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Abstract

We establish the asymptotic behaviour of the sum of squared residuals autocovariances and auto-
correlations for the class of multivariate power transformed asymmetric models. We then derive a
portmanteau test. We establish the asymptotic distribution of the proposed statistics. These asymp-
totic results are illustrated by Monte Carlo experiments. An application to a bivariate real financial
data is also proposed.
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1. Introduction

In econometric application, the univariate generalized autoregressive conditional heteroscedasticity
(GARCH) framework is very restrictive. Consequently the class of multivariate models is commonly
used in time series analysis and econometrics. It describes the possible cross-relationships between the
time series and not only the properties of the individual time series (see for instance Francq and Zakoïan
(2019), Lütkepohl (2005)). There are many extensions of multivariate GARCH models (MGARCH)
with many approaches because the specification of the GARCH model does not suggest a natural
extension to the multivariate framework. See for instance Bauwens et al. (2006) for a survey on
MGARCH models. See also Silvennoinen and Teräsvirta (2009) and Bauwens et al. (2012) for recent
surveys on MGARCH processes. The MGARCH model with conditional constant correlation (CCC-
GARCH) introduced by Bollerslev (1990) and extended by Jeantheau (1998), seems to be one of the
most popular models used to model multivariate financial series. Francq and Zakoïan (2012) proposed
an asymmetric CCC-GARCH (CCC-AGARCH) model that includes the CCC-GARCH introduced by
Bollerslev (1990) and its generalization by Jeantheau (1998). In all this work, we use the following
notation uv := (uv11 , . . . , uvdd )′ for u, v ∈ R

d, and x+ = max(0, x) and x− = max(0,−x). We consider
the asymmetric power GARCH model with constant conditional correlation (CCC-APGARCH(p, q) for
short) proposed by Boubacar Maïnassara et al. (2022) and defined by
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where εt = (ε1,t, . . . , εd,t)
′ is a d-dimensional process, h0t = (h1,0t, . . . , hd,0t)

′, hi,0t is the conditional

variance of εi,t = h
1/2
i,0tηi,t for i = 1, . . . , d,

ε+t =
(

{ε+1,t}2, . . . , {ε+d,t}2
)′

ε−t =
(

{ε−1,t}2, . . . , {ε−d,t}2
)′

,

ω0 and δ0 are vectors of size d×1 with strictly positive coefficients, A+
0i, A

−
0i and B0j are matrices of size

d × d with positive coefficients and R0 is a correlation matrix and where the innovation process (ηt)t
is an independent and identically distributed (iid for short) sequence of variables on R

d with identity
covariance matrix and E[ηt] = 0. The parameters of the model are the coefficients of the vectors ω0, δ0,
the coefficients of the matrices A+

0i, A
−
0i, B0j and the coefficients in the lower triangular part excluding

the diagonal of the matrix R0.
Model (1.1) includes various GARCH class models: for δ0 = (2, . . . , 2)′, we obtain the CCC-

AGARCH of Francq and Zakoïan (2012); when d = 1 and δ0 = 2, we retrieve the threshold GARCH
(TGARCH) of Rabemananjara and Zakoïan (1993). The asymptotic properties of the quasi-maximum
likelihood (QML) estimation of the model (1.1) are established by Boubacar Maïnassara et al. (2022)
when the power δ0 is assumed to be known or unknown.

As mentioned by Francq and Zakoïan (2012), the attractiveness of the CCC-AGARCH models
follows from their tractability. They mention three main reasons : the number of unknown coefficients
is less than in other specifications and remains tractable in small dimension; the coefficients are easy
to interpret; the conditions ensuring positive definiteness of the conditional variance are simple and
explicit. There is also an advantage concerning the strict stationarity conditions which are explicit
too. In our work, we pass from a constant power CCC-AGARCH to a component-varying power CCC-
AGARCH model. In addition to the theoretical contribution, the numerical illustrations proposed in
Section 5 highlight the value of this work. To be more specific, our study on real dataset proves that a
component-varying power is relevant for the daily exchange rates of the (Dollar,Yen) against the Euro
(see Table 1).

In CCC-APGARCH(p, q) models, the choice of p and q is particularly important because the number
of parameters quickly increases with p and q, which entails statistical difficulties. After identification
and estimation of the MGARCH processes, the next important step in the modeling consists in checking
if the estimated model fits the data satisfactorily. This adequacy checking step allows to validate or in-
validate the choice of the orders p and q. Thus it is important to check the validity of a MGARCH(p, q)
model, for given orders p and q. Based on the residuals empirical autocorrelations, Box and Pierce
(1970) derived a goodness-of-fit test, the portmanteau test, for univariate strong autoregressive moving-
average (ARMA) models (i.e. under the assumption that the error term is iid). Ljung and Box (1978)
proposed a modified portmanteau test which is nowadays one of the most popular diagnostic checking
tools in ARMA modeling of time series. Since the articles by Ljung and Box (1978) and McLeod
(1978), portmanteau tests have been important tools in time series analysis, in particular for testing
the adequacy of an estimated ARMA(p, q) model. See also Li (2004), for a reference book on the
portmanteau tests. The standard portmanteau tests consist in rejecting the adequacy of the model for
large values of some quadratic form of the residuals autocorrelations. These tests cannot be applied di-
rectly to conditional heteroscedasticity or other processes displaying a second order dependence. Indeed
such non-linearities may arise for instance when the observed process follows a GARCH representation.
Consequently Li and Mak (1994) and Ling and Li (1997b) proposed a portmanteau test based on the
autocorrelations of the squared residuals. The intuition behind this portmanteau test is that when
the model is correctly specified, the autocorrelations for squared residuals will be close to zero. Other
situations where the standard tests do not give satisfactory results can also be found for instance in
Relvas and Paula (2016), Cao et al. (2010), Francq et al. (2005), Boubacar Maïnassara and Ilmi Amir
(2020), Boubacar Maïnassara and Saussereau (2018), Boubacar Mainassara (2011).

The asymptotic theory on MGARCH model diagnostic checking is mainly limited to the univariate
framework. As above-mentioned, Li and Mak (1994) and Ling and Li (1997b) studied a portmanteau
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test based on the autocorrelations of the squared residuals. Berkes et al. (2003) developed an asymp-
totic theory of portmanteau tests in the standard GARCH framework, Leucht et al. (2015) suggested a
consistent specification test for GARCH(1, 1) model. Recently, Jiménez-Gamero et al. (2020) proposed
goodness-of-fit tests for certain parametrizations of conditionally heteroscedastic time series with un-
observed components. Francq et al. (2016) proposed a portmanteau test for the Log-GARCH model
and the exponential GARCH (EGARCH) model. For the univariate APGARCH model, a portmanteau
test based on the autocovariances of the squared residuals is developed by Carbon and Francq (2011)
for the APGARCH model when the power δ0 is known and by Boubacar Maïnassara et al. (2021) when
the power δ0 is unknown and is jointly estimated with the other parameters. See also Ben and Jiang
(2020) who recently extended the work of Carbon and Francq (2011) (when δ0 is known and when some
parameters lie on the boundary) to the class of APGARCH with exogenous covariates (APGARCH-X).
In the multivariate analysis, there are a few works. Ling and Li (1997a) proposed portmanteau statistic
for multivariate conditional heteroscedasticity models (see also Duchesne and Lalancette (2003) and
Duchesne and Lalancette (2010)). Duchesne (2004) (see also Duchesne (2010)) introduced the test
which is a direct generalization of the portmanteau test of Li and Mak (1994) to the VEC-GARCH
model. Wang and Tsay (2013) extend Duchesne’s approach to the case of multivariate GARCH models
with Student−t innovations. Recently, Ke et al. (2021) provide a residual-based approach to examine
the adequacy of multivariate GARCH models. Other tests for multivariate ARCH models include those
developed can be found for instance in Kroner and Ng (1998), Tse and Tsui (1999) and Wong and Li
(2002).

Contrary to the univariate APGARCH models, there are no validation tests for the class of the model
(1.1). In this paper we generalize the results obtained by Carbon and Francq (2011), Boubacar Maïnas-
sara et al. (2021) and Ling and Li (1997a) to the CCC-APGARCH(p, q) models defined in (1.1). This
extension raises difficult problems. First, non trivial constraints on the parameters must be imposed
for identifiability of the parameters (see Francq and Zakoïan (2019)). Secondly, the implementation of
standard estimation methods (for instance the Gaussian quasi-maximum likelihood estimation) is not
obvious because this requires a constrained high-dimensional optimization (see also Lütkepohl (2005)).
These technical difficulties certainly explain why univariate GARCH models are much more used than
MGARCH in applied works.

The paper is organized as follows. In Section 2 we recall the results on the quasi-maximum likelihood
estimator (QMLE) and its asymptotic distribution obtained by Boubacar Maïnassara et al. (2022) when
the power δ0 is known or unknown. Section 3 presents our main results which give the asymptotic
theory of the sum of squared residuals autocovariances and autocorrelations for the wide class of CCC-
APGARCH models (1.1) when the power δ0 is known (Section 3.1) and when the power δ0 is unknown
and estimated (Section 3.2). In Section 4 we test the null hypothesis of the CCC-APGARCH model
for different values of δ0 in both cases. Section 5 illustrates the proposed tests for CCC-APGARCH
models applied to a bivariate exchange rates.

2. Quasi-maximum likelihood estimation

When the power δ′0 = (δ0,1, ..., δ0,d) is known, we write

θ := (ω′, α+
1
′
, . . . , α+

q
′
, α−

1
′
, . . . , α−

q
′
, β′

1, . . . , β
′
p, ρ

′)′,

where α+
i and α−

i are defined by α±
i = vec(A±

i ) for i = 1, . . . , q, βj = vec(Bj) for j = 1, . . . , p, and
ρ = (ρ21, . . . ρd1, ρ32, . . . , ρd2, . . . , ρdd−1)

′ such that the ρij ’s are the components of the matrix R. The
parameter θ belongs to the parameter space

Θ ⊂]0,+∞[d×[0,∞[d
2(2q+p)×]− 1, 1[d(d−1)/2 .

The unknown true parameter value is denoted by

θ0 := (ω′
0, α

+
01

′
, . . . , α+

0q
′
, α−

01
′
, . . . , α−

0q
′
, β01

′, . . . , β0p
′, ρ′0)

′.
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Similarly when the power δ = (δ1, ..., δd)
′ is unknown and is jointly estimated with the parameter θ we

denote by ϑ := (θ′, δ′)′. The parameter ϑ belongs to the parameter space

∆ ⊂]0,+∞[d×[0,∞[d
2(2q+p)×]− 1, 1[d(d−1)/2×]0,+∞[d.

The unknown true parameter value is denoted by ϑ0 := (θ′0, δ
′
0)

′, where δ0 = (δ0,1, ..., δ0,d)
′.

2.1. Estimation when the power δ0 is known

The goal is to estimate the s0 = d+ d2(p+ 2q) + d(d− 1)/2 coefficients of the model (1.1). For all
θ ∈ Θ we let Ht = Ht(θ). We assume that Ht is a strictly stationary and non anticipative solution of


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











Ht = DtRDt, Dt = diag
(

√

h1,t, . . . ,
√

hd,t

)

, R = R(θ),

h
δ0/2
t := h

δ0/2
t (θ) = ω +

q
∑

i=1

{

A+
i (ε

+
t−i)

δ0/2 +A−
i (ε

−
t−i)

δ0/2
}

+

p
∑

j=1

Bjh
δ0/2
t−j .

(2.1)

Given a realization (ε1, . . . , εn) of length n satisfying the representation (1.1), the variable Ht can be
approximated for t ≥ 1 by H̃t defined recursively by























H̃t = D̃tRD̃t, D̃t = diag

(

√

h̃1,t, . . . ,

√

h̃d,t

)

h̃
δ0/2
t := h̃

δ0/2
t (θ) = ω +

q
∑

i=1

{

A+
i (ε

+
t−i)

δ0/2 +A−
i (ε

−
t−i)

δ0/2
}

+

p
∑

j=1

Bj h̃
δ/2
t−j ,

conditional to the initial values ε0, . . . , ε1−q, h̃0, . . . , h̃1−p. The quasi-maximum likelihood (QML)
method is particularly efficient for the MGARCH class models because it provides consistent and
asymptotically normal estimator for strictly stationary MGARCH processes under mild regularity con-
ditions (but with no moment assumptions on the observed process). The quasi-maximum likelihood
estimator (QMLE) of model (1.1) is obtained by the standard estimation procedure for MGARCH class
models. Thus the QMLE of θ0 of model (1.1) is defined as any measurable solution θ̂n of

θ̂n = argmin
θ∈Θ

1

n

n
∑

t=1

l̃t(θ), l̃t(θ) = ε′tH̃
−1
t εt + log(det(H̃t)). (2.2)

To ensure the asymptotic properties of the QMLE for model (1.1) obtained by Boubacar Maïnassara
et al. (2022), we need the following assumptions:

A1: θ0 ∈ Θ and Θ is compact.
Now, we rewrite the first equation of (1.1) as

εt = Dtηt, where ηt = (η1,t, . . . , ηd,t)
′ = R

1/2
0 ηt.

Using the third equation of model (1.1), we may write

(ε±t )
δ0/2 = (Υ

±,(δ0)
t )h

δ0/2
0t , with Υ

±,(δ0)
t = diag

(

(±η±1,t)
δ0,1 , . . . , (±η±d,t)

δ0,d
)

.

A2: ∀θ ∈ Θ,det(B0(z)) = 0 ⇒ |z| > 1 for B0(z) = Id −
∑p

j=1B0jz
j and γ(C0) < 0, where γ(·) is

the top Lyapunov exponent of the sequence of matrix C0 = {C0t, t ∈ Z} with the matrix C0t of size
(p+ 2q)d× (p+ 2q)d been defined by

C0t =



















Υ
+,(δ0)
t A+

01:q Υ
+,(δ0)
t A−

01:q Υ
+,(δ0)
t B01:p

Id(q−1) 0d(q−1)×d(p+q+1)

Υ
−,(δ0)
t A+

01:q Υ
−,(δ0)
t A−

01:q Υ
−,(δ0)
t B01:p

0d(q−1)×dq Id(q−1) 0d(q−1)×d(p+1)

A+
01:q A−

01:q B01:p

0d(p−1)×2dq Id(p−1) 0d(p−1)×d



















,
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where the d×qd matrices A+
01:q = (A+

01 . . . A
+
0q), A

−
01:q = (A−

01 . . . A
−
0q) and B01:q = (B01 . . . B0q) ∈ R

d×pd.
A3: For i = 1, . . . , d the distribution of ηit is not concentrated on 2 points and P(ηit > 0) ∈ (0, 1).
A4: For A+

0 (z) =
∑q

i=1A
+
0iz

i and A−
0 (z) =

∑q
i=1A

−
0iz

i if p > 0,A+
0 (1) +A−

0 (1) 6= 0, A+
0 (z),A−

0 (z)
and B0(z) are left-coprime and the matrix

M(A+
0 ,A−

0 ,B0) =

[

a+
q+
1

(1) . . . a+
q+
d

(d)a−
q−
1

(1) . . . a−
q−
d

(d)bp1(1) . . . bpd(d)

]

has full rank d, with q+i = q+i (θ0), q
−
i = q−i (θ0) and pi = pi(θ0) for any value of i, where q+i (θ0),

q−i (θ0), and pi(θ0) denote the maximal degrees for any column i of the matrix operators A+
0 , A−

0 and

B0. We also denote by a+
q+i
(i) the column vector of the coefficients Lq+i , by a−

q−i
(i) the column vector

of the coefficients Lq−i in the column i of A+
0 , respectively A−

0 and by bpi(i) the column vector of the
coefficients Lpi in the column i of B0.

A5: R is a positive-definite correlation matrix for all θ ∈ Θ.

A6: θ0 ∈
◦

Θ, where
◦

Θ is the interior of Θ.
A7: E‖ηtη′t‖2 < ∞.

