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Abstract
Background and Objectives
Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS).
Some data point toward thalamic nuclei that could be affected more than others. However, the
dynamic of their changes during MS evolution and the mechanisms driving their differential
alterations are still uncertain.

Methods
We paired a large cohort of 1,123 patients with MS with the same number of healthy
controls, all scanned with conventional 3D-T1 MRI. To highlight the main atrophic regions
at the thalamic nuclei level, we validated a segmentation strategy consisting of deep
learning–based synthesis of sequences, which were used for automatic multiatlas segmen-
tation. Then, through a lifespan–based approach, we could model the dynamics of the 4 main
thalamic nuclei groups.

Results
All analyses converged toward a higher rate of atrophy for the posterior and medial groups
compared with the anterior and lateral groups. We also demonstrated that focal MS white
matter lesions were associated with atrophy of groups of nuclei when specifically located within
the associated thalamocortical projections. The volumes of the most affected posterior group,
but also of the anterior group, were better associated with clinical disability than the volume of
the whole thalamus.

Discussion
These findings point toward the thalamic nuclei adjacent to the third ventricle as more sus-
ceptible to neurodegeneration during the entire course of MS through potentiation of dis-
connection effects by regional factors. Because this information can be obtained even from
standard T1-weighted MRI, this paves the way toward such an approach for future monitoring
of patients with MS.

Introduction
Neuronal cell death, known as neurodegeneration, is the primary substrate of irreversible
physical and cognitive disability in multiple sclerosis (MS).1,2 In vivo, gray matter atrophy
measured from MRI reflects neurodegeneration,3 pointing toward such measurement as a
relevant biomarker to monitor the patients under candidate therapies. In this perspective,
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highlighting the longitudinal profile of gray matter atrophy in
time and space is highly desirable to monitor the effect of
interventions on the relentless and progressive atrophic pro-
cesses. However, currently, studies on the longitudinal evo-
lution of gray matter atrophy are scarce4 and inherently
limited by a relatively short follow-up duration compared with
the slow rate of atrophy progression.

In this context, the recent publications of brain charts for brain
volumes derived from MRI over the entire lifespan provided a
significant breakthrough,5,6 where authors revealed the dynamic
evolution of brain volumes from development to aging. Applying
this framework—not only to global brain tissues but also to fine-
grained structures—can open new perspectives to highlight the
typical course of regions that can be particularly targeted in
pathologic conditions.We have recently pioneered this approach
to demonstrate an early divergence of specific amygdala-
hippocampal and limbic structures in Alzheimer disease.7-9

Similarly, MS does not affect all gray matter regions equally.10,11

Several pieces of evidence point toward the thalamus as a par-
ticularly vulnerable structure.12,13 Its volume decreases from the
earliest phases ofMS,14 with substantial clinical consequences.15

White matter lesions are likely to transect fibers from the large
fanning of the thalamocortical projections, inducing ante-
rograde and retrograde degeneration,16,17 which in turn con-
tributes to such early thalamic atrophy.13 More recently, the
concept of differential vulnerability among thalamic nuclei also
emerged18 with histologic evidence of an “ependymal-in” gra-
dient of thalamic damage related to meningeal inflammation
affecting more particularly thalamic nuclei in contact with the
third ventricle.19 Therefore, certain groups of thalamic nuclei
exposed to indirect (disconnection-related) but also to direct
(meningeal inflammation-related) mechanisms might be af-
fected earlier and more severely.

Along these lines, this study aimed at revealing the archetype
dynamic volumetric profiles of thalamic nuclei groups during
the course of MS. To do so, we took advantage of MRI data
from more than a 1,000 patients with MS from a large mul-
ticenter cohort20 that we paired with the same number of
healthy controls from publicly available data sets. First, we
investigated whether the whole thalamus was indeed the
earliest andmost severely affected brain structure inMS, using
the recently developed brain chart approach.8 Then, we tuned
a deep learning–based algorithm that generated synthetic
images from standard T1-weighted sequences available for all
the participants, which allowed us to compute accurate

volumes for thalamic nuclei groups. We concatenated all
cross-sectional data of thalamic nuclei groups to infer their
pseudolongitudinal course according to disease duration. We
also investigated the possible underlying mechanisms and
clinical performances associated with these dynamic patterns
of thalamic nuclei atrophy.

Methods
Participants
This article is a secondary analysis based on the combination
of prospectively collected cohorts. For MS, we leveraged a
nationwide MS registry, initiated in 2011 and called OFSEP
(Observatoire Français de la Sclérose en Plaques) that pro-
vided prospective and standardized data collection.20 We
extracted data from 2747 patients with MS included within
the registry between 2011 and 2019 who fulfilled the fol-
lowing criteria: (1) a diagnosis of clinically isolated syndrome
(CIS) or MS according to the 2010 McDonald Criteria21 and
(2) the presence of an MRI scan with at least 3D T1-weighted
and T2-weighted/fluid-attenuated inversion recovery se-
quences. The Expanded Disability Status Scale (EDSS) and
treatment status at the time of MRI examination were also
requested. Disease duration was computed as the time be-
tween the MRI used in this analysis and the first clinical
symptom suggestive of MS. A total of 2,413 healthy controls
(HCs) were also included from open-access data sets (see
eMethods).

