nodes) are well preserved in terms of number and persistence.
The same holds for the compressed BDTs (bottom right insets) which
are nearly isomorphic to the original BDTs (bottom left insets, the color
shows the assignment between the original and compressed BDTs).

both parameters, while the compression factor will be minimized
for low values. In the following experiments, we set both param-
eters to their default values (Appendix C). To decompress a BDT
B( fi), its stored coefficients α i

ne+nd
are simply propagated through

the stored output sub-layer of the network, Ψout
ne+nd

.
Figs. 9 and 10 show two examples of visualization tasks (fea-

ture tracking and ensemble clustering, use cases replicated from
[78], [79] for comparison purposes). In these experiments, the

BDTs have been compressed with the strategy described above.
Next, the de-compressed BDTs have been used as an input to these
two analysis pipelines. In both cases, the output obtained with
the de-compressed BDTs is identical to the output obtained with
the original BDTs. This shows the viability of the de-compressed
BDTs and it demonstrates the utility of this compression scheme.

5.2 Dimensionality reduction

This section describes how to use MT-WAE to generate 2D layouts
of the ensemble, for the global visual inspection of the ensemble.
This is achieved by setting dne = 2 and by embedding each BDT
B( fi) as a point in the plane, at its latent coordinates (α i

ne)1 and
(α i

ne)2. This results in a summarization view of the ensemble,
grouping similar BDTs together (Fig. 1c). The flexibility of our
framework allows to further improve the quality of this 2D layout.
Specifically, Appendix D introduces two penalty terms aiming at
(1) improving the preservation of the Wasserstein metric WT

2 and
(2) improving the preservation of the clusters of BDTs.

We augment our 2D layouts with Persistence Correlation
Views (PCV) which were introduced in [79]. In short, the PCV
embeds a branch b of the barycenter B∗ [78] as a point in 2D,
in order to represent the variability of the corresponding feature
in the ensemble, as a function of the coordinates in latent space.
Specifically, the optimal assignments φ∗i between B∗ and each
input BDT B( fi) is first computed (Eq. 1). Next, for a given

branch b ∈ B∗, the Pearson correlation ρ
(

pbi ,(α
i
ne)1

)
between

the persistence pbi of φ∗i(b) ∈ B( fi) and the first coordinate
in latent space (α i

ne)1 is computed for the ensemble (i.e. for
i ∈ {1,2, . . . ,N}). Next, the Pearson correlation ρ

(
pbi ,(α

i
ne)2

)
is computed similarly with regard to the second coordinate in
latent space (α i

ne)2. Finally, b is embedded in the PCV at the

coordinates
(

ρ
(

pbi ,(α
i
ne)1

)
,ρ

(
pbi ,(α

i
ne)2

))
. To avoid clutter in

the visualization, we only report the most persistent branches of
B∗ in the PCV. Intuitively, points in the PCV which are located
far away from the center, along a given direction, indicate a
strong correlation between that direction in latent space, and the
persistence of the corresponding feature in the ensemble.

PCVs enable the identification of patterns of feature variability
within the ensemble, as discussed in Fig. 11. This case study
considers the Isabel ensemble, which consists of 12 scalar fields
representing the wind velocity magnitude in a hurricane simula-
tion. The ensemble comes with a ground-truth classification [78]:
4 members correspond to the formation of the hurricane (e.g. f1,
Fig. 11), 4 other members to its drift (e.g. f2, Fig. 11) and 4
other members to its landfall (e.g. f3, Fig. 11). For this ensemble,
our PD-WAE approach produces a 2D layout

(
Fig. 11b)

)
which

manages to recover the temporal coherency of the ensemble: the
formation (dark red), drift (pink) and landfall (light pink) clusters
are arranged in order along a line

(
direction (1,−1)

)
. This shows

the ability of PD-WAE to recover the intrinsic structure of the
ensemble (here its temporal nature). The PCV (grey inset) further
helps appreciate the variability of the features in the ensemble.
There, each colored point indicates a persistent feature of the
barycenter: the eye of the hurricane is represented by the blue
sphere, while the cyan, black and white sphere represent peripheral
gusts of wind

(
see the matching features in the data, Fig. 11a)

)
.

The PCV clearly identifies two patterns of feature variability,
along the direction (1,−1), which coincides with the temporal
alignment of the clusters in latent space. Specifically, it indicates
that the persistence of the hurricane eye will be larger in the
top left corner of the latent space, i.e. towards the beginning
of the temporal sequence (dark red cluster). This is confirmed
visually when inspecting the persistence diagrams of the individ-
ual members (the blue feature is less persistent in D( f3) than in
D( f1) and D( f2)). In short, this visually encodes the fact that the
strength of the hurricane eye decreases with time. In contrast, the
features corresponding to peripheral wind gusts (cyan, black and
white spheres) exhibit a common variability pattern, distinct form
that of the hurricane eye: the persistence of the corresponding
features increases as one moves along the direction (1,−1) in
latent space, i.e. as time increases (pink and light pink clusters).
This is confirmed visually in the individual members, where the
persistence of these features is larger in D( f3) than in D( f1) and
D( f2). In short, this visually encodes the fact that the strength of
the peripheral wind gusts increases with time. Overall, while the
2D layout generated by PD-WAE enables the visualization of the
intrinsic structure of the ensemble (here, its temporal nature), the
PCV enables the visualization and interpretation of the variability
in the ensemble at a feature level. The caption of Fig. 1 includes a
similar discussion for MT-WAE.

Fig. 12 provides a qualitative comparison of the 2D layouts
and Persistence Correlation Views (PCVs) between PD-PGA [79]
and our novel non-linear framework, PD-WAE (see Sec. 6.2 for
an extensive quantitative comparison). Specifically, it shows that,
while PD-PGA

(
Fig. 12a)

)
manages to isolate the clusters well,
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Fig. 11. Visual analysis of the Isabel ensemble (one member per ground-truth class, top), with PD-WAE (in this example, ne = nd = 2). Our work
enables diagram compression, while providing reconstructed diagrams

(
(a), top insets

)
which are highly similar to the input (below). The 2D layout

generated by PD-WAE (b) recovers the temporal structure of the ensemble (the clusters are aligned in chronological order, from dark red to light
pink). The PCV (grey inset) indicates that the peripheral gusts of wind in the data (white, black and cyan spheres) grow in importance when moving
towards the bottom right corner of the latent space (their persistence increases over time). In contrast, the hurricane eye (light blue) exhibits less
variability, but with stronger values towards the top left corner of the latent space (start of the sequence). The aggregated views (bottom, overlapping
all diagrams, transparent: barycenter) for the input (c) and the latent space (d) show that PD-WAE nicely recovers a per-feature parameterization
in the latent space (one ellipse per barycenter feature), which is locally consistent with the data temporal evolution (cluster color).

Fig. 12. Qualitative comparison of the 2D layouts (left, white inset)
and PCVs (right, grey inset) between PD-PGA [79] (a) and PD-WAE
(b) for the Isabel ensemble. PD-WAE manages to recover the intrinsic
temporal structure of the ensemble and produces a linear alignment of
the clusters in order of temporal appearance (dark red, pink, light pink).

its 2D layout does not recover the intrinsic, one-dimensional,
temporal structure of the ensemble. In contrast, as discussed
above, PD-WAE

(
Fig. 12b)

)
manages to recover this intrinsic

structure and produces a linear alignment of the clusters along
the direction (1,−1), in order of their temporal appearance. This
alignment greatly facilitates the interpretation of the PCV, since
time is now visually encoded there by the linear direction (1,−1)

)
(whereas it would be encoded by a curve in the case of PD-PGA).

