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S U M M A R Y
In low-seismicity areas such as Europe, seismic records do not cover the whole range of
variable configurations required for seismic hazard analysis. Usually, a set of empirical mod-
els established in such context (the Mediterranean Basin, northeast U.S.A., Japan, etc.) is
considered through a logic-tree-based selection process. This approach is mainly based on
the scientist’s expertise and ignores the uncertainty in model selection. One important and
potential consequence of neglecting model uncertainty is that we assign more precision to our
inference than what is warranted by the data, and this leads to overly confident decisions and
precision. In this paper, we investigate the Bayesian model averaging (BMA) approach, using
nine ground-motion prediction equations (GMPEs) issued from several databases. The BMA
method has become an important tool to deal with model uncertainty, especially in empirical
settings with large number of potential models and relatively limited number of observations.
Two numerical techniques, based on the Markov chain Monte Carlo method and the maximum
likelihood estimation approach, for implementing BMA are presented and applied together
with around 1000 records issued from the RESORCE-2013 database. In the example consid-
ered, it is shown that BMA provides both a hierarchy of GMPEs and an improved out-of-sample
predictive performance.

Key words: Numerical approximations and analysis; Probabilistic forecasting; Earthquake
ground motions.

1 I N T RO D U C T I O N

Ground-motion prediction equations (GMPEs) are empirical mod-
els used in seismic hazard assessment (SHA). These equations
are usually determined from regression techniques using ground-
motion data recorded by seismic networks. Ground motion can also
be inferred from physically based models. Since the advent of prob-
abilistic seismic hazard analysis (PSHA; Cornell 1968; McGuire
1976), three physical quantities are classically considered as random
variables: the location of earthquakes, the magnitude of earthquakes
and the expected ground motion [such as peak ground acceleration
(PGA) or pseudospectral acceleration (PSA)] at a given site. De-
spite the sophistication of models, some discrepancies between the
predicted and the observed ground motions do exist. These dis-
crepancies are due to incomplete and simplified representation of
physical processes, model structural inadequacies, measurement er-
rors, conversion laws between magnitudes scales, uncertainties in
the fault mechanism and soil conditions (and more generally uncer-
tainties in the metadata assessment). In low-seismic regions such as
Europe, ground-motion data are not significantly meaningful and
predictions are often obtained from models calibrated with stronger

ground motions. This is referred to as a data sparsity problem, which
is, with the epistemic uncertainties of empirical models, one of the
most important challenges in PSHA.

Predictions obtained with a single GMPE can lead to statistical
bias or underestimation of the output variability. The multimodel
approach consisting in the selection and combination of a number
of models using a logic-tree (Scherbaum & Kuehn 2011; Bommer
2012; Marzocchi et al. 2015) has emerged as a standard SHA prac-
tice. Further, this approach has become a regulatory requirement in
PSHA (Budnitz et al. 1997). The estimate of branch weights is a
matter of experts’ judgement, which raises discussions and difficul-
ties. Different frameworks were proposed for model selection and
ranking for particular data sets (Scherbaum 2009; Delavaud et al.
2012; Kale & Akkar 2012). The logic-tree-based approach, however,
ignores the uncertainty in model selection (or model uncertainty).
Although there may be strong arguments (the physicist’s expertise)
leading to the selection of models, there is often no such strong
argument for absolutely disqualifying the unselected models. If at
least one of them could lead to radically different conclusions, then
ignoring it underestimates uncertainty. Other approaches were pro-
posed using probabilistic frameworks (Arroyo et al. 2014; Kowsari
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et al. 2019) to address model uncertainty. Model averaging is a
natural response to model uncertainty, especially when there is a
large amount of uncertainty about model specifications that is not
resolved by universal accepted theory.

