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Portmanteau test for a class of multivariate asymmetric power GARCH model
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Abstract

We establish the asymptotic behaviour of the sum of squared residuals autocovariances and auto-
correlations for the class of multivariate power transformed asymmetric models. We then derive a
portmanteau test. We establish the asymptotic distribution of the proposed statistics. These asymp-
totic results are illustrated by Monte Carlo experiments. An application to a bivariate real financial
data is also proposed.

Keywords: Multivariate GARCH, asymmetric power GARCH, multivariate portmanteau test.

1. Introduction

In econometric application, the univariate generalized autoregressive conditional heteroscedasticity
(GARCH) framework is very restrictive. Consequently the class of multivariate models is commonly
used in time series analysis and econometrics. It describes the possible cross-relationships between the
time series and not only the properties of the individual time series (see for instance Francq and Zakoian
(2019), Liitkepohl (2005)). There are many extensions of multivariate GARCH models (MGARCH)
with many approaches because the specification of the GARCH model does not suggest a natural
extension to the multivariate framework. See for instance Bauwens et al. (2006) for a survey on
MGARCH models. See also Silvennoinen and Terdsvirta (2009) and Bauwens et al. (2012) for recent
surveys on MGARCH processes. The MGARCH model with conditional constant correlation (CCC-
GARCH) introduced by Bollerslev (1990) and extended by Jeantheau (1998), seems to be one of the
most popular models used to model multivariate financial series. Francq and Zakoian (2012) proposed
an asymmetric CCC-GARCH (CCC-AGARCH) model that includes the CCC-GARCH introduced by
Bollerslev (1990) and its generalization by Jeantheau (1998). In all this work, we use the following
notation u® := (uj',...,uy?) for u,v € R% and 2 = max(0,z) and 2~ = max(0, —z). We consider
the asymmetric power GARCH model with constant conditional correlation (CCC-APGARCH(p, q) for
short) proposed by Boubacar Mainassara et al. (2022) and defined by
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where g, = (e14,...,€4;)" is a d-dimensional process, hy; = (h1,0t,---,haot)’, hioe is the conditional

: 1/2 .

variance of €;; = hmtm’t fori=1,...,d,
!/ /

ef = (= ) e = (e o)
wy and d are vectors of size d x 1 with strictly positive coefficients, A&, Aj; and By; are matrices of size
d x d with positive coefficients and Ry is a correlation matrix and where the innovation process (7;):
is an independent and identically distributed (iid for short) sequence of variables on R? with identity
covariance matrix and E[n;] = 0. The parameters of the model are the coefficients of the vectors wg, &,
the coefficients of the matrices Aari, Ay, Bo;j and the coefficients in the lower triangular part excluding
the diagonal of the matrix Ry.

Model (1.1) includes various GARCH class models: for §, = (2,...,2)’, we obtain the CCC-
AGARCH of Francq and Zakoian (2012); when d = 1 and §, = 2, we retrieve the threshold GARCH
(TGARCH) of Rabemananjara and Zakoian (1993). The asymptotic properties of the quasi-maximum
likelihood (QML) estimation of the model (1.1) are established by Boubacar Mainassara et al. (2022)
when the power 9, is assumed to be known or unknown.

As mentioned by Francq and Zakoian (2012), the attractiveness of the CCC-AGARCH models
follows from their tractability. They mention three main reasons : the number of unknown coefficients
is less than in other specifications and remains tractable in small dimension; the coefficients are easy
to interpret; the conditions ensuring positive definiteness of the conditional variance are simple and
explicit. There is also an advantage concerning the strict stationarity conditions which are explicit
too. In our work, we pass from a constant power CCC-AGARCH to a component-varying power CCC-
AGARCH model. In addition to the theoretical contribution, the numerical illustrations proposed in
Section 5 highlight the value of this work. To be more specific, our study on real dataset proves that a
component-varying power is relevant for the daily exchange rates of the (Dollar,Yen) against the Euro
(see Table 1).

