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Abstract

In this work, we derive a hyperbolic system of dispersive equations for the numer-
ical simulation of coastal waves with improved dispersive properties and admitting
an exact energy conservation equation. This system is derived with the assumption
of a moderate non-linearity and of a correction coefficient close to 1. This system
contains the same non-linear terms as the Serre-Green-Naghdi equations, which are
obtained in the limit where the Mach number tends to zero. The assumptions are
only used to neglect non-linear terms related to the improvement of dispersive prop-
erties. The bathymetry can be included with a mild-slope hypothesis. On this basis,
we propose an energy-stable numerical scheme relying on a splitting between the hy-
perbolic and dispersive parts of the model. The stability of the method is achieved
through the discrete dissipation of the energy balance specific to each step. We also
establish the existence of soliton solutions for this model. Numerical simulations are
proposed to highlight the dispersive properties of the model, as well as the dissipative
character of the scheme.

Introduction
In view of the increasing frequency and intensity of extreme events such as tsunamis and
major storms, it is of fundamental importance to have a rapid and reliable description of
water wave models. Despite constant progress in terms of computing and parallel calcu-
lation, the free surface Euler equations - that integrate the complete 3d velocity field -
are still out of reach from an operational point of view. This is where simplified models of
shallow water type come into play, exploiting the low relative variability of the flow along
the vertical coordinate to reduce the dimensionality of the problem. One of the most clas-
sic models is the so-called Non-Linear Shallow Water (NLSW) model, which is effective
in capturing the main non-linear dynamics in the surf zone. This model is also rele-
vant to describe breaking waves thanks to its hyperbolic structure, seeing breaking waves
as shocks, as well as run-up and run-down mechanisms during flooding and submersion
events. Nevertheless, it proves ineffective in deeper waters, as it neglects the phenomenon
of dispersion, which is predominant before the breaking point, in the shoaling zone. The
first model capable of taking these effects into account was proposed by Boussinesq in
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[5], and extended by Peregrine [49] in the presence of a variable bottom. Boussinesq-type
models have since taken a central role in water wave modelling. Removing the scaling
assumption on the relative amplitude of the wave, fully nonlinear equations were pro-
posed by Serre [55], and extended to 2D by Green & Naghdi [27]. These equations will
be referred to as SGN equations in the following. This class of models can be derived as
approximations of the free-surface Euler equations in the shallow-water regime (see [33]
for a rigorous justification), in an asymptotic of higher order than the NLSW equations.

In a more recent period, for around thirty years, Boussinesq-type models were subject
to numerous improvements to extend their validity domain, in particular regarding linear
dispersion characteristics. One of the first works was proposed by Madsen & Sorensen
[39] in the weakly non-linear case, with the derivation of an augmented model imply-
ing higher-order terms, allowing to reach a better dispersion relation. Nwogu [46] also
proposed extended equations relying on a new variable corresponding to the velocity at
a certain depth, still in the Boussinesq regime. This approach was shortly afterwards
extended to the fully non-linear case in [58]. These first works paved the way for a series
of successive improvements, most of them eventually resulting in free-parameter mod-
els enabling an appropriate adjustement of the linear frequency dispersion. We refer for
instance to [3], [4], [7], [35], [40], [41] for a non exhaustive list. More recently, inter-
est has also focused on multi-layer approaches, allowing a natural improvement of linear
dispersion characteristics (see for instance [22], [26], [36]). Generally speaking, some of
these strategies can change the structure of the equations (mainly due to the presence
of additional equations or/and higher order derivatives), which makes them more costly
and more technical to implement numerically, with the added threat of impacting the
well-posed character of the problem. On the other hand, some free-parameter methods
only imply minor modifications of the original model, but at the price of compromising
the exact preservation of the energy balance (see for instance [4], [7]). In this context,
one of the few attempts to reconcile improved dispersive properties and an exact energy
equation has been proposed in [9]. The method relies on a modified Lagrangian formula-
tion of the Serre equations, allowing to introduce a free parameter to enhance dipersion
relation without breaking the energy balance. Also, from a more general point of view,
although they are outside the scope of the present study, some results of this nature are
available within the frame of formulations in terms of velocity potential; one may refer to
[15], [19] for instance for full dispersion models implying Fourier multipliers.

As regards numerical discretization, there is now a wide variety of approaches avail-
able in the literature dedicated to the SGN equations, mainly based on usual methods
such as Finite Volumes (FV), Finite Differences (FD), continuous Finite Elements (FEM),
discontinuous Galerkin (dG), or hybrid methods. For a non exhaustive list of examples
in 1d, one may refer to [8], [43] (hybrid FV/FD), [13], [47],[59] (dG), [44] (FEM), or also
[50] for a FV approach for the model [9]. Recently, one strategy entering the formalism of
hybrid methods is to exploit the projection structure of the SGN equations, interpreting
the system as a hyperbolic problem with constraint (see the recent references [26], [45]).
The list of work carried out in 2d is more limited. On cartesian grids, one may refer to the
hybrid FV/FD methods employed in [4], [34], [51], [57], and the dG methods developed
in [37], [54] for instance. On unstructured meshes, the dG schemes [16], [42], and the
hybrid FV/FEM method [31] are one of the few numerical models available. However,
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these approaches based on the original formulation of the SGN equations have in common
the need to invert a time-dependent elliptic operator, which constitutes a major technical
obstacle for operational applications. Although strategies have recently been proposed to
relax the computation time and facilitate implementation issues ([28], [34]), these direct
approaches remain generally very costly, cumbersome to set up and limit the possibilities
of parallelization, especially on general meshes.

Due to these limitations, a recent trend is to use hyperbolisation techniques to provide
approximate versions of the SGN equations, with a structure more favourable in view of
numerical implementation. A first proposition in that direction has been made in [23],
and recently extended in 2D on cartesian grids [56]. The principle is to return to the La-
grangian formulation of the SGN equations and modify it in order to recover a first-order
model which tends formally towards SGN in the limit of a relaxation parameter (this
limit has been rigorously justified in [14]). This results in a hyperbolic model with source
term, naturally admitting an energy balance. Another hyperbolization technique has been
proposed in [20], work in which authors introduce artificial compressibility to obtain the
relaxation limit. This work has been extended shortly after in [21] to cover a more general
class of Boussinesq-type models. In the same spirit, another extension has been proposed
in [52], where the model is directly derived from the free surface Euler equations under a
weakly compressibility assumption. This method allows to recover the one derived in [20]
in the incompressible limit, and dispersive properties are improved introducing a free pa-
rameter in the model, in the same spirit than [4]. Here again, this improvement is achieved
at the cost of breaking the exact energy equation, which is only asymptotically satisfied.
The numerical resolution for [23], [56] relies on an operator splitting based on a standard
Finite Volume approach for the hyperbolic part and an exact resolution of an ODE for the
relaxation part. More recently, important efforts have been made regarding the develop-
ment of efficient algorithms for these models. Numerical schemes of type ADER-DG have
been proposed in 2d on structured grids in [20] and [6]; these algorithms are supplemented
by an a posteriori limiting procedure of MOOD type to guarantee stability. At the same
time, FEM were used in [24] and [25] for an extension of the model [23] including all the
bathymetry terms; in these works, numerical stability issues are addressed through posi-
tivity and well-balancing properties, and rely on the choice of appropriate viscosity terms.

However, in all the above-mentioned works, whether for the SGN equations or their
current hyperbolic approximations, it appears that the problem of energy conservation at
the discrete level has not been thoroughly examined. As regards the SGN system, results
can be found in [45], where the discrete energy stability is directly inherited from the native
features of the projection method. Concerning hyperbolic models approximating the SGN
equations, up to the authors knowledge, the only scheme offering such guarantees at the
fully discrete level is the splitting strategy proposed in [23] in 1d and on a flat bottom.
In the light of the issues raised above, the aim of the proposed work is twofold:

• In the weakly compressible case, extend the model [52] (see also [20]) in order to
improve its dispersive properties, while maintaining an exact energy balance.

• Propose a numerical scheme capable of preserving this energy balance in a fully
discrete framework.
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Figure 1: Definition sketch.

This paper presents first results obtained in the 1d case and under a hypothesis of
mild slope. It is structured as follows: in Section §1 we focus on the derivation of the
model with improved dispersive properties and an exact energy equation. We study its
characteristics and show the existence of exact soliton solutions. Then, the Section §2
presents the proposed scheme and the main results related to its stability. The Section
§3 proposes a series of test cases attesting to the enhancement of the linear frequency
dispersion relation and the dissipative character of the scheme. The technical details
related to the derivation of the soliton solution and the proofs of the lemmas necessary
for the stability of the scheme are available in Section §4.

