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Abstract
Diarrhea is the second leading cause of death in children under five years old. It is responsible for killing
thousands of children globally. It kills more young children than other childhood infectious diseases. Diarrhea
illness alone causes more than 1.5 million deaths annually, thereby making it a worse health threat than
infectious diseases in terms of death roll. Nonetheless, diarrhea is avoidable and manageable with appropriate
treatment. Therefore, this research studied the analysis of a mathematical model of diarrhea dynamics in the
presence of vaccination and treatment. To do this, a compartmental mathematical model of (S, V, E, I, R)
was considered to investigate the effect of vaccine and treatment in the dynamic spread of diarrhea in the
community. The mathematical analysis showed that the disease-free equilibrium point and endemic point of
the model exist. Also the basic reproduction Ro was determined through the Next Generation Matrix. The
model has a disease-free equilibrium point which is locally asymptotically stable and globally stable over time.
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The model also has stability of the endemic equilibrium which is stable when Ro > 1. Numerical simulations
are given to demonstrate the effects of vaccine and treatment on the spread of diarrhea and the result
presented showed that vaccine and treatment have a pronounced effect of reducing diarrhea infection.
Moreover, combined with sensitivity analysis, we observe that even though vaccination is adequate but not
sufficient in reducing the basic reproduction number, it effectively manages the disease.

Keywords: Stability; basic reproduction number; diarrhea model.

2010 Mathematics Subject Classification: 92D30, 92B05, 34D20.

1 Introduction

Diarrhea is a medical condition characterized by frequent loose and watery bowel movements, accompanied by
abdominal bloating and pressure. These conditions can be categorized as acute, persistent, or chronic. Typically,
acute diarrhea lasts for only one day or two and subsides without any treatment. Persistent diarrhea lasts for
over two weeks but less than four weeks, while chronic diarrhea lasts for at least four weeks. The symptoms
of chronic diarrhea may be ongoing or may come and go. Although immunity after infection is temporary,
subsequent infections are usually less severe than the initial ones. However, diarrhea can be prevented and
effectively treated with appropriate measures.

The use of differential equations to model biological, ecological, and medical systems has a long history dating
back to Verhulst, Malthus, Lotka, and Volterra, [1]. Differential equations are known to be useful for modeling
natural phenomena. Ordinary differential equations, for instance, are known to be very useful in modeling
population behavior, transmission of infectious diseases, interaction between two or more species, and other
biological processes, see ([2], [3], [4], [5] and [6]). Loopman et al.[7] analyzed the dynamic transmission model
of nor virus infection disease and immunity. It was found that the asymptomatic prevalence of norovirus can
change dramatically with small changes in the basic reproduction number Ro. Adewale et al.[8] worked on
mathematical analysis of diarrhea in the presence of a vaccine. They computed Ro in cases where Ro > 1, the
disease became endemic, meaning the disease remained in the population at a consistent rate, as one infected
individual transmits the disease to one susceptible. Akinola et al.[9] also studied similar model with vaccine and
found out that vaccination of susceptible individuals will reduce the spread of diarrhea disease compared to when
there is no vaccination. Ardkaew and Tongkumchum, [10] also worked on the epidemiological model of diarrhea
diseases and its application in prevention and control. The model was able to mimic the observed epidemiology
patterns of infantile diarrhea diseases associated mainly with enterotoxigenic Escherichia coli or with rotavirus.
The proposed mathematical model predicted a plausible pattern of the serological profile of an enteric infection.
Bonyah et al.[11] investigated a mathematical model of (SITR) to investigate the effect of saturation treatment
in the dynamic spread of diarrhea in the community. Cherry et al.[12] worked on the Assessment of bovine
viral diarrhea virus management utilizing a mathematical model depicting infection dynamics. The model
architecture was a development of the traditional model framework using susceptible, infectious, and removed
animals (the SIR model). The model forecasted a 1.2% rate of persistent infection (falling within the fields’s
estimated range) and showed limited sensitivity to changes in structures or parameter values. This model
drew important conclusions regarding the control of Bovine Viral Diarrhea (BVD), particularly concerning the
importance of persistently infected (PI) animals in maintaining BVD as an endemic entity in the herd. A model
of dysentery diarrhea was proposed to investigate the criteria for stability of the disease free-equilibrium which
makes the reproduction number the most sensitive to the control of the effective rate of transmission of dysentery
diarrhea.[13]. Other similar investigations on the endemic diseases using similar model to estimate the active
cases, deaths, recoveries in order to control the disease in the presence of vaccine and treatment were carried
out by ([14],[15],[16] and [17]).

