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Abstract

According to the parallel architecture, syntactic and semantic information processing are two sep-
arate streams that interact selectively during language comprehension. While considerable effort is
put into psycho- and neurolinguistics to understand the interchange of processing mechanisms in
human comprehension, the nature of this interaction in recent neural Large Language Models remains
elusive. In this article, we revisit influential linguistic and behavioral experiments and evaluate the
ability of a large language model, GPT-3, to perform these tasks. The model can solve semantic tasks
autonomously from syntactic realization in a manner that resembles human behavior. However, the
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outcomes present a complex and variegated picture, leaving open the question of how Language Mod-
els could learn structured conceptual representations.

Keywords: Neural large language models; Statistical learning; Parallel architecture; Syntax-semantics
interface; GPT-3 prompting; Enriched composition; Semantic composition

1. Introduction

The last few years have seen an incredible advance in Natural Language Processing and
artificial intelligence thanks to the rise of neural Large Language Models (LLMs), also
referred to as foundation models (Bommasani et al., 2021). These models consist of deep
neural networks (LeCun, Bengio, & Hinton, 2015) trained on unannotated textual data with
the general objective of predicting upcoming linguistic material. Their complex architecture
based on Transformers with attention mechanisms (Vaswani et al., 2017) and the possibility
of being trained on massive datasets have allowed these models to achieve unprecedented
performances in generating human-like texts. Moreover, LLMs like GPT-3 reveal “emer-
gent abilities” to carry out various linguistic tasks (e.g., translating, question-answering, etc.)
without any task-specific training (Brown et al., 2020; Wei et al., 2022). Therefore, the “core
knowledge” of foundation models is not only a “knowing that” of structures of languages
but also a “knowing how” to use language itself (Lenci, 2023, p. 5). Their emergent abilities
have also opened the way to a new unsupervised method for solving tasks called in-context
learning (Brown et al., 2020), which consists of feeding the model with a natural language
instruction, namely, a prompt, that contains a description of the task.

The outstanding success of LLMs has also been hailed in cognitive science as empiri-
cal proof against previous theoretical models of the architecture of the language faculty.
Piantadosi (2023) explicitly regards LLMs as a refutation of the Chomskyan view of lan-
guage. In fact, LLMs lack some of the major properties that Chomsky assumes to be essential
for natural language learning: (i) they do not use symbolic representations but continuous
vectors (also known as contextual embeddings); (ii) they do not include principles based on
hierarchical structures as “innate” learning biases; (iii) they do not assume any separation
between syntax and semantics. These points can be already found in the connectionist debate
in the 1990s (Elman et al., 1996); however, they are now strengthened by the existence of com-
putational models that adhere to such architectural principles and that for the first time ever
show—at least prima facie—an almost human-analogue generative capacity. Goldstein et al.
(2022) claim that autoregressive language models like GPT-3 share with the brain important
computational principles, as the brain is also constantly involved in next-word prediction as it
processes natural language. Since they acquire linguistic knowledge through statistical learn-
ing from large text samples, Goldstein et al. (2022) argue for a strong connection between
LLMs and the usage-based, constructionist paradigm (Bybee, 2010; Goldberg, 2019), which
states that the complexity of language emerges not as a result of a language-specific device,
but through the interaction of cognition and use.
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In this paper, we investigate whether and to what extent the linguistic abilities of LLMs pro-
vide support to parallel architectures of human language processing (Baggio, 2018; Baggio,
2021; Jackendoft, 2007), according to which syntactic and semantic information process-
ing can interact selectively during language comprehension. We focus on two main assump-
tions of parallel models: (i) semantics drives meaning composition in synergy with, but also
autonomously from, syntactic structures (autonomous semantics; see Baggio, 2018, Jack-
endoff, 1997); (ii) there is no principled distinction between semantics and pragmatics, and
mechanisms of context-sensitive “pragmatic enrichment” are inherent parts of the standard
process to construct meaning, as revealed by phenomena like coercion and metonymy. These
assumptions make meaning construction in parallel models depart radically from “classical”
Fregean compositionality (Culicover & Jackendoff, 2006).