1 Model derivation and properties

1.1 Derivation of the model with improved dispersive properties
and exact energy conservation

We study a flow of depth h over a bathymetry determined by the bottom elevation zb
measured from an arbitrary horizontal datum (see Figure 1). The free surface elevation
is denoted by Z if it is measured from this horizontal datum and is denoted by η if it is
measured from the still water level. Note that Z and η differs by a constant Z0, which is
the still water level measured from the horizontal datum. The still water depth is h0. We
have thus Z “ Z0 ` η “ zb ` h “ zb ` h0 ` η. Denoting by L a characteristic length for
the variations of the flow in the horizontal direction and by H a characteristic depth, the
shallow-water approximation is assumed to be valid. The parameter

ε “
H

L
! 1 (1)

is thus a small parameter. The characteristic wave amplitude of the free surface elevation
measured from the still water level is denoted by A. We assume a moderate non-linearity,
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which means that the non-linearity parameter δ is of Opεq, i.e.

δ “
A

H
“ ε. (2)

This implies that
Bη

Bx
“ Opε2q. (3)

A characteristic fluid velocity in the horizontal direction is denoted by u0. The Froude
number F is also supposed to be small and of the same order of magnitude as the non-
linearity parameter, which implies

F “
u0
?
gH

“ δ “ ε. (4)

We start from the hyperbolic system with improved dispersive properties derived in
Richard (2021) [52] where U is the depth-averaged fluid velocity and W is the verti-
cal fluid velocity at a relative height α{2 above the bottom with respect to the water
depth. We can thus define

α

2
“
z ´ zb
h

. (5)

The coefficient α is larger than 1 and coincides with the coefficient of the method of
Bonneton et al. (2011) [4]. The model [52] has several variants. Since the goal of the
present work is to model coastal waves, where compressible effects are negligible, and
not tsunamis in deep oceans, we use the quasi-incompressible set of equations where the
static compressibility is neglected. Moreover, we use a mild-slope assumption, which, in
the case of a moderate nonlinearity, means that

Bzb
Bx

“ Opε4q. (6)

With these conditions and assumptions, the system obtained in [52] includes five equa-
tions. The first three equations are a mass conservation equation

Bh̃

Bt̃
` ε

Bh̃Ũ

Bx̃
“ 0 , (7)

a momentum balance equation in the horizontal direction

Bh̃Ũ

Bt̃
`
B

Bx̃

˜

εh̃Ũ2
`
h̃2

2
` ε2h̃P̃

¸

“ ´ε2h̃
Bz̃b
Bx̃
`Opε4q, (8)

and a momentum balance equation in the vertical direction

Bh̃W̃

Bt̃
` ε

Bh̃ŨW̃

Bx̃
“

3

2
P̃ `

α ´ 1

2α
h̃2
BS̃

Bx̃
` 4ε

α ´ 1

α2
W̃ 2

`Opε3q. (9)

These equations are written in dimensionless form (a tilde denotes a dimensionless quan-
tity). In these equations, P is the depth-averaged non-hydrostatic pressure and S is a
variable proportional to the free surface slope defined by

S “ α
BZ

Bx
“ α

Bη

Bx
. (10)

5



The dimensionless quantities are defined as follows

Ũ “
U

u0
“

U

ε
?
gH

; h̃ “
h

H
; W̃ “

W

ε2
?
gH

; P̃ “
P

ε3gH
;

t̃ “ t

?
gH

L
; x̃ “

x

L
; S̃ “

S

ε2
;
Bz̃b
Bx̃

“
1

ε4
Bzb
Bx

.

(11)

The moderate nonlinearity assumption and the mild slope assumption lead to

Bh

Bx
“ ε2

Bη̃

Bx̃
´ ε4

Bz̃b
Bx̃

;
Bh̃

Bx̃
“ ε

Bη̃

Bx̃
´ ε3

Bz̃b
Bx̃

. (12)

The two last equations are firstly a relaxation equation for P , which is written

Bh̃P̃

Bt̃
` ε

Bh̃Ũ P̃

Bx̃
“ ´

1

M2
0

˜

2W̃ ` αh̃
BŨ

Bx̃
`Opε2q

¸

(13)

and secondly an evolution equation for S, which is

Bh̃S̃

Bt̃
` ε

Bh̃Ũ S̃

Bx̃
“ 2h̃

BW̃

Bx̃
` ε

2

α
W̃ S̃ `Opε3q. (14)

The dimensionless number M0 is a Mach number defined as

M0 “

?
gH

a
, (15)

where a is the sound velocity. M0 is a very small parameter controlling the relaxation
of the vertical velocity W . However, since the real compressibility is wholly negligible
in the case of coastal waves, an artificial compressibility method can be used in order
to obtain a hyperbolic system of equations, which means that the sound velocity can be
artificially reduced. This implies that the left-hand side of (13) is only useful for obtaining
a hyperbolic approximation to the model with improved dispersive properties of [4].

It should be noted that the variablesW and S are only involved in (8) through the term
ε2hP , which is Opε2q. Consequently, we can neglect in equations (9) and (14) the terms
scaled as Opε2q, since they finally bring Opε4q corrections. However, we keep the terms
in Opεq in these equations which actually correspond to Opε3q corrections. The model is
thus consistent up to Opε3q in (8) and up to Opεq in (9) and (14). This system is obtained
assuming a decomposition of the fluid horizontal velocity of the form u “ U ` εβu1. The
terms due to the deviation u1 to the depth-averaged value of the velocity are of Opε2β`1q
in (8) and of Opε1`βq in (9). We assume that the flow is irrotational, which implies that
β “ 2.

Because of the mild-slope assumption, the bathymetric terms are of Opε4q in (8) and
of Opε3q in (9), (13) and (14), and are also negligible, except the term ´ε2h̃Bz̃b{Bx̃ in (8).
As for the system with improved dispersive properties of [4], the system of equations (7),
(8), (9), (13) and (14) does not admit an exact equation of energy conservation. In order
to obtain an exact conservation of energy, the system of equations has to be rewritten
with an additional assumption. The correction coefficient α governs the improvement
of dispersive properties, as in [4], [52]. The usual value is α “ 1.159 (see [4]). In the
following, α is assumed to be close to 1. We thus define α1 by

α1 “ α ´ 1 , (16)
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which is scaled as
α̃1 “

α1

ε
(17)

where α̃ “ Op1q. Therefore equation (9) can be written in dimensionless form

h̃W̃

Bt̃
` ε

Bh̃ŨW̃

Bx̃
“

3

2
P̃ ` ε

α̃1

2α
h̃2
BS̃

Bx̃
`Opε2q. (18)

We define the quantity B as

B “ S
?
h “ α

?
h
Bη

Bx
, (19)

which is scaled as
B̃ “

B

ε2
?
h0
. (20)

Thanks to the assumption of a moderate nonlinearity, the derivative of S̃ can be written

BS̃

Bx̃
“

1
a

h̃

BB̃

Bx̃
`Opεq. (21)

Therefore, equation (18) can be rewritten, at the same approximation order:

h̃W̃

Bt̃
` ε

Bh̃ŨW̃

Bx̃
“

3

2
P̃ ` ε

α̃1

2α
h̃3{2

BB̃

Bx̃
`Opε2q . (22)

Using the mass conservation equation, we obtain an evolution equation for the quantity
B writing

Bh̃B̃

Bt̃
` ε

Bh̃Ũ B̃

Bx̃
“ h̃

DB̃

Dt̃
, (23)

where the material derivative is defined by D{Dt “ B{Bt`UB{Bx. Replacing B using (19)
yields

h̃
DB̃

Dt̃
“ h̃3{2

DS̃

Dt̃
` ε

a

h̃

2
S̃

Dh̃

Dt̃
. (24)

Using again the mass conservation, we can write the equality

h̃
DS̃

Dt̃
“
Bh̃S̃

Bt̃
` ε

Bh̃Ũ S̃

Bx̃
. (25)

Equation (14) and the mass conservation (7) yield

Bh̃B̃

Bt̃
` ε

Bh̃Ũ B̃

Bx̃
“

a

h̃

˜

2h̃
BW̃

Bx̃
` ε

2

α
W̃ S̃

¸

´ ε
h3{2

2
S̃
BŨ

Bx̃
. (26)

Since

h̃
BŨ

Bx̃
“ ´

2W̃

α
`Opε2q, (27)

we can write
Bh̃B̃

Bt̃
` ε

Bh̃Ũ B̃

Bx̃
“

a

h̃

˜

2h̃
BW̃

Bx̃
` ε

3

α
W̃ S̃

¸

`Opε3q. (28)

With the definition (10) of S and the relation (12), we obtain the evolution equation for
B in conservative form

Bh̃B̃

Bt̃
`
B

Bx̃

´

εh̃ŨB̃ ´ 2h̃3{2W̃
¯

“ Opε3q. (29)
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1.2 Final set of equations