In contrast to standard auto-encoders, our approach explicitly
manipulates topological descriptors throughout the network. This
results in improved interpretability and enables new capabilities:
(1) Latent feature transformation: As discussed in Fig. 11,
it is now possible to visualize how topological descriptors are
(non-linearly) transformed by the auto-encoder. Specifically, the

aggregated views of the birth/death space (bottom) illustrates how
PD-WAE unwraps the diagrams in latent space, nicely recovering
the data temporal evolution at a feature level (see the temporally
consistent linear arrangements of points for each barycenter fea-
ture in Fig. 11d), from dark red to pink and light pink).
(2) Latent space navigation: Given a point in latent space, it is
now possible to efficiently reconstruct its BDT/MT by propagating
its latent coordinates through the decoding layers, enabling an
interactive exploration of the merge tree latent space (Fig. 1d).
(3) Feature traversal analysis: For each consecutive layers Πk
and Πk+1, we compute the optimal assignment (Eq. 1) between
their input origins, Oin

k and Oin
k+1. Next, we compute the optimal

assignment between the barycenter B∗ [78] of the input ensemble
and the first origin Oin

1 . This yields an explicit tracking of each
branch b of B∗ down to the latent space. We introduce the notion
of Feature Latent Importance (FLI), given by the persistence of b
in latent space, divided by its original persistence. FLI indicates if
a feature gains (or looses) importance in latent space. This enables
the identification of the most informative features in the ensemble.

This is illustrated in Fig. 1e), where the cyan, white, dark
blue and black features exhibit large FLI values (red circles).
In the trees, these features are indeed present in most of the
ensemble

(
Fig. 1d)

)
, with only moderate variations in persistence.

Interestingly, the global maximum of seismic wave (light blue
feature) is not a very informative feature (light blue circle): while
it is also present throughout the sequence, its persistence decreases
significantly (left to right). This visually encodes that, as the
seismic wave travels from the epicenter, the strength of its global
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TABLE 1
Running times (in seconds) of our algorithm for PD-WAE and MT-WAE

computation (first sequential, then with 20 cores).

Dataset N |B| PD-WAE MT-WAE
1 c. 20 c. Speedup 1 c. 20 c. Speedup

Asteroid Impact (3D) 7 1,295 2,819.38 989.42 2.85 5,946.81 1,522.89 3.90
Cloud processes (2D) 12 1,209 11,043.20 1,318.63 8.37 16,150.90 2,566.98 6.29
Viscous fingering (3D) 15 118 1,345.31 268.78 5.01 3,727.64 417.31 8.93
Dark matter (3D) 40 316 125,724.00 10,141.30 12.40 135,962.00 8,051.02 16.89
Volcanic eruptions (2D) 12 811 4,925.15 638.58 7.71 4,151.04 449.14 9.24
Ionization front (2D) 16 135 627.04 95.31 6.58 1,140.44 144.57 7.89
Ionization front (3D) 16 763 17,285.10 1,757.71 9.83 101,788.00 5,350.46 19.02
Earthquake (3D) 12 1,203 14,272.10 2,074.52 6.88 9,888.68 1,024.45 9.65
Isabel (3D) 12 1,338 3,485.03 436.56 7.98 23,240.90 1,669.20 13.92
Starting Vortex (2D) 12 124 215.46 95.45 2.26 281.80 147.51 1.91
Sea Surface Height (2D) 48 1,787 41,854.70 2,901.39 14.43 222,594.00 13,540.20 16.44
Vortex Street (2D) 45 23 460.46 152.35 3.02 117.88 38.88 3.03

maximum is no longer significant in front of other local maxima
(which illustrates the energy diffusion process).

6 RESULTS

This section presents experimental results obtained on a computer
with two Xeon CPUs (3.2 GHz, 2x10 cores, 96GB of RAM).
The input merge trees were computed with FTM [39] and pre-
processed to discard noisy features (persistence simplification
threshold: 0.25% of the data range). We implemented our ap-
proach in C++ (with OpenMP and PyTorch’s C++ API [76]), as
modules for TTK [13], [93]. Experiments were performed on a set
of 12 public ensembles described in [78], which includes a variety
of simulated and acquired 2D and 3D ensembles extracted from
previous work and past SciVis contests [73].

6.1 Time performance
The Wasserstein distance computation (Eq. 1) is the most expen-
sive sub-procedure of our approach. It intervenes during energy
evaluation (Sec. 4.5) but also at each iteration of basis projection
(Sec. 4.2), itself occuring at each propagation iteration (Sec. 4.4),
for each input BDT. To compute this distance, we use a fine-grain
task-based parallel algorithm [78]. We leverage further parallelism
to accelerate the process. Specifically, for each input BDT, its
forward propagation (Sec. 4.4) can be run in a distinct parallel
task. Similarly, when evaluating the overall energy (Sec. 4.5),
the distance between an input BDT and its output reconstruction
is computed in a distinct parallel task for each BDT. Tab. 1
evaluates the time performance of our framework for persistence
diagrams (PD-WAE) and merge trees (MT-WAE). In sequential
mode, the computation time is a function of the ensemble size
(N), the tree sizes (|B|), and the network size (ne + nd). Specif-
ically, our approach computes, for each optimization iteration,
nit × (ne +nd)×N Wasserstein distances, each of which requiring
O(|B|2) steps in practice. In parallel, the iterative nature of
our approach (Alg. 1) challenges parallel efficiency. However,
timings are still improved after parallelization (orders of minutes
on average), with a very good parallel efficiency for the largest
ensembles (up to 95%).

6.2 Framework quality
Figs. 9 and 10 report compression factors for our application to
merge tree compression (Sec. 5.1). These are ratios between the
storage size of the input N BDTs and that of their compressed
form. For a fixed target compression factor, WAE clearly improves
the reconstruction error over linear encoding (PGA [79]). Ap-
pendix E extends this error comparison to all our test ensembles,
and shows that, for identical compression factors, our framework
improves the reconstruction error over PGA [79] by 37% for

Fig. 13. Comparison of planar layouts for typical dimensionality reduc-
tion techniques, on two merge tree ensembles. The color encodes the
classification ground-truth [78]. For each quality score, the best value
appears bold and the rank of the score is shown in parenthesis. This
experimental protocol is adapted from [79] for comparison purposes.

TABLE 2
Comparison of aggregated layout quality scores (i.e. averaged over all

merge tree ensembles, bold: best values). WAE-MC provides both
superior metric (SIM) and cluster (NMI/ARI) preservation to pre-existing

techniques (MDS [58], t-SNE [96], PGA [79], VEC-EAE).

Indicator MDS t-SNE PGA VEC-EAE WAE WAE-M WAE-C WAE-MC
NMI 0.78 0.83 0.82 0.71 0.84 0.76 0.96 0.87
ARI 0.68 0.75 0.74 0.55 0.77 0.63 0.95 0.82
SIM 0.86 0.75 0.79 0.74 0.78 0.87 0.78 0.86

persistence diagrams, and 52% for merge trees, hence confirming
the accuracy superiority of WAE over PGA.