To avoid age and gender bias, because these variables are
directly related to the volumetry of brain structures,7 the pa-
tients with MS were matched 1:1 to the HCs according to
age ±1 year and sex using a greedy nearest neighbor matching
algorithm without replacement. The pairing procedure led to
the final inclusion of 1,123 participants perfectly matched in
each group. Patients with MS included in the final analysis did
not differ from the original population in disease severity
[median (range) EDSS = 2 (0–9) vs median (range) EDSS =
2 (0–9), respectively; p = 0.09, standardized mean difference
(SMD) = 0.09] and disease duration [mean (SD) disease
duration = 11.49 (10.56) years vs mean (SD) disease duration
= 10.65 (9.15) years, respectively; p = 0.45, SMD = 0.08].

Conventional T1 was the only available contrast for the vol-
umetric analyses of these paired 1,123/1,123 patients withMS
and HCs. We also took advantage of an additional group of
159 patients withMS explored with both conventional T1 and

Glossary
BIC = Bayesian Information Criterion; CIS = clinically isolated syndrome; CNN = convolutional neural network; EDSS =
Expanded Disability Status Scale; HC = healthy controls; LME = linear mixed effect; MS = multiple sclerosis; PP = primary-
progressive;RR = relapsing-remitting; SMD = standardizedmean difference; SP = secondary progressive;WMn = white-matter
nulled.
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white-matter nulled (WMn)-MPRAGE to be able to obtain
synthetic WMn for all the participants (see eMethods).

Standard Protocol Approvals, Registrations,
and Patient Consents
The OFSEP database was registered in ClinicalTrials.gov
under the number NCT02889965. All patients gave consent
to store their information in the database, which complies
with French regulatory and General Data Protection Regu-
lation requirements. The objectives and design of this sec-
ondary analysis were made publicly available on the website of
the OFSEP (ofsep.org/en/studies).

MRI Data and Image Processing
MRI data from patients with MS were collected on scanners
from different vendors, but they all followed recommenda-
tions and criteria of quality that were specified in the OFSEP
centers.22 Furthermore, all the images were preprocessed
specifically to harmonize them as described elsewhere.23

Then, all the preprocessed images underwent a stringent
automatic quality control based on artificial intelligence. Fi-
nally, cortical and subcortical gray matter regions were seg-
mented on the harmonized and quality-checked T1-weighted
images using AssemblyNet, which combines 250 deep
learning models through a multiscale framework.23 We con-
sidered 124 gray matter structures in the following analyses
according to the Neuromorphometrics labels.24

For patients with MS, the white matter T2-hyperintense le-
sions were also segmented using DeepLesionBrain.25 The
lesion masks were used to perform inpainting of MS lesions
on T1-weighted images26 to limit their impact on brain
segmentation.

We trained a convolutional neural network (CNN) to gen-
erate synthetic WMn images from the conventional T1-
weighted data following a variant of a previously published
methodology27 (see eMethods). After validating this ap-
proach, we used this deep learning algorithm on the T1-
weighted images from the 1123 patients with MS and 1123

HCs to generate synthetic WMn, which, in turn, were used to
segment the 4 main thalamic nuclei groups (anterior, medial,
posterior, lateral) with the automated THOMAS algorithm.28

To understand themechanisms associated with the atrophy of
the thalamic nuclei groups, we estimated the impact of dis-
connection by MS white matter lesions. For that purpose, we
reconstructed the thalamocortical bundles associated with
each group of nuclei, computed theMS lesions falling “inside”
or “outside” such bundles, and estimated the effect of each
lesion category on the volume of the associated thalamic
nuclei group (details are presented in eMethods).

Statistical Analyses and Model Generation
Continuous variables were expressed as means (SD) in the
case of normal distribution or medians (interquartile range)
otherwise. Categorical variables were expressed as numbers
(percentage). The normality of distributions was assessed
using histograms and Shapiro-Wilk test. Demographic char-
acteristics were compared with Student t-test, Mann-Whitney
test, or chi-square test as appropriate.

We first computed the volumetric trajectories of 124 gray
matter structures according to disease duration by assem-
bling the 1,123 cross-sectional data from the MS database to
extrapolate a single longitudinal model. For that, we com-
puted the Z-score for each structure using the mean and SD
over the HC, allowing normalization and comparison be-
tween structures of different sizes. Then, as previously
performed,5,7,8 we tested various models to estimate the best
trajectory of each structure from the simplest to the most
complex (i.e., linear, quadratic, and cubic models). We kept a
model as a potential candidate when F-statistic based on
ANOVA (i.e., model vs constant model) was significant (p <
0.05), and all its coefficients were significant using t-statistic
(p < 0.05). We used the Bayesian Information Criterion
(BIC) to select the best candidate. This procedure was done
for all the structures. The prediction bounds were estimated
with a confidence level of 95%. A significant divergence
between the trajectories of the patients and those of the HCs

Table 1 Descriptive Characteristics of the Participants

Healthy controls
(n = 1,123)

All MS
(n = 1,123) CIS (n = 236) RRMS (n = 617) SPMS (n = 171) PPMS (n = 99)