Finally, going back to the dimensional form, we obtain the following system :
Bh

Bt
`
BhU

Bx
“ 0 (30)

BhU

Bt
`
B

Bx

ˆ

hU2
`
gh2

2
` hP

˙

“ ´gh
Bzb
Bx

(31)

BhW

Bt
`
BhUW

Bx
“

3

2
P `

α ´ 1

2α
gh3{2

BB

Bx
(32)

BhP

Bt
`
BhUP

Bx
“ ´a2

ˆ

2W ` αh
BU

Bx

˙

(33)

BhB

Bt
`
B

Bx

`

hUB ´ 2h3{2W
˘

“ 0 (34)

This system admits the following exact energy conservation:

Bhe

Bt
`
B

Bx

ˆ

hUe`
gh2

2
U ` hPU ` Π1

˙

“ 0 , (35)

with the energy:

e “
U2

2
`

2

3α
W 2

`
gh

2
` gzb `

P 2

2αa2
`
α ´ 1

6α2
gB2 , (36)

and
Π1 “ ´

2

3

α ´ 1

α2
gh3{2WB. (37)

This system is hyperbolic if α ě 1, and admits the following eigenvalues:

λ1 “ U , (38)

λ2,3 “ U ˘

c

gh
α ´ 1

α
, (39)

λ4,5 “ U ˘
a

gh` P ` αa2 . (40)
Since the term BphUW q{Bx is included in the model, this system admits the same

non-linearities as the Serre-Green-Naghdi (in the limit a Ñ 8). The moderate non-
linearity assumption and the hypothesis α close to 1 only impact the terms involved
in the improvement of dispersive properties. Moreover, since the neglected terms are
non-linear, the dispersive properties are the same as in [52]. More explicitly, linearizing
the system (30)–(34) around the constant state h “ h0, U “ U0 “ 0, P “ P0 “ 0,
W “ W0 “ 0, B “ B0 “ 0 in the case of a flat horizontal bottom (zb “ 0) and looking
for solutions under the form of monochromatic waves eipkx´ωtq, we obtain the following
dispersion relation:

M2
0

3
ω̃4
´ ω̃2

«

1`
k̃2

3

ˆ

α `
2α ´ 1

α
M2

0

˙

ff

` k̃2
„

1` k̃2
α ´ 1

3

ˆ

1`
M2

0

α

˙

“ 0 (41)

where ω̃ “ ω
a

h0{g and k̃ “ kh0. Note that in the limit a Ñ `8 (M0 Ñ 0) we exactly
recover the dispersion relation obtained in [4], for which the optimal value α “ 1.159 has
been found. This value will be used in our numerical simulations (we refer to [52] for an
exhaustive study of the influence of this parameter in the present context).
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1.3 Soliton solution

The system (30)–(34) admits soliton solutions in the case of a flat bottom. Looking for
solutions propagating at constant velocity c, we eventually fall on the following ODE
system (see Appendix 4.1 for details):

$

’

’

’

’

’

&

’

’

’

’

’

%

dh

dξ
“ F ph, P,W q

dP

dξ
“ a2

ˆ

´
2W

m
`
α

h
F ph, P,W q

˙

dW

dξ
“

3

2

1

m´ hθ
pP ` θWF ph, P,W qq

(42)

Above, the function F is defined as:

F ph, P,W q “
2a2W

m

ˆ

g ´
m2

h3
`
P

h
`
a2α

h

˙´1

, (43)

where m “ hpU ´ cq is a constant quantity, and θphq “
gh2

m

α ´ 1

α
. The quantity B is

deduced from W through the relation:

K “ B ´
2h3{2W

m
, (44)

where K is a constant. It should be remarked that if α “ 1, then θ “ 0 and we exactly
recover the ODE system obtained for the classical soliton obtained in [52].

The soliton solution calculated with the system (42) is compared to the experimental
results of Daily & Stephan (1952) [11]. The velocities of the calculated solitons are defined
in dimensionless form by the Froude number F “ |m||{

a

gh38 “ c{
?
gh8, where h8 is

the depth for ξ Ñ ˘8 and c the celerity of the soliton. The parameters used for these
calculations are chosen in order to obtain the same amplitudes as the solitons generated
in the experiments. As a result, the celerities of the calculated soliton are higher by
1 to 2.5 % than the celerities measured in the experiments. This is the same as in
the case of the Serre-Green-Naghdi model. The celerities of the solitons calculted with
the system (42) are almost the same as the celerities of the Serre-Green-Naghdi system.
Reciprocally, if the parameters of the calculations are chosen in order to obtain the same
celerity, the amplitude of the soliton is slightly underestimated in the same way as with
the Serre-Green-Naghdi system. The four simulations are presented in Figure 2 with the
experimental results (black dots), the soliton of Serre-Green-Naghdi (α “ 1) (blue curve)
and the soliton obtained with the system (42) and α “ 1.159 (red curve). The values of
the dimensionless amplitude, defined by ph´ h8q{h8, are 0.232, 0.35, 0.493 and 0.60 for
the figures 2(a), 2(b), 2(c) and 2(d) respectively. It is well-known that the Serre-Green-
Naghdi soliton is slightly wider than an experimental soliton. The present system also
gives a soliton which is slightly too wide, but the agreement is a little bit better than
for the Serre-Green-Naghdi model, especially for the large amplitudes. Therefore, the
improvement of the dispersive properties also improves the soliton profile even if there is
still a small discrepancy.
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Figure 2: Comparison between the soliton profiles calculated with (42) and α “ 1.159 (red
curves), the soliton profiles of the Serre-Green-Naghdi system (α “ 1) (blue curves) and
the experimental results of Daily & Stephan (1952) [11] (black dots) for a dimensionless
amplitude of 0.232 (a), 0.35 (b), 0.493 (c) and 0.60 (d).
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2 Numerical approach
Going back to the system of equations (30) - (34), we construct a numerical scheme relying
on the following splitting. The first step is simply made of the Shallow Water system with
topography, supplemented by three passive transport equations:

Bh

Bt
`
BhU

Bx
“ 0 (45)

BhU

Bt
`
B

Bx

ˆ

hU2
`
gh2

2

˙

“ ´gh
Bzb
Bx

(46)

BhW

Bt
`
BhUW

Bx
“ 0 (47)

BhP

Bt
`
BhUP

Bx
“ 0 (48)

BhB

Bt
`
BhUB

Bx
“ 0 (49)

Recalling that e is given by (36), the corresponding energy equation is:

Bhe

Bt
`
B

Bx

„ˆ

e`
gh

2

˙

hU



“ 0 . (50)

The second part of the splitting contains the dispersive components of the system and
involves the relaxation parameter a. This step will thus be called acoustic part in the
following, and takes the form:

Bh

Bt
“ 0 (51)

BhU

Bt
`
BhP

Bx
“ 0 (52)

BhW

Bt
“

3

2
P `

α ´ 1

2α
gh3{2

BB

Bx
(53)

BhP

Bt
“ ´a2

ˆ

2W ` αh
BU

Bx

˙

(54)

BhB

Bt
“
B

Bx

`

2h3{2W
˘

(55)

This sub-system admits the following energy conservation equation:

Bhe

Bt
`
B

Bx
phPU ` Π1q “ 0 . (56)

From this, the objective is to propose a numerical approach able to ensure a discrete
counterpart of the energy equations specific to each step, namely (50) and (56). The
numerical treatment of each of these two parts is addressed separately in the two next
sections. Before going further, we need to introduce the main notations employed to
define the discrete operators used throughout the paper, as well as elementary estimates
and duality formulas. In what follows, we will denote ∆t the time step and consider a
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regular grid implying cells of size ∆x, referred to by K P Z. First, for any sequence of
scalar interface quantity pbK`1{2qKPZ, we define the centred operator:

BKb “
1

∆x

`

bK`1{2 ´ bK´1{2
˘

, (57)

with the specific notation BcKb when the interface quantities correspond to the half sum
at the level of the two cells involved, that is:

B
c
Kb “

1

∆x

`

b̄K`1{2 ´ b̄K´1{2
˘

, (58)

where b̄K`1{2 “
1

2
pbK ` bK`1q. We also introduce the notation rbsK`1{2 “

1

2
pbK`1 ´ bKq,

so that bK “ b̄K`1{2 ´ rbsK`1{2 “ b̄K´1{2 ` rbsK`1{2. These two definitions extend to mul-
tiple interface sequences by considering the difference of term to term interface products,
leading to:

BKpa, bq “
1

∆x

`

aK`1{2bK`1{2 ´ aK´1{2bK´1{2
˘

. (59)

We also define the discrete upwind derivative, for any collocated sequence of scalars
paKqKPZ:

B
up
K pa, bq “

1

∆x

`

FK`1{2 ´ FK´1{2
˘

, (60)

where FK`1{2 “ aKb
`

K`1{2 ` aK`1b
´

K`1{2, and w` “
1

2
pw ` |w|q , w´ “

1

2
pw ´ |w|q.