In CCC-APGARCH(p, ¢) models, the choice of p and ¢ is particularly important because the number
of parameters quickly increases with p and ¢, which entails statistical difficulties. After identification
and estimation of the MGARCH processes, the next important step in the modeling consists in checking
if the estimated model fits the data satisfactorily. This adequacy checking step allows to validate or in-
validate the choice of the orders p and ¢. Thus it is important to check the validity of a MGARCH(p, q)
model, for given orders p and g. Based on the residuals empirical autocorrelations, Box and Pierce
(1970) derived a goodness-of-fit test, the portmanteau test, for univariate strong autoregressive moving-
average (ARMA) models (i.e. under the assumption that the error term is iid). Ljung and Box (1978)
proposed a modified portmanteau test which is nowadays one of the most popular diagnostic checking
tools in ARMA modeling of time series. Since the articles by Ljung and Box (1978) and McLeod
(1978), portmanteau tests have been important tools in time series analysis, in particular for testing
the adequacy of an estimated ARMA(p,q) model. See also Li (2004), for a reference book on the
portmanteau tests. The standard portmanteau tests consist in rejecting the adequacy of the model for
large values of some quadratic form of the residuals autocorrelations. These tests cannot be applied di-
rectly to conditional heteroscedasticity or other processes displaying a second order dependence. Indeed
such non-linearities may arise for instance when the observed process follows a GARCH representation.
Consequently Li and Mak (1994) and Ling and Li (1997b) proposed a portmanteau test based on the
autocorrelations of the squared residuals. The intuition behind this portmanteau test is that when
the model is correctly specified, the autocorrelations for squared residuals will be close to zero. Other
situations where the standard tests do not give satisfactory results can also be found for instance in
Relvas and Paula (2016), Cao et al. (2010), Francq et al. (2005), Boubacar Mainassara and Ilmi Amir
(2020), Boubacar Mainassara and Saussereau (2018), Boubacar Mainassara (2011).

The asymptotic theory on MGARCH model diagnostic checking is mainly limited to the univariate
framework. As above-mentioned, Li and Mak (1994) and Ling and Li (1997b) studied a portmanteau



test based on the autocorrelations of the squared residuals. Berkes et al. (2003) developed an asymp-
totic theory of portmanteau tests in the standard GARCH framework, Leucht et al. (2015) suggested a
consistent specification test for GARCH(1, 1) model. Recently, Jiménez-Gamero et al. (2020) proposed
goodness-of-fit tests for certain parametrizations of conditionally heteroscedastic time series with un-
observed components. Francq et al. (2016) proposed a portmanteau test for the Log-GARCH model
and the exponential GARCH (EGARCH) model. For the univariate APGARCH model, a portmanteau
test based on the autocovariances of the squared residuals is developed by Carbon and Francq (2011)
for the APGARCH model when the power d, is known and by Boubacar Mainassara et al. (2021) when
the power d, is unknown and is jointly estimated with the other parameters. See also Ben and Jiang
(2020) who recently extended the work of Carbon and Francq (2011) (when J; is known and when some
parameters lie on the boundary) to the class of APGARCH with exogenous covariates (APGARCH-X).
In the multivariate analysis, there are a few works. Ling and Li (1997a) proposed portmanteau statistic
for multivariate conditional heteroscedasticity models (see also Duchesne and Lalancette (2003) and
Duchesne and Lalancette (2010)). Duchesne (2004) (see also Duchesne (2010)) introduced the test
which is a direct generalization of the portmanteau test of Li and Mak (1994) to the VEC-GARCH
model. Wang and Tsay (2013) extend Duchesne’s approach to the case of multivariate GARCH models
with Student—¢ innovations. Recently, Ke et al. (2021) provide a residual-based approach to examine
the adequacy of multivariate GARCH models. Other tests for multivariate ARCH models include those
developed can be found for instance in Kroner and Ng (1998), Tse and Tsui (1999) and Wong and Li
(2002).