Age, average ±SD 44.02 ± 15.68 44.01 ± 15.55 34.61 ± 13.73 41.60 ± 14.55 57.59 ± 8.79 57.89 ± 9.36

Sex (F/M) 634/489 634/489 122/114 368/249 103/68 41/58

Disease duration, average ±SD — 11.50 ± 10.56 2.12 ± 3.68 11.62 ± 9.25 23.96 ± 9.61 11.53 ± 7.98

Median EDSS (Q1–Q3) — 2.0 (1.0–4.0) 1.0 (0–1.5) 2.0 (1.0–3.5) 6.0 (4.5–6.5) 6.0 (4.0–6.5)

Median T2 lesion volume inml (Q1–Q3) — 6.36
(2.19–18.83)

2.34
(0.99–6.53)

6.18
(2.32–16.16)

20.35
(6.52–32.16)

11.44
(4.33–23.38)

Number of patients on DMTs (%) — 644 (57.3%) 68 (28.8%) 444 (72%) 91 (53.2%) 41 (41.4%)

Abbreviations: CIS = clinically isolated syndrome; DMT = diseasemodifying treatment; EDSS = ExpandedDisease Status Scale; MS =multiple sclerosis; PPMS =
primary-progressive MS; RRMS = relapsing-remitting MS; SPMS = secondary-progressive MS.
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was considered when the adjusted 95% CIs of the 2 models
did not overlap. The sequence of divergence was listed in a
chronological order.

Then, we moved to the thalamic nuclei group level. To vali-
date the performance of THOMAS to compute the volumes
of the thalamic nuclei from the synthetic WMn images, we
compared dices and VSI using Student paired t test or Wil-
coxon test when appropriate.

The volumetric Z-scores of the thalamic nuclei groups were
calculated for the patients with MS as described above for the
other gray matter structures. These Z-scores were first com-
pared using linear mixed-effect (LME) models according to
MS phenotypes (CIS, relapsing-remitting [RR], secondary
progressive [SP], primary-progressive [PP]) and then
according to quartiles of disease duration (<2.7, 2.7–8.4,
8.5–17, ≥18 years). In each LME model, we included the
interaction between thalamic nuclei groups and the above-
mentioned independent variables (phenotypes or disease
duration), but also prespecified adjustment factors (age, sex,
lesion load, and total intracranial volume) as fixed effects and
subject as random effect (to take into account the repeated
measures for each subject; 4 thalamic nuclei groups). Post hoc

pairwise comparisons between each group were performed
using linear contrast after applying a Bonferroni correction.

We also modeled the trajectories of the 4 thalamic nuclei
groups continuously using the same method as described
above for the other gray matter structures (concatenation of
cross-sectional data into pseudolongitudinal models). A sig-
nificant divergence between the trajectories of the different
thalamic nuclei group was considered when the adjusted 95%
CIs of 2 models did not overlap.

Then, we used another LME model to investigate the impact
of T2 lesions “inside” tracts connected to specific thalamic
nuclei and lesions “outside” of those tracts. For this, we in-
cluded the volume of thalamic groups as the dependent var-
iable, and we added the fixed effects of age, sex, disease
duration, intracranial volume, and lesions “inside” and “out-
side” the specific thalamocortical bundles. Once again, par-
ticipants were included as a random effect, and all variables
were standardized to correctly compare estimates.

Finally, clinical associations between disease severity and
thalamic nuclei groups were estimated with other LME
models using EDSS as the dependent variable. Independent

Figure 1 Timeline of Gray Matter Structures Atrophy During the Course of MS

The color map represents the effect size of structural divergence compared with healthy controls along disease duration (DD).
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variables such as age, sex, lesion load, disease duration, whole
thalamic volume, and the thalamic nuclei group were included
as fixed factors if they were significant following a first uni-
variate analysis. Significant LME models were then compared
to find the one that best fits the data based on the likelihood
ratio and the BIC. All continuous variables were also stan-
dardized to compare each impact.

Statistical testing was conducted at the two-tailed α-level of
0.05. Data were analyzed using the SAS software version 9.4
(SAS Institute, Cary, NC) and R (version 4.2.2).

Data Availability
The data that supported the findings of this study are available
from the corresponding author upon reasonable request.

Results
Subject Characteristics
MRI data from 2,246 participants were analyzed, with 1,123
patients withMS corresponding to n = 236 CIS, n = 617 RR, n
= 171 SP, and n = 99 PP patients. Table 1 summarizes the
main characteristics of the participants. The patients with MS
and HCs were perfectly matched over age and sex. All MS
phenotypes had significantly different (p < 0.001) age (except
SP vs PP), disease duration (except RR vs PP), EDSS (except
SP vs PP), and lesion volume.

Timeline of Brain Structure AtrophyDuring the
Course of Multiple Sclerosis
To start at the structure level, we first modeled the dynamic
evolution of the gray matter structures segmented on T1-
weighted images. Figure 1 illustrates the divergence between

the patients with MS and the paired HC trajectories during
the course of MS. The total volume of the thalamus was the
first to become significantly smaller in patients with MS.
Among the other gray matter structures to diverge early, we
found the other deep gray nuclei, amygdala, and hippocampus
but also highly connected regions such as the cingulate cortex,
brainstem, or insula.