Then under Assumptions A1–A7, Boubacar Maïnassara et al. (2022) showed that θ̂n → θ0 a.s.
when n goes to infinity and

√
n(θ̂n − θ0) is asymptotically normal with mean 0 and covariance matrix

Ω := J−1IJ−1, where J is a positive-definite matrix and I is a positive semi-definite matrix, defined
by

I := I(θ0) = E

[

∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

]

, J := J(θ0) = E

[

∂2lt(θ0)

∂θ∂θ′

]

with lt(θ) = ε′tH
−1
t εt + log(det(Ht)).

2.2. Estimation when the power δ0 is unknown

Similar to the previous section we have s0 = 2d + d2(p + 2q) + d(d − 1)/2 coefficients of model
(1.1) to estimate. In order to ensure that parameter δ0 is identified we need the following additional
assumption:

A8: ηt has a positive density on some neighbourhood of zero.

For all ϑ ∈ ∆ we let Ht = Ht(ϑ). We assume that Ht is a strictly stationary and non anticipative
solution of























Ht = DtRDt, Dt = diag
(

√

h1,t, . . . ,
√

hd,t

)

ht := ht(ϑ) =



ω +

q
∑

i=1

A+
i (ε

+
t−i)

δ/2 +A−
i (ε

−
t−i)

δ/2 +

p
∑

j=1

Bjh
δ/2
t−j





2/δ

.
(2.3)

Conditionally to the initial values ε0, . . . , ε1−q, h̃0, . . . , h̃1−p, for t ≥ 1 the variable Ht can also be
approximated recursively by



























H̃t = D̃tRD̃t, D̃t = diag

(

√

h̃1,t, . . . ,

√

h̃d,t

)

h̃t := h̃t(ϑ) =



ω +

q
∑

i=1

A+
i (ε

+
t−i)

δ/2 +A−
i (ε

−
t−i)

δ/2 +

p
∑

j=1

Bj h̃
δ/2
t−j





2/δ

.

The QMLE of ϑ0 is defined as any measurable solution ϑ̂n of

ϑ̂n = argmin
ϑ∈∆

1

n

n
∑

t=1

ℓ̃t(ϑ), ℓ̃t(ϑ) = ε′tH̃−1
t εt + log(det(H̃t)). (2.4)
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To ensure the asymptotic properties of the QMLE of ϑ0 for model (1.1) obtained by Boubacar Maïnas-
sara et al. (2022), we need assumptions similar to those we assumed in the case when the power δ0 is
known. We will assume Assumptions A1–A6 with parameter θ replaced by ϑ and the space parameter
Θ replaced by ∆.

Under Assumptions A1–A8 Boubacar Maïnassara et al. (2022) showed that ϑ̂n → ϑ0 a.s. when
n goes to infinity and

√
n(ϑ̂n − ϑ0) is asymptotically normal with mean 0 and covariance matrix

Ω := J−1IJ−1, where J is a positive-definite matrix and I is a positive semi-definite matrix, defined
by

I := I(ϑ0) = E

[

∂ℓt(ϑ0)

∂ϑ

∂ℓt(ϑ0)

∂ϑ′

]

, J := J (ϑ0) = E

[

∂2ℓt(ϑ0)

∂ϑ∂ϑ′

]

with ℓt(ϑ) = ε′tH−1
t εt+log(det(Ht)).

In all the sequel we denote by
d−→ the convergence in distribution. The symbol oP(1) is used for a

sequence of random variables that converge to zero in probability.

3. Diagnostic checking with portmanteau tests

To check the adequacy of a given multivariate time series model, for instance for an estimated
VARMA(p, q) model, it is common practice to test the significance of the multivariate residuals auto-
covariances. In the MGARCH framework this approach is not relevant because the process ηt is always
a white noise (possibly a martingale difference) even when the volatility is misspecified. For this reason
the following portmanteau test is based on the squared residuals autocovariances. The null hypothesis
is

H0 : the process (εt) satisfies model (1.1).

3.1. Portmanteau test when the power δ0 is known

Let η̂t = η̃t(θ̂n) = H̃
−1/2
t (θ̂n)εt = Ĥ

−1/2
t εt be the QMLE residuals when p + q > 0 and where

η̃t(θ) = H̃
−1/2
t (θ)εt.

We define the autocovariances of the sum of squared residuals at lag h > 0, for h < n, by

r̂h = r̃h(θ̂n) where r̃h(θ) =
1

n

n
∑

t=h+1

[Tr(s̃t(θ))][Tr(s̃t−h(θ))] with s̃t(θ) = η̃t(θ)η̃
′
t(θ)− Id

=
1

n

n
∑

t=h+1

[η̃′t(θ)η̃t(θ)− d][η̃′t−h(θ)η̃t−h(θ)− d]

=
1

n

n
∑

t=h+1

[ε′tH̃
−1
t (θ)εt − d][ε′t−hH̃

−1
t−h(θ)εt−h − d].

Similarly we define the "empirical" autocovariances of the sum of squared white noise at lag h by

rh = rh(θ0) where rh(θ) =
1

n

n
∑

t=h+1

[Tr(st(θ))][Tr(st−h(θ))],

with st(θ) = ηt(θ)η
′
t(θ)−Id and ηt(θ) = H

−1/2
t (θ)εt. It should be noted that rh is not a statistic (unless

if p = q = 0) because it depends on the unobserved innovations ηt.
For a fixed integer m ≥ 1 and in the sequel we will also need these following vectors:

r̂m = (r̂1, . . . , r̂m)′ and rm = (r1, . . . , rm)′ , such that 1 ≤ m ≤ n.

To ensure the invertibility of the asymptotic covariance matrix of the vector of the sum of squared
residuals autocovariances we need the following technical assumption on the distribution of ηt.

6



A9: For d ≥ 2, ηt takes more than 3(d+1) positive values and more than 3(d+1) negative values.
Let St−1:t−m = (St−1, . . . , St−m)′, where St = η′tηt − d. The following theorem gives the asymptotic

distribution of the vector of the sum of squared residuals autocovariances.

Theorem 3.1. Under Assumptions A1–A7 and A9, if εt is the non-anticipative and stationary solu-
tion of the CCC-APGARCH(p, q) model defined in (1.1), then we have

√
nr̂m

d−−−→
n→∞

N (0,D), where D =
(

E
[

S2
t

])2
Im +CmJ−1IJ−1C ′

m + CmΣθ̂n,rm
+Σ′

θ̂n,rm
C ′
m

is a non-singular matrix and where Σθ̂n,rm
= E

[

J−1
h
′
tvec(ηtη

′
t − Id)StS

′
t−1:t−m

]

and the matrix Cm is

given by (6.10) in the proof of Theorem 3.1.

The proof of Theorem 3.1 is postponed to Section 6.

Remark 3.1. When we assume that: E(η3it) = 0, for i,= 1, . . . , d; for i, j ∈ {1, . . . , d} and i 6= j, ηit
and ηjt are mutually uncorrelated up to the fourth order and ηit’s have the same fourth order moment,
we have: E

[

S2
t

]

= d
(

E
[

η4it
]

− 1
)

and Σθ̂n,rm
= −

(

E
[

η4it
]

− 1
)

J−1C ′
m. Thus we obtain

D = d2
(

E
[

η4it
]

− 1
)2

Im +Cm

(

J−1IJ−1 − 2
(

E
[

η4it
]

− 1
)

J−1
)

C ′
m.

Therefore we retrieve the well-known result obtained by Ling and Li (1997a).

The above theorem is useless for practical purpose because it does not involve any observable quantities.
In order to state our second result we need to define a consistent estimator of the asymptotic matrix
D (see Theorem 3.1).

In view of Boubacar Maïnassara et al. (2022) the matrices I and J can be estimated by their
empirical or observable counterparts given by

Î(i, j) =
1

n

n
∑

t=1

[

Tr

(

(

Ĥ−1
t − Ĥ−1

t εtε
′
tĤ

−1
t

) ∂Ĥt

∂θi

)

Tr

(

(

Ĥ−1
t − Ĥ−1

t εtε
′
tĤ

−1
t

) ∂Ĥt

∂θj

)]

and Ĵ(i, j) =
1

n

n
∑

t=1

[

Tr

(

Ĥ−1
t

∂Ĥt

∂θj
Ĥ−1

t

∂Ĥt

∂θi

)]

, for i, j = 1, . . . , s0.

Let Σ̂θ̂n,rm
and Ĉm be weakly consistent estimators of Σθ̂n,rm

and Cm involved in the asymptotic

normality of
√
nr̂m. Define the matrix Ĉm of size m× s0 whose (h, i)−th element is given by

Ĉm(h, i) = − 1

n

n
∑

t=h+1

Ŝt−hTr

(

Ĥ−1
t

∂H̃t(θ̂n)

∂θi

)

for 1 ≤ h ≤ m and 1 ≤ i ≤ s0,

where Ŝt = ε′tĤ
−1
t εt−d. The matrix Σθ̂n,rm

can be estimated by its empirical or observable counterpart
given by

Σ̂θ̂n,rm
=

1

n

n
∑

t=1

Ĵ−1
ĥ
′
tvec(η̂tη̂

′
t−d)ŜtŜ

′
t−1:t−m where ĥt(i) = vec

(

Ĥ
−1/2
t

∂H̃t(θ̂n)

∂θi
Ĥ

−1/2
t

)

for 1 ≤ i ≤ s0.

Let D̂ = κ̂2Im + ĈmĴ−1Î Ĵ−1Ĉ ′
m + ĈmΣ̂θ̂n,rm

+ Σ̂′

θ̂n,rm
Ĉ ′
m and κ̂ = n−1

∑n
t=1 Ŝ

2
t be weakly consistent

estimators of the matrix D and E
[

S2
t

]

.
The above quantities are now all observable, we are able to state our second theorem which gives

the asymptotic distribution for quadratic forms of the autocovariances.
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Theorem 3.2. Under the assumptions of Theorem 3.1 and H0, we have

nr̂′mD̂−1
r̂m

d−−−→
n→∞

χ2
m.

The proof of Theorem 3.2 is postponed to Section 6.

Remark 3.2. If we focuse on the following alternative hypothesis

H1 : the process (εt) does not admit the representation (1.1) with parameter θ0,

at least one r0h = E[(η′tηt − d)(η′t−hηt−h − d)] 6= 0 under H1. One may prove that under H1

r̂
′
mD̂−1

r̂m
P−−−→

n→∞
r
0
m

′
D−1

r
0
m

where the vector r
0
m = (r01 , . . . , r

0
m)′. Therefore the test statistic nr̂′mD̂−1

r̂m is consistent in detecting
H1.

The proof of this remark is also postponed to Section 6.
Consider the vector of the first m autocorrelations of the sum of squared residuals

ρ̂m = (ρ̂(1), . . . , ρ̂(m))′ where ρ̂(h) =
r̂h
r̂0

.

Corollary 3.1. Under the assumptions of Theorem 3.2, we have

√
nρ̂m

d−−−→
n→∞

N (0,Dρ̂) where Dρ̂ =
D

(

E [η′tηt − d]2
)2 , (3.1)

nρ̂′mD̂−1
ρ̂ ρ̂m

d−−−→
n→∞

χ2
m where D̂ρ̂ =

D̂
(

1
n

∑n
t=1 [η̂

′
tη̂t − d]2

)2 . (3.2)

The proof of Corollary 3.1 is postponed to Section 6.

Remark 3.3. Under the assumptions of Remark 3.1, we have: E[ε′tH
−1
t εt − d]2 =

(

E
[

η4it
]

− 1
)

d, so

that Dρ̂ = D/
(

E
[

η4it
]

− 1
)2

d2 and D̂ρ̂ = D̂/(κ̂i − 1)2 d2, for i = 1, . . . , d, where κ̂i = n−1
∑n

t=1 η̂
4
it.

The adequacy of the CCC-APGARCH(p, q) model defined in (1.1) is then rejected at the asymptotic
level α when

nr̂′mD̂−1
r̂m > χ2

m(1− α) or nρ̂′mD̂−1
ρ̂ ρ̂m > χ2

m(1− α),

where χ2
m(1−α) represents the (1−α)-quantile of the chi-square distribution with m degrees of freedom.

3.2. Portmanteau test when the power is unknown

The results are close to those given in Section 3.1. It consists to adapt the notations in Section 3.1
by replacing θ0 (resp. θ̂n) by ϑ0 (resp. ϑ̂n) and Ht (resp. H̃t) by Ht (resp. H̃t).

To establish the asymptotic distribution of the portmanteau test statistic, when δ0 is unknown,
Assumption A9 is replacing by

A9’ : For d ≥ 2, ηt takes more than 11d+1 positive values and more than 11d+1 negative values.

Theorem 3.3. Under Assumptions A1–A8 and A9’, if εt is the non-anticipative and stationary so-
lution of the CCC-APGARCH(p, q) model defined in (1.1), then we have

√
nr̂m

d−−−→
n→∞

N (0,D), where D =
(

E
[

S2
t

])2
Im + CmJ−1IJ−1C′

m + CmΣϑ̂n,rm
+Σ′

ϑ̂n,rm
C′
m

is a non-singular matrix and where the matrix Cm is given by (6.29) in the proof of Theorem 3.3.
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The proof of Theorem 3.3 is postponed to Section 6.
In view of Boubacar Maïnassara et al. (2022) the matrices I and J can be estimated by

Î(i, j) = 1

n

n
∑

t=1

[

Tr

(

(

Ĥ−1
t − Ĥ−1

t εtε
′
tĤ−1

t

) ∂Ĥt

∂ϑi

)

Tr

(

(

Ĥ−1
t − Ĥ−1

t εtε
′
tĤ−1

t

) ∂Ĥt

∂ϑj

)]

and Ĵ (i, j) =
1

n

n
∑

t=1

[

Tr

(

Ĥ−1
t

∂Ĥt

∂ϑj
Ĥ−1

t

∂Ĥt

∂ϑi

)]

, for i, j = 1, . . . , s0.

Let Ŝt = ε′tĤ−1
t εt − d and define the matrix Ĉm of size m× s0 whose (h, i)−th element is given by

Ĉm(h, i) = − 1

n

n
∑

t=h+1

Ŝt−hTr

(

Ĥ−1
t

∂H̃t(ϑ̂n)

∂ϑi

)

for 1 ≤ h ≤ m and 1 ≤ i ≤ s0.

The matrix Ĉm is a weakly consistent estimator of Cm. The matrix Σϑ̂n,rm
can also be estimated by

Σ̂ϑ̂n,rm
=

1

n

n
∑

t=1

Ĵ−1
ĥ
′
tvec(η̂tη̂

′
t−d)ŜtŜ

′
t−1:t−m where ĥt(i) = vec

(

Ĥ−1/2
t

∂H̃t(ϑ̂n)

∂ϑi
Ĥ−1/2

t

)

for 1 ≤ i ≤ s0.

Let D̂ = κ̂2Im + ĈmĴ −1ÎĴ −1Ĉ′
m + ĈmΣ̂ϑ̂n,rm

+ Σ̂′

ϑ̂n,rm
Ĉ′
m be a weakly consistent estimator of D.

We are able to state the second theorem of this section which gives the asymptotic distribution for
quadratic forms of the sum of squared residuals autocovariances.

Theorem 3.4. Under the assumptions of Theorem 3.3 and H0, we have

nr̂′mD̂−1
r̂m

d−−−→
n→∞

χ2
m.

The proof of Theorem 3.4 is postponed to Section 6.

Remark 3.4. If we focuse on the following alternative hypothesis

H1 : the process (εt) does not admit the representation (1.1) with parameter ϑ0,

at least one r0h = E[(η′tηt − d)(η′t−hηt−h − d)] 6= 0 under H1. One may prove that under H1

r̂
′
mD̂−1

r̂m
P−−−→

n→∞
r
0
m

′D−1
r
0
m.

Therefore the test statistic nr̂′mD̂−1
r̂m is consistent in detecting H1.

The proof of this remark is similar to that of Remark 3.2 and is omitted.

Corollary 3.2. Under the assumptions of Theorem 3.4, we have

√
nρ̂m

d−−−→
n→∞

N (0,Dρ̂) where Dρ̂ =
D

(

E [η′tηt − d]2
)2 , (3.3)

nρ̂′mD̂−1
ρ̂ ρ̂m

d−−−→
n→∞

χ2
m where D̂ρ̂ =

D̂
(

1
n

∑n
t=1 [η̂

′
tη̂t − d]2

)2 . (3.4)

The proof of Corollary 3.2 is postponed to Section 6.
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Remark 3.5. In view of Remark 3.3, we have: Dρ̂ = D/
(

E
[

η4it
]

− 1
)2

d2 and D̂ρ̂ =

D̂/(κ̂i − 1)2 d2, for i = 1, . . . , d.