Fig. 13 provides a visual comparison for the planar layouts
generated by a selection of typical dimensionality reduction
techniques, applied on the input merge tree ensemble (i.e. each
point is a merge tree). This experiment is adapted from [79] for
comparison purposes. This figure reports quantitative scores. For
a given technique, to quantify its ability to preserve the structure
of the ensemble (i.e. its organization into ground-truth classes),
we run k-means in the 2D layouts and evaluate the quality of
the resulting clustering (given the ground-truth [78]) with the
normalized mutual information (NMI) and adjusted rand index
(ARI). To quantify its ability to preserve the geometry of the
ensemble (i.e. to preserve its disposition within the Wasserstein
metric space B), we report the metric similarity indicator SIM
[79], which evaluates the preservation of the Wasserstein metric
WT

2 . All these scores vary between 0 and 1, with 1 being optimal.
MDS [58] and t-SNE [96] have been applied on the distance

matrix of the input merge trees (Wasserstein distance, Eq. 1, de-
fault parameters [78]). By design, MDS preserves well the metric
WT

2 (good SIM), at the expense of mixing ground-truth classes
together (low NMI/ARI). t-SNE behaves symmetrically (higher
NMI/ARI, lower SIM). We applied PGA [79] by setting the origin
size parameter to a value compatible to our latent space (0.1|SB|,
Appendix C). As expected, PGA provides a trade-off between
the extreme behaviors of MDS and t-SNE, with an improved
cluster preservation over MDS (NMI/ARI), and an improved
metric preservation over t-SNE (SIM). WAE also constitutes a
trade-off between MDS and t-SNE, but with improved quality
scores over PGA.

We compare our approach to a standard auto-encoder (EAE,
Sec. 3.1) applied on the following vectorization of the input merge
trees. Note that several vectorizations of persistence diagrams have
been studied [2], [22], [56]. However we focus in this work on
merge trees and only few vectorizations have been documented
for these [61]. Hence we focus on the following strategy, inspired
by [61]. Each input BDT B( fi) is embedded in R2|B∗|, such that the
jth entry of this vector corresponds to the birth/death location of
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the branch of B( fi) which maps to the jth branch of the barycenter
B∗ [78]. Next, we feed these vectorizations to an EAE, with the
same meta-parameters as our approach (i.e. number of layers,
dimensionality per layer). The corresponding results appear in
the VEC-EAE column. Our approach (WAE) outperforms this
straightforward application of EAE, with clearly higher clustering
scores (NMI/ARI) and improved metric scores (SIM).

Fig. 13 also reports the layouts obtained with our approach
after enabling the metric penalty term (WAE-M), the clustering
penalty term (WAE-C) and both (WAE-MC), c.f. Appendix D.
WAE-M (respectively WAE-C) significantly improves the metric
(respectively cluster) preservation over MDS (repectively t-SNE).
The combination of the two terms (WAE-MC) improves both
quality scores simultaneously: it outperforms MDS (SIM) and it
improves t-SNE (NMI/ARI). In other words, WAE-MC improves
established methods by outperforming them on their dedicated
criterion (SIM for MDS, NMI/ARI for t-SNE).

Appendix F extends our visual analysis to all our test ensem-
bles. Tab. 2 also extends our quantitative analysis to all our test
ensembles. It confirms the clear superiority of WAE over VEC-
EAE. It also confirms that the combination of our penalty terms
(WAE-MC) provides the best metric (SIM) and cluster (NMI/ARI)
scores over existing techniques.

6.3 Limitations
As discussed in Sec. 2.2, the parameter ε1 of the Wasserstein
distance between merge trees (WT

2 ) acts as a control knob, that
balances the practical stability of the metric with its discriminative
power. Specifically, for ε1 = 1, we have WT

2 =WD
2 and WT

2 is sta-
ble, but less discriminative. Pont et al. [78] showed experimentally
that for relatively low values of ε1 (0.05), WT

2 still behaved in a
stable manner in practice for reasonable noise levels. Our overall
MT-WAE framework behaves similarly. Appendix G provides a
detailed empirical stability evaluation of our framework in the
presence of additive noise. In particular, this experiment shows
that for reasonable levels of additive noise ε (normalized with
regard to the function range), typically ε < 0.1, the recommended
default value of ε1 (0.05) results in a stable MT-WAE computation.
For larger noise levels (ε > 0.1), MT-WAE provides similar stabil-
ity scores to PD-WAE, for values of ε1 which are still reasonable
in terms of discriminative power (ε1 = 0.1).

A possible direction to improve the practical stability of the
framework without having to deal with a control parameter such
as ε1 would be to consider branch decompositions driven by other
criteria than persistence (such as hyper-volume [25] for instance).
However, the persistence criterion plays a central role in the
Wasserstein distance between merge trees, as discussed by Pont et
al. [78] (Sec. 4), in particular to guarantee that interpolated BDTs
computed during geodesic construction can indeed be inverted
into a valid MT. Thus, other branch decomposition criteria than
persistence would require to derive a completely new procedure
for several key components of our framework, such as geodesic
computation or barycenter estimation. This is an orthogonal re-
search direction to this work, which we leave for future work.

Similarly to other optimization problems based on topologi-
cal descriptors [78], [79], [95], [97], our energy is not convex.
However, our experiments indicate that our initialization strategy
(Sec. 4.3) leads to relevant solutions, which can be successfully
applied for visualization (Sec. 5).

Since it is based on neural networks, our approach inherits
from their intrinsic limitations. Specifically, the energy is not guar-

Fig. 14. Evolution of the normalized reconstruction error along the
iterations, for PD-WAE (left) and MT-WAE (right).

anteed to monotonically decrease over the iterations. However, this
theoretical limitation has never translated into a practical limitation
in our experiments. Fig. 14 reports the evolution of the normalized
reconstruction error for PD and MT-WAE computations, for all
our test ensembles. In particular, it shows that typical, temporary
energy increases can indeed be observed (as often reported when
optimizing neural networks), but without preventing the network
from converging overall (i.e. reaching a state where the energy
decreases by less than 1% between consecutive iterations). Like
other neural methods, our approach is conditioned by the meta-
parameters defining the network (i.e. number of layers, dimen-
sionality of each layer, etc.). However, we ran our experiments
with fairly basic values for these meta-parameters (as detailed
in Appendix C) and still obtained substantial improvements over
linear encoding based on PGA [79]. This indicates that optimizing
in the future these meta-parameters is likely to improve the quality
of our framework, however possibly at the expense of longer
computations. Finally, our application to merge tree compression
does not guarantee any error bound in its current form, which we
leave for future work.

7 CONCLUSION

In this paper, we presented a computational framework for the
Wasserstein Auto-Encoding of merge trees (and persistence di-
agrams), with applications to merge tree compression and di-
mensionality reduction. Our approach improves previous linear
attempts at merge tree encoding, by generalizing them to non-
linear encoding, hence leading to lower reconstruction errors.
In contrast to traditional auto-encoders, our novel layer model
enables our neural networks to process topological descriptors
natively, without pre-vectorization. As shown in our experiments,
this contribution leads not only to superior accuracy (Sec. 6.2) but
also to superior interpretability (Sec. 5.2): with our work, it is now
possible to interactively explore the latent space and analyze how
topological features are transformed by the network in its attempt
to best encode the ensemble. Overall, the visualizations derived
from our contribution (Figs. 1, 11) enable the interactive, visual
inspection of the ensemble, both at a global level (with our 2D
layouts) and at a feature level. Specifically, our novel notion of
feature latent importance enables the identification of the most
informative features in the ensemble.