The relationship between parallel models and LLMs is not straightforward, as they present
some essential commonalities but also crucial differences. While parallel models assume a
dual-stream architecture in which syntax and semantics act as autonomous components that
produce independent yet linked representations, LLMs consist of a single-stream architec-
ture that simultaneously learns and processes syntactic, semantic, and pragmatic information
encoded together in the internal embeddings. This configuration departs from the principle
of autonomous semantics, which argues for the combinatorial independence of both syntax
and semantics, rather than the absence of any distinction between the two. On the other hand,
like in the parallel architecture, any principled separation between semantic and pragmatic
information is lacking in LLMs by design.

The complexity of LLMs (especially of the largest ones) and their “black box” nature
makes any purely architectural analysis speculative at most, as a direct inspection of infor-
mation flow is often impossible or extremely hard to determine. A more effective method is
to infer how models represent different kinds of linguistic information from their abilities in
addressing tasks specifically designed to single out that information. An increasing amount
of research has been deployed to dissect the linguistic abilities of LLMs (for a synthesis of
recent results, see Chang & Bergen, 2024), going beyond the merely “observational” analysis
of the human-like nature of the texts they generate. Several works have shown that LLMs
possess a nontrivial extent of syntactic knowledge (Y. Goldberg, 2019; Hewitt & Manning,
2019; Lin, Yi, & Frank, 2019; Linzen & Baroni, 2021; Liu et al., 2019; Tenney et al., 2019),
though it is still an open debate about how much use they make of it in language processing
(Glavas & Vulié, 2021; Prange et al., 2022; Warstadt et al., 2020). Besides, these models also
capture a broad range of lexical and semantic phenomena, such as argument structure con-
structions (Li et al., 2022), idioms and multiword expressions (Dankers, Lucas, & Titov, 2022;
Nedumpozhimana & Kelleher, 2021; Rambelli, Chersoni, Senaldi, Blache, & Lenci, 2023),
compounding (Buijtelaar & Pezzelle, 2023; Mileti¢ & im Walde, 2023; Ormerod et al., 2024),
and lexical semantics (Bommasani, Davis, & Cardie, 2020; Vuli¢, Ponti, Litschko, Glavas, &
Korhonen, 2020). Pedinotti et al. (2021) and Kauf et al. (2023) indicate that foundation mod-
els have knowledge about events and their plausible participants, while Hu, Floyd, Jouravlev,
Fedorenko, and Gibson (2023) systematically investigate the pragmatic abilities of foundation
models and find that they solve some of them with an accuracy close to human performance.
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Table 1

Overview of the experiments introduced in our study

Experiment Targeted ability Task Dataset

1 (Section 25 SM B.2) Logical metonymy Retrieve the omitted verb. Rambelli, Chersoni, Lenci,
interpretation Blache, & Huang (2020)

2 (Section 23 SM B.3)  Elliptical sentence Retrieve the omitted Testa et al. (2023)
resolution semantic material from

the antecedent clause.

3 (Section 3; SM B.4) Semantic attraction Identify whether the model Same subset of Kim &
resolution (syntactic and prefers a meaning- or a Osterhout (2005) and
semantic violation) syntax-driven prediction Michalon & Baggio

of the Agent in sentences (2019)
with semantic attraction.

4 (Section 3; SM B.5) Scrambled sentences Interpret a sentence whose ~ Mollica et al. (2020)
interpretation (syntactic syntactic structure has
violation) been perturbed.

Nevertheless, other studies point out the challenges faced by LLMs in dealing with pragmatic
phenomena (Liu et al., 2023; Ruis et al., 2022), often necessitating a grounding in real conver-
sational or communicative contexts (Andreas, 2022; Pezzelle, 2023; Schlangen, 2022), and
their general being prone to as errors deriving from overgeneralizations or undergeneraliza-
tions of learned patterns in the training data (Chang & Bergen, 2024).

In this work, we investigate the connection between LLMs and the parallel architecture with
four case studies that exemplify syntax-semantics mismatches: logical metonymy, ellipsis,
semantic attraction, and semantic composition in scrambled sentences (Table 1 and Table
2 provide an overview of the implemented tasks). The common feature of these phenomena
is the lack of a perfect alignment between syntax and semantics, which motivates the fact that
they have been taken to support parallel models of language. We selected GPT-3 davinci-002
(Brown et al., 2020), one of the largest LLMs (this model was selected among other members
of the GPT family because of its lack of fine-tuning with reinforcement learning from human
feedback), to replicate linguistic and psycholinguistic experiments designed to investigate the
autonomy between syntactic and semantic processing streams, as well as its interplay with
pragmatic information, progressively increasing the task difficulty. We prompted the model
with linguistic questions that resemble those submitted to human participants and evaluated its
answers. Since the model was trained only on sentence completion, we formulated the input
prompt in two ways: (i) a zero-shot setting and (ii) a few-shot setting, where some examples
(two Q-A pairs) of the experimental task are provided (see Fig. 1). The final aim is to gain
insights into the interplay between syntax and semantics in LLMs. Due to space limitations,
we only discuss the experiments’ main findings; details are reported in the Supplementary
Material (SM).
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Table 2