The adequacy of the CCC-APGARCH(p, q) model, define in (1.1) is then rejected at the asymptotic
level α when

nr̂′mD̂−1
r̂m > χ2

m(1− α) or nρ̂′mD̂−1
ρ̂ ρ̂m > χ2

m(1− α).

In view of Corollary 3.1 (resp. Corollary 3.2) for any 1 ≤ h ≤ m, a 100(1 − α)% confidence region for
ρ(h) is given by

−uα
D̂ρ̂(h, h)√

n
≤ ρ̂(h) ≤ uα

D̂ρ̂(h, h)√
n

(

resp. − uα
D̂ρ̂(h, h)√

n
≤ ρ̂(h) ≤ uα

D̂ρ̂(h, h)√
n

)

where uα denotes the quantile of order 1− α of the N (0, 1) distribution.

4. Numerical illustration

By means of Monte Carlo experiments we investigate the finite sample properties of the tests
introduced in this paper. The numerical illustrations are made with the free statistical software RStudio
(see https://www.rstudio.com).

We generate a bivariate CCC-APGARCH(0, 1) model (Model (1.1) with p = 0 and q = 1)















εt = H
1/2
0t ηt,

H0t = D0tR0D0t, D0t = diag(
√

h1,0t,
√

h2,0t),

h
δ0/2
0t = ω0 +A+

01(ε
+
t−1)

δ0/2 +A−
01(ε

−
t−1)

δ0/2,

(4.1)

for different values of δ0 ∈ {(1, 1), (0.8, 1.5), (2, 2), (3, 2.5)} and where h0t = (h1,0t, h2,0t)
′, ε+t =

(

{ε+1,t}2, {ε+2,t}2
)′

and ε−t =
(

{ε−1,t}2, {ε−2,t}2
)′

. The innovation process (ηt) is defined by

(

η1,t
η2,t

)

∼ IIDN (0, I2).

Considering other distributions for ηt does not affect the conclusion.
The coefficients of the data generating process (DGP for short) in (4.1) are chosen such that As-

sumption A2 holds. The coefficient ω0 is a vector of size 2 × 1, A+
01, A

−
01 and R0 are matrices of size

2× 2 taken as:

ω0 =

(

0.2
0.3

)

, R0 =

(

1 0.7
0.7 1

)

and



















A+
01 =

(

0.25 0.10
0.10 0.15

)

, A−
01 =

(

0.45 0.25
0.25 0.35

)

, if A−
01 6= A+

01

A+
01 = A−

01 =

(

0.45 0.25
0.25 0.35

)

, if A−
01 = A+

01.

(4.2)

We simulated N = 1, 000 independent replications of size n = 250, n = 500 and n = 2, 000 of Model
(4.1) with coefficients (4.2).

For each of these N replications of model (4.1), we use the QMLE method to estimate the coefficient
θ0 ∈ R

11 when the power is known (resp. ϑ0 ∈ R
13 when the power is unknown). After estimating

the model considered we apply portmanteau test to the sum of squared residuals for different values of
m ∈ {1, . . . , 12}, where m is the number of autocorrelations used in the portmanteau test statistic.

We use in the following tables 3 nominal levels α = 1%, 5% and 10%. For these nominal levels, the
empirical relative frequency of rejection size over the N independent replications should vary respec-
tively within the confidence intervals [0.3%, 1.7%], [3.6%, 6.4%] and [8.1%, 11.9%] with probability 95%
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and [0.3%, 1.9%], [3.3%, 6.9%] and [7.6%, 12.5%] with probability 99% under the assumption that the
true probabilities of rejection are respectively α = 1%, α = 5% and α = 10%.

We repeat the same experiments to examine the empirical power of the proposed test for the null
hypothesis of a bivariate CCC-APGARCH(0, 1) model of the form (4.1) against the following bivariate
CCC-APGARCH(1, 1) alternative defined by















εt = H
1/2
0t ηt,

H0t = D0tR0D0t, D0t = diag(
√

h1,0t,
√

h2,0t),

h
δ0/2
0t = ω0 +A+

01(ε
+
t−1)

δ0/2 +A−
01(ε

−
t−1)

δ0/2 +B01h
δ0/2
0t−1,

(4.3)

where the matrices ω0, A
+
01, A

−
01 and R0 are given by (4.2) and B01 =

(

0.43 0.1
0.1 0.42

)

.

4.1. When the power is known

Table 2 (resp. Table 3) displays the empirical relative frequencies of rejection over the N independent
replications for the 3 nominal levels α = 1%, 5% and 10% when the DGP is the APGARCH(0, 1) model
(4.1)–(4.2) with A+

01 = A−
01 (resp. with A+

01 6= A−
01).

As expected, Tables 2 and 3 show that the percentages of rejection belong to the confidence interval
with probability 95% and 99%. Thus the type I error is better controlled.

In term of power performance, we investigate two experiments given in the following tables:
Table 4 displays (in %) the empirical power of the proposed test for the null hypothesis of the

CCC-APGARCH(0, 1) model defined by (4.1)–(4.2) with δ0 = (1, 1) against the alternative given by
(4.1)–(4.2) when δ0 6= (1, 1).

Table 5 displays also (in %) the empirical power of the proposed test for the null hypothesis of a
bivariate CCC-APGARCH(0, 1) model of the form (4.1) against the bivariate CCC-APGARCH(1, 1)
alternative given by (4.3) when δ0 is known.

We draw the conclusion that:

a) in the first experiment given in Table 4, the portmanteau tests are more disappointing since they
fail to detect some alternatives of the form δ0 6= (1, 1) when the null is δ0 = (1, 1), except for
δ0 ≥ (2, 2) when n increases.

b) Whereas the second experiment given in Table 5 reveals that the portmanteau tests are much
more powerful to detect wrong values of the order (p, q) even when n is small.

4.2. When the power is unknown

In this case, the power δ0 is jointly estimated with the parameter θ0. As in the case where δ0
is known, Table 6 (resp. Table 7) displays the empirical relative frequencies of rejection over the
N independent replications for the 3 nominal levels α = 1%, 5% and 10% when the DGP is the
APGARCH(0, 1) model (4.1)–(4.2) with A+

01 = A−
01 (resp. with A+

01 6= A−
01). Even in this case, Tables

6 and 7 show that the percentages of rejection belong to the confidence interval with probability 95%
and 99%. Thus the type I error is better controlled. In term of power performance, Table 8 shows that
the powers of the test are quite satisfactory even when n is small.

5. Adequacy of CCC-APGARCH models for real datasets

We consider the daily return of two exchange rates EUR/USD (Euros Dollar) and EUR/JPY (Euros
Yen). The observations covered the period from January 4, 1999 to March 9, 2021 which correspond to
n = 5, 679 observations. The data were obtained from the website of the European Central Bank
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(http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html). On these series, several CCC-
APGARCH(p, q) models of the form (1.1) have been estimated by QML. For each estimated model, we
apply the portmanteau tests proposed in Section 3 to the sum of squared residuals for different values
of m ∈ {1, . . . , 12} to test the adequacy of CCC-APGARCH models.

Table 1 displays the p−values for adequacy of the CCC-APGARCH(p, q) models for daily returns
of exchange rates based on m squared residuals autocovariances, as well as the true and estimated
powers (denoted δ0 and δ̂) and the likelihood. When δ0 is known, the two corresponding models with
δ0 = (1, 1) and δ0 = (2, 2) have the same number of parameters so it makes sense to prefer the model
with the higher likelihood (the likelihood is given in the last column of Table 1). According to this
criterion, the Log−likelihood of the preferred model is given in bold face (see Table 1).

Table 1 shows that the CCC-APGARCH(0, q) models (for q = 1, 2, 3) are generally rejected
whereas the CCC-APGARCH(p, q) models are not generally rejected and seem more appropriate.
When δ0 is known, the CCC-APGARCH(1, 1) and CCC-APGARCH(2, 1) models seem to be rele-
vant for εt = (USDt, JPYt)

′. In contrast, when δ0 is estimated, the CCC-APGARCH(2, 1) and CCC-
APGARCH(2, 2) models seem to be relevant for εt.

From the second last column of Table 1, we can also see that the estimated power δ̂ is not necessary
equal to 1 or 2 and is different for each model.

The portmanteau test is thus an important tool in the validation process. From the empirical results
and the simulation experiments, we draw the conclusion that the proposed portmanteau tests based on
the sum of squared residuals of a CCC-APGARCH(p, q) controls well the error of first kind at different
asymptotic level α and is efficient to detect a misspecification of the order (p, q).
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Table 1: Portmanteau test p−values for adequacy of the CCC-APGARCH(p, q) models for daily returns of
exchange rates of the (Dollar,Yen), based on m of the sum of squared residuals autocovariances.

Lag m
δ0 or δ̂ Log-lik

Currency 1 2 3 4 5 6 7 8 9 10 11 12

Portmanteau tests for adequacy of the CCC-APGARCH(0, 1) when δ0 is known
(USD,JPY) 0.880 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1, 1) -0.1295

(USD,JPY) 0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (2, 2) -0.1291

Portmanteau tests for adequacy of the CCC-APGARCH(0, 2) when δ0 is known
(USD,JPY) 0.401 0.520 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1, 1) -0.1827
(USD,JPY) 0.492 0.045 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (2, 2) -0.1844

Portmanteau tests for adequacy of the CCC-APGARCH(0, 3) when δ0 is known
(USD,JPY) 0.496 0.683 0.372 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1, 1) -0.2002
(USD,JPY) 0.600 0.114 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (2, 2) -0.2010

Portmanteau tests for adequacy of the CCC-APGARCH(1, 1) when δ0 is known
(USD,JPY) 0.118 0.214 0.362 0.074 0.022 0.027 0.039 0.063 0.064 0.039 0.035 0.042 (1, 1) -0.3410

(USD,JPY) 0.280 0.479 0.677 0.232 0.110 0.146 0.216 0.254 0.207 0.159 0.159 0.140 (2, 2) -0.3406

Portmanteau tests for adequacy of the CCC-APGARCH(2, 1) when δ0 is known
(USD,JPY) 0.164 0.279 0.322 0.160 0.092 0.067 0.072 0.099 0.047 0.020 0.009 0.014 (1, 1) -0.2492
(USD,JPY) 0.337 0.595 0.545 0.260 0.092 0.073 0.114 0.145 0.135 0.124 0.128 0.169 (2, 2) -0.2858

Portmanteau tests for adequacy of the CCC-APGARCH(1, 2) when δ0 is known
(USD,JPY) 0.402 0.082 0.151 0.180 0.081 0.064 0.091 0.139 0.086 0.062 0.030 0.046 (1, 1) -0.2402
(USD,JPY) 0.610 0.082 0.102 0.025 0.013 0.004 0.007 0.008 0.006 0.009 0.013 0.007 (2, 2) -0.2937

Portmanteau tests for adequacy of the CCC-APGARCH(2, 2) when δ0 is known
(USD,JPY) 0.166 0.191 0.206 0.102 0.079 0.060 0.083 0.116 0.076 0.045 0.032 0.047 (1, 1) -0.2559
(USD,JPY) 0.152 0.205 0.333 0.077 0.040 0.020 0.027 0.038 0.012 0.012 0.012 0.012 (2, 2) -0.3062

Portmanteau tests for adequacy of the CCC-APGARCH(0, 1) when δ0 is unknown
(USD,JPY) 0.518 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (4.595, 1.201) -0.1321

Portmanteau tests for adequacy of the CCC-APGARCH(0, 2) when δ0 is unknown
(USD,JPY) 0.779 0.102 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1.743, 1.496) -0.1856

Portmanteau tests for adequacy of the CCC-APGARCH(0, 3) when δ0 is unknown
(USD,JPY) 0.952 0.361 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1.245, 1.518) -0.2031

Portmanteau tests for adequacy of the CCC-APGARCH(1, 1) when δ0 is unknown
(USD,JPY) 0.044 0.084 0.167 0.040 0.031 0.046 0.077 0.111 0.118 0.102 0.129 0.087 (2.149, 1.568) -0.3520

Portmanteau tests for adequacy of the CCC-APGARCH(2, 1) when δ0 is unknown
(USD,JPY) 0.115 0.262 0.253 0.134 0.101 0.151 0.207 0.219 0.194 0.234 0.260 0.269 (2.229, 1.578) -0.2756

Portmanteau tests for adequacy of the CCC-APGARCH(1, 2) when δ0 is unknown
(USD,JPY) 0.681 0.288 0.336 0.038 0.018 0.027 0.042 0.035 0.028 0.025 0.032 0.036 (1.618, 4.547) -0.2805

Portmanteau tests for adequacy of the CCC-APGARCH(2, 2) when δ0 is unknown
(USD,JPY) 0.237 0.412 0.407 0.188 0.120 0.176 0.213 0.106 0.070 0.081 0.103 0.097 (0.921, 2.033) -0.2783
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Table 2: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

δ0 Length n Level α Lag m
1 2 3 4 5 6 7 8 9 10 11 12

1% 0.7 0.7 0.7 1.3 1.1 0.7 0.7 0.5 0.6 0.5 0.4 0.4
(1, 1) 250 5% 3.6 4.8 5.3 6.3 6.6 5.2 5.5 4.9 4.6 4.6 4.4 4.0

10% 8.6 9.8 11.4 11.7 11.9 11.2 11.4 10.6 10.0 9.7 9.3 9.7
1% 0.8 0.7 0.7 0.8 1.2 1.4 0.9 1.1 0.9 0.9 0.8 0.8

(1, 1) 500 5% 4.4 4.2 4.3 4.3 4.7 4.3 3.8 3.4 3.3 3.9 3.6 3.6
10% 8.5 9.1 10.3 8.9 9.8 10.2 10.4 9.4 9.3 8.2 8.5 9.0
1% 1.2 1.6 1.4 0.9 0.9 0.7 1.3 1.2 1.2 1.4 1.4 1.4

(1, 1) 2, 000 5% 4.1 4.7 5.3 5.5 6.0 5.6 6.0 5.0 5.1 5.8 5.7 5.3
10% 8.9 9.4 9.7 10.4 10.8 11.1 12.6 10.9 12.1 11.5 11.4 10.6

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.6 0.9 0.5 1.2 0.9 0.8 0.4 0.3 0.5 0.4 0.2 0.3

(0.8, 1.5) 250 5% 2.4 3.9 4.8 5.8 5.0 5.1 5.4 4.3 4.5 3.9 4.0 3.8
10% 8.6 7.7 10.7 10.3 11.1 11.0 10.7 9.6 9.4 9.1 8.4 8.4
1% 0.6 0.5 0.9 0.7 1.1 1.2 1.1 1.0 0.7 0.7 0.8 0.9

(0.8, 1.5) 500 5% 4.2 3.9 3.9 3.9 4.4 4.1 4.3 3.9 3.5 4.7 3.7 4.5
10% 8.4 8.1 9.6 8.3 9.8 9.7 9.7 9.1 9.1 8.5 7.7 8.7
1% 1.1 1.7 1.3 1.4 0.9 0.9 1.5 1.3 1.2 1.5 1.6 1.2

(0.8, 1.5) 2, 000 5% 4.6 4.9 5.4 5.7 5.8 5.6 5.8 5.6 5.5 5.9 6.2 5.2
10% 9.0 10.0 9.0 9.7 10.6 11.2 11.8 11.5 11.2 11.3 10.7 11.1

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.8 0.9 1.2 1.7 1.2 1.7 1.0 0.9 0.8 0.8 0.5 0.6

(2, 2) 250 5% 4.2 6.0 6.7 6.9 6.4 6.7 6.4 5.9 5.7 5.1 4.9 4.6
10% 9.1 11.8 12.3 12.4 12.4 12.2 11.8 11.0 10.5 10.6 10.6 10.0
1% 0.6 0.8 0.8 1.0 1.3 1.1 1.2 1.2 1.1 0.6 0.7 0.8