In the future, we will continue our work towards the de-
velopment of further statistical tools for the visual analysis of
ensemble data, based on topological descriptors. In particular,
there are several research avenues for improving our current
approach. For example, the Wasserstein distance between merge
trees is subject to several meta-parameters (Sec. 2.2), for which we
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provide generic default values which have shown to be relevant
in practice. A possible improvement could consist in letting the
auto-encoding framework optimize these meta-parameters (on a
per branch basis). However, this data-driven setup of the meta-
parameters of our approach would come at the expense of ex-
tended running times. Another research avenue could consist in
combining our framework with existing approaches on topological
losses for image segmentation [49], [50], [92], in order to also
auto-encode the scalar data. Moreover, another direction could
consist in training a single neural network for auto-encoding
multiple ensembles at once. However, this would require to derive
new normalization strategies, since, as the scalar fields can take
arbitrarily distinct value ranges from an ensemble to the next,
the Wasserstein distances between their members can also take
arbitrarily distinct values, which would challenge an efficient
sampling of the metric space. Finally, we will investigate the usage
of neural networks exploiting topological descriptors for further
visual analysis tasks, such as trend analysis or anomaly detection
or shape classification [60]. In that context, we believe that our
new layer model (natively processing topological descriptors)
sets the foundations for an accurate and interpretable usage of
topological representations with neural networks.
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APPENDIX

APPENDIX A
TOPOLOGICAL DESCRIPTORS

This appendix provides a brief description of the topological
descriptors considered in the main manuscript, namely the Per-
sistence Diagram (PD, Sec. A.1) and the Merge Tree (MT),
specifically, its variant called Branch Decomposition Tree, (BDT,
Sec. A.2). We refer the reader to textbooks [30] for an introduction
to computational topology.

A.1 Persistence diagrams
Given a piecewise linear (PL) scalar field fi :M→ R, the sub-
level set of fi, noted fi

−1
−∞(w) = {p ∈M | fi(p) < w}, is defined

as the pre-image of (−∞,w) by fi. The super-level set of fi
is defined symmetrically: fi

−1
+∞(w) = {p ∈ M | fi(p) > w}. As

w continuously increases, the topology of fi
−1
−∞(w) changes at

specific vertices ofM, called the critical points of fi [7]. Critical
points are classified by their index Ii: 0 for minima, 1 for 1-
saddles, d−1 for (d−1)-saddles and d for maxima. In practice, fi
is enforced to contain only isolated, non-degenerate critical points
[31], [33]. In 3D, connected components of fi

−1
−∞(w) are created at

local minima and destroyed at 1-saddles. One-dimensional cycles
are created at 1-saddles and destroyed at 2-saddles and voids are
created at 2-saddles and destroyed at maxima.

The persistence diagram is a visual summary of the above
topological features. As shown in Fig. 2 (main manuscript), it is
closely related to the merge tree, which is the main topological
representation studied in this paper. We first describe the persis-
tence diagram though as the metric used in our work to measure
distances between merge trees (Sec. 2.2, main manuscript) gener-
alizes an established metric between persistence diagrams.

Specifically, in the domain, each topological feature of
fi
−1
−∞(w) can be associated with a unique pair of critical points

(c,c′), corresponding to its birth and death. The Elder rule [30]
states that critical points can be arranged in pairs according to this
observation, such that each critical point appears in only one pair
(c,c′), with fi(c) < fi(c′) and Ii(c) = Ii(c′)− 1. For instance, if
two connected components of fi

−1
−∞(w) meet at a critical point c′,

the younger component (created last, in c) dies, in favor of the
older one (created first).

The persistence diagram D( fi) embeds each pair to a single
point in 2D at coordinates

(
fi(c), fi(c′)

)
. The persistence of a

pair is given by its height fi(c′)− fi(c). The persistence diagram
provides a visual overview of the features of a dataset (Fig. 2, main
manuscript), where salient features stand out from the diagonal
while pairs corresponding to noise are located near the diagonal.

A.2 Merge trees
In the following, we introduce the main topological data repre-
sentation studied in this paper: the merge tree. We also describe
a specific representation of the merge tree called the branch
decomposition tree, which can be interpreted as a generalization
of the extremum persistence diagram, and which plays a central
role in the computation of distances between merge trees (Sec.
2.2, main manuscript) .

The join tree, noted T −( fi), is a visual summary of the
connected components of fi

−1
−∞(w) [23]. It is a 1-dimensional

simplicial complex defined as the quotient space T −( fi) =M/∼
by the equivalence relation ∼ which states that p1 and p2 are
equivalent if fi(p1) = fi(p2) and if p1 and p2 belong to the same
connected component of fi

−1
−∞

(
fi(p1)

)
.

The split tree (Fig. 2, main manuscript), noted T +( fi), is
defined symmetrically and describes the connected components
of the super-level set fi

−1
+∞(w). Each of these two directed trees is

called a merge tree (MT), noted generically T ( fi) in the following.
Intuitively, these trees track the creation of connected components
of the sub (or super) level sets at their leaves, and merge events
at their interior nodes. To mitigate a phenomenon called saddle
swap, these trees are often post-processed [78], [91], by merging
adjacent saddles in the tree if their relative difference in scalar
value is smaller than a threshold ε1 ∈ [0,1].

Merge trees are often visualized via a persistence-driven
branch decomposition [75], to make the persistence pairs captured
by the tree stand out. In this context, a persistent branch is a
monotone path on the tree connecting the nodes corresponding to
the creation and destruction (according to the Elder rule, Sec. A.1)
of a connected component of sub (or super) level set. Then, the
branch decomposition provides a planar layout of the MT, where
each persistent branch is represented as a vertical segment (center
insets in Fig. 2, main manuscript).

The branch decomposition tree (BDT), noted B( fi), is a
directed tree whose nodes are the persistent branches captured
by the branch decomposition and whose arcs denote adjacency
relations between them in the MT. In Fig. 2 (main manuscript),
the BDTs (right insets) can be interpreted as the dual of the
branch decompositions (center insets, with matching colors): each
vertical segment in the branch decomposition (center) corresponds
to a node in the BDT (right) and each horizontal segment (center,
denoting an adjacency relation between branches) corresponds to
an arc in the BDT. The BDT can be interpreted as a generalization
of the extremum persistence diagram: like D( fi), B( fi) describes
the population of (extremum) persistence pairs present in the data.
However, unlike the persistence diagram, it additionally captures
adjacency relations between them (Fig. 2, main manuscript).

Note that, the birth and death of each persistent branch bi ∈
B( fi), noted (xi,yi), span by construction an interval included in
that of its parent b′i ∈ B( fi): [xi,yi]⊆ [x′i,y

′
i]. This nesting property

of BDTs [78] is a direct consequence of the Elder rule (Sec. A.1).

APPENDIX B
GENERAL FORMULATION OF BASIS PROJECTION

The section 4.2 of the main manuscript presents an Assign-
ment/Update algorithm to project an input BDT B into a given
BDT basis B(O).