Despite various measures taken, eradicating diarrhea has proven to be a challenging task due to persistent
infection despite the presence of a vaccine. A deterministic epidemic model (SVEIR) is considered in this study
to gain more insight into the effect of vaccines and treatment of infected individuals on the dynamic spread of
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diarrhea in the population. Results established indicate that the vaccine plays a vital role in the control of the
spread of diarrhea disease, the increase in susceptible individuals is dependent on the effectiveness of the vaccine
given against diarrhea and the rate of treatment decreases the number of infected individuals.

1.1 Model diagram

The model comprises of Susceptible (S), Vaccinated (V), Exposed (E), Infected (I), and Recovered (R), i.e
SVEIR. Fig. 1. illustrates the relationship between the human compartments within the population as well
depicts the movement of individuals within the compartment and in and out of population. At time t, the total
human population is,

N = S + V + E + I +R

Fig. 1. Diagram of the S, V, E, I, R Model

1.2 Model equation

Here we consider five classes of individuals which are: susceptible (S), vaccinated (V), exposed (E), infected (I),
and recovered (R) which is SVEIR. This is an appropriate model for a disease where there is a considerable
post-infected incubation period in which the exposed person is not yet infectious. From the model diagram in
Fig. 1, the susceptible population increases due to individual recruitment at rate π. This population decreases
due to vaccination, with a fraction ρ of vaccinated individuals leaving, and susceptible individuals acquiring
diarrhea infection through effective contact with infected people at rate β. The susceptible population increases
from recovered individuals returning and vaccinated individuals experiencing waning immunity at rates α and
ω respectively, and decreases at rate µ. The vaccinated class increases at rate ρπ and decreases due to waning
immunity and natural death at rates ω and µ respectively. The exposed class increases from new infections
among susceptible individuals at rate β and decreases due to natural death at rate µ and individuals becoming
infected at rate σ. Infected individuals increase from the exposed class at rate σ and decrease due to treatment,
natural death, and induced death at rates τ , µ, and δ respectively. The recovered class increases from treated
infected individuals at rate τ and decreases due to natural death and individuals returning to the susceptible
class at rates µ and α respectively.
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Thus, the SVEIR model consists of a set of five differential equations,

dS

dt
= (1− ρ)π − βSI + ωV − µS + αR

dV

dt
= ρπ − (µ+ ω)V

dE

dt
= βSI − (µ+ σ)E

dI

dt
= σE − (µ+ τ + δ)I

dR

dt
= τI − (µ+ α)R

(1.1)

1.3 Description of Parameters of the Model

Parameter Description

π Recruitment rate

ρ Vaccine rate

β Contact rate

ω Rate at which vaccine wanes off

µ Natural death

σ Rate at which the exposed individuals becomes infected

τ Rate at which infected individual are treated

δ Induced diseases death rate

α Rate at which recovered individuals move to susceptible class

2 Disease Free Equilibrium

The steady state, also known as disease-free equilibrium, occurs when there is no infection, meaning that both
the exposed and infected classes are at zero. That is, putting E = I = 0, the model equation Eq. (1.1) becomes;

dS

dt
= (1− ρ)π − βSI + ωV − µS + αR

dV

dt
= ρπ − µV − ωV

dR

dt
= τI − µR− αR

Solving for S, V , and R, gives the disease free equilibrium as

Eo = (So, Vo, Eo, Io, Ro) =

(
(µ+ ω)(1− ρ)π + ωρπ

µ(µ+ ω)
,
ρπ

µ+ ω
, 0, 0, 0

)
. (2.1)

3 Endemic Equilibrium

At endemic equilibrium, there is presence of infection in the host population i.e E, I 6= 0.
To obtain an endemic equilibrium, we set each equations in the model formulated to zero in Eq. (1.1) to get,
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(1− ρ)π − βSI + ωV − µS + αR = 0