Thalamic Nuclei Volumes per Phenotypes and
Disease Duration
To identify and analyze the main triggers of the earliest tha-
lamic atrophy reported above, we moved at the substructure
level, which corresponds to the thalamic nuclei. The first LME
model explored the volumes of thalamic nuclei groups for the
different clinical phenotypes and showed a significant effect of
the clinical form (p < 0.001, F = 25.38) and nuclei group (p <
0.001, F = 105.44) with an interaction between both (p <
0.001, F = 14.56), independently from cofounders (age, sex,
lesion load, and total intracranial volume). Overall, we found
lower volumes from CIS to RRMS, PPMS, and then SPMS.
We also found that the medial and posterior groups showed
more severe atrophy (Figure 2A). Post hoc analysis showed
that the 4 nuclei groups were comparable at the CIS stage (all
p > 0.05). By contrast, they were all significantly different for
patients with RRMS (all p < 0.001), with the posterior and
medial showing the lowest volumes, followed by the lateral
and anterior nuclei, respectively. Looking at the progressive
forms, patients with PPMS showed significantly lower vol-
umes for medial compared with anterior and lateral (p <
0.001), as well as for posterior compared with anterior and
lateral (p < 0.001). At the same time, no difference was ob-
served between medial and posterior and between anterior
and lateral. Patients with SPMS showed a similar pattern,

Figure 2 Thalamic Nuclei Volumes per Phenotype and Disease Duration

Volumes are represented as Z-scores with reference to the healthy control population. Thalamic volumes are displayed for each group of nuclei and for each
clinical phenotype (A) and quartile of disease duration (B). Boxes represent median and interquartile range.
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except for a significantly lower volume of the lateral nucleus
compared with the anterior one (p < 0.001).

A second LME tested the evolution of thalamic nuclei groups
per disease duration. We also found a significant effect of the
disease duration (p < 0.001, F = 32.89) and nuclei group (p <
0.001, F = 149.64) with an interaction between both (p <
0.001, F = 21.58). Figure 2B presents an earlier atrophy of
posterior and medial groups compared with the lateral and
anterior ones. The post hoc analysis showed comparable
nuclei volumes for quartile 1 of disease duration. By contrast,
quartile 2 already showed a significant difference between all
nuclei volumes (all p < 0.05), with posterior and medial nuclei
showing the most severe atrophy, followed by the lateral and
anterior ones. As for quartile 3, the lowest volumes were
observed with a similar pattern (p < 0.05), except for anterior
and lateral regions, which were not significantly different (p =
0.42). Finally, larger atrophy was observed for quartile 4, again

with a similar pattern to quartile 2 where all the nuclei were
significantly different (p < 0.05), with larger atrophy in the
medial and posterior regions.

Timeline of Thalamic Nuclei Volumes
To move to a continuous scale, while also considering the
possibility of nonlinear evolutions, we managed to model the
longitudinal trajectories of the 4 main thalamic nuclei groups
through concatenation of all the cross-sectional data
(Figure 3).We confirmed an earlier atrophy and divergence of
the posterior group compared with both anterior and lateral
groups (after a disease duration of 3 years and 4 years, re-
spectively). Early volume loss was also noticed for the medial
group showing differential atrophy compared with lateral and
anterior nuclei after 8 years of disease duration. Lateral and
anterior nuclei only showed significantly different volumes 24
years after disease onset, suggesting they have similar atrophy
rates for a large range of the disease course.

Figure 3 Volume Trajectories of Thalamic Nuclei Groups in MS Over Disease Duration

Volumes are represented as Z-scores
with reference to the healthy control
population. Strictly significant volumes
differences were depicted when 2 CIs
did not overlap anymore. Models that
best fitted the data were selected for
each nuclei group (see Statistical Anal-
ysis). The zoomed inset exhibits the
trajectories during the 15 first years
after disease onset, where a rapid di-
vergence took place. During this
shorter period, we could model the
trajectories using a linear fitting to ob-
tain the slopes (rates) of atrophy for
each group.

6 Neurology: Neuroimmunology & Neuroinflammation | Volume 11, Number 3 | May 2024 Neurology.org/NN
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We looked more closely at the early evolution as it corre-
sponded to the rapid divergence between groups. During the
first 15 years of the disease course, volume trajectories were
best modeled linearly with slopes representing the rate of
atrophy (Figure 3, inset). We found steeper regression lines
for both posterior and medial nuclei (−0.14 and −0.12, re-
spectively) compared with the anterior and lateral ones
(−0.08 and −0.08, respectively), indicating a faster rate of
atrophy for these groups.

Relative Contributions of Primary and
Secondary Mechanisms of Thalamic
Nuclei Atrophy
To also estimate the contribution of disconnection-related
atrophy, we quantified the impact of MS lesions on thalamic
nuclei volumes when located specifically “inside” the thala-
mocortical projection of the given group (Table 2). To cor-
rectly compare the regression coefficient estimates, all
variables have been previously standardized (i.e., converted to
Z-score). We found that lesions “inside” contributed more
than lesions “outside" for each group, expect the anterior one.
This is probably related to the small size of the anterior nuclei
group with fewer tracts connected to it.