In the Assignment phase, given an initial set of coefficients
α ∈ Rd′ , the estimation B̂ of B is given by :

B̂ ← O+B(O)α. (15)

Given this estimation B̂, the assignment step first evaluates the
Wasserstein distance WT

2 (B, B̂). For this, the optimal assignment
φ∗ between B and B̂ is computed with regard to the Wasserstein
distance (Eq. 1 of the main manuscript).

Then, given the optimal assignment φ∗, the Wasserstein dis-
tance WT

2 (B, B̂) can be re-written as:

WT
2 (B, B̂) =

|B|

∑
i=1

{
0 if both bi and φ∗(bi) are on the diagonal,
||bi−φ∗(bi)||22 otherwise.

(16)
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Fig. 15. When considering an assignment (purple arrows) in the 2D
birth/death planes between augmented BDTs, four cases can occur
(purple numbers). Case (1): an off-diagonal branch (blue dot) can be
mapped to an off-diagonal branch (green dot). Case (2): an off-diagonal
branch (blue dot) can be mapped to an augmented diagonal branch
(green circle). Case (3): an augmented diagonal branch (blue circle)
can be mapped to an augmented diagonal branch (green circle). Case
(4): an augmented diagonal branch (blue circle) can be mapped to an
off-diagonal branch (green dot). Sec. 4.2 (main manuscript) covers the
cases (1) and (2). Sec. B generalizes this formulation to all cases.

The purpose of the subsequent Update step is precisely to
optimize α in order to minimize the evaluation of WT

2 (B, B̂) by
the above equation. For this, one needs to isolate from Eq. 16 all
the terms involving α from those which do not.

In the simple case where φ∗ describes a bijection between off-
diagonal points (case covered in the main manuscript), no branch
of B depends on α . Then the isolation of the terms involving α is
simple: only the branches of B̂ depend on α (Eq. 15).

In the more general case, things are a bit more involved. As
illustrated in Fig. 15, the computation of the optimal assignment
φ∗ : B → B̂ (purple arrows) implies a pre-processing phase of
augmentation of the 2D birth/death plane. As described in the
section 2.2 of the main manuscript, B̂ is augmented with the
diagonal projections of the branches of B (Fig. 15, green circles)
and B is augmented with the diagonal projections of the branches
of B̂ (Fig. 15, blue circles). This augmentation phase enables the
modeling of the destruction (or creation) of features during the
assignment φ∗ (between the blue and green items, Fig. 15). Then,
the following four cases can occur (Fig. 15):
Case (1): An off-diagonal branch b1 ∈ B is mapped to an off-
diagonal branch φ∗(b1) ∈ B̂. Then, the birth/death values of b1
do not depend on α and only the birth/death values of φ∗(b1) do.
This corresponds to the case covered by the section 4.2 of the
main manuscript.
Case (2): An off-diagonal branch b2 ∈ B is mapped to a diagonal
branch φ∗(b2) ∈ B̂. Then, the birth/death values of b2 do not
depend on α . Then, this case is also covered by Sec. 4.2 (main
manuscript).
Case (3): A diagonal branch b3 ∈ B is mapped to a diagonal

branch φ∗(b3)∈ B̂. In that case, the ground distance d2
(
b3,φ∗(b3)

)
(section 2.2 of the main manuscript) is set to zero by convention
(first line of Eq. 16). This models the fact that both b3 and φ∗(b3)
are dummy features (with zero persistence) and that their ground
distance, which is arbitrary, should not be taken into account in
WT

2 (B, B̂). Therefore, we simply remove b3 from B and φ∗(b3)

from B̂. This removal discards this first line of Eq. 16, which can
then be re-written in the general form:

WT
2 (B, B̂) =

|B|

∑
i=1
||bi−φ∗(bi)||22. (17)

Then, with this removal, the diagonal-diagonal assignments do not
constitute a special case anymore.
Case (4): An off-diagonal branch b4 ∈ B is mapped to a diagonal
branch φ∗(b4) ∈ B̂. In that case, b4 turns out to be an augmented
point of B. In Fig. 15, these are reported with circles while original
(i.e. non-augmented) points are reported with dots. Specifically, b4
has been precisely inserted such that b4 = ∆

(
φ∗(b4)

)
:

(b4)x = (b4)y =
1
2

((
φ∗(b4)

)
x +

(
φ∗(b4)

)
y

)
.

Given Eq. 15, φ∗(b4) can be re-written as:

φ∗(b4) = o4 +B(O)α,

where o4 is a branch of O. Then, the birth/death values of b4 are:

(b4)x = (b4)y =
1
2

((
o4 +B(O)α

)
x +

(
o4 +B(O)α

)
y

)
(b4)x = (b4)y =

1
2

(
(o4)x +(o4)y

)
+ 1

2

((
B(O)α

)
x +

(
B(O)α

)
y

)
.

Then, it follows that b4 can be re-written as:

b4 = ∆(o4)+∆
(
B(O)α

)
. (18)

From Eq. 18, it is clear that the coordinates of b4 are dependent
on α . In short, this is due to the fact that b4 has been purposely
inserted in B as the diagonal projection of a branch of B̂ which,
itself, depends on α . Thus, to account for this special case, we
need to further isolate the terms of Eq. 18 depending on α (i.e.
∆
(
B(O)), as described next.
Similarly to Sec. 4.2 (main manuscript), let B̂′ be a vector

representation of B̂. Specifically B̂′ is a vector in R2|B̂| which
concatenates the coordinates in the birth/death plane of each
branch bi of B̂. B̂′ can be decomposed intoO′+

(
B(O′)

)′
α , where(

B(O′)
)′ is a (2|B̂|)× d′ matrix. Also, let B′ be a similar vector

representation of B, but where the entries have been specifically
re-ordered such that, for each of its 2D entries, we have:

(B′)i = φ
−1
∗

(
(B̂′)i

)
.

Then B′ can be decomposed as a sum of two vectors of R2|B̂|:

B′ = B′1 +B′2,

such that B′1 has all its entries set to 0 except those covered by the
above cases (1) and (2) (Fig. 15), and that B′2 has all its entries set
to 0 except those covered by the above case (4) (purple, Fig. 15).

Given Eq. 18, each non-zero entry i of B′2 can be re-written as:

(B′2)i = ∆(oi)+∆

(((
B(O)

)′
α

)
i

)
, (19)

where oi is the ith entry of O. Then, the vector B′2 can be further
decomposed as follows:

B′2 = B′3 +B′4,
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such that each non-zero entry i of B′3 is equal to ∆(oi) and each

non-zero entry i of B′4 is equal to ∆

(((
B(O)

)′
α

)
i

)
.

Let B′2 be a (2|B̂|)×d′ matrix such that:

B′4 = B′2α.

At this stage, we have:

B′ = B′1 +B′3 +B′4 = B′1 +B′3 +B′2α. (20)

At this point, we managed to isolate the terms in B′ which are
dependent on α (i.e. B′2α). Then, similarly to the section 4.2
of the main manuscript, for a fixed optimal assignment φ∗, the
Wasserstein distance WT

2 (B, B̂) can be re-written as an L2 norm:

WT
2 (B, B̂) = ||B′−B̂′||22.