ρπ − µV − ωV = 0

βSI − µE − σE = 0

σE − µI − τI − δI = 0

τI − µR− αR = 0

and Solving for S, V,E, I,R, we have

V ∗ =
ρπ

µ+ ω
,

S∗ =
(µ+ σ)(µ+ τ + δ)

σβ
,

I∗ =
ασ(µ+ α)

(µ+ τ + δ)(µ+ σ)(µ+ α)
− τασ

(
(1− ρ)π

α
+

ωρπ

α(µ+ ω)
− µ(µ+ τ + δ)(µ+ σ)

ασβ

)
,

E∗ =
1

(µ+ σ)− τσ

(
(1− ρ)π

α
+

ωρπ

α(µ+ ω)
− µ(µ+ τ + δ)(µ+ σ)

ασβ

)
,

R∗ =
1

(µ+ τ + δ)(µ+ σ)(µ+ α)

(
(1− ρ)π

α
+

ωρπ

α(µ+ ω)
− µ(µ+ τ + δ)(µ+ σ)

ασβ

)
.

4 Basic Reproduction Number Ro

The basic reproduction number Ro of this model is calculated by using the next generation matrix

dE

dt
= βSI − µE − σE = F1

dI

dt
= σE − µI − τI − δI = F2

F =

 ∂F1
∂I

∂F1
∂E

∂F2
∂I

∂F2
∂E

 =

(
βSo 0

0 0

)I
E

V =

 ∂F1
∂I

∂F1
∂E

∂F2
∂I

∂F2
∂E

 =

(
0 (µ+ σ)

(µ+ τ + δ) −σ

)I
E

which implies

V −1 = −
(

1

(µ+ σ)(µ+ τ + δ)

)(
−σ −(µ+ σ)

−(µ+ τ + δ) 0

)

FV −1 =

(
βS0 0

0 0

)( σ
(µ+σ)(µ+τ+δ)

1
µ+τ+δ

1
µ+σ

0

)

=

( βS0σ
(µ+σ)(µ+τ+δ)

βS0
µ+τ+δ

0 0

)
|FV −1 − Iλ| = 0

∣∣∣∣( βSoσ
(µ+σ)(µ+τ+δ)

βSo
µ+τ+δ

0 0

)
−
(
λ 0
0 λ

)∣∣∣∣ = 0
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∣∣∣∣( βS0σ
(µ+σ)(µ+τ+δ)

− λ βS0
µ+τ+δ

0 0− λ

)∣∣∣∣ = 0.

At disease free equilibrium Eo in Eq. (2.1), we have

λ1 = σβ

(
(1− ρ)π(µ+ ω) + ωρπ

(µ+ σ)(µ+ τ + δ)µ(µ+ ω)

)
λ2 = 0

So,

R0 = σβ

(
(1− ρ)π(µ+ ω) + ωρπ

µ(µ+ ω)[(µ(µ+ τ + δ + σ) + σ(τ + δ)]

)
.

5 Stability Analysis of The Disease Free Equilibrium

Theorem 1: The disease-free equilibrium E0 =
(

(µ+ω)(1−ρ)π+ωρπ
µ(µ+ω)

, ρπ
µ+ω

, 0, 0, 0
)

, exists for all non-negative values

of its parameters and it is locally asymptotically stable when Ro ≤ 1 and it is unstable when Ro > 1.
Proof: From equation Eq. (1.1), we have that

F1 = (1− ρ)π − βSI + ωV − µS + αR = 0

F2 = ρπ − µV − ωV = 0

F3 = βSI − µE − σE = 0

F4 = σE − µI − τI − δI = 0

F5 = τI − µR− αR = 0

The Jacobian matrix of system of equation Eq. (1.1) at disease free equilibrium Eo in Eq. (2.1) is given by

J =


−µ− βI0 ω 0 −βS0 α

0 −µ− ω 0 0 0
βI0 0 −µ− ω βS0 0
0 0 σ −(µ+ τ + δ) 0
0 0 0 τ −(µ+ α)



A =


−µ ω 0 −βS0 α
0 −µ− ω 0 0 0
0 0 −µ− ω βS0 0
0 0 σ −(µ+ τ + δ) 0
0 0 0 τ −(µ+ α)