This paper focuses on the so-called Bayesian model averaging
(hereafter denoted as BMA), which is an extension of the stan-
dard Bayesian inference approach used in the social and health
sciences (Raftery 1995; Hoeting et al. 1999; Culka 2014). The ob-
jective is to explore how this approach can improve accuracy and
reliability of ground-motion prediction in PSHA or deterministic
seismic hazard assessment (DSHA) when several GMPEs are con-
sidered. The combination of GMPEs into a mixture model has al-
ready been investigated with backbone models (Atkinson & Adams
2013; Haendel 2014; Bommer et al. 2015) and this paper deals with
the contribution of the Bayes theory to that approach. With the BMA
approach, the overall prediction probability density function (PDF)
is an average of the posterior distributions under each of the models
considered, weighted by their posterior model probability. The BMA
weight reflects the relative quality of prediction of a given model
regarding the set of training data considered. The performance of
BMA is tested against the Reference database for Seismic grOund-
motion pRediction in Europe (RESORCE) database (Akkar et al.
2013), using nine GMPEs. This approach provides a hierarchy of
GMPEs that avoids arbitrariness. Then it also provides a new model
in the form of a linear combination of the GMPEs, with better pre-
dictions. This is due to the BMA formalism that allows the variance
to be decomposed into within-model and between-model variances.
Because the BMA approach accounts for the effect of model com-
bination, it has the potential to improve the statistical predictive
quality compared to the best model. The goal of this study is to
present the BMA method’s feasibility and potential for the use of
GMPEs, without any PSHA obligation, yet. Therefore, the weights
and adjustments presented in this study are for discussion of a BMA
analysis and are not appropriate for direct use in a PSHA that might
depend on the application.

The outline of the paper is as follows: Section 2 describes the
BMA background and how the BMA model can be obtained. Sec-
tion 3 reports the numerical results using nine GMPEs along with
the RESORCE-2013 data set (Akkar et al. 2013). Finally conclu-
sions and further ideas of research are reported in Section 4.

2 B AY E S I A N M O D E L AV E R A G I N G

2.1 Principle of the BMA method

BMA (Kass & Raftery 1995; Baran & Moller 2015; Schöniger
et al. 2015; Zhu et al. 2016) provides a coherent mechanism for
accounting the model uncertainty. If y is the quantity of interest,
such as the PGA or the PSA, then its posterior distribution given
data D is

p(y|D) =
K∑

k=1

p(y|Mk, D)p(Mk |D), (1)

where M1, M2, . . . , MK are the GMPEs considered. The implicit
assumption made here is that the observations D are reachable
by the space formed with the K models considered. The posterior
probability assigned to Mk is given by the classical Bayes’ formula

p(Mk |D) = L(Mk |D)p(Mk)
K∑

j=1

L(M j |D)p(M j )

, (2)

where p(Mk) is the prior probability and L(Mk|D) = p(D|Mk) is the
so-called marginal likelihood of model Mk, which is a key quantity
for model comparison. In line with probability theory, the stan-
dard Bayesian response to dealing with parameter uncertainty is
the average. This involves averaging over parameter values with the
posterior distribution of that parameter in order to get the predic-
tive distribution. Analogously, eq. (1) shows that model uncertainty
is also resolved through averaging, but this time averaging over
models with the (discrete) posterior model distribution. Since the
posterior probabilities p(Mk|D) add up to one, they can be con-
sidered as posterior model weights, or simply BMA weights. It is
worth noting that an alternative approach is given by the Akaike
information criterion (AIC). Burnham & Anderson (2002) provide
a Bayesian justification for AIC and suggest the use of AIC-based
weights as posterior model probabilities.

The posterior mean of y, given the observation data D, is as
follows:

E(y|D) =
K∑

k=1

p(Mk |D)E(y|Mk, D), (3)

where E(y|Mk, D) is the expectation of the posterior distribution
of y conditioned with the data D using the model Mk alone. The
associated variance Var(y|D) can be split up into two distinct terms
V1 and V2. The first term V1 is given by

V1 =
K∑

k=1

p(Mk |D)Var(y|Mk, D), (4)

and refers to variations caused by differences within individual
models. The second term, which is given by

V2 =
K∑

k=1

p(Mk |D) [E(y|Mk, D) − E(y|D)]2 , (5)

is due to the interaction between the models. These two terms V1

and V2 are classically referred to as the within-model variance and
the between-model variance, respectively.

In eq. (2), p(Mk) is the prior probability that Mk is the true model
(given that one of the models considered is true). Using experts’
knowledge appears difficult, though not arbitrary, since there is
no universal formula for converting knowledge into prior distri-
butions [nonetheless, some approaches derived from experimen-
tal design theory are investigated in Runge et al. (2013)]. Thus,
when there is little prior information about the relative plausibil-
ity of the models considered, the assumption that all models are
equally likely, that is p(Mk) = 1/K, seems a reasonable choice, the
uniform distribution being usually considered as one of the less
informative ones. That choice may not appear entirely satisfactory
since no prior distribution is really neutral, but we do not address
that specific issue here and only illustrate the method using the
most common approach. In this case, the BMA weights as given
by eq. (2) are directly proportional to the marginal likelihood of
models.