Then, given φ∗, by using Eq. 20, the optimal α∗ ∈ Rd′ are:

α∗ = argminα ||B′−B̂′||22
α∗ = argminα ||B′1 +B′3 +B′2α−

(
O′+

(
B(O′)

)′
α

)
||22

α∗ = argminα ||B′1 +B′3−O′−
(((

B(O′)
)′−B′2

)
α

)
||22.

Then, similarly to the Euclidean case (Eq. 4 of the main
manuscript), it follows then that α∗ can be expressed as a function
of the pseudoinverse of

((
B(O′)

)′−B′2
)

:

α∗ =
((

B(O′)
)′−B′2

)+
(B′1 +B′3−O′). (21)

In short, the general expression of the optimal coefficients α∗
(Eq. 21) is a generalization of the Eq. 13 of the main manuscript,
such that the branches of B dependent on α (case (4)) have been
integrated within the pseudoinverse operation.

APPENDIX C
COMPUTATIONAL PARAMETERS

The Wasserstein distance WT
2 is subject to three parameters (ε1,

ε2 and ε3, Sec. 2.2, main manuscript), for which we use the
recommended default values (ε1 = 0.05, ε2 = 0.95, ε3 = 0.9,
[78]) when considering merge trees (MT-WAE). In contrast, when
considering persistence diagrams, we switch ε1 to 1 (ε2 and ε3
do not have any effect then) and WT

2 becomes equivalent to
WD

2 (Sec. 2.2, main manuscript). Then our framework computes
a Wasserstein Auto-Encoder of extremum persistence diagrams
(PD-WAE for short).

Our main algorithm is subject to meta-parameters. nit stands
for the number of iterations in our basis projection procedure (Sec.
4.2, main manuscript). In practice, we set nit = 2.

The number, size and dimensionality of the layers of our
MT-WAE are also meta-parameters. Unless specified otherwise,
we use only one encoding layer and one decoding layer, i.e.
ne = nd = 1, with dne = 2 (for dimensionality reduction purposes)
and dne+nd = 16. For data reduction purposes and computational
cost control, we also restrict the size of the origins and bases of
the sub-layers of our network. Let |SB| be the total number of
branches in the ensemble, i.e. |SB|= ∑

N
i=1 |B( fi)|. We restrict the

maximum size of the following origins as follows: |Oin
1 | ≤ 0.2|SB|,

|Oout
1 | ≤ 0.1|SB|, |Oin

2 | ≤ 0.1|SB|, |Oout
2 | ≤ 0.2|SB|. This origin

size control also implicitly restricts the size of the corresponding
bases. Overall, when integrating all these constraints, the number
of variables in our networks is bounded by

(
(dne +1)×2× (0.2+

0.1)+(dnd +1)×2×(0.1+0.2)
)
×|SB|= 12|SB|. In practice, our

networks optimized 68,902 variables on average (per ensemble).

APPENDIX D
PENALTY TERMS

The flexibility of our framework allows to improve the quality
of the dimensionality reduction computed by MT-WAE. Here,
we introduce two penalty terms aiming at (1) improving the
preservation of the Wasserstein metric WT

2 and (2) improving the
preservation of the clusters of BDTs.

D.1 Metric penalty term
In order to improve the preservation of the Wasserstein metric WT

2
in the latent space, and hence in the 2D layout, we introduce the
following penalty term PM(θ):

PM(θ) = ∑
∀i∈{1,...,N}

∑
∀ j ̸=i∈{1,...,N}

(
WT

2
(
B( fi),B( f j)

)
−||α i

ne −α
j

ne ||2
)2

.

Concretely, given two BDTs B( fi) and B( f j), PM(θ) penalizes the
variations between their Wasserstein distances and the Euclidean
distances between their coordinates α i

ne and α
j

ne in the latent space.
The integration of the penalty term PM(θ) in our optimiza-

tion algorithm (Sec. 4, main manuscript) is straightforward. The
Wasserstein distance matrix, which stores at its entry (i, j) the
distance WT

2
(
B( fi),B( f j)

)
, is computed in a pre-processing stage.

Since this matrix is a constant during the optimization, the expres-
sion of PM(θ) only involves basic operations supported by auto-
matic differentiation. Then, given a blending weight λM ∈ [0,1]
(in practice, we set λM = 1), the penalty term λMPM(θ) is simply
added to the expression of the reconstruction energy EWT

2
(θ)

(Eq. 14, main manuscript). Next, the corresponding gradient is
evaluated by automatic differentiation and the overall energy is
optimized by gradient descent [57] , as originally described in
Sec. 4.5 (main manuscript).

D.2 Clustering penalty term
We introduce an additional penalty term to improve the preserva-
tion of the natural clusters of BDTs in the latent space, and hence
in the 2D layout. Let C ∈ RkN be the vector modeling the input k
clusters: the entry (ik)+ j of this vector is equal to 1 if the BDT
B( fi) belongs to the cluster j, 0 otherwise. This input clustering
vector can be provided either by a pre-defined ground-truth, by
interactive user inputs or by any automatic clustering algorithm. In
our experiments, to construct this vector C, we used the extension
of the k-means clustering to the Wasserstein metric space of merge
trees [78]. Next, in the latent space, we consider the classic k-
means algorithm [27], [34], where each BDT B( fi) is clustered
according to its latent coordinates α i

ne ∈ R2. This yields a set of k
centroids in the 2D latent space cl ∈ R2 with l ∈ {0,1, . . . ,k−1}.
To evaluate the similarity between this clustering and the input
clustering vector C, we use the celebrated SoftMax function [38].
Specifically, we consider the latent clustering vector C′ ∈ RkN ,
such that the entry (C′)(ik)+ j denotes the probability that the 2D
point α i

ne belongs to the cluster j (β is set to 5):

(C′)(ik)+ j =
e−β ||α i

ne−c j ||2

∑
k−1
l=0 e−β ||α i

ne−cl ||2
.

Then, the clustering penalty term PC(θ) is given by the Kullback-
Leibler divergence (a standard indicator for probability similarity):

PC(θ) = KL(C,C′) =
kN−1

∑
i=0

C(i)log
( C(i)

C′(i)

)
.
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TABLE 3
Comparison of the Average Relative Reconstruction (ARR) Error,

between PD-PGA [79] (dmax = 3 and N1 ≤ 0.1|SB|) and our approach
PD-WAE (dne = 3 and |Oout

ne | ≤ 0.1|SB| ), for identical compression
factors. Bold numbers in the Ratio column indicate instances where

PD-WAE achieved a lower (hence better) reconstruction error.

Dataset N |B| Compression ARR Error Ratio
Factor PD-PGA [79] PD-WAE

Asteroid Impact (3D) 7 1,295 7.36 0.01 0.01 0.73
Cloud processes (2D) 12 1,209 7.99 0.12 0.10 0.81
Viscous fingering (3D) 15 118 7.87 0.02 0.01 0.67
Dark matter (3D) 40 316 8.68 0.01 4e-03 0.39
Volcanic eruptions (2D) 12 811 7.56 0.02 0.01 0.36
Ionization front (2D) 16 135 8.01 0.03 0.02 0.69
Ionization front (3D) 16 763 7.68 0.05 0.03 0.65
Earthquake (3D) 12 1,203 7.59 0.04 0.02 0.51
Isabel (3D) 12 1,338 7.58 0.08 0.08 0.91
Starting Vortex (2D) 12 124 7.39 0.01 3e-03 0.51
Sea Surface Height (2D) 48 1,787 24.66 0.16 0.16 1.02
Vortex Street (2D) 45 23 15.83 2e-03 9e-04 0.40

TABLE 4
Comparison of the Average Relative Reconstruction (ARR) Error,

between MT-PGA [79] (dmax = 3 and N1 ≤ 0.1|SB|) and our approach
MT-WAE (dne = 3 and |Oout

ne | ≤ 0.1|SB| ), for identical compression
factors. Bold numbers in the Ratio column indicate instances where

MT-WAE achieved a lower (hence better) reconstruction error.