We also observed that the same amount of demyelinating
lesion overlap was associated with more atrophy when “in-
side” the projections of the posterior and medial groups
(estimate [95% CI]: −0.62 [−0.69 to −0.54] and −0.57 [−0.66
to −0.48], respectively) than “inside” those of the lateral or
anterior groups (estimate [95% CI]: −0.34 [−0.41 to −0.27]
and 0.04 [−0.03 to 0.12], respectively).

This result suggests that atrophy induced by disconnection is
potentiated in the medial and posterior groups.

Association Between Time Course of Thalamic
Nuclei Atrophy and Disability
The first univariate correlations showed a significant associ-
ation between EDSS and (1) age, (2) disease duration, (3)
lesion load, (4) whole thalamus volume, and (5) the 4 nuclei

groups. In multivariate analyses, 5 LME models were con-
structed (for the whole thalamus and each nuclei group, in
addition to the previously reported significant covariates).
This led to a significant model for the whole thalamus [esti-
mate [95% CI] (p-value): −0.17 [−0.25 to −0.10] (<0.001)],
as well as the anterior [−0.16 [−0.23 to −0.10] (<0.001)] and
posterior group [−0.19 [−0.27 to −0.12] (<0.001)]. A final
model combining these 2 previously significant nuclei groups
showed a significant effect of age [0.31 [0.24–0.38]
(<0.001)], disease duration [0.21 [0.13–0.28] (<0.001)],
anterior group volume [−0.14 [−0.21 to −0.07] (<0.001)] and
posterior group volume [estimate [−0.12 [−0.21 to −0.03]
(<0.001)]. This last model (BIC = 1,515, loglikelihood =
−730) was significantly better than the one with whole tha-
lamic volume (BIC = 1,653, log-likelihood = −803). Details of
these LME models are provided in the eTable.

Discussion
In this study, we highlighted the archetype dynamic evolution
of intrathalamic atrophy during the course ofMS.We revealed
that medial and posterior groups of thalamic nuclei were
exhibiting a faster atrophy rate than anterior and lateral
groups. We argued for a “two-hit phenomenon” driving such a
pattern; the effect of focal white matter lesions transecting
thalamocortical projections being potentiated by other
mechanisms affecting more particularly the medial and pos-
terior groups which could be related to direct CSF-related
inflammation.

Applying an innovative lifespan approach to a largeMS cohort
and matched healthy controls, we provided the first non-
supervised dynamic profile of regional volumes during a vir-
tual course of 50 years of MS. We found regional variability in
the trajectories of volume loss, with volume loss starting to
affect deep gray matter nuclei, the amygdala/hippocampus
complex, the brainstem, and, among the cortical ribbon, the
insula and cingulum. The deep gray matter nuclei all showed
up among the first structures to develop atrophy, the thalamus

Table 2 Linear Mixed-Effect Models for Thalamic Nuclei Volumes Association With Lesions Overlapping the Same
Thalamocortical Projections

Nucleus Age Sex (M) Duration ICV Lesions “inside” Lesions “outside”

Anterior −0.31c −0.38c −0.07a 0.17c 0.04 −0.38c

Lateral −0.09b −0.40c −0.20c 0.56c −0.34c −0.28c

Medial −0.14c −0.38c −0.25c 0.44c −0.57c −0.34c

Posterior −0.19c −0.21b −0.26c 0.41c −0.62c −0.25c

Abbreviation: ICV = intracranial volume.
Values represent regression coefficients from the linear mixed model. All variables have been standardized (i.e., converted to Z-scores) for this analysis, and
the coefficients are calculated for increase of 1 unit of Z-score of the independent variables.
a p < 0.05.
b p < 0.01.
c p < 0.001.
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being the first one, in line with thalamic atrophy that is already
reported in pediatric MS,29 relapse-onset MS,30 CIS,31 and
radiologically isolated syndrome.14 The cumulative effects of
several mechanisms are likely responsible for the particular
vulnerability of the deep nuclei.13 The hippocampus and
amygdala also showed early volume loss in our chart, which
echoes the microstructural alterations reported from the CIS
stage32 attributed to the vulnerability of specific hippocampal
synapses and spines to the strong microglial activation.33

Brainstem vulnerability can be brought together with the
observations of early spinal cord atrophy that is directly
connected to the brainstem.34 The insula and cingulum could
be more vulnerable because they are also extensively con-
nected and, therefore, more likely affected by remote effects of
lesions along their connections. Postmortem data from long-
standing MS donors have also reported the major alterations
of insular and cingulate cortex at the contact of meningeal
inflammation that was more abundant in the deep in-
vagination of these structures.10

Altogether, the light shed on the thalamus with this novel
approach strengthens the previous hypothesis-driven litera-
ture12 and argues for deeper understanding at the sub-
structure level, which requires investigating modification of
the nuclei groups. However, in vivo parcellation of the tha-
lamic nuclei through MRI is challenging. Here, we leveraged
the strong intrathalamic contrast of a white matter–nulled
version of T1 that we specifically tuned to maximize the in-
ternal thalamic contrast.35 To enhance the real-world utility of
this pulse sequence, currently not included in the standard
protocol to monitor patients with MS,36 we refined an MRI
contrast synthesis strategy recently proposed to generate a
synthetic WMn-MPRAGE.27 Using the largest training data-
base so far, with images from different vendors, we could train
a robust CNN that can synthesize WMn images from stan-
dard T1 with specificity for MS because the training database
was formed of patients with MS and not healthy controls as
before.27,37 We showed that this intermediate step was valu-
able to improve the accuracy of our automatic thalamic seg-
mentation algorithm (THOMAS) that could then be used
with WMn as an input as initially designed.28 Overall, this
approach is a breakthrough in terms of accuracy of intra-
thalamic segmentation, which was limiting the current nuclei
analysis.

