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TTK is Getting MPI-Ready
E. Le Guillou, M. Will, P. Guillou, J. Lukasczyk, P. Fortin, C. Garth, J. Tierny

Abstract—This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to
distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based
approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm
implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids)
for the support of topological analysis pipelines, i.e., a sequence of topological algorithms interacting together, possibly on distinct
numbers of processes. While developing this extension, we faced several algorithmic and software engineering challenges, which we
document in this paper. Specifically, we describe an MPI extension of TTK’s data structure for triangulation representation and
traversal, a central component to the global performance and generality of TTK’s topological implementations. We also introduce an
intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a
taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide
examples of hybrid MPI+thread parallelizations. Detailed performance analyses show that parallel efficiencies range from 20% to 80%

(depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation
time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining
multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a standard cluster with 64

nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK’s MPI extension, along with generic
recommendations for each algorithm communication category.

Index Terms—Topological data analysis, high-performance computing, distributed-memory algorithms.

✦

1 INTRODUCTION

Modern datasets are constantly growing in size, due to
the continuous improvements of acquisition technologies
and computational systems. This growth induces finer level
of details, in turn inducing more complex geometrical struc-
tures in the data. To apprehend this complexity, advanced
techniques are required for the concise encoding of the core
patterns in the data, to facilitate analysis and visualization.

Topological Data Analysis (TDA) [17] serves this pur-
pose. It is based on robust, multi-scale algorithms [18],
which capture a variety of structural features [33]. Examples
of applications include combustion [10], [29], [41], material
sciences [20], [31], [67], nuclear energy [47], fluid dynamics
[37], [52], bioimaging [9], [12], data science [14], [15], quan-
tum chemistry [7], [23], [55], [56] and astrophysics [64], [69].

However, with the above data size increase, it becomes
frequent in the applications that the size of a single dataset
exceeds the memory capacity of a single computer, hence
requiring the combined memories of distributed systems.

The Topology ToolKit (TTK) [71] is an open-source library
which implements a substantial collection of algorithms [8]
for topological data analysis and visualization. In contrast to
pre-existing, tailored, mono-algorithm implementations (see
Sec. 1.1), TTK (1) supports multiple algorithms (Appendix
A.3), (2) it is versatile (it provides time and memory efficient
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supports for multiple, typical data representations found
in scientific computing and imaging, such as triangulated
domains or regular grids) and (3) it consistently supports
the combination of multiple algorithms into a topological
analysis pipeline (see the TTK Online Example Database [74] for
real-life examples). However, while most of its algorithms
support shared-memory parallelism using multiple threads
with OpenMP [57] (Appendix A.3), TTK did not support,
up to now, distributed-memory parallelism and thus, was
restricted to datasets of limited size, fitting in the memory
of a single computer.

This system paper addresses this issue by documenting
the technical foundations which are required for the exten-
sion of TTK to distributed-memory parallelism using multi-
ple processes with the Message Passing Interface (MPI), hence
enabling the design of topological pipelines for the analysis
of large-scale datasets on supercomputers. Specifically, after
formalizing our conceptual model for the distributed repre-
sentation of the input and output data (Sec. 3), we present
the extension of TTK’s internal triangulation data-structure
(a central component of its performance and versatility) to
the distributed setting (Sec. 4). We also document an inter-
face between TTK and MPI (Sec. 5) enabling the consistent
combination of multiple topological algorithms within a
single, distributed pipeline.

Unlike previous work (Sec. 1.1), this paper does not
focus on the distributed computation of a specific topolog-
ical object (such as merge trees or persistence diagrams).
Instead, it documents the necessary building blocks for the
extension to the distributed setting of a diverse collection
of topological algorithms such as TTK. To evaluate the
efficiency of our extension, we document several examples
(Sec. 6), extending to the distributed setting a selection
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of topological algorithms. We also provide a taxonomy
of TTK’s topological algorithms (Sec. 6.1), depending on
their communication needs and provide examples of hybrid
MPI+thread parallelizations for each category (Sec. 6.3),
with detailed performance analyses (Sec. 7.1). We illustrate
the new distributed capabilities of TTK with an example of
advanced analysis pipeline (Sec. 6.4), combining multiple al-
gorithms, run on a dataset of 120 billion vertices distributed
on 64 nodes (Sec. 7.2) of 24 cores each. Finally, we provide
a roadmap for the completion of TTK’s MPI extension, with
generic recommendations for each algorithm communica-
tion category (Sec. 8). This work has been integrated in the
main source code of TTK and is available in open-source.

1.1 Related work

Concepts from computational topology [17] have been
investigated and extended by the visualization commu-
nity [33] over the last two decades. Popular topological
representations include the persistence diagram, the Reeb
graphs and its variants, or the Morse-Smale complex [17].

To improve the time efficiency of the algorithms com-
puting the above representations, a significant effort has
been carried out to re-visit TDA algorithms for shared-
memory parallelism. Several authors focused on the shared-
memory computation of the persistence diagram [6], [27],
others focused on the merge and contour trees [1], [13], [24],
[25], [46], [66] or the Reeb graph [26], while several other
approaches have been proposed for the Morse-Smale com-
plex [30], [62], [63]. Recently, a localized approach based on
shared-memory parallelism has been introduced for the on-
the-fly triangulation connectivity computation [42]. While
the above parallel approaches succeed in improving compu-
tation times, they still require a shared-memory system, ca-
pable of storing the entire input dataset into memory. Thus,
when the size of the input dataset exceeds the capacity of
the main memory of a single computer, distributed-memory
approaches need to be considered. Moreover, provided
that the performance of these distributed approaches scales
with the number of nodes, they also contribute to reducing
computation times.

Fewer approaches have been documented for the com-
putation of topological data representations in a distributed-
memory environment. First, distributed-memory computers
are much less accessible in practice than parallel shared-
memory architectures, which have become ubiquitous in
recent years (workstations, laptops, etc.). Second, the algo-
rithmic advances in terms of parallelism described in the
shared-memory approaches do not translate directly to a
distributed environment. Indeed, a key to the performance
of the shared-memory approaches discussed above is the
ability of a thread to access any arbitrary element in the
input dataset. It also allows for easily implementable and
efficient dynamic load balancing across threads.

In contrast, in a distributed setup, the initial per-process
decomposition of the input dataset is often a given, which
the topological algorithm cannot modify easily and which is
likely to be unfavorable to its performances. Then, existing
efforts for distributing TDA approaches typically consist in
first computing a local topological representation (i.e. per-
sistence diagram, contour tree, etc.) given the local block of

input dataset accessible to the process and then, in a second
stage, to aggregate the local representations into a common
global representation while attempting to minimize commu-
nications between processes (which are much more costly
than synchronizations in shared-memory parallelism). Note
that in several approaches [34], [50], [51], the final global
representation may not be strictly equivalent to the output
obtained by a traditional sequential algorithm, but more to
a distributed representation, capable of supporting access
queries by post-processing algorithms in a distributed fash-
ion. Following the above general strategy, approaches have
been documented for the distributed computation of the
persistence diagram [5] as well as the merge and contour
trees [11], [34], [50], [51], [53], [58], [75]. However, these
efforts focused on tailored implementations (i.e. supporting
a single algorithm, typically restricted to regular grids),
which neither needed to interact with other algorithms
within a single analysis pipeline, nor to support compat-
ibility with outputs computed sequentially. For instance,
DIPHA [5] focuses on persistence diagram computation. For
that, it relies on a data representation based on the boundary
matrix of the input filtration, which is versatile, but at the
expense of a potentially high memory footprint. Moreover,
this representation is not accompanied by any mesh traver-
sal functionality. Reeber [53], [54] focuses on merge tree
computation. It is tailored for regular grids (with optional
support of adaptive mesh refinement via AMReX [76]) and
its data structure only models vertex adjacency relations
(which is the only traversal functionality required for merge
tree computation). In contrast, our work provides a data-
structure (Sec. 4) which is (1) versatile (it supports both
triangulated domains and regular grids), (2) compact and
time-efficient (with an adaptive footprint for triangulated
domains and no memory overhead for regular grids), (3)
flexible (it supports a rich set of traversals, Sec. 4.1, required
to support the entire TTK algorithm collection, Appendix
A.3), and (4) conducive to pipeline re-use (it consistently
maintains global indices for each simplex, irrespective of
the number of processes).

A necessary building block for distributing TDA algo-
rithms is an infrastructure supporting a distributed access to
the input dataset. Several general purpose software frame-
works have been documented. For instance, DIY [49] is a
block-parallel library that facilitates the parallelization of
pre-existing algorithms. Specifically, DIY enables developers
to write a single implementation, which can be used for mul-
tiple runtime configurations (out-of-core, shared-memory or
distributed-memory parallelism). As such, DIY is a general-
purpose software component, sitting right on top of low-
level parallel environments (e.g. MPI [48] or C++ threads).
In contrast to our work, it does not provide any specific
mechanism for topological algorithms. It does not provide
a distributed data-structure for simplicial complexes (which
our work contributes, Sec. 4) or the convenience function-
alities needed by arbitrary simplicial complexes for con-
sistently combining multiple topological algorithms into a
distributed pipeline, such as the one supported by VTK (our
work also contributes such pipeline functionalities, Sec. 5).
Moreover, DIY’s design philosophy eases parallelization at
the cost of limiting the benefits of combining distributed
and shared-memory parallelisms. For instance, to our un-
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Fig. 1: Topological objects considered in this paper on a toy example (elevation f on a terrain M, (a)). The vertices of M
can be classified based on their star into regular vertices ((b), top: PL setting, bottom: DMT setting), local minima (c), saddle
points (d) or local maxima (e). Integral lines (orange curves, (f)) are curves which are tangential to the gradient of f .

derstanding, workload within a single data block cannot
be shared with DIY among multiple threads (as done in
contrast in our work, Sec. 6.2). To balance workload among
threads with DIY, more (smaller) blocks would be required.
This can result in non-optimal load balancing when the
workload is not evenly distributed spatially, and can be
detrimental to algorithms spanning multiple blocks (e.g.
integral lines, Sec. 7.1.1).