2.2 Models likelihood

Over the last decade, there has been a rapidly growing awareness of
the importance of dealing with both model error and measurement
error. In practice, however, these two terms cannot be conveniently
distinguished and properly interpreted. Hence, following Park &
Grandhi (2014) and Brynjarsdottir & O’Hagan (2014), we adopt
here a formulation that involves a single error term through the
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additive constant εk that summarizes the model-observation dis-
crepancy and that represents each GMPE by

y(x) = fk(x) + εk, (6)

where y is the logarithm of the 5 per cent damped horizontal PSA
at a given frequency, fk is the deterministic prediction of the GMPE
Mk, and x is a set of earthquake characteristics used as inputs in the
GMPEs (moment magnitude, distance, focal depth, VS30, fault type,
etc.).

The use of the additive term in eq. (6) for modelling the prediction
error immediately follows from the general structure of GMPEs. In
particular, each GMPE is designed using a log-normal error term to
describe the PSA. As a result, it appears natural to assume that εk

follows a normal distribution, that is, εk ∼ N
(
μk, σ

2
k

)
, where μk

and σ k are the expectation and the standard deviation, respectively.
This assumption is further discussed and justified in Section 3.
The choice of statistical distributions for μk and σ k is somewhat
arbitrary in the absence of detailed knowledge about εk. Here we use
classical non-informative priors and assume that μk ∼ U (μa, μb)
and σk ∼ U (σa, σb). The four parameters σ a, σ b, μa and μb govern
the domain over which appreciable values of the likelihood function
occur and thus they have to be fixed so as to avoid introducing biases
in L(Mk|D).

Following the Bayesian formalism, the marginal likelihood of
model Mk is computed as the integral of the likelihood function l(Mk,
μk, σ k|D) over the hyperparameters: hyperparameters are marginal-
ized by the integration; hence

L(Mk |D) =
∫ μb

μa

∫ σb

σa

l(Mk, μk, σk |D) p(μk)p(σk) dμkdσk, (7)

where p(μk) and p(σ k) are the prior distributions of the hyperpa-
rameters. Assuming that D consists of N components d1, d2, . . . ,
dN, we obtain

l(Mk, μk, σk |D) =
N∏

n=1

g(dn|Mk, μk, σk), (8)

where g(dn|Mk, μk, σ k) is the prediction PDF for y using the GMPE
Mk and the hyperparameters μk and σ k. In eq. (8), the independence
of observations d1, d2, . . . , dN is assumed, meaning that they result
from N independent events. While for the sake of simplicity here,
we use the independence assumption, one should bear in mind
that multiple detections from a single event are not necessarily
independent. Using the assumption εk ∼ N

(
μk, σ

2
k

)
, we obtain

l(Mk, μk, σk |D) =
N∏

n=1

1√
2πσk

exp

(
− (dn − fk(xn) − μk)2

2σ 2
k

)
, (9)

where xn is the set of model inputs corresponding to the nth seismic
record. Clearly, eq. (7) shows that priors matter for the computation
of the likelihood function. It should be emphasized that it is prefer-
able to be explicit about the prior assumptions. Recent researches
in prior sensitivity (Fernandez et al. 2001) serve to highlight which
aspects of the prior are particularly critical for the results and how
we can make our prior choices more robust.

BMA as described above is the formal probabilistic way of ob-
taining predictive inference, and is, more generally, the approach
to any inference problem involving quantities of interest that are
not model-specific. The predictive in eq. (1) involves averaging at
two levels: over (continuous) parameter values, given each possi-
ble model, and discrete averaging over all possible models. Once
the likelihood function is estimated, the posterior PDF of y can be

Table 1. Periods for which the 5 per cent damped horizontal PSA is used
for the BMA calibration.