Equipped with these notations, we now focus on the first step of the splitting.

2.1 Hyperbolic subsystem

The first system (45)–(49) has a hyperbolic structure and can be numerically integrated on
the basis of any approach for the Shallow-Water equations with topography source term.
Keeping in mind energy stability issues, the method should rely on a method able to ensure
entropy stability. Note that the variables W , P and B satisfy passive transport equations
and are not a particular threat regarding the discrete energy balance. Among the fully
explicit schemes available in the literature, a first example could be the fully entropic
hydrostatic reconstruction scheme proposed in [2] for instance (see also the recent works
[12], [32], [53]). We here chose to use a recent version of the explicit CPR scheme initially
proposed in [10] (see also [48] for a first IMEX approach in the multi-layer case), details
of which are available in [18]. Denoting the scalar potential φ “ gph` zbq, this approach
relies on the following non-conservative rewriting of the momentum equation (46):

BhU

Bt
`
B phU2q

Bx
` h

Bφ

Bx
“ 0 .

From this, the scheme for the hyperbolic part is:
$

’

’

’

’

’

&

’

’

’

’

’

%

hn`1K “ hnK ´∆tBKpq
˚q ,

phUqn`1K “ phUqnK ´∆tBupK pU, q
˚q ´∆thnKBKpφ

˚q ,

phW qn`1K “ phW qnK ´∆tBupK pW, q
˚q ,

phP qn`1K “ phP qnK ´∆tBupK pP, q
˚q ,

phBqn`1K “ phBqnK ´∆tBupK pB, q
˚q .

(61)

12



Referring to formulas (57) and (60), we only need to specify q˚K`1{2 and φ˚K`1{2 to char-
acterize the discrete operators. We set:

q˚K`1{2 “ phUqK`1{2 ´ ΠK`1{2 , (62)

and
φ˚K`1{2 “ φ̄K`1{2 ´ ΛK`1{2 , (63)

where we recall that the superscript “ ” refers to the mean interface value taken at time
n (the scheme being totally explicit, the time indice will be omitted when no confusion
is possible in the following). The quantities ΠK`1{2 and ΛK`1{2 govern the numerical
viscosity of the scheme, and are defined as:

ΠK`1{2 “ 2cpλpĎhνqK`1{2rφsK`1{2 , (64)

ΛK`1{2 “ 2gc`λrhU sK`1{2 , (65)

where cp, c` are positive constants and λ “ ∆t{∆x. As stated in [18], the scheme is energy
dissipative under the following conditions:

• The time step is defined according to the following interface CFL condition:

λpu˚K`1{2 `pcK`1{2q ď 1{4 , (66)

where u˚K`1{2 “
1

2

ˆ

|ĎhUK`1{2| `
1

2g
γc̄e|rφsK`1{2|

˙

{phK`1{2, with phK`1{2 “ maxphnK , h
n
K`1q,

and pcK`1{2 “ max pcK , cK`1q where cK “
a

ghnK .

• The constants cp, c` have to satisfy the following bounds:

cp, c` P rr
´, r`s , with r˘pϑq “

1˘
?

1´ ϑ

ϑ{2
, (67)

where ϑ “ 16λ2gpĎhνqK`1{2. Note that we have lim
ϑÑ0

r´pϑq “ 1, r˘p1q “ 2 and
lim
ϑÑ0

r`pϑq “ `8. The function ϑ ÞÑ r´pϑq being increasing and ϑ ÞÑ r`pϑq decreas-
ing on the interval r0, 1s, we get that the value cp “ c` “ 2 is always admissible, inde-
pendently from K. Note also the possibility of taking cp, c` close to 1 by diminishing
ϑ (that is the time step). Finally, the local parameter ν implied in the interface term

pĎhνqK`1{2 in (64) is defined as νK “
1

1´ 4λuK
where uK “ maxpu˚K´1{2, u

˚
K`1{2q,

and can be roughly estimated by νK ď 1` pFrqK , where pFrqK “
uK
cK

stands for a

local Froude number.

More explicitely, defining the local potential and kinetic energies provided by the scheme
as:

EnK “ ghnK

ˆ

hnK
2
` pzbqK

˙

, KnK “
1

2
hnK pU

n
Kq

2 , (68)

and the energy contributions associated with the other variables:

Wn
K “

2

3α
hnK pW

n
Kq

2 , PnK “
1

2αa2
hnK pP

n
Kq

2 , BnK “
β

2
hnK pB

n
Kq

2 , (69)
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with β “ g
α ´ 1

3α2
, we recover under the conditions mentioned above a discrete counterpart

of (50) through an estimation of the form:

En`1
K ´ En

K `∆t dK

ˆ

e`
1

2
gh, hU

˙

ď 0 , (70)

where En
K “ EnK ` KnK `Wn

K ` PnK ` BnK is the local energy of the system at time n at
the level of the cell K. The numerical energy flux is given by:

dK

ˆ

e`
1

2
gh, hU

˙

“ ĂB
up
K

ˆ

1

2
u2, q˚

˙

` ĂBKpφ, q
˚
q ` B

up
K

ˆ

2

3α
W 2

`
1

2αa2
P 2
`
β

2
B2, q˚

˙

.

Above, the upwind fluxes BupK are defined by (60), and the operators ĂB
up
K and ĂBK refer

to consistent fluxes which leading part is given by (59), (60), subject to smaller order
contributions (we refer to [18] for an explicit form of these correction terms).

2.2 Acoustic subsystem

We now turn to the numerical scheme associated with the acoustic part (52)–(55), for
which the scheme we consider is the following:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Un`1
K “ Un

K ´
∆t

hnK
BcKphP

n`1q ,

W n`1
K “ W n

K `∆t
3

2

P n`1
K

hnK
`∆t

α ´ 1

2α
g
a

hnKBKB
˚ ,

P n`1
K “ P n

K ´∆ta2
„

2
W n`1
K

hnK
` αBKU

˚



,

Bn`1
K “ Bn

K `
∆t

hnK
BcK

`

2h3{2W n`1
˘

.

(71)

Since the water height does not evolve through the acoustic step, we will denote hK “
hnK “ hn`1K for simplification purposes. We set:

BKU
˚
“

1

∆x

`

U˚K`1{2 ´ U
˚
K´1{2

˘

with U˚K`1{2 “
sUK`1{2 ´ ΓK`1{2 , (72)

and
BKB

˚
“

1

∆x

`

B˚K`1{2 ´B
˚
K´1{2

˘

with B˚K`1{2 “
sBK`1{2 ´ΘK`1{2 . (73)

Above, ΓK`1{2 and ΘK`1{2 are governing numerical viscosity, with a role similar to (64)
and (65) in the hyperbolic part. Also, as will be seen later, these terms can actually be
chosen such that the present scheme can be solved totally explicitly. In what follows, we
will introduce the following notations:

ζK “
3

2

P n`1
K

hnK
`
α ´ 1

2α
g
a

hnKBKB
˚ , (74)

and

ξK “ 2
W n`1
K

hK
` αBKU

˚ , (75)
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so that the discrete evolution of the variable W and P in (71) can be simply rewritten:

W n`1
K “ W n

K `∆tζK . (76)

P n`1
K “ P n

K ´∆ta2ξK , (77)

Finally, in order to make the forthcoming formulations more compact, we set:

Rn
K “ hKP

n
K , SnK “ ´2phKq

3{2W n
K . (78)

We now give the main steps leading to the scheme stability. The proof of the following
propositions are quite heavy and have been relegated to the Appendix 4.2 for the sake of
readability. We start with the following general result:

Proposition 1. Referring to notations (68), (69), consider En
K “ EnK`KnK`Wn

K`PnK`
BnK the local energy at time n. Then the following equality stands:

En`1
K ´ En

K `∆tĂBcK
`

Rn`1, U
˘

`∆tĂBcK
`

βSn`1, B
˘

“ HK `GK , (79)

where we recall that β “ g
α ´ 1

3α2
, and where

HK “ ∆tRn`1
K BKΓ`

1

2
hK

`

Un`1
K ´ Un

K

˘2
´∆t2

a2

2α
hKξ

2
K , (80)

GK “ ∆tβSn`1K BKΘ`
1

2
βhK

`

Bn`1
K ´Bn

K

˘2
´∆t2

2hK
3α

ζ2K , (81)

and the discrete operator ĂBcK is defined by:

ĂBcKpa, bq “ B
c
Kpa, bq ´ BK pras, rbsq , (82)

for any pair of collocated sequence of scalar quantities paKqKPZ, pbKqKPZ.