(2, 2) 500 5% 5.1 5.3 4.9 4.4 5.5 4.6 4.5 3.9 3.8 4.3 4.6 4.4
10% 9.9 10.2 10.2 9.7 9.4 10.2 9.6 9.2 9.2 10.0 8.7 9.7
1% 1.2 1.7 1.3 1.2 1.2 1.1 1.2 1.2 1.4 1.7 1.5 1.6

(2, 2) 2, 000 5% 4.5 5.5 5.7 6.1 6.3 6.5 6.3 5.0 5.9 5.7 5.8 5.4
10% 8.5 9.4 10.9 10.8 10.5 11.2 12.5 11.7 12.2 11.8 11.4 10.5

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.9 0.9 1.2 1.7 1.4 1.8 1.3 1.3 0.9 0.8 0.7 0.6

(3, 2.5) 250 5% 4.7 5.7 6.7 6.9 6.2 6.6 5.9 5.7 5.6 4.9 4.7 4.7
10% 9.6 12.0 11.7 12.6 12.3 12.3 11.2 11.2 9.3 10.5 10.3 8.9
1% 0.6 0.9 0.9 1.0 1.3 1.0 1.1 1.3 1.2 0.6 0.7 0.7

(3, 2.5) 500 5% 5.3 5.3 5.6 4.7 5.7 4.6 4.5 4.1 4.2 4.3 4.6 4.6
10% 11.1 10.4 9.9 10.1 10.0 10.7 9.9 10.1 9.2 9.5 8.9 9.6
1% 1.2 1.6 1.3 1.3 1.1 1.0 1.0 1.3 1.4 1.7 1.6 1.6

(3, 2.5) 2, 000 5% 4.6 4.9 5.8 6.2 6.0 6.4 6.5 5.3 5.5 5.7 5.8 5.2
10% 9.2 9.2 10.5 10.8 10.2 11.1 12.1 12.4 12.2 11.9 11.3 10.8

Model (4.1)–(4.2) with A+

01
= A−

01
when δ0 is known.
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Table 3: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

δ0 Length n Level α Lag m
1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 1.2 0.9 1.6 1.6 0.9 0.8 0.9 0.7 0.5 0.4 0.5
(1, 1) 250 5% 4.1 4.9 6.1 5.9 6.4 5.7 5.7 5.3 4.7 4.2 4.6 4.4

10% 8.7 10.7 12.1 12.5 12.4 11.7 11.4 10.5 11.4 10.2 9.3 9.5
1% 1.1 1.1 1.0 1.0 1.4 1.6 1.1 1.2 1.0 0.8 0.9 1.0

(1, 1) 500 5% 4.8 5.5 5.1 4.6 5.2 4.6 4.5 3.9 4.0 4.3 4.3 4.2
10% 9.6 10.6 11.7 10.9 9.6 10.9 10.6 9.6 9.3 8.9 8.5 9.9
1% 1.2 1.7 1.6 1.4 1.1 1.3 1.5 1.2 1.2 1.5 1.7 1.4

(1, 1) 2, 000 5% 4.4 5.2 5.8 5.1 5.6 5.6 6.4 5.0 6.0 6.3 6.1 5.2
10% 8.7 9.2 10.6 9.7 11.3 11.1 12.2 10.7 11.7 11.9 11.5 11.1

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.5 0.9 1.3 1.3 1.4 1.3 1.0 0.8 0.8 0.5 0.3 0.6

(0.8, 1.5) 250 5% 3.7 4.2 5.1 5.9 6.1 5.5 5.7 5.1 4.6 4.5 4.0 3.9
10% 9.3 9.9 11.6 11.3 11.4 11.6 10.3 10.5 10.5 9.9 9.1 9.0
1% 0.9 0.9 1.2 1.4 1.7 1.5 1.4 1.2 0.9 0.8 0.9 0.9

(0.8, 1.5) 500 5% 4.4 5.2 5.2 4.3 5.1 4.8 4.6 4.3 4.2 4.7 4.8 4.6
10% 9.2 10.6 11.0 10.6 10.2 9.8 9.7 8.8 9.0 9.2 8.3 10.3
1% 1.1 1.5 1.2 1.3 1.7 1.2 1.5 1.3 1.1 1.5 1.8 1.5

(0.8, 1.5) 2, 000 5% 4.9 5.2 5.6 5.3 5.6 6.1 6.1 5.3 6.2 6.3 6.0 5.3
10% 8.5 10.3 10.9 10.1 10.9 10.6 12.1 11.6 11.4 11.7 11.8 10.6

1 2 3 4 5 6 7 8 9 10 11 12
1% 1.2 1.3 1.1 1.7 1.5 1.6 1.2 1.0 0.9 0.7 0.3 0.5

(2, 2) 250 5% 5.6 6.5 7.2 7.5 6.7 6.6 6.4 6.2 5.6 4.9 4.6 4.6
10% 10.2 11.8 13.4 12.7 13.4 13.0 12.3 11.3 11.1 11.6 10.0 10.3
1% 0.7 1.1 0.9 1.2 1.5 1.5 1.3 1.2 1.0 1.0 1.0 1.1

(2, 2) 500 5% 5.8 5.8 5.8 5.0 5.6 5.2 5.2 4.4 3.9 4.7 4.7 5.0
10% 10.5 11.5 11.4 11.4 10.7 11.2 10.5 10.2 10.6 10.0 8.2 9.6
1% 1.3 1.4 1.1 1.2 1.4 1.3 1.3 1.0 1.3 1.6 1.9 1.7

(2, 2) 2, 000 5% 4.5 5.1 5.3 5.0 5.9 6.2 5.9 5.2 6.0 6.1 5.5 5.2
10% 9.3 9.5 10.4 9.9 10.8 10.9 11.6 11.4 11.8 12.1 11.0 10.7

1 2 3 4 5 6 7 8 9 10 11 12
1% 1.4 1.2 1.4 1.7 1.8 1.8 1.6 1.1 1.0 0.8 0.4 0.4

(3, 2.5) 250 5% 5.0 6.7 7.3 7.7 6.5 7.1 6.7 5.9 5.6 5.1 4.9 4.3
10% 9.7 11.8 13.6 12.9 13.1 12.8 11.9 11.5 11.4 11.3 10.5 9.2
1% 1.0 1.1 1.0 1.2 1.4 1.3 1.2 1.2 1.3 1.0 1.0 1.0

(3, 2.5) 500 5% 5.9 6.0 5.5 4.9 5.3 5.0 4.8 4.2 3.8 4.4 4.3 4.6
10% 11.0 10.7 10.9 11.2 10.5 11.3 10.9 9.7 10.2 9.4 8.5 9.6
1% 1.0 1.5 0.9 1.2 1.3 1.2 1.5 1.0 1.3 1.6 1.7 1.8

(3, 2.5) 2, 000 5% 5.0 5.0 5.5 5.6 5.9 6.1 6.6 4.8 5.8 5.8 5.3 5.2
10% 9.9 9.2 10.5 10.2 10.9 10.8 11.2 11.7 12.1 11.8 11.2 10.1

Model (4.1)–(4.2) with A+

01
6= A−

01
when δ0 is known.
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Table 4: Empirical power of the proposed test for the null hypothesis of the CCC-APGARCH(0, 1) model defined
by (4.1) with δ

0
= (1, 1) against the alternative given by (4.1) when δ

0
6= (1, 1).

δ0 Length n Level α Lag m
1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 1.2 0.9 1.6 1.6 0.9 0.8 0.9 0.7 0.5 0.4 0.5
(1, 1) 250 5% 4.1 4.9 6.1 5.9 6.4 5.7 5.7 5.3 4.7 4.2 4.6 4.4

10% 8.7 10.7 12.1 12.5 12.4 11.7 11.4 10.5 11.4 10.2 9.3 9.5
1% 1.1 1.1 1.0 1.0 1.4 1.6 1.1 1.2 1.0 0.8 0.9 1.0

(1, 1) 500 5% 4.8 5.5 5.1 4.6 5.2 4.6 4.5 3.9 4.0 4.3 4.3 4.2
10% 9.6 10.6 11.7 10.9 9.6 10.9 10.6 9.6 9.3 8.9 8.5 9.9
1% 1.2 1.7 1.6 1.4 1.1 1.3 1.5 1.2 1.2 1.5 1.7 1.4

(1, 1) 2, 000 5% 4.4 5.2 5.8 5.1 5.6 5.6 6.4 5.0 6.0 6.3 6.1 5.2
10% 8.7 9.2 10.6 9.7 11.3 11.1 12.2 10.7 11.7 11.9 11.5 11.1

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.5 1.2 1.0 1.6 1.4 1.3 0.8 0.9 0.7 0.7 0.5 0.4

(0.8, 1.5) 250 5% 4.4 5.2 6.3 5.9 5.3 6.4 5.9 5.8 5.3 4.9 4.5 4.7
10% 9.5 10.7 11.4 12.4 12.7 12.4 11.6 11.2 10.3 10.3 10.1 10.0
1% 1.0 1.0 1.1 1.0 1.4 1.5 1.3 1.2 1.0 1.0 0.9 1.1

(0.8, 1.5) 500 5% 5.3 5.2 5.4 5.0 5.3 4.5 4.4 4.1 4.2 4.5 4.5 4.4
10% 10.3 10.5 11.4 11.0 10.8 10.1 10.0 9.2 9.2 10.0 9.2 9.2
1% 1.4 1.5 1.2 1.2 1.7 1.3 1.4 1.4 1.4 1.2 1.4 1.3

(0.8, 1.5) 2, 000 5% 4.8 5.3 5.7 5.5 5.9 6.4 5.8 5.8 6.7 6.3 6.2 6.0
10% 9.9 10.1 11.0 10.5 11.6 11.6 12.1 11.6 11.8 12.9 12.2 11.4

1 2 3 4 5 6 7 8 9 10 11 12
1% 1.8 2.4 1.7 1.9 2.0 1.9 1.5 1.1 0.7 0.6 0.5 0.7

(2, 2) 250 5% 8.4 9.1 9.8 8.6 8.5 7.8 8.0 7.0 5.8 5.8 5.0 5.1
10% 14.8 16.2 16.1 16.1 15.7 16.0 13.7 12.4 13.2 11.8 11.2 10.7
1% 3.1 3.4 3.2 2.7 2.3 2.6 2.8 2.1 1.9 1.9 2.0 1.9

(2, 2) 500 5% 11.1 13.6 11.7 10.8 9.4 9.5 8.1 7.6 7.6 7.6 6.3 7.1
10% 18.8 19.9 19.8 18.6 17.6 16.2 15.9 15.0 14.7 14.0 13.0 14.0
1% 10.3 11.0 9.8 8.3 8.1 6.9 6.4 5.7 5.9 5.5 5.6 4.8

(2, 2) 2, 000 5% 25.4 29.1 25.1 23.0 21.2 19.3 17.9 18.0 17.4 16.6 15.7 14.7
10% 35.8 39.5 36.5 34.5 31.9 30.1 29.7 28.5 27.0 26.2 25.9 26.0

1 2 3 4 5 6 7 8 9 10 11 12
1% 1.9 2.4 1.8 1.7 2.1 2.0 1.6 0.9 0.9 0.6 0.4 0.7

(3, 2.5) 250 5% 8.2 9.7 9.5 9.2 8.2 7.8 7.1 7.1 5.8 5.3 5.3 5.1
10% 15.2 16.7 16.1 16.7 16.0 15.8 14.4 12.7 12.7 12.4 10.6 11.2
1% 3.7 3.6 3.7 2.7 2.5 2.6 2.6 2.5 1.8 2.0 2.2 2.2

(3, 2.5) 500 5% 11.5 13.1 12.3 11.5 9.9 9.8 9.0 8.6 8.4 7.9 7.2 8.1
10% 19.4 21.3 20.3 19.7 17.9 17.1 17.0 16.2 14.9 14.3 14.4 14.5
1% 11.0 12.8 10.9 10.0 9.0 8.2 7.5 7.0 6.8 6.4 6.0 5.4

(3, 2.5) 2, 000 5% 26.3 31.7 28.4 25.7 22.7 21.2 20.5 20.8 19.4 18.3 17.5 17.5
10% 38.7 44.3 40.5 38.0 35.4 33.7 32.6 31.0 29.8 29.4 28.6 27.4

Model (4.1)–(4.2) with A+

01
6= A−

01
when δ0 is known.
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Table 5: Empirical power of the proposed test for the null hypothesis of a bivariate CCC-APGARCH(0, 1) model
of the form (4.1) against the bivariate CCC-APGARCH(1, 1) alternative given by (4.3) when δ

0
is known.

δ0 Length n Level α Lag m
1 2 3 4 5 6 7 8 9 10 11 12

1% 11.1 12.7 21.2 22.6 20.2 16.5 13.5 10.7 9.4 7.1 6.5 5.5
(1, 1) 250 5% 25.0 36.0 49.7 50.5 48.0 44.3 40.3 35.6 32.0 28.9 26.8 24.8

10% 35.1 52.2 66.6 68.9 65.3 61.4 56.7 52.0 48.9 45.9 42.0 39.9
1% 27.6 42.6 65.1 72.4 70.6 66.8 63.7 57.7 52.3 48.8 44.0 39.6

(1, 1) 500 5% 46.1 71.7 89.4 92.2 91.1 90.4 86.7 83.3 80.7 77.0 75.7 72.3
10% 57.8 84.1 94.9 96.3 96.2 95.1 94.0 92.6 89.9 87.6 85.2 83.7
1% 78.0 97.5 99.3 99.6 99.8 99.8 99.8 99.8 99.8 99.7 99.7 99.8

(1, 1) 2, 000 5% 87.9 99.3 99.7 99.9 99.9 99.9 99.9 99.9 99.8 99.8 99.8 99.8
10% 92.3 99.6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

1 2 3 4 5 6 7 8 9 10 11 12
1% 12.5 12.6 18.8 20.4 16.3 13.9 11.6 9.6 7.2 6.2 5.7 5.0

(0.8, 1.5) 250 5% 24.4 34.2 47.1 48.3 46.3 41.2 37.4 32.5 28.0 25.0 24.6 21.7
10% 34.2 49.9 64.1 64.7 62.6 58.6 53.6 50.6 46.6 44.3 40.2 37.2
1% 26.8 37.7 55.9 62.7 61.3 58.3 53.4 47.8 42.4 38.9 34.6 29.1

(0.8, 1.5) 500 5% 45.3 65.9 80.8 86.6 85.3 83.2 80.8 77.6 73.6 70.9 68.7 62.8
10% 55.7 79.4 91.1 93.1 93.0 91.8 89.9 87.8 85.6 83.0 79.9 77.8
1% 71.9 90.9 95.7 97.8 98.2 98.0 98.0 98.1 97.6 97.1 96.6 96.9

(0.8, 1.5) 2, 000 5% 84.4 96.7 98.3 98.8 99.3 99.2 99.2 99.3 99.1 98.7 98.8 98.8
10% 87.4 98.3 98.7 99.3 99.3 99.3 99.3 99.3 99.3 99.3 99.1 99.3

1 2 3 4 5 6 7 8 9 10 11 12
1% 14.6 13.3 21.8 23.6 22.3 19.0 16.3 12.8 10.7 10.4 9.1 7.4

(2, 2) 250 5% 30.4 38.3 53.0 57.0 53.8 49.5 45.5 39.8 36.1 33.2 30.1 27.8
10% 41.7 53.3 68.8 73.2 71.5 67.0 63.4 57.7 54.8 51.6 46.9 44.3
1% 34.9 44.7 66.3 74.0 74.5 72.6 68.2 64.4 59.6 55.9 50.4 45.8

(2, 2) 500 5% 55.1 70.9 88.6 92.3 91.5 90.8 89.1 87.4 85.4 81.9 79.2 77.5
10% 64.4 82.7 94.6 96.2 97.0 96.0 95.3 94.3 92.8 91.1 89.6 87.7
1% 84.6 96.2 98.7 99.4 99.6 99.8 99.8 99.8 99.7 99.7 99.4 99.3