To support topological algorithms, a data structure must
be available to efficiently traverse the input dataset, with
possibly advanced traversal queries. TTK [8], [71] imple-
ments such a triangulation data structure, providing ad-
vanced, constant-time, traversal queries, supporting both
explicit meshes as well as the implicit triangulation of reg-
ular grids (with no memory overhead). While several data
structures have been proposed for the distributed support
of meshes [19], [36], [76] (with a focus on simulation driven
remeshing), we consider in this work the distribution of
TTK’s triangulation data structure (Sec. 4), with a strong
focus on traversal time efficiency and compatibility with a
non-distributed usage, to support post-processing interac-
tive sessions on a workstation (c.f. Sec. 3).

1.2 Contributions
This system paper makes the following new contributions.

1) An efficient, distributed triangulation data structure (Sec. 4):
We introduce an extension of TTK’s triangulation data
structure for the support of distributed datasets.

2) A software infrastructure for distributed topological pipelines
(Sec. 5): We document a software infrastructure con-
sistently supporting advanced, distributed topological
pipelines, consisting of multiple algorithms, possibly
run on a distinct number of processes.

3) Examples of distributed topological algorithms (Sec. 6):
We provide a taxonomy of the algorithms supported
by TTK, depending on their communication needs,
and document examples of distributed paralleliza-
tions, with detailed performance analyses, following
an MPI+thread strategy. This includes an advanced
pipeline consisting of multiple algorithms, run on a
dataset of 120 billion vertices on a compute cluster with
64 nodes (1536 cores, total).

4) An open-source implementation: Our implementation is
integrated in TTK 1.2.0, to enable others to reproduce
our results or extend TTK’s distributed capabilities.

5) A reproducible example: We provide a reference Python
script of one of our advanced pipelines for replicating
our results with a dataset size that can be adjusted to fit
the capacities of any system (publicly available at: https:
//github.com/eve-le-guillou/TTK-MPI-at-example).

2 BACKGROUND

This section describes our formal setting and formalizes a
few topological data representations, used later in the paper
when discussing examples (Sec. 6). All these descriptions
are given in a non-distributed context. The formalization of
our distributed model is documented in Sec. 3. We refer
the reader to reference textbooks [17] for a comprehensive
introduction to computational topology.

2.1 Input data
The input is a piecewise linear (PL) scalar field f : M → R
defined on a d-dimensional simplicial complex, with d ⩽ 3
in our applications (Fig. 1(a)). The set of i-simplices of M
is denoted Mi. The star St(σ) of a simplex σ is the set
of simplices of M which contain σ as a face. The link
Lk(σ) is the set of faces of the simplices of St(σ) which
do not intersect σ. The input field f is provided on the
vertices of M and is interpolated on the simplices of higher
dimension. f is assumed to be injective on the vertices,
which is achieved by substituting the f value of a vertex
by its position in the vertex order (by increasing f values).

2.2 Critical points
The sub-level set f−1

−∞(w) of an isovalue w ∈ R is defined
as f−1

−∞(w) = {p ∈ M | f(p) < w}. It can be inter-
preted as a subset of the data, below the isovalue w. As
w continuously increases, the topology of f−1

−∞(w) changes
at specific vertices of M, called the critical points of f . Let
Lk−(v) be the lower link of the vertex v: Lk−(v) = {σ ∈
Lk(v) | ∀u ∈ σ : f(u) < f(v)} (blue edges and vertices in
Fig. 1(b-e), top). The upper link of v is defined symmetrically:
Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f(u) > f(v)} (orange

https://github.com/eve-le-guillou/TTK-MPI-at-example
https://github.com/eve-le-guillou/TTK-MPI-at-example
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Fig. 2: The input data (a) is assumed to be loaded in the memory of np independent processes in the form of np disjoint
blocks of data ((b), one color per block, np = 4 in this example). A layer of ghost simplices ((c), coming from adjacent blocks,
matching colors) is added to each block. This local data duplication ((d), transparent) eases subsequent processing on block
boundaries. A local adjacency graph is constructed to encode local neighbor relations between blocks (e).

edges and vertices in Fig. 1(b-e), top). A vertex v is regular if
and only if both Lk−(v) and Lk+(v) are simply connected.
Otherwise, v is a critical vertex of f [4]. A critical vertex v
can be classified by its index I(v), which is 0 for minima
(Fig. 1(c)), 1 for 1-saddles (Fig. 1(d)), (d − 1) for (d − 1)-
saddles and d for maxima (Fig. 1(e)). Vertices for which
the number of connected components of Lk−(v) or Lk+(v)
are greater than 2 are called degenerate saddles. Prior to this
work, this critical point classification was implemented in
TTK with shared-memory parallelism with OpenMP (see
Appendix A.3), as each vertex classification is independent.

2.3 Integral lines
Integral lines are curves on M which locally describe the
gradient of f (orange curves in Fig. 1(f)). They can be used
to capture and visualize adjacency relations between critical
points. The starting vertex of an integral line is called a seed.
Given a seed v, its forward integral line, noted L+(v), is a
path along the edges of M, initiated in v, such that each
edge of L+(v) connects a vertex v′ to its highest neighbor
v′′. When encountering a saddle s, we say that an integral
line forks: it yields one new integral line per connected
component of Lk+(s). Integral lines can merge (and possibly
fork later). A backward integral line, noted L−(v), is defined
symmetrically (i.e. integrating downwards). Prior to this
work, this computation was implemented sequentially in
TTK (see Appendix A.3), i.e. given a list of input seeds, each
integral line was computed sequentially one after the other.

2.4 Discrete gradient
In recent years, an alternative emerged to the PL formalism
of critical points described above (Sec. 2.2), namely Dis-
crete Morse Theory (DMT) [22]. This formalism implicitly
resolves several challenging configurations (such as degen-
erate saddles on manifold domains), which has been par-
ticularly useful for the development of robust algorithms in
the context of Morse-Smale complex computation [30], [62].
We also consider in this work this alternative representation
to critical points, as it nicely exemplifies a large set of the
traversal features supported by TTK’s triangulation (Sec. 4).

A discrete vector (small orange arrows, Fig. 1(b-e), bottom)
is a pair formed by a simplex σi ∈ M (of dimension i) and
one of its co-facets σi+1 (i.e. one of its co-faces of dimension

i + 1), noted {σi < σi+1}. σi+1 is usually referred to as the
head of the vector (represented with a small orange cylinder
in Fig. 1(b-e), bottom), while σi is its tail (represented with
a small orange sphere in Fig. 1(b-e), bottom). Examples of
discrete vectors include a pair between a vertex and one of
its incident edges, or a pair between an edge and a triangle
containing it. A discrete vector field on M is then defined
as a collection V of pairs {σi < σi+1}, such that each
simplex of M is involved in at most one pair. A simplex
σi which is involved in no discrete vector V is called a
critical simplex. A v-path is a sequence of discrete vectors{
{σ0

i < σ0
i+1}, . . . , {σk

i < σk
i+1}

}
, such that (i) σj

i ̸= σj+1
i

(i.e. the tails of two consecutive vectors are distinct) and (ii)
σj+1
i < σj

i+1 (i.e. the tail of a vector in the sequence is a face
of the head of the previous vector), for any 0 < j < k. A
discrete gradient field is a discrete vector field such that all its
possible v-paths are loop-free. Several algorithms have been
proposed to compute such a discrete gradient field from an
input PL scalar field. We consider in this work the algorithm
by Robins et al. [62], given its proximity to the PL setting:
each critical cell identified by this algorithm is guaranteed to
be located in the star of a PL critical vertex (Sec. 2.2). Prior to
this work, this computation was implemented in TTK with
shared-memory parallelism with OpenMP (Appendix A.3),
as each lower star can be processed independently.

3 DISTRIBUTED MODEL

We now formalize our distributed model, which will even-
tually be used as a blueprint to port the algorithms de-
scribed above (Sec. 2) to distributed computations (Sec. 6).

3.1 Input distribution formalization

3.1.1 Decomposition

Our distributed-memory model is based the following con-
vention. f is assumed to be loaded in the memory of np

processes in the form of np disjoints blocks of data (Fig. 2(a-
b)). Specifically, each process i ∈ {0, . . . , np−1} is associated
with a local block fi : Mi → R, such that:

• Mi ⊂ M: each block Mi is a d-dimensional simplicial
complex, being a subset of the global input M.
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• Any simplex σ present in multiple blocks (e.g. at the
boundary between adjacent blocks) is said to be ex-
clusively owned, by convention, by the process with the
lowest identifier (among the processes containing σ).

• A simplex σ ∈ Mi which is not exclusively owned by
the process i is called a ghost simplex (Sec. 3.1.2).

• ∪Mi
= M: the union of the blocks is equal to the input.

3.1.2 Ghost layer
In such a distributed setting, ghost simplices are typically
considered, in order to save communications between pro-
cesses for local tasks. Ghost simplices are typically simplices
inside the block of a process that are copies of the interfacing
simplices of an adjacent block (see the lighter simplices
in Fig. 2, (d)). We note M′

i the d-dimensional simplicial
complex obtained by considering a layer of ghost simplices,
i.e. by adding to Mi the d-simplices of M which share a face
with a d-simplex of Mi, along with all their d′-dimensional
faces (with d′ ∈ {0, . . . , d − 1}). Overall, all the simplices
added in this way to the block Mi to form the ghosted block
M′

i are ghost simplices (Fig. 2(c-d)).
The usage of such a ghost layer is typically motivated

in practice by algorithms which perform local traversals
(e.g. PL critical point extraction, Sec. 2.2). Then, when such
algorithms reach the boundary of a block, they can still
perform their task without any communication, thanks to
the ghost layer. Also, the usage of a ghost layer facilitates
the identification of boundary simplices (i.e. located on the
boundary of the global domain M, see Sec. 4.2.1).

The blocks are also positioned in relation to one another.
Processes i and j will be considered adjacent (Fig. 2(e)) if M′

i

contains d-simplices that are exclusively owned by j and if
M′

j contains d-simplices that are exclusively owned by i.