Solving

|A− Iλ| = 0

that is,

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣

−(µ+ λ) ω 0 −β
(

(µ+ω)(1−ρ)π+ωρπ
µ(µ+ω)

)
α

0 −(µ+ ω + λ) 0 0 0

0 0 −(µ+ σ + λ) β
(

(µ+ω)(1−ρ)π+ωρπ
µ(µ+ω)

)
0

0 0 σ −(µ+ τ + δ + λ) 0
0 0 0 τ −(µ+ α+ λ)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Evaluating the determinant gives,

(µ+ λ)(µ+ ω + λ)(µ+ α+ λ)[−(µ+ σ + λ)(µ+ τ + δ + λ) + βSo] = 0
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Clearly,

λ1 = −µ
λ2 = −(µ+ ω)

λ3 = −(µ+ α)

Also,
[−(µ+ σ + λ)(µ+ τ + δ + λ) + βSo] = 0

=⇒ (µ+ σ + λ)(µ+ δ + τ + λ)− σβSo = 0

=⇒ λ2 + [(µ+ σ) + (µ+ δ + τ)]λ+ (µ+ σ)(µ+ δ + τ)− σβSo = 0

substituting So, we have

λ2 + [(µ+ σ) + (µ+ δ + τ)]λ+ (µ+ σ)(µ+ δ + τ)

[
1− σβ

(
(µ+ ω)(1− ρ)π + ωρπ

µ(µ+ ω)(µ+ σ)(µ+ δ + τ)

)]
= 0

=⇒ λ2 + [(µ+ σ) + (µ+ δ + τ)]λ+ (µ+ σ)(µ+ δ + τ) [1−Ro] = 0 (5.1)

By Descartes’s rule of sign, the polynomial equation (5.1) has no sign change if Ro < 1, and so there are no
positive roots for the equation (5.1). This implies that all roots of (5.1) are purely imaginary or complex with
negative real parts. Hence the DFE is locally asymptotically stable.

This completes the proof.

6 Global Stability

Theorem 2: If R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable, and unstable otherwise.

Proof

Let L be a candidate Lyapunov function such that

L =

(
S − So − So ln

S

So

)
+

σE

(µ+ σ)(µ+ δ + τ)
+

I

(µ+ δ + τ)
(6.1)

where So = (µ+ω)(1−ρ)π+ωρπ
µ(µ+ω)

is the value SV at DFE.

Obviously, the second and third terms on the RHS of 6.1 are positive for the first term, So ≤ S (since So is an
equilibrium point of S). Then S − So − S ln S

So is also positive. Therefore, L(S,E, I) is positive definite.

Now, for the time derivative of L along the solution of the model equation 6.1, we have.

dL

dt
=

(
1− So

S

)
dS

dt
+

σ

(µ+ σ)(µ+ δ + τ)

dE

dt
+

1

µ+ δ + τ

dI

dt

substituting dS
dt
, dE
dt

and dI
dt

from (1.1) gives

dL

dt
=

(
1− So

S

)
[(1− ρ)π − βSI − ωV − µS + αR]

+
σ

(µ+ σ)(µ+ δ + τ)
[βSI − (µ+ σ)E] +

1

µ+ δ + τ
[σE − (µ+ δ + τ)I]

At disease free equilibrium:
(1− ρ)π = βSIo + µSo − (ωV o + αRo)

βSIo

µ+ σ
= Eo

σEo = (µ+ δ + τ)Io

 (6.2)
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substituting (6.2) into dL
dt

, gives

dL

dt
=

(
1− So

S

)
[(βSIo − βSI) + ω(V o − V ) + µ(So − S) + α(Ro −R)]

+
σ

(µ+ σ)(µ+ δ + τ)

[
βSI − (µ+ σ)βSoIo

µ+ σ

]
+

1

µ+ δ + τ
[(µ+ δ + τ)(Io − I)]

=⇒
−βSI

(
1− So

S

)
− µ(S − So)− ω(V − V o)− αR+

[
σβS

(µ+ σ)(µ+ δ + τ)
− 1

]
I

At disease-free equilibrium,
Eo = (So, V o, Eo, Io, Ro)