Dataset N |B| Compression ARR Error Ratio
Factor MT-PGA [79] MT-WAE

Asteroid Impact (3D) 7 1,295 13.68 0.13 0.12 0.93
Cloud processes (2D) 12 1,209 13.84 2e-04 7e-07 3e-03
Viscous fingering (3D) 15 118 13.21 8e-04 7e-07 8e-04
Dark matter (3D) 40 316 15.09 2e-04 2e-05 0.08
Volcanic eruptions (2D) 12 811 13.83 0.01 2e-03 0.41
Ionization front (2D) 16 135 13.44 0.19 0.14 0.78
Ionization front (3D) 16 763 13.89 0.24 0.22 0.92
Earthquake (3D) 12 1,203 14.07 0.14 0.10 0.75
Isabel (3D) 12 1,338 14.03 3e-03 2e-03 0.72
Starting Vortex (2D) 12 124 11.92 2e-04 2e-06 0.01
Sea Surface Height (2D) 48 1,787 14.36 0.23 0.22 0.92
Vortex Street (2D) 45 23 20.27 3e-04 9e-05 0.26

Similarly to the metric penalty term, given a blending weight λC ∈
[0,1] (in practice, we set λC = 1), the penalty term λCPC(θ) is
added to the expression of the reconstruction energy EWT

2
(θ) (Eq.

14, main manuscript). The corresponding gradient is estimated by
automatic differentiation and the overall energy is optimized by
gradient descent [57], as originally described in Sec. 4.5 (main
manuscript).

APPENDIX E
DATA REDUCTION EXPERIMENTS

Tables 3 and 4 report a comparison between the reconstruction er-
ror generated by our Wasserstein Auto-Encoder (WAE) approach
and the Principal Geodesic Analysis (PGA) approach by Pont
et al. [79], for the application to data reduction (Sec. 5.1 of the
main manuscript), in the case of persistence diagrams (Tab. 3) and
merge trees (Tab. 4).

Specifically, we compute the reconstruction error of each input
BDT B( fi) via the distance WT

2 to its reconstruction (computed by
the method under consideration, PGA or WAE). To be comparable
across ensembles, this distance is then divided by the maximum
WT

2 distance observed among two input BDTs in the ensemble.
Finally, this relative reconstruction error is averaged over all the
BDTs of the ensemble.

To enable a fair comparison, we set the number of axis of
PGA, noted dmax, to 3 (as reported in the original data reduction
description [79]) and we set the number of dimensions in the
latent space of WAE to the same value (i.e. dne = 3). We also
set the maximum size of the PGA origin, noted N1, to 0.1|SB|,
where |SB| is the total number of branches in the ensemble, i.e.
|SB|= ∑

N
i=1 |B( fi)|. Similarly, for WAE, we set the maximum size

of the latent output origin |Oout
ne | to 0.1|SB|.

For both methods (PGA and WAE), the compression factor is
fixed to a common value on a per ensemble basis. As discussed
in the section 5.1 of the main manuscript, the compression factor
of WAE is controlled by adjusting, for the last decoding layer, its
dimensionality noted dne+nd , and the maximum size of its output
origin, noted |Oout

ne+nd
|.

Both tables show that WAE clearly outperforms PGA [79]
in terms of average relative reconstruction error, with an average
improvement of 37% for persistence diagrams, and 52% for merge
trees.

Finally, note that for each ensemble, the merge tree based
clustering [78] computed from the input BDTs is strictly iden-
tical to the clustering computed from the reconstructed BDTs.
This confirms the viability of our reconstructed BDTs, and their
usability for typical visualization and analysis tasks.

APPENDIX F
DIMENSIONALITY REDUCTION EXPERIMENTS

Fig. 16 extends the Figure 12 of the main manuscript to all our
test ensembles. It confirms visually the conclusions of the table of
aggregated scores (Table 2 of the main manuscript).

In particular, it confirms that WAE behaves as a trade-off
between the respective advantages of standard techniques, such as
MDS [58] and t-SNE [96]. Specifically, MDS is known to preserve
the input metric well, while t-SNE tends to better preserve the
global structure of the data (i.e. the ground-truth classification),
at the expense of metric violation. Our approach (WAE) provides
a trade-off between these two extreme behaviors: (i) it improves
over MDS in terms of structure preservation (it provides equivalent
or better NMI/ARI scores for 11 out of 12 ensembles) and (ii) it
improves over t-SNE in terms of metric preservation (it provides
an equivalent or better SIM score for 9 out of 12 ensembles). WAE
also outperforms VEC-AE and improves PGA on most ensembles.
Finally, the combination of our two penalty terms, WAE-MC,
simultaneously outperforms MDS on metric preservation and t-
SNE on cluster preservation (hence maximizing all criteria at
once), for 8 of the 12 ensembles.

APPENDIX G
EMPIRICAL STABILITY EVALUATION

As documented in the original paper [78] introducing the Wasser-
stein distance between merge trees (WT

2 ), saddle swap instabilities
in the merge trees are commonly addressed with a saddle-merging
pre-processing [78], [91]. This procedure consists in moving each
branch b up the BDT B( f ), if its saddle is too close to that of its
parent branch (i.e. closer in normalized f values than a threshold
ε1, see [78]). As documented by Pont et al. with practical stability
evaluations (see Fig. 14 of [78]), this simple saddle-merging
pre-processing drastically improves in practice the robustness of
the metric WT

2 to additive noise. Thus, this saddle-merging pre-
processing is of paramount importance for the practical usage
of WT

2 on real-life datasets and Pont et al. recommend to use
ε1 = 0.05 as a default value. Note that this parameter ε1 acts as a
control knob, which balances the practical stability of the metric
with its discriminative power (for ε1 = 1, WT

2 =WD
2 ).

In this appendix, we study the practical stability of our non-
linear framework for merge tree encoding (WAE) to additive noise,
in order to document the impact of the underlying metric’s stability
on the outcome of the analysis.
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Fig. 16. Comparison of planar layouts for typical dimensionality reduction techniques on all our merge tree ensembles. The color encodes the
classification ground-truth [78]. For each quality score, the best value appears bold and the rank of the score among all methods is in parenthesis.
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Fig. 17. Empirical stability evaluation: a synthetic ensemble of sixteen 2D scalar fields is specifically designed by sampling a 2D basis of Gaussian
mixtures, with a controlled parameterization (see Sec. G.1 for a detailed specification). This yields a ground-truth parameterization and classification
of the ensemble (four clusters: dark red, red, pink, light pink). Five versions of this ensemble are created, for increasing levels of additive noise
(from ε = 0 to ε = 0.5, top to bottom). For each ensemble, a 2D layout is generated by our non-linear framework WAE (right insets), for increasing
values of the parameter ε1 from left to right (i.e. from the strict Wasserstein distance between merge trees, WT

2 for ε1 = 0, to progressive blends
towards the Wasserstein distance between persistence diagrams, WD

2 for ε1 = 1). In the 2D layout and the quality scores (bottom curves), a grey
background indicates an unstable computation (i.e. NMI and ARI are both below 1). For the default recommended value of the parameter ε1 (0.05
[78]), WAE with WT

2 recovers well the ground-truth parameterization and classification (similarly to WD
2 ), up to a level of additive noise of ε = 0.1.