3.1.3 Global simplex identifiers
For any d′ ∈ {0, . . . , d}, each d′-simplex σj of each block M′

i

is associated with a local identifier j ∈ [0, |M′d′

i | − 1]. This
integer uniquely identifies σj within the local block M′

i.
The simplex σj is also associated with a global identi-

fier ϕd′(j) ∈ [0, |Md′ | − 1], which uniquely identifies σj

within the global dataset M. Such a global identification
is motivated by the need to support varying numbers of
processes. In particular, assume that a first analysis pipeline
P1 (for instance extracting critical vertices, Sec. 2.2) uses
np(P1) processes to generate an output (e.g. the list of
critical vertices). Let us consider now a second analysis
pipeline P2 using np(P2) processes (possibly on a different
machine) to post-process the output of P1 (for instance,
seeding integral lines, Sec. 6.3.5, at the previously extracted
critical vertices). Since np(P1) and np(P2) differ between
the two sub-pipelines, their input decompositions into local
blocks will also differ. Then the local identifiers of the critical
vertices employed in P1 may no longer be usable in P2. For
instance, if np(P1) < np(P2), the local blocks of P2 may be
much smaller than those of P1 and the local identifiers of P1

can become out of range in P2. Thus, a common ground
between the two pipelines need to be found to reliably
exchange information, hence the global, unique identifiers.

Note that the support for a varying number of processes
is a necessary feature for practical distributed topological

algorithms. While it is a challenging constraint (c.f. Sec. 4),
it is beneficial to various application use cases. For instance,
P2 can be a post-processing pipeline run on a workstation.
P2 can also be executed on a different (possibly larger)
distributed-memory system than P1. Last, P1 and P2 can
be part of a single, large pipeline, which would include an
aggregation step of the outputs of P1 to a different number
of processes (np(P2)).

3.1.4 Simplex-to-process maps
Each block M′

i is associated with simplex-to-process maps,
which map each simplex to the identifier of the process
which exclusively owns it.

3.2 Output distribution formalization
Topological algorithms typically consume an input (possibly
complex), to produce a (usually) simpler output (such as the
topological representations described in Sec. 2). Moreover,
multiple topological algorithms can be combined sequen-
tially to form an analysis pipeline. For instance, a first
algorithm A1 may compute integral lines (Sec. 6.3.5) for a
first field f , while a second algorithm A2 may extract the
critical vertices (Sec. 2.2) for a second field g, defined on the
integral lines generated by the first algorithm A1. Thus, the
output produced by a distributed topological algorithm A1

must be readily usable by another distributed algorithm A2.
This implies that the output computed by a topological

algorithm must also strictly comply to the input specifica-
tion (Sec. 3.1) and should contain: (i) a ghost layer, (ii) global
simplex identifiers, and (iii) simplex-to-process maps.

Note that, according to this formalism, the output of
a topological algorithm is distributed among several pro-
cesses. Depending on the complexity of this output, spe-
cialized manipulation algorithms (handling communication
between processes) may need to be later developed to
exploit them appropriately in a post-process.

3.3 Implementation specification
We now review the building blocks which are necessary to
support the distributed model specified in Secs. 3.1 and 3.2.

The pipeline combining the different topological algo-
rithms can be encoded in the form of a Python script (c.f.
contribution 5, Sec. 1.2). The initial decomposition of the
global domain M and the ghost layer (specifically, the ghost
vertices and the ghost d-simplices) are computed by Par-
aView [2]. Then, the TTK algorithms present in the pipeline
will be instantiated by ParaView on each process and from
this point on, they will be able to access their own local block
of ghosted data and communicate with other processes.

While ParaView offers in principle the possibility to
compute vertex-to-process maps, we have observed sev-
eral inconsistencies (in particular when using ghost layers),
which prevented us to use it reliably. This required us to
develop our own process identification strategy (Sec. 5.2).

Moreover, while ParaView also offers in principle the
possibility to generate global identifiers for vertices and cells
(i.e. d-simplices), we have experienced technical difficulties
with it (such as a dependence of the resulting identifiers
on the number of processes), as well as issues which made
it unusable for large-scale datasets (such as an excessively
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large memory footprint). This required us to develop our
own strategy for the global identification of vertices and
cells (i.e. d-simplices), documented in Secs. 4.2 and 4.3.

The input PL scalar field f is required to be injective on
the vertices (c.f. Sec. 2.1). This can be easily obtained via
lexicographic vertex comparison, by considering for each
vertex v the tuple

(
f(v), ϕ0(v)

)
, i.e. the tuple formed by its

scalar value and its global identifier. In practice, to accelerate
these comparisons for local vertices (i.e. vertices present in a
common block M′

i), the process i will first sort all its local
vertices (in lexicographic order) in a preconditioning step,
and local vertex comparisons will later be based on their
order in the sorted list.

Sec. 4 documents the extension of TTK’s triangulation
data structure to support our model of distributed input
and output (Secs. 3.1 and 3.2).

Additional procedures easing the combination of multi-
ple algorithms into a single pipeline (adjacency graph com-
putation, ghost data exchange) are documented in Sec. 5.2.

4 DISTRIBUTED TRIANGULATION

This section describes the distributed extension of TTK’s
triangulation data structure, later used by each topological
algorithm. In the following, we assume that the input block
is loaded in the memory of the local process i and ghosted
(i.e. we consider the ghosted block M′

i, Sec. 3.1.2). More-
over, we consider that, for each process i, a list of neighbor
processes is available (Fig. 2(e)).

4.1 Initial design
For completeness, we briefly summarize the pre-existing
implementation of TTK’s triangulation data structure [71].
In the following, the triangulation M is assumed to be
of uniform top dimension, i.e. any d′-simplex (with d′ ∈
{0, 1, . . . , d− 1}) admits at least one d-dimensional co-face.

In the explicit case (the input is a simplicial mesh), this
data structure takes as an input a pointer to an array of 3D
points (modeling the vertices of M), as well as a pointer to
an array of indices (modeling the d-simplices of M). In the
implicit case (the input is a regular grid), it takes as an input
the origin of the grid as well as its resolution and spacing
across each dimension. These can be provided by any IO
library (in our experiments, these are provided by VTK).

Based on this input, the triangulation supports a variety
of traversal routines, to address the needs of the algorithms.

1) Simplex enumeration: for any d′ ∈ {0, . . . , d}, the data
structure can enumerate all the d′-simplices of M.

2) Stars and links: for any d′ ∈ {0, . . . , d}, the data
structure can enumerate all the simplices of the star and
the link of any d′-simplex σ.

3) Face / co-face: for any d′ ∈ {0, . . . , d}, the data structure
can enumerate all the d′′-simplices τ which are faces or
co-faces of a d′-simplex σ, for any dimension d′′ (i.e.
d′′ ̸= d′ and d′′ ∈ {0, . . . , d}).

4) Boundary tests: d′ ∈ {0, . . . , d − 1}, the data structure
can be queried to determine if a d′-simplex σ is on the
boundary of M or not.

As discussed in the original paper [71], such traversals
are rather typical of topological algorithms, which may need
to inspect extensively the local neighborhoods of simplices.

All traversal queries (e.g. getting the ith d′′-dimensional
co-face of a given d′-simplex σ) are addressed by the data
structure in constant time, which is of paramount impor-
tance to guarantee the runtime performance of the calling
topological algorithms. This is supported by the data struc-
ture via a preconditioning mechanism (i.e. an adaptive, pre-
computation stage, described in Appendix A.2). For regular
grids, periodic (along all dimensions) or not, the traversal
queries can be computed on-the-fly given the regular struc-
ture of the Freudenthal triangulation of the grid [32], [35].

4.2 Distributed explicit triangulation
This section describes our distributed implementation of the
TTK triangulation in explicit mode, i.e. when an explicit
simplicial complex is provided as a global input.

4.2.1 Distributed explicit preconditioning
The preconditioning of explicit triangulations in the dis-
tributed setting involves the computation of four main
pieces of information: (1) global identifiers, (2) ghost global
identifiers, (3) boundary, and (4) ghost boundary.
(1) Global identifiers: The first step consists in determining
global identifiers for the vertices (i.e., the map ϕ0, Sec. 3.1,
its inverse, ϕ−1

0 ). This step is not optional and is triggered
automatically. For each ghosted block M′

i, the number nvi

of non-ghost vertices that the block exclusively owns is
computed (Fig. 3(a)). Next, an MPI prefix sum is performed
to determine the offset that each block i should add to its
local vertex identifiers to obtain its global vertex identifiers.
The map ϕd and its inverse ϕ−1

d are computed similarly.
Next, global identifiers need to be computed for the d′-
simplices of intermediate dimension (i.e. d′ ∈ {1, . . . , d−1},
Fig. 3(b))). This step is optional and is only triggered if the
calling algorithm pre-declared the usage of these simplices
in the preconditioning phase.

For this, each process i first identifies, among its list
of exclusively owned d-simplices, intervals of contiguous
global identifiers. These are typically interleaved with global
identifiers of ghost d-simplices. Then, intervals are pro-
cessed independently via shared-memory parallelism, and
for each interval x, the d′-simplices are provided with a
local identifier (with the same procedure as used in the non-
distributed setting). Given a d′-simplex σ at the interface
between two blocks (i.e. σ is a face of a ghost d-simplex),
a tie break strategy needs to be established, to guarantee
that only one process tries to generate an identifier for σ.
Specifically, the process i will generate an identifier for σ
only if i is the lowest simplex-to-process identifier among
the exclusive owners of the d-simplices in St(σ) (Sec. 3.1).
Next, all the intervals (along with their simplex-to-process
identifier and number of d′-simplices) are sent to the process
0 which, after ordering the intervals of d-simplices first by
simplex-to-process identifier then by local identifier, deter-
mines the offset that each interval x should add to its local
d′-simplex identifiers to obtain its global identifiers.
(2) Ghost global identifiers: The second step of the pre-
conditioning consists in retrieving for a given block M′

i the
global identifiers of its ghost 0− and d−simplices. This step
is not optional and is always triggered. This feature can be
particularly useful when performing local computations on
the boundary of the block (e.g. discrete gradient, Sec. 6).
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Fig. 3: Preconditioning of our distributed explicit triangulation. (a) Each process i enumerates its number nvi of exclusively
owned vertices and d-simplices. Next, an MPI prefix sum provides a local offset for each process to generate global
identifiers. (b) For each process i, simplices of intermediate dimensions (edges (nei ), triangles) are locally enumerated for
contiguous intervals of global identifiers of d-simplices (white numbers). Next, all the intervals are sent to the process 0
which sorts them first by simplex-to-process identifier, then by interval start, yielding a per-interval offset that each process
can use to generate its global identifiers (black numbers). (c) Within a given block, the vertices at the boundary of the
domain M are identified as non-ghost boundary vertices (large spheres). Next, a simplex which only contains boundary
vertices is considered to be a boundary simplex (larger cylinders). (d) The global identifiers and boundary information of
the ghost simplices are retrieved through MPI communications with the neighbor processes. The ghost simplices on the
global boundary are flagged as boundary simplices (larger spheres and cylinders).