=

(
(µ+ ω)(1− ρ)π + ωβτ

µ(µ+ ω)
,
ρπ

µ+ ω
, 0, 0, 0

)
dL

dt
= −βSI

(
S − So

S

)
− ω(V − V o)− αR+ (Ro − 1)I (6.3)

obviously from (6.3), dL
dt
< 0 if Ro ≤ 1

where Ro = σβ

[
(µ+ ω)(1− ρ)π + ωρπ

µ(µ+ ω)(µ+ σ)(µ+ δ + τ)

]
(6.4)

dL
dt

= 0 if and only if S = So, V = V o and I = 0.
Thus

(S, V,E, I,R) −→
(

(µ+ ω)(1− ρ)π + ωπ

µ(µ+ ω)
,
ρπ

µ+ ω
, 0, 0, 0

)
as t→∞

and the largest compact invariant set is the singleton {Eo}. So, by Lasalle’s invariant principle, every solution of
the model system (1.1) with initial conditions approaches Eo as t→∞. whenever Ro ≤ 1. Then the disease-free
equilibrium is globally asymptotically stable whenever Ro ≤ 1 and unstable otherwise.

This completes the proof.

7 Stability Analysis of the Endemic Equilibrium

Theorem 3: The endemic equilibrium E∗ = (S∗, V ∗, E∗, I∗, R∗) is stable if Ro > 1

Proof: If the disease is persistent (i.e endemic) in the community, then dI
dt
> 0 by [18]

i.e σE∗ − (µ+ δ + τ)I∗ > 0

=⇒ σE∗ > (µ+ δ + τ)I∗

=⇒ (µ+ δ + τ)I∗ < σE∗

=⇒ 1 <
σE∗

(µ+ δ + τ)I∗

Stability E∗ and I∗ from the endemic equilibrium and simplifying gives

1 < Ro

i.e Ro > 1

Hence, the endemic equilibrium is stable whenever Ro > 1 and unstable otherwise.

66



Olutimo et al.; J. Adv. Math. Com. Sci., vol. 39, no. 5, pp. 59-72, 2024; Article no.JAMCS.115928

8 Numerical Simulations and Results

The evaluation of the model involved a numerical analysis. Through simulations, it was possible to observe the
impact of the parameters. The software used for the simulations is Wolfram Mathematica. Some values for the
parameters of the SVEIR model were obtained from [8].

Table 1. Values of the Parameters for Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6

Parameter Description Value Source

π Recruitment rate 2000 [8]

ρ Vaccine rate 0.5 [8]

β Contact rate 0.0003 Estimated

ω Rate at which vaccine wanes off 0.1 [8]

µ Natural death 0.2 [8]

σ Rate at which the exposed 0.7 [8]
individuals becomes infected

τ Rate at which infected individuals are treated 0.1 [8]

δ Induced diseases death rate 0.1 [8]

α Rate at which recovered individuals 0.2 [8]
move to susceptible class

S(0) Susceptible class 1000 Estimated

V (0) Vaccinated class 800 Estimated

E(0) Exposed class 600 Estimated

I(0) Infected class 500 Estimated

R(0) Recovered class 700 Estimated

9 Sensitivity Analysis

To investigate the sensitivity of the basic reproduction number Ro with respect to parameters β, σ, ω, π, ρ, µ, τ
and δ, we calculate each value using the derivative-based method, which reflects the relationship between each
parameter and Ro. The sensitivity index of each parameter can be seen in the table below, inputting the value
of each parameter into the differential equations and solving them using

XRo
x =

∂Ro
∂x
· x
Ro

where XRo denote the sensitivity of Ro then sensitivity index Ro with respect to any parameter.

Table 2. Parameter sensitivity index

Parameter Index Sensitivity index

π XRo
π 0.090909091

σ XRo
σ 0.9623655914

µ XRo
µ -0.06989247312

ω XRo
ω 0.09090909091

τ XRo
τ -0.005376344086

β XRo
β 1

ρ XRo
ρ -0.8181818182

δ XRo
δ -0.005376344086
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The parameter sensitivity index using the derivative-based local method is as shown in Table 2 which indicates
that the parameters β, σ, ω and π have direct relationship with the reproduction number Ro and parameters
ρ, µ, τ and δ have inverse relationship with Ro. Hence, reducing the contact rate between the infected human
and susceptible individuals as well as restricting direct access to public food and water by the infected individual
could significantly reduce the Ro. Other factors like increase in vaccination rate and ensuring reduction in the
rate of waning of immunity as well as increasing the rate of treatment of infected individuals will eventually and
effectively reduce the value of Ro. The sensitivity analysis findings indicate that while the vaccination doesn’t
significantly lower the basic reproduction number, it effectively aids in disease control.