We reported a linear decrease of each thalamic nuclei group
during the first 15 years of disease duration, which is consis-
tent with a constant rate of atrophy already reported for the
whole thalamus.12 Of interest, the rates were different
according to groups, with posterior and medial groups
showing more rapid atrophy than anterior and lateral. These
data extend the current literature that mainly consisted of
cross-sectional data with too few patients to infer the timeline
we could report here.38-42 It is interesting to mention that It is
interesting to mention that previous work showed that the
thalamus shape was modified at the surface of the posterior
and medial groups, and not at the surface of the lateral group

in patients with MS.39 In addition, while they used different
segmentation approaches, the previous cross-sectional studies
mainly reported a more particular vulnerability of the poste-
rior group and relative sparing of the lateral group (also called
ventral) at different stages.38,40,41 Longitudinally, no differ-
ence in the rate of atrophy have been reported, likely because
of the small sample size and short duration of follow-up.39

The previous results on the anterior group are more
conflicting38,40,41 and should be taken into account with
caution because of its small size and, therefore, prone to
segmentation error. Accordingly, we found lower segmenta-
tion performance in dice score for the anterior group. Based
on the comparison of the posterior, medial, and lateral groups,
we concluded to a more substantial rate of atrophy for nuclei
adjacent to the third ventricle, which could be the in vivo
translation of the “ependymal-in” gradient reported
pathologically18,19 and associated to CSF-driven in-
flammation.43 Such a differential rate of atrophy also echoes
the microstructural gradient reported in pediatric MS,44 and
the subpial band-like thalamic lesions lining the ependymal
surface of the third ventricle on 7T MRI.45-47

On top of such direct thalamic damages, white matter lesions
can induce secondary thalamic degeneration, as argued for a
long time.16,17 To disentangle the effect of such an indirect
mechanism from direct CSF-driven targeting, we rigorously
quantified the effect of white matter lesions by quantifying their
impact when specifically located inside or outside dedicated
thalamocortical projections. We confirmed that lesions specif-
ically located within thalamocortical projections affected the
associated thalamic nuclei more than those outside. These re-
sults came from the comparisons of such a disconnection effect.
We observed that the effect of the same volume of white matter
lesion was more severe in thalamic nuclei atrophy when falling
in the projections of the posterior or medial groups than in
those of the lateral group. This observation argues again for
additional factors within these groups (as discussed above) that
potentiate the effect of disconnection. In inflammation, a cas-
cade of events is implicated, one being able to potentiate the
others, as shown with a two-hit model for the induction of an
experimental MS-like lesion.48 Our results argue that a re-
gionally distributed factor (likely related to CSF) potentiates
the effect of the widespread disconnection factor driving the
spatial gradient of temporal trajectories reported here.

Thalamus volume has been correlated with clinical
performances,13,15 which can be related to its hub location at
the center of several networks and its vulnerability to several
mechanisms as discussed above. It is interesting that the
whole thalamus volume could mix rapidly affected groups of
nuclei and others that are more spared, which could dilute
some effect. In line with this statement, we found that con-
sidering some groups could be more clinically relevant than
considering the whole thalamus. The most clinically relevant
groups of nuclei were those affected earlier (posterior group)
and those that might have particular clinical implications
(anterior group).38,39
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Strengths of this study include (1) a large number of patients
from a prospective, standardized, high-quality registry20; (2)
an advanced imaging strategy to improve the accuracy of
thalamic nuclei segmentation; and (3) careful consideration
of the impact of white matter lesions according to their lo-
cations inside or outside specific thalamocortical projections.
We also have to acknowledge limitations. Data from different
scanners could have affected the results. However, the imag-
ing protocol has been harmonized as much as possible across
centers.20 Furthermore, we preprocessed all the images cen-
trally to improve homogeneity as already described.8 Disease-
modifying drugs may likewise affect the severity of atrophy,
but could not be taken into account regarding the large panel
of treatments in the cohort. A part of atrophy related to
normal aging could corrupt the specific contribution of at-
rophy associated with MS. We limited such an aging effect by
presenting all the results in Z-scores to measure the distance
to a large control group perfectly matched for age and sex.
Nevertheless, more than this might be needed to perfectly
compensate the aging effect that could also be associated with
some regional heterogeneity of volume loss.49 While the
thalamus is a cognitive hub,50 we could not address the cog-
nitive consequences of these differential trajectories as we had
no standardized neuropsychological tests for those patients.