Once all the processes have established their vertex global
identifiers, each process i queries each of its neighbor pro-
cesses j, to obtain the global identifiers of its ghost vertices
(a KD-tree data-structure is employed to establish, with
shared-memory parallelism, the correspondence between
vertices coming from different blocks). Once global vertex
identifiers are available for the ghost vertices of M′

i, a
simpler exchange procedure is used to collect the global
identifiers of the ghost d′-simplices with d′ ∈ {1, . . . , d} (the
correspondence between d′-simplices coming from differ-
ent blocks is established, with shared-memory parallelism,
based on the global identifiers of their vertices).
(3) Boundary: The third step consists in determining the
simplices which are on the boundary of the global domain
M. This step is optional and is only triggered (on a per sim-
plex dimension basis) if the calling algorithm pre-declared
the usage of boundary simplices in the preconditioning
phase. This feature is particularly useful for algorithms
which process as special cases the simplices which are on
the boundary of M (e.g. critical point extraction, Sec. 6).
Each process i identifies the boundary vertices of its ghosted
block M′

i (See Fig. 3(c)), with exactly the same procedure
as the one used in the non-distributed setting [71]. Then,
thanks to the ghost layer, it is guaranteed that among the
set of boundary vertices identified above, the non-ghost
vertices are indeed on the boundary of the global domain
M. Finally, a d′-simplex will be marked as a boundary
simplex if all its vertices are on the boundary of M.
(4) Ghost boundary: Similarly to step (2), a final step of data
exchange between the process i and its neighbors enables
the retrieval of the ghost simplices of M′

i which are also on
the boundary (Fig. 3(d)). This step is optional and is only
triggered if the calling algorithm pre-declared the usage of
boundary simplices in the preconditioning phase.

Finally, the preconditioning of any other traversal rou-
tine is identical to the non-distributed setting.

4.2.2 Distributed explicit queries

In this section, we describe the implementation of the traver-
sals of the triangulation, as queried by a calling algorithm.
This assumes that the calling algorithm first called the
appropriate preconditioning functions in a pre-process.

The traversal of a local ghosted block M′
i by an algo-

rithm instantiated on the process i is performed identically
to the non-distributed setting, with local simplex identifiers.
This requires the calling algorithm to locally translate input
(and output) global simplex identifiers into local ones (i.e.
with the maps introduced in Sec. 3.1.3).

4.3 Distributed implicit triangulation

This section describes our distributed implementation of the
TTK triangulation in implicit mode, i.e. when a regular grid
is provided as a global input. Then, as described below, most
traversal information can be computed on-the-fly at run-
time, given the regular sampling pattern of the Freudenthal
triangulation [32], [35] of the input grid.

4.3.1 Distributed implicit preconditioning

In implicit mode, the preconditioning of the triangulation
identifies the position of the local ghosted grid M′

i within
the global grid M, as detailed in Fig. 4. This step is not
optional and is triggered automatically. The preconditioning
of any traversal routine returns immediately without any
processing (all queries are computed on-the-fly).

4.3.2 Distributed implicit queries

In this section, we describe the implementation of the traver-
sals of the triangulation, as queried by a calling algorithm.

The traversal of a local ghosted block M′
i by an algo-

rithm instantiated on the process i is performed identically
to the non-distributed setting, with local simplex identifiers.
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Fig. 4: Preconditioning of our distributed implicit triangu-
lation. (a) Each process i computes (with shared-memory
parallelism) the bounding box Bi of its ghosted block M′

i.
The vertex o, respectively O, is the origin of M′

i, respec-
tively M, with (X ′

o, Y
′
o , Z

′
o), respectively (X ′

O, Y
′
O, Z

′
O), its

floating-point coordinates. The bounding box B of M is
computed (via MPI parallel reductions) from all the local
Bi. (b) Two key pieces of information are computed at this
step: the dimensions of the global grid (nX , nY , nZ) (the
number of vertices of M in each direction) and the local grid
offset (Xo, Yo, Zo) (the global discrete coordinates of o). It is
computed from (X ′

O, Y
′
O, Z

′
O), (X

′
o, Y

′
o , Z

′
o) and the floating-

point spacing of the grid (sx, sy, sz). Following that, each
process locally instantiates a global implicit triangulation
model of M. (c) Given a local vertex identifier, its global
discrete coordinates (X,Y, Z) in M are inferred from its
local discrete point coordinates (x, y, z) (with x ∈ [0, nx−1],
y ∈ [0, ny − 1], and z ∈ [0, nz − 1], nx, ny and nz being
the number of vertices of the grid M′

i in each direction),
and its local grid offsets. Next, its global identifier, ϕ0(v), is
determined on-the-fly by global row-major indexing.

Similarly to the explicit case (Sec. 4.2.2), the calling algo-
rithm must now translate input (and output) global simplex
identifiers into local ones (i.e. with the maps from Sec. 3.1.3).

The important difference with the explicit mode is that
all the information computed in explicit preconditioning
(i.e. (1) global identifiers, (2) ghost global identifiers, (3)
boundary, and (4) ghost boundary, see Sec. 4.2.1) now needs
to be computed on-the-fly at runtime (i.e. upon the query of
this information by the calling algorithm).
(1) Global identifiers: As detailed in Fig. 4, given a local
vertex v, its global discrete coordinates (X,Y, Z) in the
global grid M are inferred from its local discrete point
coordinates (x, y, z) in M′

i (Fig. 4(c)), and the local grid off-
set (Xo, Yo, Zo). From the coordinates (X,Y, Z), the global
identifier of v is computed on-the-fly with the procedure
used in the non-distributed setting [71] (global row-major
indexing). The same procedure is used for d-simplices.
The global identifier of any d′-simplex (d′ ∈ {1, . . . , d−1}) is
computed by identifying the d′-simplex in M which has the
same global vertex identifiers (via vertex star inspection).
(2) Ghost global identifiers: The global identifier of a ghost
simplex is also computed with the above procedure.
(3) Boundary: To decide if a given d′-simplex is on the
boundary of M, its global identifier is first retrieved (above)
and the local copy of the global grid M is queried for
boundary check based on this global identifier (with the
exact procedure used in the non-distributed setting [71]).
(4) Ghost boundary: The boundary check for ghost sim-

Fig. 5: Preconditioning of our distributed periodic implicit
triangulation. This triangulation type is handled similarly to
the implicit case, but additional ghost simplices need to be
computed. Given a data block Mi ((a), orange), ParaView
generates a first layer of ghost d-simplices ((b), blue, grey,
yellow). If Mi was located on the boundary of the global
grid M, periodic boundary conditions must be considered
by adding an extra layer of ghost d-simplices (arrows) for
each periodic face of M (c).

plices is also computed with the above procedure.

4.4 Distributed implicit periodic triangulation
Periodic grids (with periodicity in all dimensions) are sup-
ported via implicit Freudenthal triangulation [32], [35] like
in the previous section. However, the periodic boundaries
require specific adjustments in terms of preconditioning.

Since ParaView’s ghost cell generator only produces
ghosts at the interface of the domain of processes, an extra
layer of ghost simplices needs to be computed, as illustrated
in Fig. 5. Specifically, each process i checks if its block
M′

i is located on the boundary of the global grid M (via
bounding box comparison). If so, the list of periodic faces
of the bounding box B of M along which M′

i is located
is identified (i.e. left, right, bottom, top, front, back). This
information is used to trigger exchanges of data chunks,
as illustrated in Fig. 5(c), whose extent depends on the
periodic face type (corner, edge, face). Additionally, the local
adjacency graph is updated to account for blocks which are
adjacent via the periodic boundaries.

Similarly to Sec. 4.3, runtime queries are performed
on each process by querying the local copy of the global
periodic triangulation M (with the necessary local-to-global
identifier translations).

5 DISTRIBUTED PIPELINE

This section provides an overview of the overall processing
by TTK of a distributed dataset. It documents the pre-
conditioning steps handled by the core infrastructure of
TTK (beyond the triangulation handling, Sec. 4) in order
to complete the support of the distributed model specified
in Sec. 3. We refer the reader to Appendix A.1 for further
details on the integration of TTK with VTK and ParaView.

5.1 Overview
The input data is provided in the form of a distributed
dataset (see Sec. 3.1) loaded from a filesystem (e.g. PVTI file
format) or provided in-situ (e.g. with Catalyst). As shown in
Fig. 6 (and detailed in Appendix A.1), ParaView’s execution
flow enters TTK via the function ProcessRequest, which
triggers TTK’s preconditioning, including the Distributed
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Fig. 6: Overview of the overall pipeline upon the the deliv-
ery of a data block Mi by ParaView (top). A step of pipeline
preconditioning specialized for the distributed setting (top
yellow frame) is automatically triggered before calling the
actual implementation of the topological algorithm. Note
that each preconditioning phase is only triggered if the
corresponding information has not been cached yet. Then,
for practical pipelines, the preconditioning typically only
occurs before the first algorithm of the pipeline.

Pipeline Preconditioning (specific to the distributed mode, top
yellow frame) prior to the traditional, local preconditioning
(middle yellow frame) and finally the implementation of the
topological algorithm (bottom yellow frame). In the follow-
ing, we describe the Distributed Pipeline Preconditioning.
(1) Ghost layer generation: if the local data block does not
include any ghost cells, the ghost layer generation algorithm
(implemented by ParaView) is automatically triggered. This
step is omitted if a valid ghost layer is already present.
(2) Local adjacency graph (LAG) initialization: An estima-
tion of the local adjacency graph (i.e. connecting the data
block to its neighbors) is constructed. This step (described
in Sec. 5.2) is omitted if a valid LAG is already present.
(3) Triangulation instantiation: this step instantiates a new
TTK triangulation data structure (Sec. 4). This step is omit-
ted if a valid triangulation is already present.
(4) Simplex-to-process map generation: this step computes
the simplex-to-process identifier for each simplex (as speci-
fied in Sec. 3.1). This step (described in Sec. 5.2) is omitted if
valid simplex-to-process maps are already present.
(5) Ghost data exchange: this step computes for each
neighbor process j the list of vertices or cells exclusively
owned by it, and which are ghosts in the process i. This step
(described in Sec. 5.2) is optional and is only triggered if the
calling algorithm pre-declared its usage at preconditioning.