Based on this, we now seek a control of the residuals HK and GK . This leads to the
following estimates:

Proposition 2. Assume that the stabilisation term involved in (72) is given by:

ΓK`1{2 “ cgλ
´

1{h
¯

K`1{2
rhP n

sK`1{2 . (83)

Then, under the CFL condition:

∆t

∆x

?
αa ď

1

2
?
τK`1{2

with τK`1{2 “ hK`1{2

´

1{h
¯

K`1{2
, (84)

and assuming that cg satisfies the bounds (67):

cg P rr
´, r`s , with r˘pϑq “

1˘
?

1´ ϑ

ϑ{2
, (85)

with this time ϑ “ 4

ˆ

∆t

∆x

˙2

a2ατK`1{2, we have:

HK ď ∆tAK , (86)

where AK is a residual flux term, seen as a bias on the leading flux ĂBcK pR
n`1, Uq involved

in (79) (see formula (130) for an explicit formulation of this term).
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Proposition 3. Assume that the stabilisation term (73) is given by:

ΘK`1{2 “ ´ctλ
´

1{h
¯

K`1{2
r2h3{2W n

sK`1{2 , (87)

and note σK “

d

ghK

ˆ

α ´ 1

α

˙

. Then, under the CFL condition:

∆t

∆x
σK`1{2 ď

1

2
?
τK`1{2

with τK`1{2 “ hK`1{2

´

1{h
¯

K`1{2
, (88)

σK`1{2 “ max pσK , σK`1q, and assuming that ct satisfies the bounds (67):

ct P rr
´, r`s , with r˘pϑq “

1˘
?

1´ ϑ

ϑ{2
, (89)

with ϑ “ 4

ˆ

∆t

∆x

˙2

σ2
K`1{2τK`1{2, we have:

GK ď ∆tβBK , (90)

where BK is a bias on the leading flux ĂBcK pβS
n`1, Bq appearing in (79) (see (140)).

We can now enounce the main stability result, as a direct consequence of the two
previous propositions:

Proposition 4. Under the hypothesis of Propositions 2 and 3, the acoustic scheme (71)
satisfies the following energy estimate:

En`1
K ´ En

K `∆tĂBcK
`

Rn`1, U
˘

`∆tĂBcK
`

βSn`1, B
˘

ď 0 , (91)

with
ĂBK

`

Rn`1, U
˘

“ ĂBcK

`

Rn`1, U
˘

´AK ,

ĂBK
`

βSn`1, B
˘

“ ĂBcK

`

βSn`1, B
˘

´ βBK ,

where AK and BK are low order flux corrections (respectively given by (130), (140)). The
discrete operators ĂBcK are defined according to (82).

Recalling that Rn`1 “ hP n`1, βSn`1 “ ´
2

3

α ´ 1

α2
gh3{2W n`1, we thus get a discrete

equivalent of (56). This concludes the discussion on the scheme stability.

Remark 1. (Preservation of motionless steady stades). Due to the nature of the viscosity
terms (64), (65) and (83), (87), it is easy to check that motionless steady states, charac-
terized here by φ “ cte, U “ 0, W “ 0, P “ 0, B “ 0, are automatically preserved at the
discrete level through both hyperbolic and acoustic steps.
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3 Numerical experiments

3.1 Implementation issues

As concerns numerical implementation, first note that the acoustic scheme can be refor-
mulated in a fully explicit frame. Returning to (71), the strategy consists in computing
W n`1 and P n`1 explicitly in a first step, before treating the two remaining equations.
After basic calculations, we indeed get the following formulas:

W n`1
K “ W n

K `∆t

„

3

2hnK

`

P n
K ´∆t2a2αBKU

˚
˘

`
α ´ 1

2α
g
a

hnKBKB
˚



{InK ,

and

P n`1
K “ P n

K ´∆ta2
„

2

hnK

ˆ

W n
K `∆t

α ´ 1

2α
g
a

hnKBKB
˚

˙

` αBKU
˚



{InK ,

with an implicitation coefficient given by InK “ 1 ` 3a2∆t2{phnKq
2. Regarding the time

scheme, a second order Strang splitting is considered here. Note that the two stages
involved in the numerical approach are governed by different time step conditions, given
by (66) and (84) (which is much more restrictive than (88)). In particular, in order to
benefit from the classical shallow water CFL condition issuing from the first step (which
is not restricted by the parameter a), these two time scales are taken into account for
a better efficiency. In practice, this implies a multi-stage resolution of the acoustic part
based on the more restrictive time step ∆tac obtained in (84). More precisely, denoting
by ∆t the time step issuing from the hyperbolic condition (66), we set ∆tp “ ∆t{p, where

p “
Q ∆t

∆tac

U

` 1, and consider the following time scheme:

$

’

’

’

’

&

’

’

’

’

%

U
p1q
K “ Shyp

ˆ

∆t

2

˙

U
pnq
K ,

U
p2q
K “ rSacp∆tpqsp U p1qK ,

U
pn`1q
K “ Shyp

ˆ

∆t

2

˙

U
p2q
K .

Above, Shyp refers to the hyperbolic scheme (61) and Sac refers to the acoustic system
(71). This strategy allows a significant gain in calculation time, without compromising
the order of the method. It is supplemented by a standard MUSCL procedure for a formal
second order accuracy in space.

3.2 Propagation of a soliton on a flat bottom

Starting from the ODE system (42), an analytical solution can be computed assuming
h ÝÑ h8, U ÝÑ 0, W ÝÑ 0, P ÝÑ 0 and B ÝÑ 0 as ξ ÝÑ ˘8. Note that in this
case the constant m (see (92)) can be prescribed imposing the relative Froude number
F8 :“ ´m{

a

gh38, and the constant K “ B ´ 2h3{2W {m connecting B to W is equal to
zero. We consider here the propagation of a soliton defined by h8 “ 1 m and F8 “ 1.8,
centred in the domain Ω “ r´50, 50s. The computational domain is meshed with 2000
elements, and we take a “ 40 m ¨ s´1, α “ 1.159. Periodic conditions are imposed at the
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boundaries, leading to a period P “ 23.79739 s for the soliton to recover its initial position.
We can observe on Fig. 3 the water height elevation of the numerical solution after two
periods, compared to the initial solution. The wave amplitude is well reproduced and no
significant phase shift can be observed. For the record, the loss of amplitude is of 0.6%
and the phase shift is of 0.1% at this level of resolution (L{∆x « 200). Note that although
the analytical solution is computed with a “ 1500 m.s´1, the value a “ 40 m.s´1 is amply
sufficient here to reproduce the wave characteristics with a high level of accuracy. Note
that all the terms implied in the local dissipation estimations (70) and (91) have been
explicitly computed. We thus verified numerically that these inequalities were rigorously
satisfied up to the error machine at first order.

−20 −10 0 10 20
x(m)

1.0

1.2

1.4

1.6

1.8

h(
m
)

t=2P
t=0

Figure 3: Soliton solution. Initial condition (dashed lines) vs. water height elevation after
two periods (plain lines).

3.3 Waves train over a submerged bar

We now consider the classical set of experiments of Beji & Battjes [1], which aims at study-
ing the deformations of wave trains propagating over a submerged bar. The experimental
set-up implies a 37.7 m long rectangular basin, which bottom variations correspond to
a trapezoidal bar of 1{20 upslope and 1{10 downslope. In the experiment the reference
water height in the deep part of the channel is fixed to 0.4 m, leading to the configuration
depicted in Fig. 4. The water elevation has been recorded at eight wave gauges, the
first one being located at the foot of the bar, and the other ones being regularly spaced
along the top part and the rear side. Many series of experiments have been run, implying
either breaking and non-breaking waves in the case of regular and irregular waves, details
of which can be found in [1]. Since the objective here is to assess the dispersive proper-
ties and the energy-dissipative features of the scheme, we only focus on the non-breaking
cases, and refer to [17], [30] for instance for recent works related to wave-breaking issues.

When an incident wave encounters the upward part of the bar, it shoals and steepens,
which generates high harmonics. These higher-harmonics are then freely released on the
downward slope, and become deep-water waves behind the bar. These dynamics are not
easy to capture and this test case is proving to be a discriminating criterion for attesting
to the dispersive and non-linear properties of water waves models.
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As regards the treatment of boundary conditions, a relaxation zone of 5 m as been
added at the inlet boundary, allowing to progressively transit from an imposed profile to
the numerical solution inside the computational domain. In each of the cases considered
here, according to the experimental configuration, a train of sinusoidal waves of amplitude
A “ 0.01 m has been generated, based on a solution of the linearized system. A similar
protocol has been implemented at the outlet boundary to absorb outgoing waves and
prevent from any reflection phenomena. According to this, the computational domain is
set to Ω “ r´10, 30s.