1 2 3 4 5 6 7 8 9 10

Period [s] 0.02 0.05 0.1 0.15 0.2 0.3 0.5 1 1.5 2

obtained by integration over μk and σ k:

p(y|Mk, D) =
∫ μb

μa

∫ σb

σa

g(y|Mk, μk, σk) p(μk, σk |D, Mk)

× dμkdσk, (10)

where the posterior PDF of (μk, σ k) given Mk is computed as

p(μk, σk |D, Mk) = l(Mk, μk, σk |D) p(μk)p(σk)

L(Mk |D)
. (11)

Generally, the main computational challenge is constituted by the
typically large parameter space in eq. (10). There are many methods
and algorithms to address this problem (Hoeting et al. 1999; Vrugt
et al. 2008; Edeling et al. 2014; Park & Grandhi 2014; Chitsazan
& Tsai 2015). We briefly present two different strategies in the next
section: the maximum likelihood estimation (MLE) method and the
Markov chain Monte Carlo (MCMC) method.

2.3 Estimation methods

Here, and in the following, θ k ∈ �k is the vector of parameters of
model Mk, for example, θ k = (μk, σ k) or θ k = εk. Since θ k groups
the (unknown) parameters, it can also contain some GMPE’s coeffi-
cients as additional random parameters. If all parameters are jointly
uniformly distributed then the prior distribution of these parameters
is constant over the entire space �k and the Bayes theorem can be
written as

p(θk |D, Mk) = p(D|θk, Mk)p(θk |Mk)

p(D|Mk)
= c p(D|θk, Mk), (12)

where c is a constant. The marginal likelihood is then given by

p(D|Mk) =
∫

�k

p(D|θk, Mk)p(θk |Mk) dθk, (13)

where we use the conventional representation of weak prior infor-
mation through the density p(θ k|Mk)∝1. We can think of calibration
of θ k as a preliminary to computing the BMA weights p(Mk|D), fol-
lowing rule (2).

The main computational issues concern the estimate of eq. (13)
and the fact that we need a large number of model evaluations
for each realization of θ k. For peak shape likelihood functions,
however, an excellent approximation of eq. (13) is given by the
MLE and, indeed, the problem can readily be solved analytically for
the GMPEs, provided that we impose a normal distribution for εk.
The details of calculations are given in the Appendix. When the
posterior is an intractable expression, a fairly general approach is
to use an MCMC method (Metropolis et al. 1953; Hastings 1970),
which constructs a Markov chain whose stationary distribution is
the posterior distribution. A simple MCMC implementation uses the
Metropolis algorithm that, for a current realization θm, generates
θ∗ from a symmetric distribution, then computes the Metropolis
acceptance probability

α = min

{
1,

l(Mk, θ
∗
k |D)

l(Mk, θ
m
k |D)

}
, (14)

and finally sets θm + 1 = θ∗ with probability α and θm + 1 = θm

with probability 1 − α. The width of the proposal distribution (e.g.
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Improving ground motion predictions using BMA 1371

Figure 1. (a) Metropolis–Hastings sampling of εk for T = 1 s. (b) Empirical deciles versus theoretical deciles of the normal distribution. The models proposed
by Berge-Thierry et al. (2003), Zhao et al. (2006), Faccioli et al. (2010), Bindi et al. (2011), Akkar et al. (2014), Bindi et al. (2014), Boore et al. (2014), Cauzzi
et al. (2015) and Derras et al. (2016) are designated by BT03, ZH06, FA10, BI11, AK13, BI14, BO14, CA15 and DE16, respectively.

Figure 2. Equal log-likelihood contours of μk and σ k for T = 1 s. The dark lines represent the MCMC Markov chains starting from the point μk = 0 and σ k

= 0.5 and the black crosses indicate the maxima as obtained using the MLE method. Each panel corresponds to a GMPE (see the caption of Fig. 1).
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Figure 3. Optimal values μ∗
k and 95 per cent confident interval μ∗

k ± 2σ ∗
k as function of the period (see Table 1). The horizontal PSA is computed in units

of g. Each panel corresponds to a GMPE (see the caption of Fig. 1).

the standard deviation for a normal distribution) for computing
θ∗ is a tuning parameter and clearly a limitation of the standard
sampling algorithm, although there are various methods that remedy
the problem [see Roberts & Rosenthal (2009) for an overview of
‘auto-tuning’ algorithms].

The multiple central processing units (CPUs) of recent computers
can be used to speed up computation through multiple independent
MCMC chains. Markov chains construct a progressive picture of
the target distribution, proceeding by local exploration of the state
space �k until all the regions of interest, meaning areas of maximum
likelihood, have been covered. Hence, eq. (13) can be estimated
with a standard Monte Carlo estimate. Further, in this study, we
diagnose the successful convergence and the proper mixing of the
Markov chains through computing the Gelman–Rubin’s potential
scale reduction factor (Gelman & Rubin 1992; Cowles & Carlin
1996).