After these steps, the traditional TTK preconditioning is
executed (middle yellow frame, Fig. 6).

5.2 Infrastructure details

This section describes the implementation of the pipeline
preconditioning mentioned in the above overview (Sec. 5.1),
specifically, the routines which are not directly related to the
distributed triangulation (which has been covered in Sec. 4).
Local adjacency graph (LAG) initialization: Given a
ghosted block M′

i, the goal of this step is to store a list of
processes, which are responsible for the blocks adjacent to
M′

i (Fig. 2(e)). First, each process i computes the bounding
box Bi of its ghosted block M′

i. Next, all processes exchange
their bounding boxes. Finally, each process i can initialize a
list of neighbor processes by collecting the processes whose
bounding box intersects with Bi. This first estimation of the
LAG will be refined (next paragraph) after the generation of
the simplex-to-process identifiers (which is relevant in the
case of explicitly triangulated domains).
Simplex-to-process map generation: As specified in
Sec. 3.1, each simplex is associated to the identifier of the
process which exclusively owns it. This convenience feature
can be particularly useful to quickly identify where to
continue a local processing when reaching the boundary of
a block (e.g. integral lines, Sec. 6.3.5).
Each vertex v ∈ M′

i is classified by ParaView as ghost or
non-ghost. For each non-ghost vertex v, we set its simplex-
to-process identifier to i. Then, the ghost global identifier
list is computed (it contains the global identifiers of all
the ghost vertices of M′

i). Next, this list is sent to each
process j marked as being adjacent in the LAG (previous
paragraph). Then, the process j will return its identifier (j)
and the subset of the ghost global identifier list, corresponding
to non-ghost vertices in M′

j . Finally, the process i will
set the simplex-to-process identifier of v to j, for each
vertex v returned by j. The procedure for the d-simplices
is identical. The simplex-to-process maps for the simplices
of intermediate dimensions are inferred from these of the d-
simplices, as specified in Sec. 3.1. Following the generation
of the simplex-to-process maps, the LAG is updated, by only
considering the block i and j as neighbors if i contains ghost
vertices which are exclusively owned by j and reciprocally.

In implicit mode, the preconditioning of the simplex-to-
process map generation is limited to the computation of
discrete bounding boxes (i.e. expressed in terms of global
discrete coordinates) for the non-ghosted block Mi. The
bounding boxes are then exchanged between neighboring
processes. Then, the simplex-to-process maps are inferred
on-the-fly, at query-time, from the discrete bounding boxes.
Ghost data exchange: In many scenarios, it may be desirable
to update the data attached to the ghost simplices of a
given block M′

i. For instance, when considering smoothing
(Sec. 6.3.4), at each iteration, the process i needs to retrieve
the new, smoothed f data values for its ghost vertices, prior
to the next smoothing iteration. We implement this task in
TTK as a simple convenience function. First, using the list
of neighbors (collected from the LAG), the process i will,
for each neighbor process j, send the global identifiers of
the simplices which are ghost for i and owned by j (using
their simplex-to-process maps). This is computed once, in an
optional preconditioning step (step 5, Sec. 5.1). This list of
ghost vertex identifiers is cached in j and used at runtime,
when necessary, to send to i the updated values (exchange
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data buffers are updated with shared-memory parallelism).
A similar procedure is available for d-simplices.

6 EXAMPLES

Secs. 4 and 5 documented the implementation of the dis-
tributed model specified in Sec. 3. In this section, we now
describe how to make use of this model to extend topologi-
cal algorithms to the distributed setting. Specifically, we will
mostly focus on the algorithms described in Sec. 2.

6.1 Algorithm taxonomy
In this section, we present a taxonomy of the topological
algorithms implemented in TTK, based on their needs of
communications on distributed-memory architectures.
(1) No Communication (NC): This category includes algo-
rithms for which processes do not need to communicate
with each other to complete their computation. This is the
simplest form of algorithms and the easiest to extend to a
distributed setting. Such algorithms are often referred to
as embarrassingly parallel. In TTK, this includes algorithms
performing local operations and generating a local output,
e.g.: critical point classification Sec. 2.2, discrete gradient
computation Sec. 2.4, Jacobi set extraction [16], Fiber surface
computation [40] and marching tetrahedra.
(2) Data-Independent Communications (DIC): This cate-
gory includes algorithms for which processes do need to
communicate with each other, but at predictable stages
of the algorithm, with a predictable set of processes and
communication volume, independently of the data values.
This typically corresponds to algorithms performing a local
operation on their block that need intermediate results from
adjacent blocks to finalize their computation. In TTK, this
includes for instance: data normalization, data or geometry
smoothing (Sec. 6.3), or continuous scatter plots [3].
(3) Data-Dependent Communications (DDC): This cate-
gory includes algorithms which do not fall within the pre-
vious categories, i.e. for which communications can occur at
unpredictable stages of the algorithm, with an unpredictable
set of processes or communication volume, depending on
the data values. This is the most difficult category of algo-
rithms to extend to the distributed setting, since an efficient
port would require a complete re-design of the algorithm.
Unfortunately, we conjecture that most topological algo-
rithms fall into that category. In TTK, this includes for
instance: integral lines (Sec. 2.3), persistence diagrams [27],
merge and contour trees [25], path compression [45], Reeb
graphs [26], Morse-Smale complexes [71], Rips complexes,
topological simplification [43], [72], Reeb spaces [70], etc.

6.2 Hybrid MPI+thread strategy
In this section, we present general aspects regarding the
combination of multi-process parallelism (with MPI; run-
ning on both distributed- and shared-memory architectures)
and multi-thread parallelism (restricted to shared-memory
architectures), that are used within the examples (Sec. 6.3).

Current compute clusters are based on multiple nodes,
each node including multi-core processors. For performance
reasons, one then runs one execution flow per core following
either a pure MPI strategy, i.e. with one MPI process per

core, or a MPI+thread strategy, i.e. with one MPI process per
node (or per processor) and multiple threads within each
MPI process. The latter can improve performance thanks to
fewer MPI communications (due to fewer MPI processes),
to a (better) dynamic load balancing among threads within
each MPI process, and to a multi-core speedup for computa-
tions specifically performed by the MPI process 0 (e.g. Sec.
4.2.1). The overall memory footprint is also lower with the
latter, since using fewer MPI processes implies fewer ghost
simplices and less data duplication.

Regarding the MPI+thread strategy and the port ex-
amples described in Sec. 6.3, we rely in TTK on the
MPI_THREAD_FUNNELED thread support level in MPI [48].
According to this level of thread support, only the master
(i.e. original) thread can issue calls to MPI routines. In each
port example, within each MPI process, the communication
steps (if any) are thus performed in serial whereas the
computation steps are multi-threaded, using the OpenMP
implementations already available in TTK (Appendix A.3).

Besides, when using the MPI+thread implementations,
one can choose to run one MPI process per node or one MPI
process per processor, hence e.g. two MPI processes on a
node with two processors. The former leads to fewer MPI
processes in total, and enables one to balance the compute
load among all the cores of the node. The latter can avoid
performance issues due to NUMA (non-uniform memory
access) effects which occur when a thread running on a
given processor accesses data on the memory local to the
other processor. Options specific to the MPI implementation
enable the user to choose one of the two possibilities. The
threads are also bound to the CPU cores using the OpenMP
thread affinity features [57].

6.3 Distributed algorithm examples
We now illustrate the taxonomy of Sec. 6.1 by describing the
distributed-memory parallelization of algorithms belonging
to each of the categories, while exploiting the distributed
model we introduced (Sec. 3).

6.3.1 NC: Scalar Field Critical Points
This algorithm processes each vertex v of the domain in-
dependently and performs the classification presented in
Sec. 2.2. Since it processes a local piece of data (the lower
and upper links Lk−(v) and Lk+(v)) and that it generates a
localized output (a list of critical points for the local block),
it does not require any communication (Fig. 7(a)). Thus, it is
classified in the category NC of the above taxonomy. To port
this embarrassingly parallel algorithm to the distributed
setting, two modifications are required. First, the algorithm
does not classify ghost vertices (which will be classified by
other processes). Second, to fulfill the distributed output
specification (Sec. 3.2), each output critical point is associ-
ated with its global vertex identifier (instead of its local one).

6.3.2 NC: Discrete Gradient
Similarly to the previous case, this algorithm processes each
vertex v of the domain independently. Specifically, it gener-
ates discrete vectors for the lower star St−(v) and the sim-
plices which are assigned to no discrete vectors are stored
as critical simplices (Sec. 2.4). Similarly to the previous case,
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Fig. 7: Examples of topological algorithm modifications for the support of distributed memory computation. (a) Scalar
Field Critical Points (NC): Critical points are generated similarly to the sequential mode. Upper and lower links (+ and
− signs in the figure) of non-ghost vertices on the boundary of Mi are computed using ghost vertices (here in yellow).
(b) Discrete Gradient (NC): Similarly to (a), this algorithm processes each vertex of the domain independently. For each
non-ghost vertex on the boundary of Mi, the lower link computation can rely on ghost vertices. Critical simplices are
represented by bigger spheres. (c) Scalar Field Smoother (DIC): This procedure smooths a scalar field f by local averaging
for a user-defined number of iterations. The values of ghost vertices (in yellow) will need to be updated after each iteration.
(d) and (e) Integral Lines (DDC): (e) each process will compute the integral lines whose seeds lie within its block Mi. Then
either the integral line reaches its final vertex within Mi, completing the computation, or the integral line reaches a vertex
outside of Mi (here in yellow in (d)). In the latter case, the integral line data is stored to be sent later to the yellow process.
Once all the work is done on all processes, they exchange the data of incomplete integral lines and resume the computation
of the integral lines on their block. The computation stops when all integral lines have completed.

this algorithm only requires local data and only produces
local outputs, without needing communications (hence its
NC classification) (Fig. 7 (b)). The port of this embarrassingly
parallel algorithm requires two modifications. First, only the
vertices which are exclusively owned by the current process
(Sec. 3.1) are processed. The gradient for ghost vertices, and
the simplices in their lower links, is not computed. Second,
similarly to the previous case, the simplex identifiers asso-
ciated with the discrete vectors and critical simplices are
expressed with global identifiers (instead of local ones).