Example prompts for all Experiments

Experiment Subtask Prompt (4 illustrative answer)

1 - Q: The writer finished the novel. What did the writer finish doing?
A: The writer finished writing the novel.

2 - Q: Kate played the piano, and Carl the guitar. What did Carl do?
A: Carl played the guitar.

3 Agent retrieval Q: The murder had been witnessing by the three bystanders. What

is the agent of the sentence?
A: The murder. (or A: The three bystanders.)
Grammatical subject retrieval ~ Q: The murder had been witnessing by the three bystanders. What
is the grammatical subject of the sentence?
A: The murder.
4 Agent identification Q: The detective looked from one man to another and flexed his
moustaches. What is the agent of the sentence?
A: The detective.
Event resolution Q: The detective looked from one man to another and flexed his
moustaches. What did the detective do?
A: The detective looked from one man to another and flexed
his moustaches.

Note. Examples of good answers are marked in boldface.

Kam a highly intelligent question answering bot.h /I

you ask me a question that s rooted intruth, L wil | | 0.5 (T EIE 8 MR SRRSO e o the
give you the answer. If you ask me a question that Y a N . § give y
h . . answer. If you ask me a question that is nonsense, trickery, or has
is nonsense, trickery, or has no clear answer, | will . o .

o " no clear answer, | will respond with "Unknown".
respond with "Unknown".

Q: The actor began the monologue. What did the actor begin doing?

. ; : 5
Q: What is the last word of this sentence? A: The actor began playing the monologue.

A: Sentence.

Q: What is the first word of this sentence? Q: The boy finished the cigarette. What did the boy finish doing?

wWhat j QHe finished smoking the cigarette. /

(a) (b)

Fig. 1. Examples of zero-shot (left) and few-shot (right) prompts. The text of the preamble is inspired by Ope-
nAI's QA example (to explicitly tell the model how it should behave or respond), followed by two examples of a
question-answer alternation, which are unrelated (a) or related (b) to the target task. This solution helps the model
correctly answer the question starting with “A:”, as GPT-3 davinci-002 was not fine-tuned for this task.

2. How do neural LLMs recover covert lexical material?

The first two phenomena under investigation—logical metonymy (cf. SM Section B.2) and
ellipsis (cf. SM Section B.3)—are constructions in which some semantic elements are not
overtly realized. Logical metonymy (Pustejovsky, 1995) is defined as a type clash between an
event-selecting metonymic verb (begin) and an entity-denoting direct object (symphony) that
triggers the recovery of a covert event (playing):

(1) The pianist begins the symphony.
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Table 3
Experiments’ results
Results
Experiment Subtask Metric zeroShot fewShot
1 Logical metonymy interpretation P@1 0.37 0.69
P@3 0.43 0.85
2 Elliptical sentence resolution Event retrieval 0.57 0.80
Verb match 0.71 0.88
3 Agent retrieval (AV sentences) Agent = First NP 0.21 0.18
Agent = Second NP 0.70 0.82
Grammatical subject retrieval (AV sentences) Accuracy 0.79 1
4 Agent identification Accuracy 0.74 0.74
Event reconstruction Accuracy 0.42 0.70

Note. Exp. 1: Accuracy as the number of times GPT-3’s outputs correspond to the 1st (P@/) or is among
the 3 (P@3) most produced verbs. Exp. 2: Accuracy as Event Retrieval (how many times the model correctly
retrieved the omitted verbal phrase) or Match Verb (how many times the model correctly retrieved the verb). Exp
3: How many times the Agent is the first or second noun phrase, and the accuracy of correctly identifying the
grammatical subject. Exp. 4: Accuracy of correctly answering with the same agent (Agent identification) or event
(Event reconstruction) as in the original nonswapped sentence.