(2, 2) 2, 000 5% 92.9 99.1 99.5 99.8 100.0 99.9 99.8 99.9 99.9 99.9 99.9 99.9
10% 95.0 99.5 99.8 100.0 100.0 100.0 100.0 100.0 99.9 99.9 100.0 100.0

1 2 3 4 5 6 7 8 9 10 11 12
1% 20.1 17.3 23.9 26.3 25.3 22.9 20.2 18.5 16.2 12.7 11.6 9.5

(3, 2.5) 250 5% 41.7 42.2 54.8 57.6 55.7 52.2 49.0 46.3 42.3 39.0 37.8 34.7
10% 51.6 59.0 69.6 73.1 73.1 69.5 67.1 62.9 60.1 57.5 54.0 50.6
1% 45.8 48.3 59.7 66.0 68.8 67.7 66.0 66.0 61.4 58.0 54.7 50.4

(3, 2.5) 500 5% 67.0 71.7 83.4 86.2 87.8 87.7 86.0 86.2 85.0 82.3 80.3 77.5
10% 76.5 82.2 91.4 92.2 93.5 93.7 93.3 92.6 91.9 90.0 89.7 87.9
1% 86.2 91.5 95.4 96.1 96.9 97.7 97.9 97.9 98.1 98.0 97.9 98.2

(3, 2.5) 2, 000 5% 93.2 96.9 98.1 98.3 98.9 98.8 99.0 99.2 99.1 98.8 98.9 98.9
10% 94.6 97.6 98.7 99.0 99.2 99.4 99.5 99.5 99.5 99.4 99.5 99.4

Model (4.3) with A+

01
6= A−

01
when δ0 is known.
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Table 6: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

δ0 Length n Level α Lag m
1 2 3 4 5 6 7 8 9 10 11 12

1% 0.6 1.1 1.0 1.6 1.3 1.0 1.0 1.0 0.6 0.3 0.3 0.5
(1, 1) 250 5% 5.1 5.4 6.1 7.2 6.4 6.4 6.1 5.6 5.5 5.2 4.8 4.8

10% 10.4 10.3 11.4 11.4 12.5 12.3 11.8 10.5 10.1 11.1 10.7 10.5
1% 0.5 0.9 1.1 1.1 1.3 1.0 1.0 1.0 0.9 1.1 0.8 0.7

(1, 1) 500 5% 4.3 4.9 4.1 4.8 4.3 4.8 4.8 4.3 4.5 4.5 4.3 4.3
10% 9.1 10.1 10.2 8.9 9.8 9.5 9.8 10.0 8.9 9.0 9.2 9.9
1% 0.8 1.3 1.1 1.0 1.4 0.8 1.2 1.2 1.4 1.4 1.5 1.1

(1, 1) 2, 000 5% 4.2 4.6 5.9 5.4 5.9 5.8 6.0 5.8 5.3 5.3 5.4 4.7
10% 8.6 9.4 10.7 10.2 10.0 10.6 12.0 11.3 12.2 12.5 11.4 10.5

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.5 0.8 1.3 1.2 0.9 1.0 0.8 0.5 0.6 0.5 0.5 0.5

(0.8, 1.5) 250 5% 5.0 4.9 6.4 7.1 6.8 5.8 5.9 5.4 5.7 4.7 4.8 5.0
10% 9.4 10.4 12.0 13.1 13.0 12.9 12.2 10.5 11.0 10.2 10.0 10.7
1% 0.9 1.1 1.0 1.3 1.5 1.1 1.2 1.2 1.2 0.9 0.8 1.0

(0.8, 1.5) 500 5% 4.4 4.2 4.4 5.2 4.9 4.9 4.8 4.6 4.3 4.7 4.3 4.8
10% 8.2 9.3 9.8 9.9 10.3 10.6 10.1 9.8 9.3 9.5 9.8 10.1
1% 0.9 1.4 1.2 1.2 1.3 0.9 1.3 1.2 1.3 1.6 1.5 1.4

(0.8, 1.5) 2, 000 5% 4.4 5.4 5.6 5.6 6.1 5.4 5.9 6.0 6.3 5.7 6.0 4.9
10% 9.4 9.6 11.2 10.5 10.1 11.7 12.1 11.3 12.0 11.9 11.4 10.8

1 2 3 4 5 6 7 8 9 10 11 12
1% 1.0 1.6 1.6 1.8 2.0 1.6 1.2 1.2 0.8 1.2 1.4 1.0

(2, 2) 250 5% 6.2 8.2 7.0 6.4 4.8 5.6 5.8 5.6 6.2 5.0 5.4 5.8
10% 12.0 13.4 14.4 12.4 10.8 10.8 11.0 10.0 9.6 11.8 11.4 10.6
1% 0.9 0.9 0.9 1.3 1.2 1.1 1.2 1.2 1.0 0.8 0.7 0.9

(2, 2) 500 5% 5.2 5.2 4.9 5.3 5.6 4.5 4.8 4.6 4.2 4.6 4.8 4.8
10% 10.5 10.8 11.0 11.0 10.3 10.8 10.3 10.3 9.7 10.1 9.1 10.9
1% 1.2 1.4 1.1 0.9 1.4 1.1 1.3 1.3 1.4 1.4 1.5 1.6

(2, 2) 2, 000 5% 5.4 5.0 5.2 5.7 6.1 6.4 6.8 5.5 5.8 5.8 5.5 5.9
10% 8.8 10.5 11.1 10.8 10.9 11.2 12.1 11.9 12.8 12.4 11.2 10.8

1 2 3 4 5 6 7 8 9 10 11 12
1% 1.0 2.6 2.0 1.6 1.6 1.8 1.4 1.4 1.2 1.6 1.4 1.0

(3, 2.5) 250 5% 7.4 7.4 8.8 7.4 6.4 6.0 5.6 5.8 5.4 5.2 5.2 5.2
10% 11.8 14.8 13.0 14.4 11.4 12.6 11.6 11.4 10.4 11.4 11.6 10.0
1% 0.8 0.9 0.7 1.1 1.4 1.5 1.4 1.5 1.1 0.9 0.9 1.0

(3, 2.5) 500 5% 4.9 4.9 5.6 5.2 5.8 4.3 4.1 4.7 4.8 4.8 4.8 5.1
10% 11.0 11.0 10.5 10.7 10.9 11.0 11.2 10.1 10.2 9.6 9.5 11.1
1% 1.0 1.4 1.2 1.4 1.0 1.2 1.1 1.4 1.5 1.4 1.6 1.9

(3, 2.5) 2, 000 5% 5.2 4.9 5.5 5.9 6.5 6.4 6.9 5.8 5.9 6.0 6.0 5.9
10% 9.7 10.8 11.4 10.3 10.5 10.7 12.2 12.3 12.9 12.1 11.7 10.8

Model (4.1)–(4.2) with A+

01
= A−

01
when δ0 is unknown.
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Table 7: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

δ0 Length n Level α Lag m
1 2 3 4 5 6 7 8 9 10 11 12

1% 0.7 0.9 1.4 1.9 1.1 1.2 0.8 0.5 0.7 0.4 0.3 0.6
(1, 1) 250 5% 4.2 5.3 5.8 6.6 6.2 5.5 5.9 5.6 5.2 4.7 4.8 4.4

10% 9.1 9.6 12.3 11.3 12.6 13.2 12.0 10.6 11.0 10.5 9.7 9.7
1% 0.5 0.9 1.1 1.0 1.5 1.4 1.3 1.2 1.1 1.1 0.9 0.8

(1, 1) 500 5% 4.6 5.0 4.8 4.8 5.5 5.5 4.8 4.0 4.2 4.5 4.5 4.9
10% 9.7 10.0 10.4 10.4 10.1 10.7 11.0 10.0 9.3 9.6 8.3 9.8
1% 1.5 1.4 1.4 1.2 1.5 1.3 1.6 1.0 1.3 1.8 1.8 1.2

(1, 1) 2, 000 5% 4.5 4.6 5.1 4.9 5.4 5.8 6.1 5.4 5.8 6.1 6.0 5.4
10% 9.4 9.2 10.6 10.4 11.0 10.6 10.9 11.4 11.2 12.0 10.9 10.5

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.5 1.1 1.3 1.7 1.5 1.4 1.1 0.6 0.7 0.8 0.5 0.5

(0.8, 1.5) 250 5% 4.5 5.1 6.2 6.7 5.5 5.7 6.0 5.1 5.0 5.1 4.3 4.4
10% 9.5 10.0 12.1 11.9 12.4 12.7 11.0 10.7 10.0 10.0 9.6 10.0
1% 1.2 1.2 1.1 1.2 1.6 1.4 1.2 1.0 1.1 1.3 1.2 1.0

(0.8, 1.5) 500 5% 5.4 5.7 4.8 5.4 5.7 4.9 5.1 4.4 4.6 4.7 4.9 5.3
10% 10.0 10.3 11.2 10.3 10.8 10.6 11.1 10.0 9.7 9.4 9.1 10.2
1% 1.4 1.3 1.0 1.2 1.8 1.4 1.4 1.3 1.4 1.7 1.9 1.4

(0.8, 1.5) 2, 000 5% 4.5 5.5 5.7 5.8 5.5 5.8 6.9 5.6 6.3 6.0 6.4 5.4
10% 9.2 10.2 11.3 10.6 10.1 11.2 11.3 11.6 12.1 12.2 12.2 10.7

1 2 3 4 5 6 7 8 9 10 11 12
1% 0.8 1.2 1.8 2.0 1.2 1.0 1.0 0.6 0.6 0.6 1.0 0.8

(2, 2) 250 5% 5.0 6.4 6.4 6.4 4.8 4.8 5.4 5.2 5.8 5.4 5.0 5.4
10% 10.6 11.2 13.4 12.4 10.6 10.6 10.4 10.2 10.6 11.6 11.4 10.0
1% 1.0 1.2 1.1 1.2 1.5 1.6 1.8 1.4 1.2 1.3 1.0 0.9

(2, 2) 500 5% 5.1 6.1 5.7 5.8 5.7 5.8 5.8 4.2 4.7 4.6 4.8 5.1
10% 9.8 11.9 12.1 12.4 11.6 11.6 11.1 10.8 10.1 10.0 9.0 9.5
1% 1.1 1.3 1.1 1.2 1.7 1.3 1.7 1.2 1.3 1.8 1.7 1.6

(2, 2) 2, 000 5% 4.8 5.0 5.8 5.5 6.1 5.9 6.1 5.4 5.7 5.5 5.5 5.5
10% 10.2 10.2 10.1 10.6 10.8 11.4 11.3 11.6 12.4 12.3 11.2 10.1

1 2 3 4 5 6 7 8 9 10 11 12
1% 1.0 1.4 1.8 2.0 1.0 1.0 0.8 1.0 0.8 0.8 0.8 1.0

(3, 2.5) 250 5% 6.0 6.4 7.4 6.2 4.2 5.2 6.2 4.2 5.2 5.4 5.6 4.6
10% 11.6 11.8 13.6 12.2 10.2 10.2 10.4 10.6 9.8 10.4 10.2 10.6
1% 1.0 1.1 1.2 1.3 1.5 1.4 1.8 1.8 1.3 1.0 1.1 1.0

(3, 2.5) 500 5% 6.0 6.3 5.4 5.7 5.7 5.3 4.9 4.3 4.0 4.5 4.8 5.1
10% 11.8 12.9 11.6 12.0 12.2 12.2 11.5 11.0 10.6 9.7 9.5 10.3
1% 1.2 1.5 1.1 1.1 1.7 1.4 1.8 1.5 1.4 1.9 1.7 1.7

(3, 2.5) 2, 000 5% 5.1 4.9 5.9 6.0 5.7 6.3 6.6 5.7 5.6 5.9 5.6 5.5
10% 10.8 10.1 10.6 11.0 11.3 10.9 11.4 12.0 12.6 12.0 11.0 10.2

Model (4.1)–(4.2) with A+

01
6= A−

01
when δ0 is unknown.
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Table 8: Empirical power of the proposed test for the null hypothesis of a bivariate CCC-APGARCH(0, 1) model
of the form (4.1) against the bivariate CCC-APGARCH(1, 1) alternative given by (4.3) when δ

0
is unknown.

δ0 Length n Level α Lag m
1 2 3 4 5 6 7 8 9 10 11 12

1% 21.6 19.6 23.8 27.8 23.0 20.4 16.6 13.0 11.2 10.0 9.8 8.2
(1, 1) 250 5% 37.0 43.6 54.6 55.0 50.0 46.4 43.0 39.0 34.8 31.4 30.8 27.8

10% 47.2 56.4 67.2 69.8 68.0 62.4 58.4 54.8 52.2 49.6 45.2 42.2
1% 46.8 53.8 69.2 72.8 71.8 70.2 65.6 60.0 56.2 53.4 46.8 43.4

(1, 1) 500 5% 68.6 77.0 88.6 91.0 91.0 88.8 86.2 83.4 82.0 78.2 75.4 73.2
10% 76.6 87.4 95.2 95.4 96.0 95.4 93.6 92.0 89.4 88.0 86.2 85.8
1% 96.7 99.2 99.6 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 100.0

(1, 1) 2, 000 5% 98.2 99.8 99.9 99.9 99.9 99.9 99.9 99.9 100.0 99.9 100.0 100.0
10% 99.1 100.0 99.9 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0

1 2 3 4 5 6 7 8 9 10 11 12
1% 20.8 17.4 20.8 20.2 18.2 13.6 11.2 10.2 8.0 6.8 6.0 5.0

(0.8, 1.5) 250 5% 38.2 40.6 47.8 48.8 46.8 43.0 37.0 33.6 29.4 24.6 24.4 23.2
10% 49.6 56.2 66.0 66.6 63.2 59.2 53.8 51.0 46.4 43.4 42.0 39.4
1% 47.5 49.2 61.7 65.6 63.2 60.9 55.4 50.1 46.2 41.0 38.7 32.9

(0.8, 1.5) 500 5% 67.5 74.5 84.4 87.5 86.0 83.6 82.4 78.7 75.3 71.7 69.1 65.0
10% 75.5 84.5 92.1 94.0 93.2 92.4 90.4 88.2 86.8 83.4 81.6 79.5
1% 92.8 96.2 98.1 98.7 98.8 98.7 98.5 98.4 98.2 97.8 97.5 97.8

(0.8, 1.5) 2, 000 5% 96.0 98.3 99.0 99.3 99.4 99.4 99.4 99.3 99.2 98.9 99.1 99.2
10% 97.2 99.3 99.3 99.6 99.6 99.5 99.5 99.5 99.5 99.5 99.5 99.5

1 2 3 4 5 6 7 8 9 10 11 12
1% 14.4 17.2 23.2 23.0 22.0 19.0 17.8 15.0 11.6 11.2 8.2 7.2

(2, 2) 250 5% 29.0 38.8 56.8 59.0 55.2 50.4 45.2 43.2 38.0 35.0 32.0 29.0
10% 37.8 57.8 72.2 72.4 71.8 69.2 65.8 59.0 53.8 52.2 48.4 46.4
1% 40.4 51.8 69.8 76.6 76.6 73.6 70.6 65.8 61.6 58.2 52.8 47.6

(2, 2) 500 5% 59.6 76.6 90.0 92.0 91.4 91.8 90.2 87.8 86.0 82.6 79.8 77.6
10% 69.4 86.2 94.8 97.0 95.6 95.8 95.4 94.8 94.2 93.0 91.2 89.4
1% 91.8 98.2 99.0 99.4 99.7 99.7 99.8 99.8 99.8 99.8 99.6 99.5

(2, 2) 2, 000 5% 96.0 99.4 99.7 100.0 100.0 99.9 99.8 99.9 99.9 99.9 99.9 99.9
10% 97.0 99.6 99.9 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 99.9

1 2 3 4 5 6 7 8 9 10 11 12
1% 24.6 24.8 33.2 36.8 36.8 33.2 29.6 26.6 23.2 21.8 19.2 16.4

(3., 2.5) 250 5% 41.0 52.0 62.0 64.4 64.8 62.4 57.0 54.8 50.8 46.8 43.6 43.2
10% 48.8 64.4 72.4 76.2 75.0 75.4 72.8 69.2 68.4 65.2 62.2 60.4
1% 52.8 56.6 67.0 71.6 72.4 70.4 67.4 65.8 63.4 59.2 56.6 55.6

(3., 2.5) 500 5% 66.6 77.8 85.8 87.2 88.6 89.4 88.0 88.2 87.4 84.6 81.6 80.0
10% 74.6 84.6 92.0 92.0 93.6 93.6 93.4 92.8 91.4 91.0 91.2 90.4
1% 90.4 93.7 95.6 96.7 97.7 97.6 97.8 98.0 97.7 98.0 97.8 97.9

(3., 2.5) 2, 000 5% 94.4 96.9 98.3 98.8 98.9 99.0 99.2 99.3 99.1 98.8 99.0 99.0
10% 96.4 98.3 98.9 99.3 99.3 99.4 99.5 99.6 99.3 99.3 99.5 99.5

Model (4.3) with A+

01
6= A−

01
when δ0 is unknown.