3 A P P L I C AT I O N

3.1 The selection of GMPEs

The selection of GMPEs, which is one of the fundamental mod-
elling tasks in SHA studies (either probabilistic or deterministic),
may impact strongly the SHA results in terms of level and dispersion
predictions. In a first stage, we consider GMPEs obtained from local,

regional and worldwide data that satisfy the a priori requirements for
shallow crustal tectonic settings (Cotton et al. 2006; Bommer et al.
2010). A parsimony principle is adopted to avoid adding more uncer-
tainties in the estimation of unknown parameters required in com-
plex models (due to the lack of information in the European database
RESORCE). Some of the models considered here have been previ-
ously analysed by Delavaud et al. (2012) in the Seismic Hazard Har-
monization in Europe (SHARE) project, using the likelihood-based
ranking method (Scherbaum 2009), and selected as the candidate
GMPEs for seismic hazard in Europe. Using the same method, Beau-
val et al. (2012) investigated GMPEs with the French acceleromet-
ric database (RAP). Instead, in Global Earthquakes Model (GEM) a
Euclidean-distance-based ranking method (Kale & Akkar 2012) has
been proposed and applied to the Middle East. These works suggest
that GMPEs introduced by Berge-Thierry et al. (2003) and further
developed by Zhao et al. (2006), Cauzzi & Faccioli (2008), Akkar &
Bommer (2010) and Bindi et al. (2010) are appropriate for Europe.
In this list, the simplest model (Berge-Thierry et al. 2003), originally
developed for the French nuclear safety regulation, involves the
surface wave magnitude to describe the size of earthquakes, which
implies to use a formula for converting it into the largely used mo-
ment magnitude. We choose to use (Scordilis 2006) conversion rela-
tions that are published to help building homogenous global seismic
catalogues.
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Improving ground motion predictions using BMA 1373

Figure 4. Optimal standard deviations σ ∗
k obtained with the MLE method (solid lines) and original values obtained from the initial GMPE estimation on their

own data set (dashed lines). The horizontal PSA is computed in units of g. Each panel corresponds to a GMPE (see the caption of Fig. 1).

In a second stage, we take into account models that are often used
as standards in SHA. These include the U.S. Next Generation Atten-
uation (NGA) models that were developed for active regions from
strong ground motions. According to the comparisons of the NGA
ground-motion relations (Abrahamson et al. 2008) and their appli-
cability in the Euro-Mediterranean region (Stafford et al. 2008),
the model proposed by Boore & Atkinson (2007) is chosen here
as an example of NGA model, along with the model proposed by
Derras et al. (2016). These models are chosen following a parsi-
mony principle (they use a limited number of parameters compared
to the other ones). In fact, since the NGA models may really be
different in some ranges, the selection of a single one would be
difficult.

Finally, to investigate the performance of several selected GMPEs
in face with the earthquakes from Europe and the Middle East of
the RESORCE database, two models developed using the database
itself by Akkar et al. (2014) and Bindi et al. (2014) are considered.
We therefore end up with nine GMPEs for which, when updates of
the models are available, we use the most recent version (Berge-
Thierry et al. 2003; Zhao et al. 2006; Faccioli et al. 2010; Bindi
et al. 2011, 2014; Akkar et al. 2014; Boore et al. 2014; Cauzzi
et al. 2015; Derras et al. 2016). The BMA method requires a large
amount of data, thus we choose to ignore regional differences by
excluding non-ergodic models (Kotha et al. 2016; Landwehr et al.
2016; Sedaghati & Pezeshk 2017) that could be difficult to interpret.
The set of GMPEs considered in this paper is not supposed to be

exhaustive neither fitted for an SHA study, since the main purpose
is to test and demonstrate the performance of the BMA method.
For a site-specific PSHA study, the regional differences should be
taken into account, for instance, using non-ergodic models and in
this case, there is no guarantee that the BMA would be the best
approach. In fact, it would mainly depend on the amount of regional
data available.

3.2 The RESORCE database

In order to avoid solving our problem on the basis of a small num-
ber of observations, we use a recent version of the RESORCE
database, RESORCE-2013 (Akkar et al. 2013), which contains
ground-motion data from pan-European earthquakes. This freely
accessible database gathers 5882 seismic records from 1814 events,
and the corresponding seismological and geotechnical parameters.