In (1), what the pianist begins doing is not lexically explicit, but most speakers would
interpret it as the pianist begins playing the symphony. To master logical metonymy,
LLMs must have information about the typical events associated with nouns and integrate
this prior knowledge to generate a context-sensitive representation of sentence meaning
(Rambelli et al., 2020).

Overall, we observe that LLMs are mostly able to recover the implicit content. The high
accuracies (see Table 3) in the logical metonymy interpretation task reveal that GPT-3 is quite
good at recovering the missing pieces of meaning when an example of the task is given (few-
shot setting). Nevertheless, the answers it produces are strongly driven by previous expec-
tations, that is, the most likely item previously seen in that context. Error analysis revealed
that frequency plays a crucial role in the model’s interpretation: If the direct object strongly
co-occurs within a particular event, the corresponding verb is recalled regardless of the con-
text. This tendency is relatively controlled in the logical metonymy task, where the model
sometimes fails when expectations are based only on the direct object without considering
the subject (e.g., The publisher began writing the novel instead of publishing the novel; more
examples in SM B.2). The results show that the GPT-3 has a good amount of semantic knowl-
edge about events and their typical participants, allowing it to perform well in recovering the
covert event, at least in the few-shot setting. However, sometimes, it does not consider the
overall context (the subject, in this case). In general, high-frequency verb-object associations
override contextual information, which plays an essential role in human interpretation and
pertains to pragmatic competence.
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Ellipsis is also a phenomenon of interpretation based on covert material, since it consists of
the omission of a word or phrase that is expected to occupy a place in the syntactic structure
of a sentence (McShane, 2005):

(2) The researcher completed the project, but the student didn’t.

According to Culicover and Jackendoff (2005), the interpretation of an elliptical construc-
tion is derived from the semantic representation (Conceptual Structure in their model) of its
antecedent or its context.

For elliptical sentence resolution, LLMs must fill the gap by relying on semantic material
“copied” by the previous clause. Even if GPT-3 is trained to look at the context to produce
a probability distribution, the model seems to make predictions in a top-down way, prefer-
ring highly likely events rather than truly interpreting the elliptic gap. Again, the model only
reaches a reasonably high accuracy in the few-shot setting (cf. Table 3). Admittedly, this ten-
dency could be an artifact of the parameter choice. Indeed, we set a low temperature to make
the model more deterministic and force it to produce the most likely output. However, this
constraint should not impact the ability of the model to look at the previous information.
Moreover, if that were the case, it should consistently fail, while accuracy varies depending
on the thematic fit of the omitted verb with its arguments. This evidence seems to confirm
Warstadt et al. (2020)’s observation: while LLMs show high performance on tasks related
to syntax (and, more generally, the sentence structure and some metalinguistic components),
they often prefer to rely on highly localized mutual expectations. Even in the less challenging
few-shot setting, there are still cases in which GPT-3 fails by copying the sequence in the
antecedent clause without adapting it to the content of the elliptic gap. In these examples,
it retrieves the direct object from the antecedent relying on frequent lexical co-occurrences
(e.g., Q: The student will hear the lecture, and the nanny will the baby. What will the nanny
do? A: The nanny will hear the lecture).

An intriguing aspect concerns the elliptic sentences containing a selectional preference
violation:

(3) * The photographer used the camera, and the piano did too.

A key aspect of elliptic constructions is that the reconstructed material must preserve the
semantic constraints of its overt “copy”: We can judge (3) to be anomalous precisely because
we are able to interpret the missing verb phrase as being identical to the one in the antecedent.
However, the violation of selectional preferences always determines a significant performance
drop in GPT-3. This outcome confirms that the model has not really managed to solve the
elliptical construction. Like in other cases, its behavior seems to be guided more by lexical
cues (e.g., highly frequent events) rather than by genuine mastery of linguistic structure.

Overall, logical metonymy and ellipsis interpretation tasks confirm the influence of the
prototypicality of the event participants in interpreting such linguistic structures and a lack of
pragmatic ability to adapt common event knowledge given a broader context.
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3. How do neural LLMs reconstruct semantic structures in syntactically anomalous
sentences?

As the parallel architecture proposes, syntactic and semantic information processing can
interact selectively during language comprehension. This hypothesis means that, in specific
conditions, the processing system can rely on the semantic relationships between words
to produce an interpretation, even if that contradicts syntactic cues. We investigated this
assumption with two types of syntactic anomaly: sentences with semantic attraction (cf. SM
Section B.4) and sentences with scrambled word order (cf. SM Section B.5).