We first consider the case of a frequency of 0.4 Hz. The numerical model has been run
with 4000 elements, with a correction coefficient α “ 1.159 and an artificial sound velocity
a “ 20 m.s´1. Note that grid convergence is reached at this level of resolution. We also
point that, as reported in the experimental study and many works in the literature, the
standard dispersive properties of the Serre-Green-Naghdi model show their limitations in
this configuration and need to be improved (see for instance [52]). Comparisons between
experimental and numerical results at gauges 1,3,5,6,7 and 8 are available in Fig. 5,
showing a very good level of agreement, qualitatively similar to the complete compressible
model [52]. Also, although it may seem relatively small in relation to its physical value,

Figure 4: Test case of Beji & Battjes [1]. Sketch of the experimental set-up.

we found that this order of magnitude for a was already sufficient to provide accurate
results, and we did not observe any clear improvement brought by its increase (see Fig.
8).

We now turn to the case 0.1 Hz. Again the computational domain is discretized with
4000 elements and the value α “ 1.159 is taken. The sound velocity is set to a “ 20 m.s´1.
Fig. 7 provides the comparisons between experimental and numerical results at gauges
1,3,5,6,7 and 8, and exhibit a good agreement. As noticed in [52], even more accurate dis-
persive properties would be necessary to have a better agreement at the two last gauges,
which is part of future works. This can be reached introducing a richer set of free pa-
rameters in the system (as done in [8] for instance), increasing the number of variables,
or even considering a two-layer extension. However in the present frame, in addition to
their intrinsic specificities, these methods must be implemented without compromising
the hyperbolicity of the model and while preserving an exact energy balance, which is,
at first sight, not a native feature of these strategies. The impact of the calibration of
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Figure 5: Comparisons of the model with improved dispersive properties (α “ 1.159)
(plain lines) with the experimental results (dashed lines) in the case 0.4 Hz - Free surface
elevation with respect to the reference level. From top to bottom and left to right: wave
gauges 1,3,5,6,7 and 8.

the sound velocity a can be assessed through Fig. 8, from which we can observe that the
value a “ 20 m.s´1 is already sufficient to properly approach the limit model. As in the
previous test, it has to be noted that the local energy estimates (70) and (91) have been
systematically satisfied at first order, attesting of the dissipative features of the scheme
even in the presence of topography.

Conclusion
We derived a hyperbolic model for the propagation of dispersive waves enjoying improved
dispersive properties and an exact conservation of energy. The system is derived under a
moderate non-linearity hypothesis and assuming a correction coefficient close to 1. These
scale hypothesis only affect the part of the system dedicated to improving dispersive
properties, allowing to recover the same non-linearities as those of the classical Serre-
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Figure 6: Comparisons of the model with improved dispersive properties (α “ 1.159)
(plain lines) with the experimental results (dots) in the case 0.4 Hz aud wage gauge 8
- Free surface elevation with respect to the reference level. a “ 10 m.s´1 (red curve),
a “ 20 m.s´1 (blue curve), a “ 40 m.s´1 (green curve).

Green-Naghdi equations. We have shown that this system admits a family of soliton
solutions, which turn out to be closer to the experimental measurements than the classical
SGN solitons. Extending the recent explicit low-Froude CPR approaches ([48],[10]), an
efficient and low-diffusive numerical scheme has been proposed, which main feature is
to ensure stability through discrete energy dissipation. The numerical approach relies
on a splitting between the hyperbolic and the acoustic parts, and stability is obtained
by establishing a discrete counterpart of the energy balance specific to each stage. In
particular, the hyperbolic part of the splitting is not impacted by the sound velocity,
which allows to involve the classical hyperbolic time step emanating from the Shallow
Water equations and to improve computational efficiency. Numerical experiments have
been proposed to highlight the dispersive properties of the method and the dissipative
nature of the scheme. In accordance with the observations made in [52], we have shown
that the value of the sound velocity a could be taken much lower than its physical value,
leading to significant computational savings. In parallel of finding relevant strategies
to provide even better dispersive properties in the present frame, the two dimensional
extension, as well as the inclusion of all topography terms is left for future works. Also,
the justification of the model is on ongoing work, on the basis on the recent developments
made in [14].
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Figure 7: Comparisons of the model with improved dispersive properties (α “ 1.159)
(plain lines) and experimental results (dotted lines) in the case 0.1 Hz - Free surface
elevation with respect to the reference level. From top to bottom and left to right: wave
gauges 1,3,5,6,7 and 8.

4 Appendix

4.1 Soliton solution

We look for solutions of the system (30)-(34) as function of the variable ξ “ x´ ct, where
c is a constant. The mass equation gives a first constant:

m “ hpU ´ cq . (92)

Then, the momentum equation gives:

d

dξ

ˆ

´hcU ` hU2
`
gh2

2
` hP

˙

“ 0 ,
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Figure 8: Comparisons of the model with improved dispersive properties (α “ 1.159)
(plain lines) with the experimental results (dots) in the case 0.1 Hz aud wage gauge 8
- Free surface elevation with respect to the reference level. a “ 10 m.s´1 (red curve),
a “ 20 m.s´1 (blue curve), a “ 40 m.s´1 (green curve).

that is Um `
gh2

2
` hP “ cte. Using (92), we have Um “ m2{h ` cte, so that we can

identify a second constant quantity:

I “
m2

h
`
gh2

2
` hP . (93)

Note that the energy equation can be rewritten:

d

dξ
pme` ΠU ` Π1q “ 0 ,

where Π “
gh2

2
` hP . Using (93), we obtain, after some basic calculations:

ΠU “ m

ˆ

gh

2
` P

˙

´ c
m2

h
` cte .

On the other hand the first term of (36) can be written as follows:

1

2
U2
“

1

2

´m

h
` c

¯2

“
1

2

m2

h2
`
cm

h
` cte .

Hence we have me` ΠU ` Π1 “ mJ ` cte, where J corresponds to a third constant:

J “
1

2

m2

h2
`

2

3α
W 2

` gh`
P 2

2αa2
` P `

α ´ 1

6α2
gB2

`
Π1

m
(94)
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Then, noting that from equation (34) we have
d

dξ
pmBq “

d

dξ

`

2h3{2W
˘

, we can extract a

fourth constant K connecting B to W :

K “ B ´
2h3{2W

m
. (95)

In particular, this leads to:

dB

dξ
“

2h3{2

m

dW

dξ
`

3W
?
h

m

dh

dξ
. (96)

As a result, equation (32) can be written as:

dW

dξ

ˆ

m´
α ´ 1

α

gh3

m

˙

“
3

2
P `

3

2

α ´ 1

α

gh2W

m

dh

dξ
,

Assuming m ‰
α ´ 1

α

gh3

m
, we set

θphq “
gh2

m

α ´ 1

α
, φphq “

3

2

1

m´ hθphq
, (97)

and the previous equation rewrites:

dW

dξ
“ φP ` φθW

dh

dξ
. (98)

From (92), we have
dU

dξ
“ ´

m

h2
dh

dξ
, and exploit the equation (33) to obtain:

dP

dξ
“ ´

2a2W

m
`
a2α

h

dh

dξ
. (99)

Finally, with (96) and (98), we can also express the derivative of B in terms of
dh

dξ
:

dB

dξ
“

2h3{2

m
φP `

˜

2h3{2

m
φθW `

3W
?
h

m

¸

dh

dξ
. (100)

We now consider the following decomposition of the constant (94): J “ J1 ` J2 with

J1 “
1

2

m2

h2
`

2

3α
W 2

` gh`
P 2

2αa2
` P

J2 “
α ´ 1

6α2
gB2

´
2

3

α ´ 1

α2

gh3{2WB

m

(101)

Based on (99) and (98), we get, after several algebraic manipulations:

dJ1
dξ

“ ´
2a2W

m
`

ˆ

g ´
m2

h3
`
P

h
`
a2α

h

˙

dh

dξ
`R (102)
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with
R “ 4

3

WP

αm

ˆ

φm´
3

2

˙

`
4

3α
W 2φθ

dh

dξ
. (103)

The next step is to show that R` dJ2
dξ

“ 0. Going back to (101), we have:

dJ2
dξ

“
α ´ 1

3α2
gB

ˆ

dB

dξ
´

d

dξ

ˆ

2h3{2W

m

˙˙

´
2

3

α ´ 1

α2

gh3{2W

m

dB

dξ
. (104)

With (95), the term in brackets in the previous expression is nothing but
dK

dξ
“ 0. Going

back to the definition θphq “
gh2

m

α ´ 1

α
and using (100), wec thus get:

dJ2
dξ

“ ´
4

3

θWh

αm
φP ´

ˆ

4

3

θ2W 2

α

h

m
φ` 2

θW 2

αm

˙

dh

dξ
(105)

Then, summing (103) and (105):

R` dJ2
dξ

“
4

3

WP

αm

ˆ

φm´
3

2
´ φhθ

˙

`
4

3

W 2θ

αm

ˆ

φm´ φhθ ´
3

2

˙

dh

dξ
.