According to the selected GMPEs, the relevant input variables
represented by x in eq. (6) are the distance (epicentral distance,
hypocentral distance and the Joyner–Boore distance), the VS30 ve-
locity, the focal depth, the fault mechanism and the event magnitude.
Hence, to make sure that the data lie in the common application do-
main covered by the selected GMPEs, we only retain the elements
for which the moment magnitude, the distance and the VS30 velocity
are in the intervals [5; 7.3], [4; 150] (km) and [300; 1200] (m s−1),
respectively. Regarding the diversity of magnitude measures in the
database, and given that the most commonly used measure is the
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(a)

(b)

Figure 5. (a) Posterior BMA weights P(Mk|D) as functions of the period. Only the three dominant models are represented. (b) Total variance, within-model
variance and between-model variance of the BMA combination. The horizontal PSA is computed with GMPEs in units of g.

moment magnitude Mw (in 79 per cent of the records), we restrict
our approach to events for which the magnitude Mw is provided.
Similarly, we only select events for which the fault mechanism is
indicated as Normal, Strike-Slip and Reverse. These restrictions re-
sult in a subset of N = 939 records, which ensures the convergence
of our statistical study.

As outlined above, the GMPE’s output is the logarithm of the
horizontal 5 per cent damped pseudospectral acceleration [y in eq.
(6)]. This variable is expressed in multiples of g, where g is the
acceleration due to Earth’s gravity, and computed for 10 periods
common to the 9 GMPEs (see Table 1), using the exact coefficient
values provided in the literature. The corresponding observation
is obtained using the geometric mean of the two horizontal PSA
components provided in the RESORCE database.

3.3 Application of the BMA approach

According to most Bayesian applications, we try to make as few
assumptions as possible in order to ensure the analysis is essentially
data driven. Even though the normal distribution assumption for εk

sounds reasonable, the MCMC Metropolis–Hastings algorithm pro-
vides a way to test this hypothesis against observations. A classical
way of doing this is to compute the posterior distribution p(εk|D,
Mk) for each GMPE, and to assign a uniform prior for εk over the in-
terval [− 2; 2]. The resulting MCMC sampling is given in Fig. 1(a)
for 5000 iterations (including a warm-up period of 500 iterations

for initialization of the algorithm), a standard deviation of 0.005
for the Metropolis algorithm, and using εk = 0 as the initial guess
for the MCMC. For the sake of simplicity, only the results obtained
for the period T = 1 s are given here. Other periods exhibit similar
behaviours. Fig. 1(b) shows a quantile–quantile plot (Jobson 1991)
that enlightens the nature of the posterior distribution. The linear
relation between the empirical deciles of the Markov chains and the
theoretical deciles of the normal distribution is a validation of the
Gaussian assumption. This result is consistent with our assumption
that the prediction error εk in eq. (6) can be modelled by a normal
distribution, that is, εk ∼ N (μk, σ

2
k ).

The MLE estimation of optimal hyperparameters μ∗
k and σ ∗

k can
be computed from eqs (A2) and (A3) of the Appendix and com-
pared to the MCMC-based approach. Fig. 2 shows the results for
T = 1 s, using μk = 0 and σ k = 0.5 as starting points, and a stan-
dard deviation of 0.01 for the Metropolis algorithm. The likelihood
shape appears strongly peaked in the hyperparameter space (loga-
rithmic contours in Fig. 2) and therefore the MLE approximation
seems to be a reasonable choice. The calibration results for the
whole range of periods (Table 1) are summarized in Fig. 3. While
the priors for μk and σ k are uniform distributions over the intervals
[− 1, 1] and [0.5, 5], respectively, it is important to point out the
fact that the final distributions are not centred (i.e. μ∗

k �= 0). The
final distribution should be interpreted as a measure of the statisti-
cal discrepancy between the GMPE’s predictions and the training
database. Also, as discussed in Section 3.1 two GMPEs (Akkar
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(a) (b)

(c) (d)

Figure 6. 99.7 per cent and 95 per cent confidence intervals of BMA predictions (light green and light blue areas, respectively) compared to 200 events that
were not used for the BMA calibration (black dots). Events are ordered to have an increasing BMA expectation (blue line). The horizontal PSA is computed
with GMPEs in g. Results are shown for periods (a) 2 s, (b) 1 s, (c) 0.15 s and (d) 0.05 s.