6. Appendix : Proofs of the mains results

To prove the main results we need some tools from Boubacar Maïnassara et al. (2022) summarized
in the following lemma.

6.1. Preliminaries

For all θ ∈ Θ, recall that h̃
δ0/2
t (θ) is the strictly stationary and non-anticipative solution of (2.1).

Lemma 6.1. (Boubacar Maïnassara et al. (2022))
Under Assumptions A1-A7 and for s ∈]0, 1[, we have

E‖εδ0/2t ‖s < ∞, E sup
θ∈Θ

‖hδ0/2
0t ‖s < ∞, E sup

θ∈Θ
‖h̃δ0/2

0t ‖s < ∞. (6.1)
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Moreover, there exists K a random constant that depends on the past values of {εt, t ≤ 0} and 0 < ρ < 1
such that

sup
θ∈Θ

∥

∥

∥
h
δ0/2
t (θ)− h̃

δ0/2
t (θ)

∥

∥

∥
≤ Kρt . (6.2)

Thus, for i1 = 1, . . . , d, since min
(

h
δ0,i1/2
i1,t

(θ), h̃
δ0,i1/2
i1,t

(θ)
)

≥ ω = inf
1≤i≤d

ω(i), the mean-value theorem

implies that

sup
θ∈Θ

∣

∣

∣hi1,t(θ)− h̃i1,t(θ)
∣

∣

∣ ≤ 2

δ0,i1
sup
θ∈Θ

max
(

h
1−δ0,i1/2

i1,t
(θ), h̃

1−δ0,i1/2

i1,t
(θ)
)

sup
θ∈Θ

∣

∣

∣h
δ0,i1/2

i1,t
(θ)− h̃

δ0,i1/2
i1,t

(θ)
∣

∣

∣

≤ 2K

δ0,i1

(

sup
θ∈Θ

1

ω

)

sup
θ∈Θ

max
(

hi1,t(θ), h̃i1,t(θ)
)

ρt ≤ Kρt , (6.3)

and similarly

sup
θ∈Θ

∣

∣

∣h
1/2
i1,t

(θ)− h̃
1/2
i1,t

(θ)
∣

∣

∣ ≤ 1

δ0,i1
sup
θ∈Θ

max
(

h
(1−δ0,i1 )/2
i1,t

(θ), h̃
(1−δ0,i1 )/2
i1,t

(θ)
)

sup
θ∈Θ

∣

∣

∣h
δ0,i1/2
i1,t

(θ)− h̃
δ0,i1/2
i1,t

(θ)
∣

∣

∣

≤ K

δ0,i1

(

sup
θ∈Θ

1

ω

)

sup
θ∈Θ

max
(

h
1/2
i1,t

(θ), h̃
1/2
i1,t

(θ)
)

ρt ≤ Kρt . (6.4)

From (6.3) we can deduce that, almost surely, we have

sup
θ∈Θ

∥

∥

∥
Ht(θ)− H̃t(θ)

∥

∥

∥
≤ Kρt, ∀t. (6.5)

Since ‖R−1‖ is the inverse of the eigenvalue of smaller module of R and ‖D̃−1
t ‖ = [mini(h

1/2
ii,t )]

−1 for
i = 1, . . . , d, we have

sup
θ∈Θ

‖H̃−1
t (θ)‖ ≤ sup

θ∈Θ
‖D̃−1

t ‖2‖R−1‖ ≤ sup
θ∈Θ

[

min
i
(ω(i))

]−1

‖R−1‖ ≤ K, (6.6)

by using the fact that R is a positive-definite matrix (see Assumption A5), the compactness of Θ and
the strict positivity of the components of ω. Similarly, we have

sup
θ∈Θ

‖H−1
t (θ)‖ ≤ K. (6.7)

There exists a neighborhood V (θ0) of θ0 ∈
◦

Θ such that: for all r0 ≥ 1, i1 = 1, . . . , d and all i, j =
1, . . . , s1 we have

E sup
θ∈V (θ0)

∣

∣

∣

∣

∣

∣

1

h
δ0,i1/2
i1,t

∂h
δ0,i1/2
i1,t

∂θi
(θ)

∣

∣

∣

∣

∣

∣

r0

< ∞ and E sup
θ∈V (θ0)

∣

∣

∣

∣

∣

∣

1

h
δ0,i1/2
i1,t

∂2h
δ0,i1/2
i1,t

∂θi∂θj
(θ)

∣

∣

∣

∣

∣

∣

r0

< ∞ . (6.8)

In the case where the power is unknown, the vector of parameter becomes ϑ and we replace Ht by Ht

and θ by ϑ. The previous results must be adapted in consequence.

6.2. Proof of Theorem 3.1

We decomposed this proof in following steps.

(i) Asymptotic impact of the unknown initial values on the statistic r̂m.

(ii) Asymptotic distribution of
√
nr̂m.
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(iii) Invertibility of the matrix D.

Recall that

rh(θ) =
1

n

n
∑

t=h+1

[Tr(st(θ))][Tr(st−h(θ))] with st(θ) = ηt(θ)η
′
t(θ)− Id.

=
1

n

n
∑

t=h+1

[η′t(θ)ηt(θ)− d][η′t−h(θ)ηt−h(θ)− d]

=
1

n

n
∑

t=h+1

[ε′tH
−1
t (θ)εt − d][ε′t−hH

−1
t−h(θ)εt−h − d].

(i) Asymptotic impact of the unknown initial values on the statistic r̂m

Let St(θ) = ε′tH
−1
t (θ)εt − d and S̃t(θ) = ε′tH̃

−1
t (θ)εt − d. We observe that

rh(θ)− r̃h(θ) =
1

n

n
∑

t=h+1

(at + bt),

where at = St−h(θ)(St(θ)− S̃t(θ)) and bt = (S̃t−h(θ)− St−h(θ))S̃t(θ). We obtain

|at| =
∣

∣ε′t−hH
−1
t−h(θ)εt−h − d

∣

∣

∣

∣

∣ε′tH
−1
t (θ)(Ht(θ)− H̃t(θ))H̃

−1
t (θ)εt

∣

∣

∣

=
∣

∣Tr(H−1
t−h(θ)εt−hε

′
t−h − Id)

∣

∣

∣

∣

∣
Tr(H−1

t (θ)(Ht(θ)− H̃t(θ))H̃
−1
t (θ)εtε

′
t)
∣

∣

∣

≤ sup
θ∈Θ

(

‖H−1
t (θ)‖‖εt−hε

′
t−h‖+ ‖Id‖

)

(

‖H−1
t (θ)‖‖Ht(θ)− H̃t(θ)‖‖H̃−1

t (θ)‖‖εtε′t‖
)

.

Now using (6.5), (6.6) and (6.7), we have

|at| ≤ Kρt(ε′t−hεt−h + d)ε′tεt

We have the same bound for |bt|. Using the inequality (a + b)s ≤ as + bs, for a, b ≥ 0 and s ∈]0, 1[,
(6.1) and Hölder’s inequality, we have for some s∗ ∈]0, 1[ sufficiently small

E

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

sup
θ∈Θ

|at|
∣

∣

∣

∣

∣

s∗

≤ E

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

sup
θ∈Θ

‖Kρt(εt−hε
′
t−h + Id)εtε

′
t‖
∣

∣

∣

∣

∣

s∗

≤ K

(

1√
n

)s∗ n
∑

t=1

ρts∗ −→
n→∞

0

We deduce
1√
n

n
∑

t=1

sup
θ∈Θ

|at| = oP(1).

We have the same convergence for bt, and for the derivatives of at and bt. Consequently we obtain

√
n‖rm(θ0)− r̃m(θ0)‖ = oP(1), sup

θ∈Θ

∥

∥

∥

∥

∂r(θ)

∂θ′
− ∂r̃(θ)

∂θ′

∥

∥

∥

∥

= oP(1). (6.9)

The unknown initial values have no asymptotic impact on the statistic r̂m.

(ii) Asymptotic distribution of
√
nr̂m

We now show that the asymptotic distribution of
√
nr̂m is deduced from the joint distribution of√

nrm and the QMLE.
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Using (6.9) and a Taylor expansion of rm(·) around θ̂n and θ0, we obtain

√
nr̂m =

√
nr̃m(θ0) +

∂r̃m(θ∗)

∂θ′
√
n(θ̂n − θ0)

=
√
nrm(θ0) +

∂rm(θ∗)

∂θ′
√
n(θ̂n − θ0) + oP(1),

for some θ∗ between θ̂n and θ0. For i, j = 1, . . . , s0 the first and the second derivatives of St(θ) give

∂St(θ)

∂θi
= −Tr

[

H−1
t (θ)εtε

′
tH

−1
t (θ)

∂Ht(θ)

∂θi

]

,

∂2St(θ)

∂θi∂θj
= Tr

[

H−1
t (θ)

∂Ht(θ)

∂θj
H−1

t (θ)εtε
′
tH

−1
t (θ)

∂Ht(θ)

∂θi
−H−1

t (θ)εtε
′
tH

−1
t (θ)

∂2Ht(θ)

∂θi∂θj

+H−1
t (θ)εtε

′
tH

−1
t (θ)

∂Ht(θ)

∂θj
H−1

t (θ)
∂Ht(θ)

∂θi

]

.

In view of (6.8), there exists a neighborhood V (θ0) of θ0 such that

E sup
θ∈V (θ0)

∥

∥

∥

∥

∂2St−h(θ)St(θ)

∂θ∂θ′

∥

∥

∥

∥

< ∞.

For i = 1, . . . , s0, let ht(i) =
[

vec
(

H
−1/2
0t (∂Ht(θ0)/∂θi)H

−1/2
0t

)]

and we define the matrix of size d2×s0,

ht = (ht(1)| . . . |ht(s0)). For a fixed rh, using the previous inequality, Assumption A7, the almost sure
convergence of θ∗ to θ0, a second Taylor expansion and the ergodic theorem, we obtain

∂rh(θ
∗)

∂θi
=

∂rh(θ0)

∂θi
+ oP(1) −→

n→∞
C(h, i) := E

[

St−h
∂St

∂θi

]

= −E

[

St−hTr

(

H−1
0t

∂Ht(θ0)

∂θi

)]

= −E
[

St−hh
′
t(i)vec(Id)

]

,

by the fact E[St∂St−h(θ0)/∂θ] = 0 and using the property Tr(A′B) = (vec(A))′vec(B). Note that
C(h, i) is the (h, i)-th element of the matrix Cm. Consequently we have

∂rm(θ0)

∂θ′
−→
n→∞

Cm := [C(h, i)]1≤h≤m,1≤i≤s0 = −E

[

(St−1:t−m)
(

h
′
tvec(Id)

)′
]

, (6.10)

where St−1:t−m = (St−1, . . . , St−m)′. It follows that

√
nr̂m =

√
nrm + Cm

√
n(θ̂n − θ0) + oP(1). (6.11)

From (6.11) it is clear that the asymptotic distribution of
√
nr̂m is related to the asymptotic behavior

of
√
n(θ̂′n − θ′0, r

′
m)′. We note that

√
n(θ̂n − θ0) = −J−1

(

1√
n

n
∑

t=1

∂lt(θ0)

∂θ

)

,

with lt(θ) = ε′tH
−1
t (θ)εt + log(det(Ht(θ))). The derivatives are recursively calculated with respect to

Ht(θ) for a fixed i = 1, . . . , s0

∂lt(θ0)

∂θi
= Tr

[

(H−1
0t −H−1

0t εtε
′
tH

−1
0t )

∂Ht(θ0)

∂θi

]

= −
[

vec

(

H
−1/2
0t

∂Ht(θ0)

∂θi
H

−1/2
0t

)]′

vec(st) = −h
′
t(i)vec(st).

We then deduce that
∂lt(θ0)

∂θ
=

(

∂lt(θ0)

∂θ1
, . . . ,

∂lt(θ0)

∂θs0

)′

= −h
′
tvec(st).
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Observe that
√
nrm = n−1

n
∑

t=1
St−1:t−mSt. Now we can obtained the asymptotic distribution of

√
n(θ̂′n−

θ′0, r
′
m)′ by applying the central limit theorem to the multivariate martingale difference

{

Υt =
(

{

J−1
h
′
tvec(st)

}′
,St−1:t−mSt

)′

;Fη
t−1 := σ(ηu, u ≤ t)

}

.

The expectation of the distribution is given by

E
[

Υt|Fη
t−1

]

= E





















J−1
h
′
tvec(st)

St−1St
...

St−mSt











∣

∣

∣

∣

∣

∣

∣

∣

∣

Fη
t−1











=











J−1
h
′
tE[vec(st)|Fη

t−1]
St−1E[St|Fη

t−1]
...

St−mE[St|Fη
t−1]











= 0,

because (St−i)i≥1 is measurable with respect to the σ-field Fη
t−1 and E[St] = E[η′tηt] − d = 0 and

E[vec(st)] = vec[E(ηtη
′
t)− Id] = 0. For i = 1, . . . , d, the variance is given by

Ξ := E
[

ΥtΥ
′
t

]

=

(

Σθ̂n
Σθ̂n,rm

Σ′

θ̂n,rm
Σrm

)

=

(

J−1IJ−1
E
[

J−1
h
′
tvec(st)StS

′
t−1:t−m

]

E
[

St−1:t−m (vec(st))
′ SthtJ

−1
] (

E
[

S2
t

])2
Im

)

, (6.12)

which leads to
1√
n

n
∑

t=1

Υt
d−−−→

n→∞
N (0,Ξ).

Using (6.9) and (6.12), the asymptotic distribution of
√
nr̂m gives

√
nr̂m

d−−−→
n→∞

N (0,D),

where D is a matrix defined as follows

D := lim
n→∞

Var(
√
nr̂m) = lim

n→∞
Var(

√
nrm) + Cm

[

lim
n→∞

Var(
√
n(θ̂n − θ0))

]

C ′
m

+ Cm

[

lim
n→∞

Cov(
√
n(θ̂n − θ0),

√
nrm)

]

+
[

lim
n→∞

Cov(
√
n(θ̂n − θ0),

√
nrm)

]

C ′
m

= Σrm + CmJ−1IJ−1C ′
m + CmΣθ̂n,rm

+Σ′

θ̂n,rm
C ′
m.

(iii) Invertibility of the matrix D
Note that by using the relation vec(ABC) = (C ′ ⊗A)vec(B) we can also rewrite ht(i) as follows

ht(i) =

[

vec

(

H
−1/2
0t

∂Ht(θ0)

∂θi
H

−1/2
0t

)]

=
[

H
−1/2
0t ⊗H

−1/2
0t

]

vec

(

∂Ht(θ0)

∂θi

)

= Htdt(i),

where Ht =
[

H
−1/2
0t ⊗H

−1/2
0t

]

and dt(i) = vec (∂Ht(θ0)/∂θi). Thus we define the matrix of size d2×s0,

dt = (dt(1)| . . . |dt(s0)) such that ht = Htdt.

To study the invertibility of the matrix D we write V = St−1:t−mSt −CmJ−1∂lt(θ0)

∂θ
such that

E[V V ′] = E
[

(S2
t )St−1:t−mS

′
t−1:t−m

]

− E

[

(St)St−1:t−m
∂lt(θ0)

∂θ

]

J−1C ′
m

−CmJ−1
E

[

∂lt(θ0)

∂θ
(S′t−1:t−mSt)

]

+ CmJ−1
E

[

∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

]

J−1C ′
m

= Σrm +Σ′

θ̂n,rm
C ′
m + CmΣθ̂n,rm

+ CmJ−1IJ−1Cm.
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We can rewrite the vector V as

V = St−1:t−mSt + CmJ−1
d
′
tH

′
tvec(st).