For ε1 ≥ 0.1, the 2D layouts generated by WAE provide a similar level of robustness for WT
2 and WD

2 (bottom curves).

G.1 Setup

For this experiment, we specifically generated a synthetic ensem-
ble, in order to control both its intrinsic parameterization and its
classification. For this, we proceeded as follows.

First, four 2D scalar fields (Fig. 17, top left inset) were
generated by sampling a 2D basis of Gaussian mixtures with
controlled parameterization. Specifically, the scalar field being
the origin of the basis has two hills ( f(0,0), dark red frame, top
left inset). The extremity of the first (horizontal) axis ( f(1,0), red
frame, top left inset) has exactly the same hills, but with a first
additional maximum (cyan sphere). The extremity of the second
(vertical) axis ( f(0,1), pink frame, top left inset) has a second
additional maximum (white sphere). Finally, the fourth dataset
( f(1,1), light pink frame, top left inset) has both extra maxima (cyan
and white spheres). These Gaussian mixtures were generated by
adjusting the height of the additional maxima (cyan and white
spheres, Fig. 17) such that their diagrams describe a square on the
Wasserstein metric space (see the top right 2D layout of Fig. 17):

WD
2
(
D( f(0,0),D( f(1,0))

)
= WD

2
(
D( f(1,0),D( f(1,1))

)
= WD

2
(
D( f(1,1),D( f(0,1))

)
= WD

2
(
D( f(0,1),D( f(0,0))

)
= 1,

and:

WD
2
(
D( f(0,0),D( f(1,1))

)
= WD

2
(
D( f(1,0),D( f(0,1))

)
=
√

2.

Next, we repeated this square generation process, around each
corner of the above square, but this time with a smaller side length
(equal to 0.15 in the Wasserstein metric space, instead of 1).

Overall, this results in a total of 16 scalar fields, specifically
organized along a ground-truth 2-dimensional parameterization
of the Wasserstein metric space, with a natural ground-truth
classification (corresponding to the closest corner of the 2D grid,
see the top right 2D layout of Fig. 17):
• Class 1 (bottom left corner, dark red spheres in Fig. 17):

– f(0,0), f(0.15,0), f(0.15,0.15), f(0,0.15);
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• Class 2 (bottom right corner, red spheres in Fig. 17):
– f(0.85,0), f(1,0), f(1,0.15), f(0.85,0.15);

• Class 3 (top right corner, light pink spheres in Fig. 17):
– f(0.85,0.85), f(1,0.85), f(1,1), f(0.85,1);

• Class 4 (top left corner, bright pink spheres in Fig. 17):
– f(0,0.85), f(0.15,0.85), f(0.15,1), f(0,1);

Given the above ground-truth parameterization, we call the
ground-truth distance matrix, noted D, the matrix defined such
that each of its entries (i, j) is equal to WD

2
(
D( fi),D( f j)

)
.

Next, we generated additional versions of the above ensemble,
by introducing a random additive noise in the scalar fields, with
a control on the maximum normalized amplitude ε ∈ [0,1] (i.e.
the maximum amplitude of the noise is a fraction ε of the
global function range of the input scalar field). Specifically, we
considered the noise levels ε ∈ {0,0.05,0.1,0.2,0.5}. Overall, this
results in 5 ensembles of 16 scalar fields each.

G.2 Protocol
Given the above ensembles, we first consider our non-linear frame-
work for persistence diagrams, namely PD-WAE. Specifically, we
generated, for each noise level, a 2D layout of the ensemble with
PD-WAE (see Sec. 5.2, main manuscript). This is shown in the
rightmost column of Fig. 17 (ε1 = 1). We quantitatively evaluate
the quality of this 2D layout along two criteria: metric preservation
and cluster preservation.

First, given the 2D layout of the ensemble, we compute a
distance matrix D in 2D, which we compare to the ground-truth
distance matrix D (see Sec. G.1) with the SIM indicator [79]
(which varies between 0 and 1, 1 being optimal). Second, given
the 2D layout of the ensemble, we compute a k-means clustering
in 2D (with k = 4) and we compare the resulting classification to
the ground-truth classification with the NMI and ARI indicators
(which vary between 0 and 1, 1 being optimal).

To study the stability to additive noise of our framework when
considering the Wasserstein distance between merge trees, we
have replicated the above experiment for 5 more values of the
control parameter ε1 (in Fig. 17, from left to right: 0, 0.05, 0.1,
0.2 and 0.5). Overall this results in the 2D array represented in
Fig. 17 where each column denotes a specific value of the control
parameter ε1 and where each line denotes a specific noise level ε .

G.3 Analysis
In the absence of noise (ε = 0, top row) and for arbitrary values
of the parameter ε1, our non-linear WAE framework manages to
produce a 2D layout of the ensemble which is faithful to the
ground-truth parameterization (high SIM values, bottom curves
in Fig. 17) and which preserves the ground-truth clusters (colors
from dark red to light pink, Fig. 17, high NMI/ARI values).

As soon as noise is introduced (ε >= 0.05), the strict distance
WT

2 (ε1 = 0, leftmost column) becomes unstable, as originally
documented by Pont et al. [78]. As a consequence, both the
ground-truth classification and parameterization are not recovered
by MT-WAE in the 2D layout: spheres of different colors are
mixed together (as assessed by the low NMI/ARI values, left-
most curves, Fig. 17) and the spheres are no longer organized
along a 2D grid (as assessed by the lower SIM values, leftmost
curve, Fig. 17). In contrast, with the original Wasserstein distance
between persistence diagrams (ε1 = 1, rightmost column), up
to a significant level of noise (ε = 0.2), both the ground-truth

classification and parameterization are well preserved in the 2D
layout generated by PD-WAE: the spheres with the same color
remain clustered (high NMI/ARI values, rightmost curves) and the
spheres are properly arranged along a 2D grid (high SIM values,
rightmost curve).

For the recommended value of the control parameter ε1 (0.05
[78]), MT-WAE still manages to recover well the ground-truth
parameterization and classification, up to a noise level of ε = 0.1
(perfect clustering, with high SIM values). For a larger value of
ε1 (ε1 ≥ 0.1), the 2D layouts generated by MT-WAE are very
similar to these generated with PD-WAE (rightmost column), with
identical stability indicators (SIM and NMI/ARI curves, bottom).

In conclusion, this experiment shows that for mild levels of
noise (ε < 0.1), the recommended value of ε1 (0.05) results in
a stable MT-WAE computation. For larger noise levels, MT-WAE
provides similar stability scores to PD-WAE for values of ε1 which
are still reasonable in terms of discriminative power (ε1 = 0.1).
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