In conclusion, we report the archetype trajectories of re-
gional volume loss in MS, which we modeled during more
than 50 years of disease evolution. The results shed light not
only on the earliest thalamus atrophy but also on its deter-
minants. We argue for the heightening of neurodegeneration
secondary to white matter lesions disconnecting the thala-
mocortical projections by regional factors associated with the
CSF proximity of the third ventricle. Such 2 hits could ex-
plain the higher and almost consistent rate of atrophy for the
medial and posterior groups of thalamic nuclei during MS
evolution. These results pave the way toward understanding
disease biology better, combining, for instance, these ap-
proaches with CSF profiling. It also opens perspectives to
use such thalamic group volumetric methods as robust and
relevant biomarkers in therapeutic trials and ultimately to
monitor the disease course.
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Supplemental Material 
 

 

eMethods 

 

1. Population of healthy controls 

 

To build a reference population across the entire lifespan for this analysis, we pooled a total of 

2413 T1-weighted MRI of healthy controls (HC) from the following open-access datasets: 

NDAR (n=382, https://ndar.nih.gov), ABIDE (n=492, 

http://fcon_1000.projects.nitrc.org/indi/abide/), ICBM: (n=294 

http://www.loni.usc.edu/ICBM/), IXI (n=549, http://brain-development.org/ixi-dataset/), 

ADNI1&2 (n=404, http://adni.loni.usc.edu), AIBL (n=232, http://www.aibl.csiro.au/), OASIS 

(n=298, https://www.oasis-brains.org), and PPMI (n=166, https://www.ppmi-info.org/). 

 

2. Synthetic WMn-MPRAGE and thalamic nuclei segmentation: Methodology 

 

On conventional T1-weighted images, the contrast between thalamic nuclei is poor, implicating 

that segmentation algorithms can, at best, infer the thalamic borders. A white matter-nulled 

(WMn) version of MPRAGE images drastically enhances the intra-thalamic contrast,1 which is 

the rationale for the high performances of the original THOMAS  (THalamus Optimized Multi 

Atlas Segmentation) algorithm.2 To be able to use this original THOMAS algorithm, we trained 

a 3D convolutional neural network (CNN) specifically for MS application in order to generate 

synthetic WMn images from T1-weighted images, following a variant of a previously published 

methodology.3 To train this MR contrast synthesis network, we used a database independent 

from the 1123 patients. It consisted of 159 pairs of WMn and T1 acquisitions (from different 

vendors) of MS patients collected as part of ongoing prospective studies (ClinicalTrials.gov no.  

NCT03692975, NCT01865357, NCT02290587, NCT03768648, NCT03455582, respectively). 

We divided these cases into a training set (80% of the data set i.e., 127 pairs) and a test set (20% 

of the data set i.e., 32 pairs).  

To generate the synthetic WMn images we followed several steps. Specifically, we first 

increased the resolution of the preprocessed T1w images using an in house super-resolution 

algorithm based on a residual convolutional neural network architecture. This step, increased 



the resolution from 1 mm3 to 0.5 mm3 resulting into a final volume size of 362x434x362 voxels. 

Then, the specifically trained CNN for MR image synthesis4 was applied to the super-resolved 

images. Since the synthesis network was trained to generate MR volumes of size 181x217x181 

voxels, this network was applied 8 times to the 8 strided versions (stride factor 2 in all 3 

dimensions) of the super-resolved T1w images. Finally, the 8 generated synthetic WMn images 

were used to reconstruct the final ultra-high resolution WMn volume (362x434x362 voxels 

size) inverting the striding operation.  

To test the relevance of this strategy, we used the test set (n=32) to run the THOMAS algorithm 

(i) on the native WMn but also (ii) on the synthetic WMn and (iii) the conventional T1. 

Considering THOMAS from native WMn as a gold standard, we quantified the quality of 

segmentations from the two other strategies in terms of dice score and volume similarity index 

(VSI). We summed the right and left sides together, and we gathered the 11 segmented nuclei 

in 4 main groups based on anatomical and functional considerations5: (i) the anterior group 

including the anteroventral nucleus, (ii) the lateral group including the ventral posterolateral, 

ventral lateral anterior, ventral lateral posterior and ventral anterior nuclei, (iii) the medial group 

including the mediodorsal and centromedian nuclei, and the habenula, and (iv) the posterior 

group including the pulvinar, medial geniculate and lateral geniculate nuclei. 

 

3. Synthetic WMn-MPRAGE and thalamic nuclei segmentation: Validation 

 

On T1-weighted images, the contrast between thalamic nuclei was poor (eFig. 1A) while it was 

enhanced on the WMn version (eFig. 1B) that is originally used in THOMAS segmentation 

algorithm.2 The 3D CNN trained over 127 pairs of T1 and WMn acquisitions produced 

synthetic WMn images that were almost visually not distinguishable from the native ones (eFig. 

1C).  

On the 32 cases of the test set, we considered THOMAS segmentation from native WMn-

MPRAGE to be the best case (“silver” standard) because we already validated this combination 

against histological ground truth.1, 2 Compared to this reference, THOMAS applied to the 

synthetic WMn was significantly better than a variation of THOMAS applied directly to T1-

weighted images6 (eFig. 1D). For the thalamic nuclei groups, dice scores were improved from 

0.64±0.10 to 0.88±0.02 (p<0.001) for the lowest values from the anterior group, and from 

0.78±0.06 to 0.94±0.01 (p<0.001) for the highest values from the medial group. All the volume 

similarity indexes were also significantly improved when THOMAS was applied to synthetic 



WMn rather than to T1-weighted images (p<0.001), with an important reduction of the standard 

deviations. 