If the matrix E[V V ′] is singular, then there exist a vector λ = (λ1, . . . , λm)′ not equal to zero such that

λ′V = λ′
St−1:t−mSt + µd′

tH
′
tvec(st) = 0, a.s., (6.13)

with µ = λ′CmJ−1. We have µ 6= 0, else λ′
St−1:t−mSt = 0 almost surely, that implies there exists

j ∈ {1, . . . ,m} such that St−j be mesurable respect to the σ-field {Sr, t−1 ≤ r ≤ t−m} with r 6= t− j.
That is impossible because the St are independent and not degenerated. Consequently (6.13) becomes

µ′
d
′
t =

s0
∑

i=1

µidt(i) =

s0
∑

i=1

µivec

(

∂Ht(θ0)

∂θi

)

=

s0
∑

i=1

µi
∂

∂θi
[(D0t ⊗D0t)vec(R0)] = 0 a.s.,

=

s1
∑

i=1

µi
∂(D0t ⊗D0t)

∂θi
vec(R0) +

s0
∑

i=s1+1

µi(D0t ⊗D0t)
∂vec(R0)

∂θi
= 0 a.s.. (6.14)

Since the vectors ∂vec(R0)/∂θi, i = s1 +1, . . . , s0 are linearly independent, the vector (µs1+1, . . . , µs0)
′

is null and thus Equation (6.14) yields

s1
∑

i=1

µi
∂(D0t ⊗D0t)

∂θi
vec(R0) = 0, a.s.. (6.15)

The rows 1, d + 1, . . . , d2 of the Equation (6.15) yield

s1
∑

i=1

µi
∂ht(θ0)

∂θi
= 0, a.s. (6.16)

We have for i1 = 1, . . . , d and i = 1, . . . , s1

∂hi1,t(θ0)

∂θi
=

∂
(

h
δ0,i1/2
i1,t

)2/δ0,i1

∂θi
(θ0) =

2

δ0,i1
hi1,0t ×

1

h
δ0,i1/2

i1,0t

∂h
δ0,i1/2
i1,t

∂θi
(θ0), (6.17)

where the derivatives involved in (6.17) are defined for all θ ∈ Θ recursively by

∂h
δ0,i1/2
i1,t

(θ)

∂θ
= ct(θ) +

d
∑

i2=1

p
∑

i=1

Bi(i1, i2)
∂h

δ0,i2/2
i2,t−i

∂θ
,

with

ct(θ) =

(

0, . . . , 1, 0, . . . ,
(

ε+i1,t−1

)δ0,i1
, 0, . . . ,

(

ε+id,t−1

)δ0,id
, 0, . . . ,

(

ε+i1,t−q

)δ0,i1
, 0, . . . ,

(

ε+id,t−q

)δ0,id
,

0, , . . . ,
(

ε−i1,t−1

)δ0,i1
, 0, . . . ,

(

ε−id,t−1

)δ0,id
, 0, . . . ,

(

ε−i1,t−q

)δ0,i1
, 0, . . . ,

(

ε−id,t−q

)δ0,id
,

0, , . . . , h
δ0,i1/2
i1,t−1 , 0, . . . , h

δ0,id/2

id,t−1 , 0, . . . , h
δ0,i1/2
i1,t−p , 0, . . . , h

δ0,id/2

id,t−p , . . . , 0
)′

.

(6.18)
The distribution of ηt is non-degenerated, so Equation (6.13) becomes

λ′V = λ′
St−1:t−m + µ′

d
′
H

′
1 = 0, a.s.
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where 1 represents a vector composed by 1 of size d2 × 1. For i1 = 1, . . . , d and in view of (6.17) we
can write

λ′V = λ′
St−1:t−mh

δ0,i1/2

i1,t
(θ0) +

s1
∑

i=1

µ∗
i

∂h
δ0,i1/2
i1,t

(θ0)

∂θi
= 0, a.s. (6.19)

where µ∗
i = 2µi/δ0,i1 .

Denote by Rt a random variable measurable with respect to σ{ηu, u ≤ t} whose value will be
modified along the proof. Thus we write

h
δ0,i1/2

i1,t
(θ0) =

d
∑

i2=1

[

A+
01(i1, i2)(ε

+
i2,t−1)

δ0,i2 +A−
01(i1, i2)(ε

−
i2,t−1)

δ0,i2

]

+Rt−2.

We remind that ε+t = H
1/2
0t η+t and ε−t = H

1/2
0t η−t . We decompose Equation (6.19) in two terms. The

first one of (6.19) can be rewritten

λ′
St−1:t−mh

δ0,i1/2

i1,t
(θ0) =











d
∑

i2=1






A+

01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+A−
01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2
















Rt−2

+











d
∑

i2=1






A+

01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+A−
01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2
















×
(

λ1

d
∑

i=1

η2i,t−1

)

+

(

λ1

d
∑

i=1

η2i,t−1

)

Rt−2 +Rt−2, (6.20)

by using the fact that

λ′
St−1:t−m = λ1St−1 +Rt−2 = λ1

d
∑

i=1

η2i,t−1 +Rt−2.

The second term of (6.19) can also be rewritten as

µ∗′
∂h

δ0,i1/2

i1,t
(θ0)

∂θ
=

d
∑

i2=1

[

µ∗
i1+i2d(ε

+
i2,t−1)

δ0,i2 + µ∗
i1+(i2+q)d2(ε

−
i2,t−1)

δ0,i2

]

+Rt−2

=
d
∑

i2=1






µ∗
i1+i2d





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+µ∗
i1+(i2+q)d2





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2





+Rt−2, (6.21)
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where the vector µ∗ = (µ∗
1, . . . , µ

∗
s1)

′.
Combining the expressions (6.20) and (6.21), Equation (6.13) comes down almost surely to

λ′V =











d
∑

i2=1






A+

01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+A−
01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2
















Rt−2

+











d
∑

i2=1






A+

01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+A−
01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2
















(

λ1

d
∑

i=1

η2i,t−1

)

+

(

d
∑

i=1

η2i,t−1

)

Rt−2

+Rt−2

d
∑

i2=1











d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2





+Rt−2 = 0,

or equivalent to the two equations







d
∑

i2=1

A+
01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2






[

λ1

d
∑

i2=1

(

η+i2,t−1

)2
+Rt−2

]

+Rt−2

d
∑

i2=1





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+Rt−2

d
∑

i2=1

(

η+i2,t−1

)2
+Rt−2 = 0 a.s. (6.22)







d
∑

i2=1

A−
01(i1, i2)





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2






[

λ1

d
∑

i2=1

(

η−i2,t−1

)2
+Rt−2

]

+Rt−2

d
∑

i2=1





d
∑

j1=1

H
1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2

+Rt−2

d
∑

i2=1

(

η−i2,t−1

)2
+Rt−2 = 0 a.s.. (6.23)

When d = 1, from (6.22) and (6.23) we retrieve an equation of the following form obtained by Carbon
and Francq (2011)

f(y) = a|y|δ0+2 + b|y|δ0 + cy2 + d = 0,

which cannot have more than 3 positive roots or more than 3 negative roots, except if a = b = c = d = 0.
When d ≥ 2 and also from (6.22) and (6.23), for a fixed component, we obtain an equation of the

form

f(y) =
d
∑

i=1

ai|y|δ0,i+2 +
d
∑

i=1

bi|y|δ0,i+1 +
d
∑

i=1

ci|y|δ0,i + ay2 + b|y|+ c = 0.

Note that an equation of this form can not have more than 3(d + 1) non negative roots or more than
3(d+ 1) non positive roots for d ≥ 2, except if ai = bi = ci = a = b = c = 0.
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By Assumption A9, Equations (6.22) and (6.23) imply that λ1

[

∑d
i2=1 A

+
01(i1, i2) +A−

01(i1, i2)
]

= 0.

But under the assumption A4, if p > 0, A0(1)
+ + A−

0 6= 0. It is impossible to have A+
01(i1, i) =

A+
01(i1, i) = 0, for all i = 1, . . . , d. Then, there exists an i0 such that A1(i1, i0)

+ +A1(i1, i0)
− 6= 0 and

we then have λ1 = 0.
In the general case, Equation (6.14) necessarily leads

A+
01(i1, i0) +A−

01(i1, i0) = · · · = A+
0q(i1, i0) +A−

0q(i1, i0) = 0, ∀i0, i1 = 1, . . . , d,

that is impossible under the assumption A4 and λ = 0. This is in contradiction with λ′V = 0, almost
surely, that leads that the assumption of non invertibility of matrix D is absurd. ✷

6.3. Proof of Theorem 3.2

The almost sure convergence of D̂ to D as n goes to infinity is easy to show using the consistency
result. We remind the expression of the matrix D

D = Σrm + CmJ−1IJ−1C ′
m +CmΣθ̂n,rm

+Σ′

θ̂n,rm
C ′
m.

The matrix D can be rewritten as
D = Σrm +A+B +B′,

where the matrices A and B are given by

A = (Cm − Ĉm)J−1IJ−1C ′
m + Ĉm(J−1 − Ĵ−1)IJ−1C ′

m + ĈmĴ−1(I − Î)J−1C ′
m

+ ĈmĴ−1Î(J−1 − Ĵ−1)C ′
m + ĈmĴ−1Î Ĵ−1(C ′

m − Ĉ ′
m) + Â,

B = (Cm − Ĉm)Σθ̂n,rm
+ Ĉm(Σθ̂n,rm

− Σ̂θ̂n,rm
) + B̂,

with Â = ĈmĴ−1Î Ĵ−1Ĉ ′
m and B̂ = ĈmΣ̂θ̂n,rm

where Σ̂θ̂n,rm
= − (κ̂i − 1) ĈmĴ−1. Finally we have

D − D̂ = (Σrm − Σ̂rm) + (A− Â) + (B − B̂) + (B′ − B̂′).

For any multiplicative norm we have

‖D − D̂‖ ≤ ‖Σrm − Σ̂rm‖+ ‖A− Â‖+ ‖B − B̂‖+ ‖B′ − B̂′‖.

Observe that

‖A− Â‖ ≤ ‖Cm − Ĉm‖‖J−1‖‖I‖‖J−1‖‖C ′
m‖+ ‖Ĉm‖‖J−1 − Ĵ−1‖‖I‖‖J−1‖‖C ′

m‖
+ ‖Ĉm‖‖Ĵ−1‖‖I − Î‖‖J−1‖‖C ′

m‖+ ‖Ĉm‖‖Ĵ−1‖‖Î‖‖J−1 − Ĵ−1‖‖C ′
m‖

+ ‖Ĉm‖‖Ĵ−1‖‖Î‖‖Ĵ−1‖‖Cm − Ĉm‖,
≤ ‖Cm − Ĉm‖‖J−1‖‖I‖‖J−1‖‖C ′

m‖+ ‖Ĉm‖‖J−1‖‖Ĵ − J‖‖Ĵ‖‖I‖‖J−1‖‖C ′
m‖

+ ‖Ĉm‖‖Ĵ−1‖‖I − Î‖‖J−1‖‖C ′
m‖+ ‖Ĉm‖‖Ĵ−1‖‖Î‖‖J−1‖‖Ĵ − J‖‖Ĵ‖‖C ′

m‖
+ ‖Ĉm‖‖Ĵ−1‖‖Î‖‖Ĵ−1‖‖Cm − Ĉm‖, (6.24)

‖B − B̂‖ ≤ ‖Cm − Ĉm‖‖Σθ̂n,rm
‖+ ‖Ĉm‖‖Σθ̂n,rm

− Σ̂θ̂n,rm
‖. (6.25)

In view of (6.7) and (6.8), we have ‖Cm‖ < ∞. We also have ‖I‖ < ∞. Because the matrix J is
nonsingular, we have ‖J−1‖ < ∞ and

‖Ĵ−1 − J−1‖ −→
n→∞

0, a.s.
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by consistency of θ̂n. Under Assumption A7, we have |E [η′tηt − d]2 | ≤ K. Using the previous arguments
and also the strong consistency of θ̂n, we have

|E
[

η′tηt − d
]2 − κ̂| −→

n→∞
0, a.s. and ‖Cm − Ĉm‖ −→

n→∞
0, a.s.

We then deduce that Equations (6.24) and (6.25) converge almost surely to 0 when n → ∞ and the
conclusion follows. Thus D̂ −→

n→∞
D almost surely.

To conclude the proof of Theorem 3.2, it suffices to use Theorem 3.1 and the following result: if√
nr̂m

d−−−→
n→∞

N (0,D), with D nonsingular, and if D̂ −→
n→∞

D in probability, then nr̂′mD̂−1
r̂m

d−−−→
n→∞

χ2
m.
✷

6.4. Proof of Remark 3.2

We suppose that H1 holds true. One may rewrite the above arguments in order to prove that there
exists a nonsingular matrix D∗ such that

√
n(r̂m − r

0
m)

d−−−→
n→∞

N (0,D∗) . (6.26)

The matrix D∗ is given by D∗ = Σ
r
0
m
+C∗

mJ−1IJ−1C∗
m

′ +C∗
mΣθ̂n,r0m

+Σ′

θ̂n,r0m
C∗
m
′, where the matrices

Σ
r
0
m

and Σθ̂n,r0m
are obtained from the asymptotic distribution of

√
n(θ̂′n− θ′0, r

′
m− r

0′
m)′. The (h, i)-th

element of the matrix C∗
m is geven by

C∗(h, i) := E

[

St−h
∂St

∂θi
+ St

∂St−h

∂θi

]

.

Now we write

√
nD̂−1/2

r̂m = D̂−1/2√n(r̂m − r
0
m) + D̂−1/2√nr0m

= D−1/2√n(r̂m − r
0
m) +D−1/2√nr0m + oP(1) .

Then it holds that

nr̂′mD̂−1
r̂m =

(√
nD̂−1/2

r̂m

)′ ×
(√

nD̂−1/2
r̂m

)

= n(r̂m − r
0
m)′D−1(r̂m − r

0
m) + 2n(r̂m − r

0
m)′D−1

r
0
m + nr0m

′
D−1

r
0
m + oP(1). (6.27)

By the ergodic theorem, (r̂m − r
0
m)′D−1

r
0
m = oP(1). By Lemma 17.1 in van der Vaart (1998), the

convergence (6.26) implies that

(r̂m − r
0
m)′D−1(r̂m − r

0
m)

d−−−→
n→∞

m
∑

i=1

λiZ
2
i

where (Zi)1≤i≤m are i.i.d. with N (0, 1) laws and the λi’s are the eigenvalues of the matrix
D−1/2D∗D−1/2. Reporting these convergences in (6.27), we deduce that

r̂
′
mD̂−1

r̂m = (r̂m − r
0
m)′D−1(r̂m − r

0
m) + 2(r̂m − r

0
m)′D−1

r
0
m + r

0
m

′
D−1

r
0
m + oP(1)

= r
0
m
′
D−1

r
0
m + oP(1)

and the remark is proved. ✷
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6.5. Proof of Corollary 3.1

Note that if the model is correct we have

r̂0 =
1

n

n
∑

t=h+1

[ε′tH̃
−1
t (θ̂n)εt − d]2

a.s.−−−→
n→∞

E[ε′tH
−1
t εt − d]2 = E

[

η′tηt − d
]2

.

From (6.11) we have
√
n(r̂0−r0) = oP(1). Applying the central limit theorem to the process ([ε′tH

−1
t εt−

d]2)t∈Z, we obtain

√
n (r̂0 − r0)) =

1√
n

n
∑

t=1

(

[ε′tH
−1
t εt − d]2 − E[ε′tH

−1
t εt − d]2

)

+ oP(1)
in law−−−→
n→∞

N (0,Φ) .