But with (97), we have φpm´hθq “
3

2
, which immediately givesR`dK2

dξ
“ 0. Eventually,

returning to (102), we thus get:

dJ

dξ
“

dJ1
dξ

`
dJ2
dξ

“ ´
2a2W

m
`

ˆ

g ´
m2

h3
`
P

h
`
a2α

h

˙

dh

dξ
,

and consequently:

dh

dξ
“ F ph, P,W q “

2a2W

m

ˆ

g ´
m2

h3
`
P

h
`
a2α

h

˙´1

.

The equations for P and W directly follows from (99) and (98).

4.2 Proof of Proposition 4

This part is dedicated to the proof of the main results stated in Section §2.2. Before
addressing these energy estimates, several notations and basic technical results are nec-
essary.

4.2.1 Additional notations and duality results

In what follows we will regularly use the notation:

SKpa, bq “ aK`1{2bK`1{2 ` aK´1{2bK´1{2 , (106)

with its natural generalization to the sum of interface products SKpa1, ¨ ¨ ¨ , anq. When
no confusion is possible, we will use the convention SKpa2q “ SKpa, aq. Remark that
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aKSKpbq “ āK`1{2bK`1{2` āK´1{2bK´1{2´rasK`1{2bK`1{2`rasK´1{2bK´1{2, which gives the
duality formula:

aKSKpbq “ SKpā, bq ´∆xBKpras, bq . (107)

Also, we have the following inequality:

rBKpa, bqs
2
“

1

∆x2
`

aK`1{2bK`1{2 ´ aK´1{2bK´1{2
˘2

ď
2

∆x2

´

`

aK`1{2bK`1{2
˘2
`
`

aK´1{2bK´1{2
˘2
¯

“
2

∆x2
SKpa2, b2q .

(108)

Finally, introducing a third generic sequence of interface scalar quantities pµK`1{2qKPZ,
note that the discrete operators defined in (82), (57) and (58) are subject to the following
elementary duality relations:

ĂBcKpa, bq “ aKB
c
Kb` bKB

c
Ka , (109)

aKBK pµ, rbsq “ bKBK pµ, rasq ´ BK
`

µ, ras, b̄
˘

` BK pµ, ā, rbsq . (110)

aKBK pµ, rasq “ BK pµ, ā, rasq ´
1

∆x
SK

`

µ, ras2
˘

. (111)

4.2.2 Proof of Proposition 1

Since the water height does not evolve in time during this step, we will omit the subscript
”n” when referring to the variable h in all the forthcoming developments. We first focus

on the kinetic energy. Using the classical equality pa´ bqb “
1

2
a2 ´

1

2
b2 ´

1

2
pa´ bq2, and

the definition (68):

hK
`

Un`1
K ´ Un

K

˘

Un
K “ Kn`1K ´KnK ´

1

2
hK

`

Un`1
K ´ Un

K

˘2
.

Considering the discrete velocity equation (71), this leads to:

Kn`1K ´KnK “ ´∆tUn
KB

c
K

`

hP n`1
˘

`
1

2
hK

`

Un`1
K ´ Un

K

˘2
. (112)

Similar relations are obtained for the energy associated with the other variables (see
definitions (69)). Proceeding the same way for the variable B, we immediately obtain:

Bn`1K ´ BnK “ ∆tβBn
KB

c
K

`

2h3{2W n`1
˘

`
β

2
hK

`

Bn`1
K ´Bn

K

˘2
. (113)

On the other hand, we can write:

4

3α
hK

`

W n`1
K ´W n

K

˘

W n`1
K “Wn`1

K ´Wn
K `

2

3α
hK

`

W n`1
K ´W n

K

˘2
,

which leads to (we refer to (75) and (74) for the definitions of ξnK and ζnK and recall that

β “ g
α ´ 1

3α2
):

Wn`1
K ´Wn

K “
4

3α
hKW

n`1
K

ˆ

∆t
3

2

P n`1
K

hK
`∆t

α ´ 1

2α
g
a

hKBKB
˚

˙

´
2hK
3α

`

W n`1
K ´W n

K

˘2

“
2∆t

α
pWP qn`1K ` β∆t

´

2h
3{2
K W n`1

K

¯

BKB
˚
´

2hK
3α

∆t2ζ2K .

(114)
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Doing the same for the variable P :

1

αa2
hK

`

P n`1
K ´ P n

K

˘

P n`1
K “ Pn`1K ´ PnK `

1

2αa2
hK

`

P n`1
K ´ P n

K

˘2
,

which leads to:

Pn`1K ´ PnK “
hK
αa2

P n`1
K

ˆ

´∆ta2
„

2
W n`1
K

hnK
` αBKU

˚

˙

´
hK

2αa2
`

P n`1
K ´ P n

K

˘2

“ ´
2∆t

α
pWP qn`1K ´∆tphP qn`1K BKU

˚
´∆t2

a2hK
2α

ξ2K .

(115)

Having in mind notations (78), we obtain, summing (112), (113), (114) and (115):

En`1
K ´ En

K “ HK ` GK , (116)

where

HK “ ´∆t
`

Un
KB

c
KR

n`1
`Rn`1

K BKU
˚
˘

`
1

2
hK

`

Un`1
K ´ Un

K

˘2
´∆t2

a2hK
2α

ξ2K , (117)

GK “ ´∆tβ
`

Bn
KB

c
KS

n`1
` Sn`1K BKB

˚
˘

`
1

2
βhK

`

Bn`1
K ´Bn

K

˘2
´∆t2

2hK
3α

ζ2K . (118)

We focus now on the first part of the term (117). Going back to the definition (72) and
the duality relation (109), we write:

Un
KB

c
KR

n`1
`Rn`1

K BKU
˚
“ Un

KB
c
KR

n`1
`Rn`1

K B
c
KU ´R

n`1
K BKΓ

“ ĂBcK

`

Un, Rn`1
˘

´Rn`1
K BKΓ .

Following the same lines for the first term of (118), we also have:

Bn
KB

c
KS

n`1
` Sn`1K BKB

˚
“ ĂBcK

`

Bn, Sn`1
˘

´ Sn`1K BKΘ ,

which allows to recover (79) with (80) and (81).

4.2.3 Proof of Proposition 2

This Proposition focuses on the first residual (80) appearing in (79). The following Lemma
provides an estimate on the first contribution of this term:

Lemma 1. Let λ “
∆t

∆x
. Assume that the stabilization term in (72) is of the form:

ΓK`1{2 “ λcgµK`1{2rR
n
sK`1{2 , (119)

where cg ą 0 and pµK`1{2q is a sequence of scalar interface values. Then, for any constant
% ą 0, we have the following estimation:

∆tRn`1
K BKΓ ď ∆t

`

A1
K `A2

K

˘

`
1

2
∆t2hK

ˆ

a4λ2

%2

˙

ξ2K

` λ2c2g%
2SK

`

µ2, h̄, rRn`1
s
2
˘

´ λ2cgSK
`

µ, rRn`1
s
2
˘

.

(120)

The terms A1
K and A2

K are low-order antisymmetric contributions, respectively given by:

A1
K “ λcgBK

`

µ, R̄n`1, rRn
s
˘

´ λcgBK
`

µ, R̄n, rRn`1
s
˘

, (121)

A2
K “ ´λc

2
g%

2
BK

`

µ2, rhs, rRn`1
s
2
˘

` λcgBK
`

µ, R̄n`1, rRn`1
s
˘

. (122)
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Proof. By direct application of formula (110), we write:

∆tRn`1
K BKΓ “ λcg∆tR

n`1
K BK pµ, rR

n
sq

“ λcg∆tR
n
KBK

`

µ, rRn`1
s
˘

`∆tA1
K .