Semantic attraction is a sentence-processing phenomenon in which a given argument vio-
lates the selectional requirements of a verb, but comprehenders do not perceive this violation
due to its attraction to another noun in the same sentence, which is syntactically unrelated
but semantically sound (Cong, Chersoni, Hsu, & Lenci, 2023). A classic example from Kim
and Osterhout (2005) is the following, in which the verb devouring is perceived as either
syntactically or semantically anomalous:

(4) The hearty meal was devouring the kids.

When asked to identify the Agent of the sentence, we observe that GPT-3 is driven mainly
by the underlying semantic expectations rather than the syntactic constraints in the two set-
tings (the interpretation of the Agent as the by-phrase is 70% in the zero-shot and 82% in
the few-shot setting). Specifically, even if the grammatical subject is the Agent of the sen-
tence from a structural point of view, the model seems to suppress the structural information
and it chooses the prototypical Agent for the target verb, even if it is in the wrong syntac-
tic position. This tendency is indirect evidence that the model relies on its previous knowl-
edge of events (Kauf et al., 2023) and, in cases of ambiguities, the answer is grounded on
what it expects the most. Nevertheless, this preference for prior collocation knowledge could
sometimes produce nonsensical or out-of-context utterances. However, the behavioral data
regarding semantic attraction consist of measurements of online processing (recording brain
activity), while prompting strategies are more analogous to offline judgments. A more robust
comparison should investigate the correlation between human measurements and the model
surprisal scores (Hale, 2001; Levy, 2008), considered the best predictor of N400 (Michaelov
& Bergen, 2022).

A parallel question of interest is whether semantic composition can take place even in sen-
tences with scrambled word order, whose syntactic structure is not licensed by the language’s
grammar. In this experiment, we tested GPT-3 on the stimuli used by Mollica et al. (2020)
in their neurolinguistic investigation about how composition is robust to syntactic violations.
They gradually degraded the syntactic structure of a sentence by increasing the number of
local word swaps while preserving local dependency relationships (so that combinable words
remained close to each other). We adjusted the original experimental paradigm to display what
GPT-3 can reconstruct of the meaning of a scrambled sentence. We presented two prompts to
the model, corresponding to an Agent identification task (like in the semantic attraction exper-
iment) and an Event reconstruction task. To correctly associate the interpretation of a sentence
whose syntactic structure has been perturbed, LLMs should be able to (i) detect semantic and
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Fig. 2. Accuracy of the Event reconstruction subtask for all conditions, including the original (Intact) sentence as
a baseline.

syntactic local dependencies among nearby words and (ii) reconstruct the global sentence
meaning from such dependencies.

In language processing, the brain tolerates a certain degree of structural anomaly, as long
as local combinatoriality is preserved at the lexical level (Mollica et al., 2020). The analysis
reveals that GPT-3 can reconstruct some essential aspects of the evoked event; nonetheless,
it has problems in reconstructing the whole scenario after only two swaps in the zero-shot
setting (performing below 0.5 in all conditions). However, the model is more comparable
to human behavioral patterns when provided with some examples. GPT-3 exhibits a signifi-
cant but smooth drop in accuracy with the increase of word-order swaps, which is above the
chance level except for the ScrLowPMI condition (Fig. 2). This trend is not entirely compa-
rable to neural responses (cf. fig. 2 in Mollica et al., 2020), but better aligns with the recon-
struction abilities of humans (cf. fig. 4b in Mollica et al., 2020), who also faced increasing
difficulty in reconstructing the original sentences as the number of swaps increases. Overall,
these observations suggest that the model is highly dependent on the surface structure in its
default version: The more the syntactic order is violated, the lower the model performance,
which starts to output random texts unrelated to the input. However, like humans, the syntac-
tic irregularities are less problematic when limited and localized for a model prompted with
few examples.

It is worth bearing in mind that, as already stated in Section 1, LLMs integrate syntax and
semantics in a continuous and indistinct way (Piantadosi, 2023). The internal representations
of words in the hidden layers retain both aspects of semantic and syntactic word-order con-
straints, and each prediction is the result of the interaction of several statistical distributions
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in complex ways. Consequently, distinguishing the effects of one module over the other is
nontrivial.