6.3.3 DIC: Scalar Field Normalizer

This procedure normalizes an input scalar field f to the
range [0, 1]. It is divided into two steps. First, each pro-
cess computes its local extreme values and all processes
exchange their extreme values to determine the values fmin

and fmax for the entire domain M using MPI collective
communications. Second, all data values are normalized
independently, based on fmin and fmax. The first step of
the algorithm requires inter-process communications in a
way which is predictable and independent of the actual data
values (hence its DIC classification in the taxonomy).

6.3.4 DIC: Scalar Field Smoother

This procedure smooths a scalar field f by local averaging
(i.e. by replacing f(v) with the average data values on the
vertices of St(v)). This averaging procedure is typically iter-
ated for a user-defined number of iterations. However, at a
given iteration, in order to guarantee a correct result for each
vertex v located on the boundary of the local block (i.e. v is
a non-ghost vertex adjacent to ghost-vertices), the updated
f values from the previous iteration need to be retrieved
for each of its ghost neighbors (Fig. 7(c)). Thus, at the end
of each iteration, each process i needs to communicate with
its neighbors to retrieve the smoothed values for its ghost

vertices, which is achieved by using the generic ghost data
exchange procedure described in Sec. 5.2 (hence the DIC
classification for this algorithm).

6.3.5 DDC: Integral lines
Unlike the previous cases, the port of this algorithm requires
quite extensive modifications. The first step is similar to its
sequential version (Sec 2.3): each process i will compute the
integral lines whose seeds lie within its block Mi (each seed
is processed independently via shared-memory parallelism
with OpenMP). Moreover, the process i will be marked as
the exclusive owner of the part of the integral line (i.e. the
vertices and edges of the sub-geometry) created on its block.
From there, two possibilities arise: either the integral line
reaches its final vertex within Mi, completing the compu-
tation, or the integral line reaches a ghost vertex owned by
another process j and is incomplete. In the latter case, some of
the integral line data (such as global identifier, the distance
from the seed or the global identifier of the seed) is stored
in a vector to be sent later to the process j (Fig. 7(d) and (e)).
Once all integral lines on all processes are marked as either
complete or incomplete, all processes exchange the data of
their incomplete integral lines and use that data to resume
computation of the integral lines on their block.

These computation and communication steps are run
until all integral lines on all processes are completed. Con-
sequently, depending on the dataset, and the process, there
may be very little communication, e.g. if all the integral lines
lie within the bounds of a block, or a lot of communications,
e.g. if some integral lines are defined across the blocks of
multiple processes (hence its DDC classification).

6.4 Integrated pipeline
In this section, we describe an integrated pipeline that pro-
duces a real-life use case combining all the the port examples
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Fig. 8: Output of the integrated pipeline on the AT dataset, a
three-dimensional regular grid of the electronic density (and
its gradient magnitude) in the Adenine Thymine complex
(AT). The extracted integral lines capture the covalent and
hydrogen bonds within the molecule complex. The trans-
parent spheres are the critical points used as seeds of the
integral lines while the full spheres are the critical points
of |∇f | and show where the electronic density experiences
rapid changes, indicating transition points occurring within
the bond. This image was obtained by resampling the orig-
inal dataset to 20483 and executing the integrated pipeline
on 64 nodes of 24 cores each (1536 cores) on MeSU-beta.

Abbreviation Algorithm Input
1. SFS1 ScalarFieldSmoother f
2. SFS2 ScalarFieldSmoother |∇f |
3. SFN1 ScalarFieldNormalizer fSFS1

4. AP ArrayPreconditioning fSFN1

5. SFCP1 ScalarFieldCriticalPoints fAP

6. IL IntegralLines fAP (domain),
fSFCP1 (seeds)

7. GS GeometrySmoother fIL
8. SFCP2 ScalarFieldCriticalPoints |∇f |SFS2 on MGS

TABLE 1: Composition of the integrated pipeline. Each line
denotes an algorithm in the pipeline, by order of appearance
(top to bottom), as well as its input. f is the input scalar
field. Each algorithm modifies the scalar field: fA is the
modified scalar field f , output of algorithm A. MGS is the
output domain of GeometrySmoother.

presented in Sec.6.3. All of the algorithms, their order as well
as their input are described in Table 1. The input dataset is a
three-dimensional regular grid with two scalar fields f , the
electronic density in the Adenine Thymine complex (AT) and
its gradient magnitude |∇f |. First, f and |∇f | are smoothed
and f is normalized. Critical points of f are computed and
used as seeds to compute integral lines of f . The extracted
integral lines capture the covalent and hydrogen bonds
within the molecule complex (Fig. 8). Then, critical points
are computed for |∇f | on the integral lines. The extracted
critical points indicate locations of covalent bonds where
the electronic density experiences rapid changes, indicating
transition points occurring within the bond (Fig. 8).

The local order of f is required by two algorithms: the
first critical points (SFCP1) and the integral lines (IL). Since
these two algorithms are separate leaves of the pipeline,
each of them would trigger the automatic local order com-
putation. Instead, to avoid this duplicated computation, we

manually call the local order computation in a preprocess
(i.e. by calling the ArrayPreconditioning algorithm).

The chosen dataset is intentionally quite small (177 ×
95× 48) to ensure reproducibility. It is resampled before the
pipeline to create a more sizable example, using ParaView’s
ResampleToImage feature (i.e. grid resampling via trilinear
interpolation). Anyone can execute this pipeline to the best
of their resources, by choosing the appropriate resampling
dimensions. In our case, the new dataset is of dimensions
(20483), encompassing roughly 8.5 billion vertices.

The pipeline was also run on a second, larger, dataset
(Turbulent Channel Flow), to show TTK’s capability to handle
massive datasets (specifically, the largest publicly available
dataset we have found). This dataset represents a three
dimensional pressure field of a direct numerical simulation
of a fully developed flow at different Reynolds numbers in a
plane channel (obtained from the Open Scientific Visualiza-
tion Datasets [39]). Its dimensions are (10240×7680×1536),
which is approximately 120 billion vertices. Before apply-
ing the pipeline, the gradient magnitude is computed and
added to the dataset, and the result is converted using
single-precision floating-point numbers (thereby reducing
memory consumption at runtime).

7 RESULTS

For the following results, we rely on Sorbonne Université’s
supercomputer, MeSU-beta. MeSU-beta is a compute cluster
with 144 nodes of 24 cores each (totaling 3456 cores). Its
nodes are composed of 2 Intel Xeon E5-2670v3 (2.7 GHz,
12 cores), with SMT (simultaneous multithreading) disabled
(i.e. running 1 thread per core), and with 128GB of memory
each. The nodes are interconnect with Mellanox Infiniband.

When measuring the performance of a specific algo-
rithm, only the execution of the algorithm itself is timed
(using the timing method described in Appendix B). None
of the preconditioning or input and output formatting is
timed unless explicitly stated. The preconditioning steps are
an investment in time: they can be used again by other al-
gorithms later on in the pipeline, thus, including the cost of
these steps in the execution time of a single algorithm would
not provide an accurate representation of performance in
a more complicated pipeline. They are therefore excluded
from the individual benchmarks (Sec. 7.1) but included in
the study of the global, integrated pipeline Sec. 7.2 (which
is timed using ParaView’s internal timer).

The benchmark is performed on five different datasets:
Wavelet (3D wavelets on a cube), Elevation (synthetic dataset
of the altitude within a cube, with a unique maximum
at one corner of the cube and a unique minimum at the
opposite corner), Isabel (magnitude of the wind velocity in
a simulation of the hurricane Isabel that hit the east coast
of the USA in 2003), Random (random field on a cube) and
Backpack (density in the CT-scan of a backpack filled with
items). The datasets all originate from publicly available
repositories [39], [73].

7.1 Distributed algorithms performance
This section evaluates the practical performance of the ex-
tension to the distributed setting (Sec. 6.3) of the algorithms
presented in Sec. 2, by considering strong and weak scaling.
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Fig. 9: Strong scaling efficiencies for the Integral line compu-
tation algorithm with 500, 000 seeds, randomly distributed
on all processes, using the pure MPI strategy (left) and the
MPI+thread one (right) with 1 MPI process and 24 threads
per node. The MPI+thread strategy is significantly more
efficient than the pure MPI one.

7.1.1 Strong scaling
For a given problem size, we first evaluate the runtime
performance of our novel framework for distributed com-
putations in TTK, as more computational resources are
available. For this, we conduct a strong scaling analysis,
where the size of the input data is constant (each dataset
is resampled to 5123 via trilinear interpolation) while the
number of available cores increases. The speedup sp for p
cores is defined as sp = t1

tp
, with tp being the execution time

for p cores. Then, we define the strong scaling efficiency for
p cores as sp

p × 100. Appendix C shows the same results
as presented in Fig. 9 (right) and Fig. 10, but in terms of
execution time instead of parallel efficiency.

We first compare the pure MPI and the MPI+thread
strategies (Sec. 6.2). Regarding the MPI+thread strategy, we
rely on one MPI process per node (and 24 threads within)
instead of one MPI process per processor (and 12 threads
each). According to performance tests (not shown here),
both options lead indeed to similar performance results,
except when using one single node: in this case, having
one single MPI process (no communication and no ghost
simplices required) is more efficient than two. Having one
MPI process per node also leads to a lower memory usage.

As shown in Fig. 9, using MPI+thread (with one MPI
process and 24 threads per node) is then substantially more
efficient than using a pure MPI design for the integral line
algorithm, for all datasets except the Random dataset. More
precisely, even for MPI+thread, the efficiency decreases
with the number of cores and depends significantly on
the dataset. This is due to a strong workload imbalance
between the processes: the integral lines are not evenly
distributed on the MPI processes which can lead to long idle
periods for some processes (waiting for the other to process
their integral lines). This applies to the Backpack dataset
for example. Regarding the Elevation dataset (very smooth,
with only one maximum and one minimum) or the Isabel
one (very smooth too), the generated integral lines are here
especially lengthy and span several (but not all) processes,
leading to low efficiencies. On the contrary the Random
dataset is very balanced, but is also very noisy, leading to
very short integral lines: for the same number of integral
lines, the computation times are much shorter than for the

other datasets which makes the communication cost more
detrimental to performance. Finally, the Wavelet dataset is
the most balanced one, with long enough integral lines, and
thus shows the best performance results. Compared to the
pure MPI strategy, the MPI+thread one benefits from fewer
MPI processes and therefore from a lower load imbalance.