(123)

On the other hand:

λcg∆tR
n
KBK

`

µ, rRn`1
s
˘

“ ´λcg∆t
`

Rn`1
K ´Rn

K

˘

BK
`

µ, rRn`1
s
˘

` λcg∆tR
n`1
K BK

`

µ, rRn`1
s
˘

.
(124)

With definition (78) and using the discrete evolution of P (77), the first term of the right
hand side can be rewritten as:

´λcg∆t
`

Rn`1
K ´Rn

K

˘

BK
`

µ, rRn`1
s
˘

“ λcg∆t
2a2hKξKBK

`

µ, rRn`1
s
˘

, (125)

and subject to the following estimation, with the help of inequality (108) and the duality
formula (107):

ˇ

ˇλcg∆t
2a2hKξKBK

`

µ, rRn`1
s
˘
ˇ

ˇ “ hK∆t2
ˇ

ˇ

ˇ

ˇ

ˆ

λa2ξK
%

˙

´

cg%BK
`

µ, rRn`1
s
˘

¯

ˇ

ˇ

ˇ

ˇ

ď
1

2
∆t2hK

ˆ

λa2ξK
%

˙2

`
1

2
∆t2hK

´

cg%BK
`

µ, rRn`1
s
˘

¯2

ď
1

2
∆t2hK

ˆ

λ2a4

%2

˙

ξ2K ` λ
2c2g%

2hKSK
`

µ2, rRn`1
s
2
˘

ď
1

2
∆t2hK

ˆ

λ2a4

%2

˙

ξ2K ` λ
2c2g%

2SK
`

µ2, h̄, rRn`1
s
2
˘

´∆xλ2c2g%
2
BK

`

µ2, rhs, rRn`1
s
2
˘

.

(126)

With (111), the second term of the right hand side in (124) can be written as:

λcg∆tR
n`1
K BK

`

µ, rRn`1
s
˘

“ λcg∆tBK
`

µ, R̄n`1, rRn`1
s
˘

´ λ2cgSK
`

µ, rRn`1
s
2
˘

. (127)

Summing estimations (126) and (127) and going back to (123), we get:

∆tRn`1
K BKΓ ď ∆t

´

A1
K ´ λc

2
g%

2
BK

`

µ2, rhs, rRn`1
s
2
˘

` λcgBK
`

µ, R̄n`1, rRn`1
s
˘

¯

`
1

2
∆t2hK

ˆ

λ2a4

%2

˙

ξ2K ` λ
2c2g%

2SK
`

µ2, h̄, rRn`1
s
2
˘

´ λ2cgSK
`

µ, rRn`1
s
2
˘

,

which is nothing but (120).

Based on this first result, we can now provide the following estimation:

Lemma 2. Under the hypothesis of Lemma 1, the term HK defined in (80) satisfies the
following bound:

HK ď ∆tAK ` λ2RK `
1

2α
∆t2ξ2Ka

2hK

ˆ

αa2λ2

%2
´ 1

˙

, (128)
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where

RK “ c2g%
2SK

`

µ2, h̄, rRn`1
s
2
˘

´ cgSK
`

µ, rRn`1
s
2
˘

` SK
`

Ě1{h, rRn`1
s
2
˘

. (129)

The contribution AK stands for a residual flux term, defined as:

AK “ A1
K `A2

K `A3
K (130)

with A1
K, A2

K respectively given by (121), (122) and

A3
K “ ´λBK

`

r1{hs, rRn`1
s
2
˘

. (131)

Proof. We recall that:

HK “ ∆tRn`1
K BKΓ`

1

2
hK

`

Un`1
K ´ Un

K

˘2
´∆t2

a2

2α
hKξ

2
K . (132)

We have, with (108) :

1

2
hK

`

Un`1
K ´ Un

K

˘2
“

1

2
hK

ˆ

∆t

hK
B
c
KR

n`1

˙2

ď
λ2

hK
SK

`

rRn`1
s
2
˘

,

and equality (107) allows to write:

1

2
hK

`

Un`1
K ´ Un

K

˘2
ď λ2SK

`

Ě1{h, rRn`1
s
2
˘

´ λ2∆xBK
`

r1{hs, rRn`1
s
2
˘

.

Using this inequality, together with the estimation (120) in (132):

HK ď ∆t
`

A1
K `A2

K ´ λBK
`

r1{hs, rRn`1
s
2
˘˘

`
1

2
∆t2hK

ˆ

a4λ2

%2

˙

ξ2K ´∆t2
a2

2α
hKξ

2
K

` λ2c2g%
2SK

`

µ2, h̄, rRn`1
s
2
˘

´ λ2cgSK
`

µ, rRn`1
s
2
˘

` λ2SK
`

Ě1{h, rRn`1
s
2
˘

,

which gives the announced result.

If we now assume that the stabilization term ΓK`1{2 implied in (72) is given by (83)
as in Proposition 2, we are in the frame of Lemma 1 with µK`1{2 “

´

1{h
¯

K`1{2
and the

estimate (128) stands. Setting % “ aλ
?
α, the last term of the right hand side in (128) is

zero and we are consequently left with the negativity of the residual (129). Considering
the definition of SK (106), the term RK may be written as the sum of two interface
contributions: RK “ rK`1{2 ` rK´1{2 with

rK`1{2 “ rR
n`1
s
2
´

1{h
¯

K`1{2

„

c2g%
2
´

1{h
¯

K`1{2
hK`1{2 ´ cg ` 1



,

wich leads to identify conditions ensuring rK`1{2 ď 0 at the level of each cell interface.
We thus have to ensure the negativity of the polynomial ppcgq “ c2g%

2τK`1{2 ´ cg ` 1 (we

recall that τK`1{2 “
´

1{h
¯

K`1{2
hK`1{2) which can be rewritten, according to % “ aλ

?
α

and noting ϑ “ 4a2λ2ατK`1{2:

ppcgq “ c2gϑ{4´ cg ` 1 . (133)

The conditions for p to be negative immediately lead to (84) and (85). Therefore Lemma
2 gives HK ď ∆tAK , which concludes the proof of Proposition 2.
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4.2.4 Proof of Proposition 3

The structure of the evolution equations of U and B (71) are similar, as well as the nature
of the residuals (117) and (118). As a result the proof of Proposition 3 follows the same
lines as previously. We just mention here the two Lemmas without detailing their proofs
and discuss the conditions leading to the main result stated in Proposition 3.

Lemma 3. Assume that the stabilization term in (73) is of the form:

ΘK`1{2 “ ctλµK`1{2rS
n
sK`1{2 , (134)

where cg ą 0 and pµK`1{2q is a sequence of scalar interface value. Then, for any sequence
of strictly positive scalars p%KqKPZ, we have the following estimation:

∆tSn`1K BKΘ ď ∆t
`

B1
K ` B2

K

˘

` 2∆t2h2K

ˆ

λ2

%2K

˙

ζ2K

` λ2c2tSK
`

µ2,Ě%2h, rSn`1s2
˘

´ λ2ctSK
`

µ, rSn`1s2
˘

.

(135)

The terms B1
K and B2

K are low order antisymmetric contributions, respectively given by:

B1
K “ λctBK

`

µ, S̄n`1, rSns
˘

´ λctBK
`

µ, S̄n, rSn`1s
˘

, (136)

B2
K “ ´λc

2
tBK

`

µ2, r%2hs, rSn`1s2
˘

` λctBK
`

µ, S̄n`1, rSn`1s
˘

. (137)

Lemma 4. Under the hypothesis of Lemma 3, the term GK defined in (81) satisfies the
following bound:

Gn
K ď ∆tβBK ` λ2βPK `∆t2

2hK
3α

ζ2K

ˆ

λ2
ghKpα ´ 1q

α%2K
´ 1

˙

, (138)

where

PK “ c2tSK
`

µ2,Ě%2h, rSn`1s2
˘

´ ctSK
`

µ, rSn`1s2
˘

` SK
`

Ě1{h, rSn`1s2
˘

. (139)

The residual flux term BK is defined as:

BK “ B1
K ` B2

K ` B3
K (140)

with B1
K, B2

K respectively given by (136), (137) and

B3
K “ ´λBK

`

r1{hs, rSn`1s2
˘

. (141)

Again, assuming (87), we are in the frame of Lemma 3 with µK`1{2 “
´

1{h
¯

K`1{2
,

so that the estimate (138) is valid. Note that if β “ 0 (that is α “ 1) the term is
GK is negative and does not need to be controlled. Otherwise, setting %K “ λσK “

λ

d

ghK

ˆ

α ´ 1

α

˙

ą 0, the last term of the right hand side in (138) is zero and we have to

ensure negativity of the residual (139). Considering the definition of SK (106), the term
PK can be written as: PK “ pK`1{2 ` pK´1{2 with

pK`1{2 “ rS
n`1
s
2
´

1{h
¯

K`1{2

„

c2t

´

1{h
¯

K`1{2

´

%2h
¯

K`1{2
´ ct ` 1



.

Remarking that
´

%2h
¯

K`1{2
ď hK`1{2 .maxp%2K , %

2
K`1q “ λ2hK`1{2σ

2
K`1{2 where σK`1{2 “

maxpσK , σK`1q, it is sufficient to ensure the negativity of the polynomial ppctq “ c2tλ
2σ2

K`1{2τK`1{2´

ct ` 1, which gives sufficient conditions (88) and (89).
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