Fig. 2. Shows that the higher the rate at which the vaccine wanes off the higher the number of
infected population

Fig. 3. Shows that the higher the rate at which the vaccine wanes off the higher the number of
exposed population
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Fig. 4. Shows that the higher the rate of treatment the lower the vaccinated population and the
higher the number of exposed and infected population indicating that the rate at which the

vaccine wanes off is rapid.

Fig. 5. Shows that the higher the rate of treatment the higher the recovered population as the
vaccine wanes off.
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Fig. 6. Shows that as the rate at which the vaccine wanes off increases, the number of the
susceptible class increases at a decreasing rate as the rate of treatment increases.

10 Discussion and Conclusion

In this work, we studied the impact of preventive vaccination and treatment on the dynamics of diarrhea disease
using a mathematical model. The disease free and endemic equilibria were obtained and the basic reproduction
number Ro computed. The result of the quantitative analyses showed that the disease-free equilibrium is both
locally and globally asymptotically stable if Ro < 1 and Ro ≤ 1 respectively and unstable otherwise. On the
other hand, the endemic equilibrium is stable whenever Ro > 1. The implication of this is: Diarrhea can be
controlled via the use of vaccination and treatment if the basic reproduction number is below unity, irrespective
of the initial number of infection in the population. However, if the reproduction number exceeds unity, then
diarrhea will persist in the population. The result of the sensitivity analysis revealed that the contact rate β
is the most sensitive parameter of the basic reproduction number with positive index i.e. the value of β has
the greatest effect on the reproduction number, and hence the prevalence of the disease in the population. The
result XRo

β = 1.0 implies that if β is increased (decreased) by 10%, then Ro will also increase (decrease) by 10%.
Also very sensitive are the infectivity rate of the exposed individuals σ and the vaccination rate ρ with positive
and negative indices respectively. The result XRo

ρ = −0.8182 implies that if ρ is increased (decreased) by 10%
then the Ro will decrease (increase) by 8.182%. The sensitivity indices of other parameters can be interpreted in
similar manner. The results of the numerical simulations, were shown graphically in Figure 2 to 6. In figure 2, 3,
4 and 6 the effect of vaccine waning rate ω were shown. Both figures 2 and 3 showed that increment in the rate
of vaccine waning results in increment in the population of both infected and exposed individuals respectively.
Also, as shown in figure 6, this increment in the rate of vaccine waning leads to increase in the number of
susceptible individuals. This implies that the more the rate of waning of vaccine, the more the number of those
that are prone to diarrhea disease in the population. Thus if the waning rate can be reduced, then the number
of those that get exposed and infected with diarrhea can be reduced. Also, the number of individuals that are
prone to the disease would be reduced and more people can be protected. Furthermore, the effect of treatment
rate τ on the dynamics of diarrhea disease were investigated and the results shown depicted in figures 4 and
5. Figure 4 showed that the higher the rate of treatment the lower the infected population. This implies that
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increasing the rate of treatment decreases the number of infective in the population. Also, this increase in the
rate of treatment leads to a corresponding increase in the number of recovered individuals as depicted in figure 5.
In conclusion, in order to have a successful combat against diarrhea disease in the population, efforts have to be
made by policy makers, health practitioners and the entire populace to bring down the threshold value, Ro (the
basic reproduction number) below unity. This can be achieved through lowering the contact rate and increasing
the rate and coverage of vaccines and vaccination programs, as indicated by the results of the sensitivity analysis
conducted in this study. Also, as suggested by the results of the numerical simulations, efforts has to be made
to come by vaccines whose waning rates are very reduced and also to target treating more infected individual.
To future studies, we shall work on which of these control measures is both optimal and cost-effective.
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