Overall, these results showed that using an intermediate step of WMn synthesis significantly 

improved the accuracy of thalamic nuclei segmentation when conventional T1 is the only 

available contrast.  

 

4. Estimation of the effect of thalamo-cortical disconnection 

 

To reconstruct the specific thalamocortical bundles for each thalamic nuclei group, we used 

diffusion-weighted and T1-weighted images of 20 healthy participants from the BIL&GIN 

database.7 A whole-brain tractogram was built for each participant using the TractoFlow 

diffusion MRI processing pipeline.8 The latter was made using the fiber orientation distribution 

function (fODF) image, inclusion and exclusion maps, ten seeds per voxel in the whole white 

matter mask, a step size of 0.5 mm, a maximum angle of 20°, and a streamline length between 

10 and 250 mm. The 20 whole-brain tractograms were warped to the MNI space using ANTS.9 

We used ExTractorflow to filter out false-positive streamlines from each tractogram.10 Then 

we performed the virtual dissection of the left and right thalamocortical bundles from these 20 

anatomically-plausible whole-brain tractograms using the masks of the four thalamic nuclei 

groups in MNI11 and regions of interest of the Johns Hopkins University template.12 We used 

the stem/shell approach to extract only streamlines with one termination in the cortical grey 

matter but passing through a gyral stem and not crossing a gyral shell [Details in Figure 1 in 

10]. Four different thalamocortical bundles were composed of streamlines with the other 

termination in one of the specific thalamic nuclei groups in each hemisphere. A density map 

was computed for each left and right thalamocortical bundle from the 20 tractograms.  

Finally, we quantified the overlap between these bundles and white matter lesions (lesions 

"inside" the projections) for each of our 1123 MS participants by multiplying the lesion load 

by the voxel weight (from 0.5 to 1.0) of the density map. The lesion volume "outside" the 

bundles was also quantified (eFig. 2). 

  



 

 

eFigure 1. Performance of synthetic WMn-MPRAGE for thalamic nuclei segmentation 

Native T1-weighted image (A), native WMn-MPRAGE (B) and synthetic WMn-MPRAGE (C). Dices and volume 

similarity indexes (VSI) were computed when THOMAS was run on the native T1-weighted images or on the 

synthetic WMn-MPRAGE by comparison to the native WMn-MPRAGE used as the reference standard. 

* < 0.05; ** < 0.01; *** < 0.001. 

  



 

 

eFigure 2. Thalamo-cortical disconnection 

Panel (A) displays tracts connected to the posterior thalamic group (in yellow), lesions overlapping these tracts (in 

red) and lesions outside these tracts (in green). Panel (B) represents a 3D visualization of the same the same subject. 

  



eTable. Linear mixed effect models predicting disability (EDSS) 

 
 Model Predictor 

 BIC Loglikelihood Estimate CI p 

Predicting EDSS with whole thalamus 1653 -803    

Age   0.35 0.28 – 0.42 <0.001 

Disease duration   0.19 0.11 – 0.26 <0.001 

Lesion load   0.05 -0.02 – 0.12 0.14 

Whole thalamic volume   -0.17 -0.25 – -0.10 <0.001 

Predicting EDSS with anterior nuclei 1621 -787    

Age   0.33 0.26 – 0.40 <0.001 

Disease duration   0.22 0.15 – 0.29 <0.001 

Lesion load   0.09 0.02 – 0.15 0.009 

Anterior nuclei volume   -0.16 -0.23 – -0.10 <0.001 

Predicting EDSS with lateral nuclei 1530 -742    

Age   0.35 0.28 – 0.42 0.15 

Disease duration   0.23 0.16 – 0.30 0.21 

Lesion load   0.11 0.04 – 0.17 0.30 

Lateral nuclei volume   -0.09 -0.15 – -0.02 0.34 

Predicting EDSS with medial nuclei 1524 -738    

Age   0.34 0.27 – 0.40 0.21 

Disease duration   0.22 0.15 – 0.29 0.27 

Lesion load   0.07 -0.00 – 0.13 0.46 

Medial nuclei volume   -0.15 -0.22 – -0.08 0.33 

Predicting EDSS with posterior nuclei 1651 -802    

Age   0.35 0.28 – 0.42 <0.001 

Disease duration   0.18 0.11 – 0.26 <0.001 

Lesion load   0.04 -0.03 – 0.11 0.22 

Posterior nuclei volume   -0.19 -0.27 – -0.12 <0.001 

Predicting EDSS with anterior and posterior nuclei 1515 -730    

Age   0.31 0.24 – 0.38 <0.001 

Disease duration   0.21 0.13 – 0.28 <0.001 

Lesion load   0.03 -0.04 – 0.10 0.38 

Anterior nuclei volume   -0.14 -0.21 – -0.07 <0.001 

Posterior nuclei volume   -0.12 -0.21 – -0.03 0.007 

  
EDSS: expanded disability status scale; BIC: bayesian information criterion; CI: confidence interval.  
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