et al. 2014; Bindi et al. 2014) were designed from the RESORCE
database, which means that the statistical discrepancy, as computed
here with a subset of RESORCE-2013, should be close to that ob-
tained with the database originally considered. This is illustrated
in Fig. 4, where the corresponding standard deviations are plotted
as functions of the period and compared with the original values
obtained from the initial GMPE estimation on their own data set.
The overall agreement is deemed very good, especially for the GM-
PEs proposed by Akkar et al. (2014) and Bindi et al. (2014). For
large periods, we observe differences that might be the result of
differences between the selected subsets. This lack of data robust-
ness is not surprising, and there is evidence in the literature (Feld-
kircher 2012) that this effect can be mitigated through adding prior
information.

Fig. 5 shows the BMA weights, as well as the within-model
and between-model variances. While the models proposed by Bindi
et al. (2011), Akkar et al. (2014) and Bindi et al. (2014) dominate
over the set of periods considered here (Fig. 5a), a variance-based
examination of results (Fig. 5b) shows two distinct regions. For
large periods (low frequencies), the variance is only due to the
within-model variance, which means that the BMA predictive PDF
is dominated by the model having the highest BMA weight (Bindi
et al. 2014). For lower periods (high frequencies), a low between-
model variance is observed, reflecting the fact that three models
among the nine considered contribute to the BMA PDF. Fig. 5(a)
shows that most of other models have low weights throughout,
suggesting that they are less useful relative to the three dominant
models. However, this does not mean that the corresponding GMPEs
are not suited to make predictions on European seismicity. The
weights reflect the models’ overall performance over the training

data set, relative to the other models. It is not surprising, then, that
the GMPEs established with the RESORCE database have higher
BMA weights.

Fig. 6 illustrates the way in which BMA can yield reasonable con-
fidence intervals. The BMA PDF is computed using 739 records that
are randomly selected among those of the initial RESORCE-2013
training data set (with 939 observations). Then the predictions of
the BMA PDF are compared to the 200 remaining observations. On
average, 94.4 per cent of the observations lay within the 95 per cent
confidence interval. An alternative way of dealing with the problem
of prediction capability is to resort to the so-called leave-one-out
procedure (Geisser 1993), which uses a sample of observations that
is not itself used to calibrate the model. The measure of the fit of the
resulting model to the sample of observations can be summarized
through the Predicted Residual Error Sum of Squares (PRESS)
statistic:

PRESS = 1

N

N∑
n=1

[E(y−n(xn)) − dn]2 , (15)

where dn is the nth observation and y−n(xn) is the BMA prediction
based on the calibrated GMPEs using the whole data set except
dn. Given this procedure, the PRESS statistic can be calculated
for the nine GMPEs for the same data set, with the lowest values
of PRESS indicating the best models. Figs 7(a) and (b) show the
GMPE’s performance before the Bayesian calibration of prediction
error and after being calibrated with observations. Clearly, there
are substantial gains in using both Bayesian calibration and the
BMA approach for improving the predictive overall performance of
GMPEs. Further, in addition to the calibration and the ranking of the
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(a) (b)

Figure 7. Quadratic mean of prediction error. (a) Prior predictions; (b) posterior predictions. The black line corresponds to the predicted residual error sum of
squares (PRESS) of the BMA combination of calibrated GMPEs (leave-one-out strategy).

GMPEs, the BMA approach offers a way to combine the calibrated
models together in order to get much better performances for low
periods, as shown in Fig. 7(b).

4 C O N C LU S I O N

In this paper, we have proposed a new method for statistical post-
processing GMPEs’ output to produce calibrated and predictive
PDFs. Calibrating the bias along with the standard deviation of
the log-normal prediction error allows a significant improvement
of GMPEs’ performance. The BMA method offers then a way
to rank, select and combine together the calibrated GMPEs in a
weighted sum requiring neither additional hypothesis nor experts’
judgement. In our case study, based on a subset of the RESORCE-
2013 database, the BMA has a lower PRESS statistic than any of the
individual GMPEs. Results suggest the use of a single model (Bindi
et al. 2014) for low frequencies and the combination of three GM-
PEs (Bindi et al. 2011, 2014; Akkar et al. 2014) for high frequencies.
The goal of this study is to present the BMA method’s feasibility
and potential for the use of multiple GMPEs, without any PSHA
obligation, yet. Therefore, results presented here can provide useful
information but should be taken cautiously. As the BMA weights
and adjustment deeply depend on the observations and on the model
set considered, a BMA analysis requires a careful and relevant dis-
cussion, depending on the application, to lead to good predictions
in a PSHA.