So we have
√
n(r̂0 − r0) = OP(1) and

√
n(r0 − E[ε′tH

−1
t εt − d]2) = OP(1). Now, using (6.11) and the

ergodic theorem, we have

n

(

r̂h
r̂0

− r̂h

E[ε′tH
−1
t εt − d]2

)

=
√
nr̂h

√
n
(

E[ε′tH
−1
t εt − d]2 − r̂0

)

E[ε′tH
−1
t εt − d]2r̂0

= OP(1),

which means
√
nρ̂(h) =

√
nr̂h/E[ε

′
tH

−1
t εt − d]2 +OP(n

−1/2). For h = 1, . . . ,m, it follows that

√
nρ̂m =

√
nr̂m

E[ε′tH
−1
t εt − d]2

+ oP(1). (6.28)

Thus from (6.28) the asymptotic distribution of the sum of squared residuals autocorrelations
√
nρ̂m

depends on the distribution of
√
nr̂m. Consequently we have

lim
n→∞

Var
(√

nρ̂m
)

= lim
n→∞

Var

( √
nr̂m

E[ε′tH
−1
t εt − d]2

)

=: Dρ̂ =
D

(

E[ε′tH
−1
t εt − d]2

)2 .

Thus the first result (3.1) of Corollary 3.1 is proved.
The proof the second result (3.2) of Corollary 3.1 is the same that the one given for Theorem 3.2

and the proof is completed. ✷

6.6. Proof of Theorem 3.3

We follow the arguments and the different steps that we used in the proof of Theorem 3.1. As in
the case where δ0 was known, the proof is decomposed in the following points which will be treated in
separate subsections.

(i) Asymptotic impact of unknown initials values on the statistic r̂m.

(ii) Asymptotic distribution of
√
nr̂m.

(iii) Invertibility of the matrix D.

There are many similarities with the proof of Theorem 3.1. We only indicates where the fact that the
power is estimated has an importance is our reasoning.

(i) Asymptotic impact of unknown initials values on the statistic r̂m

The proof of the asymptotic impact of the initial values on the statistic r̂m is the same than the
one where δ0 was known. It suffices to adapt this step by replacing θ by ϑ and Ht by Ht.

(ii) Asymptotic distribution of
√
nr̂m

The asymptotic distribution of
√
nr̂m is similar to that the one when the power δ0 is assumed to

be known. We adapt this step by replacing again θ by ϑ and Ht by Ht. The only difference resides in
the estimations of the derivatives when we differentiate with respect to δi, i = 1, . . . , d.
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For instance the (h, i)-th element of the matrix Cm denoted by C(h, i) is given by

C(h, i) = E

[

St−h
∂St

∂ϑi

]

= −E

[

St−hTr

(

H−1
0t

∂Ht(ϑ0)

∂ϑi

)]

= −E
[

St−hh
′
t(i)vec(Id)

]

.

Consequently we have

Cm := [C(h, i)]1≤h≤m,1≤i≤s0 = −E

[

(St−1:t−m)
(

h
′
tvec(Id)

)′
]

. (6.29)

(iii) Invertibility of the matrix D
The proof of the invertibility of matrix D needs to have some modifications compared to the case

where the power δ0 is assumed to be known. The start of the proof stay identical, it suffices only to
replace Ht by Ht and θ by ϑ. We rewrite ht(i) as follow

ht(i) =

[

vec

(

H−1/2
0t

∂Ht(ϑ0)

∂ϑi
H−1/2

0t

)]

=
[

H−1/2
0t ⊗H−1/2

0t

]

vec

(

∂Ht(ϑ0)

∂ϑi

)

= Htdt(i),

where Ht =
[

H−1/2
0t ⊗H−1/2

0t

]

and dt(i) = vec (∂Ht(ϑ0)/∂ϑi). Thus we define the matrix of size

d2 × s0, dt = (dt(1)| . . . |dt(s0)) such that ht = Htdt. To study the invertibility of the matrix D we let
V = St−1:t−mSt − CmJ−1∂lt(ϑ0)/∂ϑ such that E[V V ′] = D. We can also rewrite the vector V as

V = St−1:t−mSt + CmJ −1
d
′
tH

′
tvec(st).

If the matrix E[V V ′] is singular, then there exists a vector λ = (λ1, . . . , λm)′ not equal to zero such
that

λ′V = λ′
St−1:t−mSt + µd′

tH
′
tvec(st) = 0, a.s., (6.30)

with µ = λ′CmJ−1. We have µ 6= 0, else λ′
St−1:t−mSt = 0 almost surely, that implies there exists

j ∈ {1, . . . ,m} such that St−j be mesurable respect to the σ-field {Sr, t−1 ≤ r ≤ t−m} with r 6= t− j.
That is impossible because the St are independent and not degenerated. Consequently (6.30) becomes

µ′
d
′
t =

s0
∑

i=1

µidt(i) =

s0
∑

i=1

µivec

(

∂Ht(ϑ0)

∂ϑi

)

=

s0
∑

i=1

µi
∂

∂ϑi
[(D0t ⊗D0t)vec(R0)] , a.s. (6.31)

We can then rewrite (6.31) in order to separate the derivatives of the matrix Ht when we differentiate
with respect to the vectors θ and δ. It follows that

µ′
d
′
t =

s2
∑

i=1

µi
∂ [(D0t ⊗D0t)vec(R0)]

∂θi
+

s0
∑

i=s2+1

µi
∂(Dt ⊗Dt)

∂δi
vec(R0), a.s.

=

s1
∑

i=1

µi
∂(D0t ⊗D0t)

∂θi
vec(R0) +

s2
∑

i=s1+1

µi(D0t ⊗D0t)
∂vec(R0)

∂θi
+

s0
∑

i=s2+1

µi
∂(Dt ⊗Dt)

∂δi
vec(R0) = 0 a.s.

(6.32)

Since the vectors ∂vec(R0)/∂θi, i = s1 +1, . . . , s2 are linearly independent, the vector (µs1+1, . . . , µs2)
′

is null and thus Equation (6.32) yields

s1
∑

i=1

µi
∂(D0t ⊗D0t)

∂θi
vec(R0) +

s0
∑

i=s2+1

µi
∂(Dt ⊗Dt)

∂δi
vec(R0) = 0, a.s. (6.33)

The rows 1, d + 1, . . . , d2 of the Equation (6.33) yield

s1
∑

i=1

µi
∂ht(ϑ0)

∂θi
+

s0
∑

i=s2+1

µi
∂ht(ϑ0)

∂δi
= 0, a.s. (6.34)
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We have for i1 = 1, . . . , d and i = 1, . . . , s1

∂hi1,t(ϑ0)

∂θi
=

∂
(

h
δ0,i1/2

i1,t

)2/δ0,i1

∂θi
(ϑ0) =

2

δ0,i1
hi1,0t ×

1

h
δ0,i1/2

i1,0t

∂h
δ0,i1/2

i1,t

∂θi
(ϑ0), (6.35)

where the derivatives involved in (6.35) are defined for all ϑ ∈ ∆ recursively by

∂h
δi1/2
i1,t

(ϑ)

∂θ
= ct(ϑ) +

d
∑

i2=1

p
∑

i=1

Bi(i1, i2)
∂h

δi2/2
i2,t−i(ϑ)

∂θ
,

with

ct(ϑ) =

(

0, . . . , 1, 0, . . . ,
(

ε+i1,t−1

)δi1
, 0, . . . ,

(

ε+id,t−1

)δid
, 0, . . . ,

(

ε+i1,t−q

)δi1
, 0, . . . ,

(

ε+id,t−q

)δid
,

0, , . . . ,
(

ε−i1,t−1

)δi1
, 0, . . . ,

(

ε−id,t−1

)δid
, 0, . . . ,

(

ε−i1,t−q

)δi1
, 0, . . . ,

(

ε−id,t−q

)δid
,

0, , . . . , h
δi1/2
i1,t−1, 0, . . . , h

δid/2

id,t−1, 0, . . . , h
δi1/2
i1,t−p, 0, . . . , h

δid/2

id,t−p, . . . , 0
)′

.

(6.36)
So we can focus on the derivatives with respect to δ:

∂hi1,t
∂δj

=
2

δi1
hi1,t



−δj,i1

1

δi1
log
(

h
δi1/2

i1,t

)

+
1

h
δi1/2

i1,t

∂h
δi1/2
i1,t

∂δj



 , j = 1, . . . , d (6.37)

with

∂h
δi1/2

i1,t

∂δj
=

q
∑

i=1

[

A+
i (i1, j) log(ε

+
j,t−i)(ε

+
j,t−i)

δj +A−
i (i1, j) log(ε

−
j,t−i)(ε

−
j,t−i)

δj
]

+
d
∑

i2=1

p
∑

i=1

Bi(i1, i2)
∂h

δi2/2

i2,t−i

∂δj

= A+
1 (i1, j) log(ε

+
j,t−1)(ε

+
j,t−1)

δj +A−
1 (i1, j) log(ε

−
j,t−1)(ε

−
j,t−1)

δj +Rt−2, (6.38)

where δj,i1 denotes the Kronecker symbol. We also remind that

h
δ0,i1/2

i1,t
(ϑ0) =

d
∑

i2=1

[

A+
01(i1, i2)(ε

+
i2,t−1)

δ0,i2 +A−
01(i1, i2)(ε

−
i2,t−1)

δ0,i2

]

+Rt−2. (6.39)

The distribution of ηt is non-degenerated, so Equation (6.30) becomes

λ′V = λ′
St−1:t−m + µ′

d
′
H

′
1 = 0, a.s.

In view of (6.35) and (6.37), we can finally write

λ′V = λ′
St−1:t−mh

δi1/2
i1,t

(ϑ0) +

s1
∑

i=1

µ∗
i

∂h
δi1/2

i1,t
(ϑ0)

∂θi
+

d
∑

i=1

µ∗
i+s2

∂h
δi1/2

i1,t
(ϑ0)

∂δi

− µ∗
i1+s2h

δi1/2
i1,t

(ϑ0) log
(

h
δi1/2
i1,t

(ϑ0)
)

= 0, a.s. (6.40)
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where µ∗
i = 2µi/δ0,i1 , µ

∗
i+s2

= 2µi+s2/δ0,i1 and when i = i1 we have µ∗
i1+s2

= 2µi1+s2/δ
2
0,i1

. Recall that

ε+t = H1/2
t η+t and ε−t = H1/2

t η−t and we decomposed (6.40) in four terms. The first one leads to

λ′
St−1:t−mh

δi1/2

i1,t
(ϑ0) =











d
∑

i2=1






A+

01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+A−
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2
















Rt−2

+











d
∑

i2=1






A+

01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+A−
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2
















×
(

λ1

d
∑

i=1

η2i,t−1

)

+

(

λ1

d
∑

i=1

η2i,t−1

)

Rt−2 +Rt−2, (6.41)

by using (6.39) and the fact that

λ′
St−1:t−m = λ1St−1 +Rt−2 = λ1

d
∑

i=1

η2i,t−1 +Rt−2.

Using (6.36), the second term of (6.40) can be rewritten

µ∗′
∂h

δ0,i1/2

i1,t
(ϑ0)

∂θ
=

d
∑

i2=1

[

µ∗
i1+i2d(ε

+
i2,t−1)

δ0,i2 + µ∗
i1+(i2+q)d2(ε

−
i2,t−1)

δ0,i2

]

+Rt−2

=
d
∑

i2=1






µ∗
i1+i2d





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+µ∗
i1+(i2+q)d2





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2





+Rt−2, (6.42)

where the vector µ∗ = (µ∗
1, . . . , µ

∗
s1)

′.
Now using (6.38) the third term of the equation (6.40) can be rewritten as

d
∑

i=1

µ∗
i+s2

∂h
δi1/2
i1,t

(ϑ0)

∂δi
=

d
∑

i2=1

µ∗
i2+s2






A+

01(i1, i2) log





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1









d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

A−
1 (i1, i2) log





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1









d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2





+Rt−2. (6.43)

33



Finally by using (6.39), the last term of (6.40) can be rewritten as

µ∗
i1+s2h

δi1/2

i1,t
(ϑ0) log

(

h
δi1/2

i1,t
(ϑ0)

)

= µ∗
i1+s2







d
∑

i2=1

A+
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+

d
∑

i2=1

A−
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2

+Rt−2







× log






Rt−2 +

d
∑

i2=1

A+
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+

d
∑

i2=1

A−
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2





. (6.44)

Combining Equations (6.41), (6.42), (6.43) and (6.44) and by separating the non negative terms and
the non positive terms, Equation (6.40) is equivalent to the two equations







d
∑

i2=1

A+
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2






[

λ1

d
∑

i2=1

(

η+i2,t−1

)2
+Rt−2

]

+Rt−2

d
∑

i2=1

(

η+i2,t−1

)2
+Rt−2 +

d
∑

i2=1

µ∗
i1+(i2+q)d





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+

d
∑

i2=1

µ∗
i2+s2A

+
01(i1, i2) log





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1









d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

− µ∗
i1+s2







d
∑

i2=1

A+
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2

+Rt−2







× log






Rt−2 +

d
∑

i2=1

A+
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

+
j1,t−1





δ0,i2





= 0, a.s. (6.45)
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





d
∑

i2=1

A−
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2






[

λ1

d
∑

i2=1

(

η−i2,t−1

)2
+Rt−2

]

+Rt−2

d
∑

i2=1

(

η−i2,t−1

)2
+Rt−2 +

d
∑

i2=1

µ∗
i1+(i2+q)d2





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2

+

d
∑

i2=1

µ∗
i2+s2A

−
01(i1, i2) log





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1









d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2

− µ∗
i1+s2







d
∑

i2=1

A−
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δ0,i2

+Rt−2







× log






Rt−2 +

d
∑

i2=1

A−
01(i1, i2)





d
∑

j1=1

H1/2
0,t−1(i2, j1)η

−
j1,t−1





δi2





= 0, a.s. (6.46)

When d = 1, from (6.45) and (6.46) we retrieve an equation of the following form obtained by
Boubacar Maïnassara et al. (2021)

a|y|δ+2 + [b+ c(|y|δ)] log[b+ c(|y|δ)] + [d+ e log(|y|)]|y|δ + fy2 + g = 0

which cannot have more than 11 positive roots or more than 11 negative roots, except if a = b = c =
d = e = f = g = 0.

When d ≥ 2 and also from (6.45) and (6.46), for a fixed component, we obtain an equation of the
form

d
∑

i=1

ai|y|δi+2 +
d
∑

i=1

bi|y|δi+1 +
d
∑

i=1

ci|y|δi +
d
∑

i=1

di log(|y|)|y|δi

+

(

e+

d
∑

i=1

ei|y|δi
)

log

(

f +

d
∑

i=1

fi|y|δi
)

+ gy2 + h|y|+ k = 0.

Note that an equation of this form can not have more than 11d + 1 non negative roots or more than
11d+ 1 non positive roots for d ≥ 2, unless ai = bi = ci = di = ei = fi = e = f = g = h = k = 0.
By the assumption A9

′, Equations (6.45) and (6.46) imply that

λ1

[

∑d
i2=1A

+
01(i1, i2) +A−

01(i1, i2)
]

= 0 and µ∗
i+s2

[

∑d
i2=1 A

+
01(i1, i2) +A−

01(i1, i2)
]

= 0 for all i =

1, . . . , d. But under the assumption A4, if p > 0, A0(1)
++A−

0 6= 0. It is impossible to have A+
01(i1, i) =

A+
01(i1, i) = 0, for all i = 1, . . . , d. Then, there exists an i0 such that A01(i1, i0)

++A01(i1, i0)
− 6= 0 and

we then have λ1 = 0 and µ∗
i0+s2

= 0.
In the general case, Equation (6.33) necessarily leads

A+
01(i1, i0) +A−

01(i1, i0) = · · · = A+
0q(i1, i0) +A−

0q(i1, i0) = 0, ∀i0, i1 = 1, . . . , d,

that is impossible under Assumption A4 and then λ = 0. This is in contradiction with λ′V = 0, almost
surely, that leads that the assumption of non invertibility of matrix D is absurd. ✷

6.7. Proof of Theorem 3.4

The proof is the same to that of Theorem 3.2 in the case where the power δ0 is assumed to be
known. ✷
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6.8. Proof of Corollary 3.2

The proof is the same to that of Corollary 3.1 in the case where the power δ0 is assumed to be
known. ✷
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