We have tried to improve the parallel efficiencies of the
integral line algorithm, by dedicating a thread to MPI com-
munications. Thanks to this thread, an incomplete integral
line is sent right away, without waiting for all integral lines
on the process to be computed. Each process also contin-
uously receives integral lines and adds them immediately
to the pool of integral lines to be computed. However this
design based on a communication thread adds a significant
amount of complexity to the implementation (due to the
required thread synchronizations), and did not improve the
parallel efficicency since the main performance bottleneck is
the load imbalance among processes. As a result, we do not
rely on this communication thread design in our distributed
integral lines implementation.

The performance results for the other distributed algo-
rithms can be found in Fig. 10. For the ScalarFieldCritical-
Points, a very good efficiency (80%) is achieved (which is
comparable to its shared-memory parallel implementation
on one node, 90%), with little dependence on the dataset.
The DiscreteGradient likewise performs very well in terms
of efficiency, albeit slightly less, due to the parallelization
method of the algorithm, for which adding ghost simplices
will add a small amount of extra work in parallel. These
two algorithms strongly benefit from parallel computing,
even when using hundreds of cores. The ScalarFieldSmoother
exhibits lower efficiency. This can be explained by the need
for communications at each iteration, as well as by the low
cost of the smoothing process (which is a simple averaging
operation). Indeed, the faster a computation, the stronger
the impact of communications on the overall performance.

Finally we emphasize that, at the exception of Inte-
gralLines (for which we derived a new implementation,
Sec. 6.3.5), shared-memory parallel implementations of
these algorithms (using OpenMP threads) pre-existed in
TTK prior to this work. In our MPI+thread strategy, we
leverage these same shared-memory parallel implementa-
tions regarding multi-thread parallelism. Moreover when
using only one MPI process, MPI communications are not
triggered and processing specific to the distributed setting
(e.g. on ghost simplices) is not carried out. Thus, when run-
ning our novel MPI+thread extension of these algorithms on
only one MPI process, performances are identical to these of
the pre-existing, shared-memory-only implementations.

7.1.2 Weak scaling
Next, we evaluate, the ability of our framework to process
datasets of increasing sizes. For this, we conduct a weak
scaling analysis, where the workload increases proportion-
ally to the number of available cores, starting at 24 cores
(1 node). The datasets have been resampled to 5123 on
one node. For ScalarFieldCriticalPoints, DiscreteGradient, and
ScalarFieldSmoother, the input size is increased by doubling
the number of samples, one dimension at a time. For Inte-
gralLines, the workload is increased by doubling the number
of seeds at each iteration. Then, we define the weak scaling



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2021 14

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

ScalarFieldCriticalPoints

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

DiscreteGradient

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

ScalarFieldSmoother

wavelet

elevation

isabel

random

backpack

Fig. 10: Strong scaling efficiencies for various algorithms (MPI+thread: 1 MPI process and 24 threads per node).

efficiency for p cores as t1
tp

× 100, with t1 and tp being
the execution times on 1 and p nodes. Appendix C shows
the same results as presented in Fig. 11, but in terms of
execution time instead of efficiency.

As shown in Fig. 11, for the ScalarFieldCriticalPoints and
the DiscreteGradient, the efficiency remains quite high as the
amount of work and the number of cores double: this is
close to the ideal performance. Therefore, the conclusions
are the same as for the strong scaling study: the perfor-
mance is very good on all data sets, slightly less for the
DiscreteGradient than the ScalarFieldCriticalPoints. For the
ScalarFieldSmoother, the weak scaling shows that after the
first drop of performance from one to two processes, due to
synchronizations and communications that do not occur on
one node, the computation actually scales really well, with
a nearly constant efficiency on more than one node.

For the IntegralLines, the datasets Backpack, Elevation and
Isabel show degraded performance similarly to the strong
scaling. However, the results for the Wavelet and Random
stay much closer to the ideal than for the strong scaling
study. This can be explained by two factors. First, unlike the
case of the strong scaling study, the number of seeds per
node in the weak study is constant and does not decrease.
Hence, the workload imbalance has a smaller impact and
does not deteriorate the performance as much. Second, it
is likely that the workload for the strong scaling study
becomes too small as the number of cores increases. This
makes the relative cost of communications and synchroniza-
tions very important.

Overall, this weak scaling analysis shows that, for
ScalarFieldCriticalPoints and DiscreteGradient, the weak scal-
ing is close to ideal (i.e. a problem of growing size can
be processed in constant time when increasing accordingly
the number of cores). For ScalarFieldSmoother, after a first
degradation due to inter-process synchronization and com-
munication, the efficiency is nearly constant. Finally, weak
scaling performances are degraded overall for IntegralLines,
at the exception of well balanced datasets that show much
better performance than in the strong scaling study.

7.2 Integrated pipeline performance

We now present experimental results for the integrated
pipeline (Sec. 6.4), which exemplifies a real-life use case
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Fig. 11: Weak scaling efficiencies for various algorithms
(MPI+thread: 1 MPI process and 24 threads per node)

combining all of the port examples described in Sec. 6.3, on
datasets which were too large (8.5 and 120 billion vertices,
Sec. 6.4) to be handled by TTK prior to this work.

The results for the integrated pipeline are twofold: an
output image (Fig. 8 and Fig. 13) and the time profiling of
the pipeline (Fig. 12). The image is produced using offscreen
rendering with OSMesa on our supercomputer. Profiling
is done using both Paraview’s timer (average, minimum
and maximum computation times across processes, for an
overall algorithm, preconditioning included) and the TTK
timer defined in Sec. 5.2 (for a fine-grain account of the
execution time within an algorithm and its preconditioning).

7.2.1 The Adenine Thymine complex (AT) dataset

For the experiments of Figs. 8 and 12 (left), the selected
resampling dimensions for the input regular grid are 20483,
a choice explained in Sec. 6.4. The overall computation takes
241.2 seconds. Preconditioning is triggered once, before exe-
cuting the first TTK algorithm. The longest preconditioning
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Fig. 12: Time profiling for the integrated pipeline for the AT dataset resampled to roughly 8.5 billion vertices (left) and
the Turbulent Channel Flow dataset (right) of 120 billion vertices. The execution was conducted using 64 nodes of 24 cores
each (1536 cores in total) on MeSU-beta. Each bar corresponds to the execution time of one algorithm. SFS1 is computed
for 1 iteration for the AT dataset and 10 iterations for the turbulent flow dataset (which is more irregular). The Other step
consists in steps that are not part of an algorithm, such as loading the TTK plugin in Paraview, Paraview overhead and
I/O operations. Only algorithms that take up a significant amount of time are shown in the profiling (see Tab. 1 for a
description of the abbreviations). In both cases, the MPI preconditioning computed by our framework (Local Adjacency
Graph, Simplex-To-Process Maps, Ghost Data Exchange) is negligible within the overall pipeline execution time (at most 1.2%).

step is Paraview’s ghost cells generation (24.2% of the total
pipeline time), a step commonly used in a distributed-
memory setting, regardless of TTK. The preconditioning
specific to TTK’s use of MPI (i.e. Local Adjacency Graph,
Simplex-To-Process Maps, Ghost Data Exchange) is significantly
faster and takes only 1.2% of the overall pipeline compu-
tation time, which can be considered as negligible next to
the rest of the pipeline. TTK computations (preconditioning
included) make up 70.1% of the total pipeline computation,
which can be considered as a satisfactory efficiency.

7.2.2 The Turbulent Channel Flow dataset

The computation shown in Fig. 12 (right) was performed on
the complete dataset (120 billion vertices, single-precision,
Sec. 6.4). The overall computation takes 5257.5 seconds.

The execution time of this pipeline includes the algo-
rithms listed in Tab. 1. Note that the rendering time is not
included in the time profiling reported in Fig. 12 (for both
datasets). For the turbulent flow dataset, explicit glyphs
were used for the rendering of the critical points (spheres)
and integral lines (cylinders), as the screen-space glyph
rendering features of ParaView did not produce satisfactory
results in a distributed setting. However, the generation of
glyph geometry required a lot of memory, therefore the
rendering in Fig. 13 was performed on only a quarter of
the dataset. The pipeline profiled in Fig. 12, however, was
indeed executed on the whole dataset.

Similarly to the AT dataset, the longest preconditioning
step is Paraview’s ghost cells generation (30.7% of the total
pipeline time). Again, TTK’s specific MPI-preconditioning
is marginal and takes up only 0.7% of the overall pipeline
computation time. Computations of TTK algorithms (pre-
conditioning included) make up for 59.2% of the total execu-
tion time. When compared to the AT dataset, the execution
time of SFCP1 is multiplied by a factor of roughly 15, which
is comparable to the increase in data size between datasets,
indicating good scalability.

Overall, this experiment shows that, thanks to our MPI-
based framework, TTK can now run advanced analysis
pipelines on massive datasets (up to 120 billion vertices on
our supercomputer), which were too large to be handled
by TTK prior to this work. We showed that this could be
achieved in an acceptable amount of time, while requiring a
TTK-MPI specific preconditioning of negligible computation
time overhead (0.7% of the total computation).

7.3 Limitations

Sec. 4 presented our strategy to provide consistent global
simplex identifiers, irrespective of the number of processes.
This guarantees a per-bit compatibility of the input data
representation with the sequential mode of TTK, and con-
sequently a per-bit compatibility of the pipeline outputs.
However, the usage of threads can challenge the deter-
minism of certain algorithms, given the non-deterministic
nature of the thread scheduler. Then, an additional effort
may need to be made by the developers to address this non-
determinism within their implementation of a topological
algorithm (to ensure per-bit compatibility). In our exper-
iments, we opted not to enforce determinism for integral
lines, given the lack of control over the thread scheduler.