As indicated in Section 2.1, the BMA procedure is based on the
implicit assumption that the whole set of observations is reachable

by the space formed with the models considered. This is a strong
assumption that leads to a well-known limitation of BMA appli-
cations (Clarke 2018) that are best suited to M-closed problems,
which is indeed not the case with a limited set of GMPE’s. This
results in the overconfidence of the method that tends to present
weights close to zero or one. However, despite the limitations of
the model set used, our application shows a performing combina-
tion of three GMPEs for high frequencies. This is an encourag-
ing result that leaves room for improvement. Clearly, adding more
distinct GMPEs to the study would ensure a larger and more per-
formant BMA combination. However, adding too many models in
a single probabilistic framework may discard data from the com-
mon observational set considered, which may produce much lower
confidence intervals. Indeed, the range of metadata (magnitude,
distance, VS30, etc.) of the training data set has to be available
and compatible with the domains on which every GMPEs were
established.

While much of the emphasis in this paper was to show that the
Bayesian learning theory approach can be applied to the task of se-
lection and combination of GMPEs, other BMA-inspired techniques
could also be proposed to achieve much better results. The BMA
itself could be modified to integrate over combinations of mod-
els rather than over individual learners. Another approach could
be to learn the optimal model combination, given a fixed set of
models. The model space could be enriched by extending the cal-
ibration to GMPEs’ coefficients and combining several functional
forms of GMPEs. The GMPEs’ coefficients are usually estimated
with standard regression techniques, and recent works have focused
on estimating them with a Bayesian inference using the MCMC
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method (Kowsari et al. 2019). The resulting model, that can be
seen as the Bayesian theory transduction of the backbone approach
(Douglas 2018), should be updated each time new ground-motion
observations are available (Stafford 2019). Alternatively, strategies
could be developed to allow calibrations and combinations to be
inferred simultaneously.
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Kale, Ö. & Akkar, S., 2012. A method to determine the appropriate GMPEs
for a selected seismic prone region, in 15th World Conf. Earthquake
Engineering, Lisbon, Portugal.

Kass, R.E. & Raftery, A.E., 1995. Bayes factors, J. Am. Stat. Assoc., 90(430),
773–795.

Kotha, S.R., Bindi, D. & Cotton, F., 2016. Partially non-ergodic region
specific GMPE for Europe and Middle-East, Bull. Earthq. Eng., 14(4),
1245–1253.

Kowsari, M., Halldorsson, B., Hrafnkelsson, B., Snæbjörnsson, J. & Jònsonn,
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A P P E N D I X : M A X I M U M L I K E L I H O O D
E S T I M AT I O N

As a general rule, the MLE approximation of (13) can be solved
with classical optimization techniques, such as Newton–Raphson
or Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms. When
the distribution of the uncertain parameter is known and simple,
however, the problem can be entirely solved analytically. In our
case, the fact that we consider a normal distribution renders the
computation straightforward. Starting from the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂μk

N∑
n=1

log g(dn|Mk, μk, σk) = 0

∂

∂σk

N∑
n=1

log g(dn|Mk, μk, σk) = 0,

(A1)

we get the following analytical expressions for the optimal hyper-
parameters

μ∗
k = 1

N

N∑
n=1

dn − fk(xn), (A2)

and

σ ∗
k =

[
1

N

N∑
n=1

(dn − fk(xn) − μ∗
k )2

]1/2

. (A3)

The MLE estimation of the marginal likelihood is then obtained by
substituting these expressions in eq. (9) so as to obtain

log L(Mk |D) ≈ −N

(
log 2π

2
+ log σ ∗

k

)
− N

2
+ cp, (A4)

where cp is a constant term corresponding to the uniform priors: cp

= −log(μb − μa) − log(σ b − σ a). Finally, let’s note that once the
optimum is established, one has a convenient and straightforward
definition of the posterior prediction PDF (10):

y(x)|Mk, D ∼ N
(

fk(x) + μ∗
k , σ

∗
k

)
. (A5)
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