However, this struggle is the same experienced in psycho- and neurolinguistics, as it is
hard to fully dissociate the two streams of processing in the human brain. Developing unique
paradigms that could be applied to both humans and machines could provide novel evidence
about how the predictive faculty is prominent in cognitive and computational processing.

To summarize, the behavior of GPT-3 reveals that neural LLMs capture some metalinguis-
tic categories, such as the abstract notions of Agent and grammatical subject, and they are
relatively robust to limited and localized word-order violations. However, the ability to suc-
cessfully interpret these anomalous sentences does not entirely match human performance.

4. Can neural LLMs be regarded as computational models of the parallel architecture?

This question does not have a straightforward answer and the experiments we have
presented compose a complex and variegated picture. The parallel architecture rests on two
fundamental principles: (i) semantics is a combinatorial stream independent from syntax
(autonomous semantics), and (ii) pragmatic, contextual information is an inherent component
of phrasal meaning construction (enriched composition). The knowledge that LLMs like
GPT-3 use to process natural language consists of an intertwined bundle of syntactic, seman-
tic, and pragmatic information derived from textual data through distributional learning
and encoded into their internal embeddings (Lenci & Sahlgren, 2023). Therefore, while
meaning construction in LLMs can be regarded as a case of enriched composition, their
architecture departs from the principle of autonomous semantics. Besides, the latter is not
stricto sensu autonomous from syntax, as no distinction exists between the two information
flows. In this paper, we analyzed the behavior of GPT-3 in several test cases of misalignment
between syntax and semantics, and the experimental results show that, despite the lack of
such distinction at the architectural level, the model can solve semantic tasks autonomously
from syntactic realization in a manner that resembles human behavior, especially when
provided with few examples of the task (few-shot setting). So, even if current LLMs cannot
be explicitly regarded as models of the parallel architecture, their behavior shows some
important consonance with key predictions of the latter, particularly with respect to the
relationship between syntax and semantics processing. However, there are also crucial limits,
as shown for instance in the reconstruction of elliptic gaps, and differences, as in the case of
sentences with scrambled word order.

One possible reason of such discrepancies might be the lack of a full-fledged autonomous
semantics in LLMs. Their representations encode distributional information derived from
texts and related to several linguistic dimensions (morphology, syntax, semantics, world
knowledge, etc.). Indeed, the range of phenomena encoded in language that can be recovered
from distributional statistics is far greater than we could have ever imagined in the past.
These linguistic dimensions are, however, bundled together in vectors that look like Hegels’s
night, in which “all cows are black” (Hegel, 1979): A lot of linguistic information is there,

88UBD| 7 SUOWILOD 9A1a.D) 3 |gedl|dde ay) Aq pausenob afe sapilie YO ‘8sh JO S3|n Joj Areiq i auluQ 481 UO (SUO T IPUOD-PUe-SWLIBYWOD A8 | 1M Akeid 1|BU 1 |UO//:SdNY) SUOIIPUOD pUe SWB | Y1 89S * [7202/40/8T] Uo Afeiq1 auluo 8|1 ‘@aueld auelyoo) Aq €€/ 2T 'sdoyTTTT 0T/I0p/wod 8| Im Akeiq1puluo//sdny wouy papeojumoq ‘0 ‘G9/895.T



G. Rambelli et al. / Topics in Cognitive Science 00 (2024) 11

but LLMs do not manipulate structured world representations (Lenci, 2023; McCoy, Yao,
Friedman, Hardy, & Griffiths, 2023). LLMs mainly identify highly sophisticated associative
links between linguistic expressions but do not yet have anything close to the conceptual
structures that truly support semantic representations. Mahowald et al. (2023) claim that
LLMs have sophisticated formal linguistic competence, that is, knowledge of linguistic rules
and patterns, while they fall short of functional competence, as the ability to understand
and use language in the world, which is in turn strongly related to the semantic stream in
the parallel architecture. Functional competence requires complex “theories” of the world
and mind and mechanisms that allow their use to drive linguistic behavior. This type of
information is still qualitatively different from the one that foundation models seem to be
able to acquire from linguistic data and represent in their continuous embeddings, as shown
by their differences from human semantic processing (Chang & Bergen, 2024; Kauf et al.,
2024; Kauf et al., 2023; Pedinotti et al., 2021). For semantics to become a truly autonomous
stream governing meaning construction, conceptual structures supporting functional compe-
tence might be required. The extent to which such structured information can be learned and
represented in LLMs is still an open issue.
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