A significant difficulty occurring when processing mas-
sive datasets with ParaView is the substantial memory foot-
print induced by ParaView’s interactive pipeline manage-
ment. Data flows through the pipeline, being transformed
at each step by algorithms. Rather than modifying data
in-place, algorithms generate copies before implementing
changes. This methodology offers several advantages, such
as preventing redundant computation of inputs when mul-
tiple branches share the same input, resulting in better
efficiency, especially when adjusting interactively the algo-
rithm parameters. However, this copy-before-computation
approach leads to a rapid increase in memory usage during
computations, which can become problematic in practice for
pipelines counting a large number of algorithms.
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Fig. 13: Output of the integrated pipeline on the Turbulent Channel Flow dataset (120 billion vertices), a three-dimensional
regular grid with two scalar fields, the pressure of the fluid and its gradient magnitude. The pipeline was executed up to
the Geometry Smoother algorithm. The spheres correspond to the pressure critical points and the tubes are the integral
lines starting at saddle points. Figure (a) shows all of the produced geometry, while (b) and (c) show parts of the output
zoomed in. These images were produced on a quarter of the total dataset due to rendering related issues (see Sec. 7.2.2),
while Fig. 12 was produced on the full dataset.

Finally, several specialized domain representations
which are popular in scientific computing – such as grids
with periodic conditions along a restricted set of dimensions
or adaptive mesh refinement (AMR) – are not natively
supported by TTK and these currently need to be explicitly
triangulated in a pre-process. In the future, we will investi-
gate extensions of our distributed triangulation to support
these representations natively, without pre-process.

8 CONCLUSION AND ROADMAP

In this paper, we presented a software framework for the
support of topological analysis pipelines in a distributed-
memory model. Specifically, we instantiated our framework
with the MPI model, within the Topology ToolKit (TTK). An
extension of TTK’s efficient triangulation data structure to a
distributed-memory context was presented, as well as a soft-
ware infrastructure supporting advanced and distributed
topological pipelines. A taxonomy of algorithms supported
by TTK was provided, depending on their communica-
tion requirements. The ports of several algorithms were
described, with detailed performance analyses, following a
MPI+thread strategy. We also provided a real-life use case
consisting of an advanced pipeline of multiple algorithms,
run on a dataset of 120 billion vertices on a compute
cluster with 64 nodes (1536 cores), showing that the cost of
TTK’s MPI preconditioning is marginal next to the execution
time of the pipeline. TTK is now able to compute complex
pipelines involving several algorithms on datasets too large
to be processed on a commodity computer. Our framework
is available in TTK 1.2.0, enabling others to reproduce our
results or extend TTK’s distributed capabilities. Also, as TTK
is now officially integrated in ParaView, this distributed
version of TTK will be available to a wide audience in the
next release of ParaView.

The next step consists in adding distributed-memory
support to all of TTK’s topological algorithms. The challenge
here depends on the algorithm class (see Sec. 6.1). The port
of NC and DIC algorithms (such as ContinuousScatterPlot,
ManifoldCheck, DistanceField, JacobiSet or FiberSurface) is
relatively straightforward. For DIC algorithms, the initial
step entails identifying the data to be exchanged, the pro-
cesses involved in the exchange, and the appropriate timing
for these communications. For NC algorithms, no exchange
between processes take place. Then, the implementation can
be done in TTK, using TTK’s MPI-API as well as low-
level MPI directives (for specific communications). This
could for example be done during a hackathon. For DDC
algorithms (such as Discrete Morse Sandwich, Topological
Simplification, Contour tree or Rips complex computations),
the port may be much more complicated. For each of these
DDC algorithms, their distributed-memory parallelization
may be a substantial research problem, on which we will
focus in future work.
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APPENDIX A
BACKGROUND ON THE TOPOLOGY TOOLKIT (TTK)
This section provides some background regarding the software library
the Topology ToolKit (TTK), and it details its pre-existing support (i.e.
prior to this work) for triangulation traversal and parallelization.

A.1 Scope and interfaces
TTK is an open-source software library for topological data analysis and
visualization, written in C++. While TTK can be used directly via its
raw, low-level C++ interface, TTK also provides an interface of higher-
level, for the Visualization ToolKit (VTK [38], another open-source C++
library, dedicated to data visualization and analysis, but with a broader
scope than TTK). In particular, as described in its companion paper
[71], each TTK algorithm is wrapped into a VTK filter (i.e. an elementary
data processing unit in the VTK terminology). Specifically, each topo-
logical algorithm implemented in TTK inherits from the generic class
named ttkAlgorithm, itself inheriting from the generic VTK data
processing class named vtkAlgorithm. Then, when reaching a TTK
algorithm within a distributed pipeline, ParaView will call the function
ProcessRequest (from the vtkAlgorithm interface, see Fig. 6).
The re-implementation of this function in the ttkAlgorithm class
will trigger all the necessary preconditioning before calling the actual
topological algorithm (see Sec. 6 for examples), implemented in the
generic function RequestData (from the vtkAlgorithm interface).

Thanks to this wrapping, a developer can use TTK features with
the same syntax as VTK features. TTK also provides a plugin for the
open-source application ParaView [2], which is a de-facto standard for
the visualization and analysis of large-scale data. Then, ParaView users
can interactively call TTK filters via its graphical user interface. Finally,
TTK also provides two Python interfaces (a low-level one, matching its
VTK interface, and a high-level one, matching its ParaView interface).

A.2 Pre-existing triangulation
Internally, each topological algorithm implemented in TTK is exploiting
TTK’s generic data-structure for the efficient traversal of simplicial
complexes (Sec. 4.1), a central aspect in most topological algorithms.
All traversal queries (e.g. getting the ith d′′-dimensional co-face of a
given d′-simplex σ) are addressed by the data structure in constant
time, which is of paramount importance to guarantee the runtime
performance of the calling topological algorithms. This is supported
by the data structure via a preconditioning mechanism. Specifically,
in a pre-processing phase, each calling topological algorithm needs
to explicitly declare the list of the types of traversal queries it is
going to use during its main routine. This declaration will trigger
a preconditioning of the triangulation, which will pre-compute and
cache all the specified queries, whose results will later be addressed
in constant time at query time. This design philosophy is particularly
relevant in the context of analysis pipelines, where multiple algorithms
are typically combined together. There, the preconditioning phase only
pre-computes the information once (i.e. if it is not already available in
cache). Thus, multiple algorithms can benefit from a common precondi-
tioning of the data structure. Moreover, another benefit of this strategy
is that it adapts the memory footprint of the data structure, based on
the types of traversals required by the calling algorithm.

In the specific case of regular grids, adjacency relations can be
easily inferred, given the regular pattern of the grid sampling (con-
sidering the Freudenthal triangulation [32], [35] of the grid). Then,
TTK’s triangulation supports an implicit mode for regular grids: for
such inputs, the preconditioning does not store any information and
the results of all the queries are computed on-the-fly at runtime [71].
An extension to periodic grids (i.e. with periodic boundary conditions,
for all dimensions) is also implemented. The switch from one imple-
mentation to the other (explicit mode for meshes or implicit mode for
grids) is automatically handled by TTK and developers of topological
algorithms only need to produce one implementation, interacting with
TTK’s generic triangulation data structure.

A.3 Pre-existing parallel algorithms (shared-memory)
TTK implements a substantial collection of topological algorithms for
scalar data, bivariate data, ensemble data or even point cloud data.
For more details, we refer the reader to an overview paper [8] as

well as to TTK’s Online Example Database [74] (a database of real-life
data analysis use cases, implementing advanced topological analysis
pipelines, combining multiple algorithms).

Prior to this work, only shared-memory parallelism was imple-
mented in TTK, using multiple threads with OpenMP [57]. Then
parallel computations could only be carried out on a single com-
puter. Specifically, some of the topological objects introduced in the
manuscript (the critical points and the discrete gradient) could be com-
puted in parallel (the integral line extraction implementation however
was sequential). TTK provides shared-memory parallel computations
for various objects, including the following, non-exhaustive list: con-
tinuous scatterplots [3], data or geometry smoothing, dimensionality
reduction [15], fiber surfaces [40], Jacobi sets [16], mandatory critical
points [28], marching tetrahedra, merge and contour trees [25], [44],
merge tree distances and encoding [21], [59], [60], [61], Morse-Smale
complexes [71], path compression [45], persistence diagrams [27], per-
sistence diagram encoding [65], Reeb graphs [26], Reeb spaces [70],
Rips complexes, scalar field normalizer, topological compression [68],
topological simplification [43], [72].

A.4 Contributions
In this work, we document the infrastructure evolution that is required
for TTK to support distributed parallelism, via MPI, as documented
in Secs. 3 (distributed data model), 4 (distributed mesh data-structure)
and 5 (distributed pipeline management). We also provide examples
of topological algorithms (Sec. 6) which we extended to support dis-
tributed computations with MPI, on top of their pre-existing shared-
memory parallelization with OpenMP. In particular, note that Sec. 6.3.5
describes a shared-memory parallelization with OpenMP of integral
line computation which is novel in this work (this computation was
sequential in the pre-existing version of TTK). Finally, we provide in
Sec. 8 a roadmap for the extension to the distributed computation of
the remaining algorithms of TTK.

APPENDIX B
FINE-SCALE TIME PERFORMANCE MEASUREMENTS
When timing the execution of a specific distributed algorithm, simply
measuring the execution time on one process may not represent the
execution time of the whole algorithm, as the local execution time
may greatly vary from one process to the next. An established way
to measure time in a distributed-memory environment consists in
adding a MPI barrier before starting and stopping the timer. The call
before starting the timer forces all processes to start simultaneously and
the call before stopping the timer ensures that the time measurement
includes the slowest process. Doing so, the execution time from (e.g.)
process 0 then corresponds to the overall MPI execution time. In
TTK, this can be done using the two functions startMPITimer and
stopMPITimer.

However, the two MPI barriers add synchronization points,
slowing down the execution. Hence, the execution time is not
measured by default but only when the compilation variable
TTK_ENABLE_MPI_TIME is set to ON for TTK.

APPENDIX C
ADDITIONAL PERFORMANCE RESULTS
This appendix provides further details regarding the performance of
the distributed algorithms presented in this paper.

Specifically, Fig. 14 and Fig. 15 show the same performance results
as in the section 7.1.1 and section 7.1.2 of the main manuscript (“Strong
scaling”) and (“Weak scaling”), but expressed in terms of running time
instead of efficiency.
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Fig. 14: Strong scaling (execution times) for various algo-
rithms (MPI+thread: 1 MPI process and 24 threads per
node). The dotted lines indicate ideal performances.
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Fig. 15: Weak scaling (execution times) for various algo-
rithms (MPI+thread: 1 MPI process and 24 threads per
node). The dotted lines indicate ideal performances.
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