Contrary to the univariate APGARCH models, there are no validation tests for the class of the model
(1.1). In this paper we generalize the results obtained by Carbon and Francq (2011), Boubacar Mainas-
sara et al. (2021) and Ling and Li (1997a) to the CCC-APGARCH(p, ¢) models defined in (1.1). This
extension raises difficult problems. First, non trivial constraints on the parameters must be imposed
for identifiability of the parameters (see Francq and Zakoian (2019)). Secondly, the implementation of
standard estimation methods (for instance the Gaussian quasi-maximum likelihood estimation) is not
obvious because this requires a constrained high-dimensional optimization (see also Liitkepohl (2005)).
These technical difficulties certainly explain why univariate GARCH models are much more used than
MGARCH in applied works.

The paper is organized as follows. In Section 2 we recall the results on the quasi-maximum likelihood
estimator (QMLE) and its asymptotic distribution obtained by Boubacar Mainassara et al. (2022) when
the power ¢, is known or unknown. Section 3 presents our main results which give the asymptotic
theory of the sum of squared residuals autocovariances and autocorrelations for the wide class of CCC-
APGARCH models (1.1) when the power J;, is known (Section 3.1) and when the power J, is unknown
and estimated (Section 3.2). In Section 4 we test the null hypothesis of the CCC-APGARCH model
for different values of §, in both cases. Section 5 illustrates the proposed tests for CCC-APGARCH
models applied to a bivariate exchange rates.

2. Quasi-maximum likelihood estimation

When the power &y = (0,1, .., 00.4) is known, we write
0= (o +/ + ! -/ o JASVA
T (£7O‘1 ,...,Oéq 7a1 ,...,Oéq 7517"'75])7/0)7

where o and «; are defined by afc = Vec(AfE) fori =1,...,q, B; = vec(Bj) for j =1,...,p, and
p=(p21,---Pd1,P32,---,Pd2,---,Pad—1) such that the p;;’s are the components of the matrix R. The
parameter 6 belongs to the parameter space

© 0, +oo[?x [0, co[FRrHP) x] — 1,172,
The unknown true parameter value is denoted by

L / +/ A - / JANAY
90'_(£07Oé017"'7a0q7a017"'7a0q7ﬁ017---750])7/00)‘

3



Similarly when the power § = (41, ...,4)" is unknown and is jointly estimated with the parameter 6 we
denote by ¥ := (#,9’). The parameter 9 belongs to the parameter space

A 0, 4+00[¢x [0, 0o[# 24+P) 5] — 1 1[H4=D/2 10, 400"
The unknown true parameter value is denoted by ¥g := (6}, d;)’, where §y = (80,1, .-, d0.d)"-

2.1. Estimation when the power 0 is known
The goal is to estimate the so = d + d?(p + 2q) + d(d — 1) /2 coefficients of the model (1.1). For all
0 € © we let H, = Hy(0). We assume that H, is a strictly stationary and non anticipative solution of

H, = D;RD;, thdiag(\/hlt,.. Vhat) R(0),

P (2.1)
ﬁgo/2 ::ﬁgo/2(9 —W+Z{A+ gt Z) 0/2—|-A €t . 0/2}+ZB 50/2‘
=1 7j=1

Given a realization (gq,...,g,) of length n satisfying the representation (1.1), the variable H; can be
approximated for ¢t > 1 by H; defined recursively by

ﬁt = DtR-Dta bt = dlag <\/ ill,t, Y ildﬂg)

q

Ef0/2 —ht0/2 Z{A+ 5:_260/2"_14 Et 160/2} ZB hf/i,

conditional to the initial values §0,...,§1_q,ﬁo,...,ﬁl_p. The quasi-maximum likelihood (QML)

method is particularly efficient for the MGARCH class models because it provides consistent and
asymptotically normal estimator for strictly stationary MGARCH processes under mild regularity con-
ditions (but with no moment assumptions on the observed process). The quasi-maximum likelihood
estimator (QMLE) of model (1.1) is obtained by the standard estimation procedure for MGARCH class
models. Thus the QMLE of 6y of model (1.1) is defined as any measurable solution 0,, of

On = = arg II@llnn Z I,(6 I,(0) = e, H ‘e, + log(det(H,)). (2.2)
€ t=1

To ensure the asymptotic properties of the QMLE for model (1.1) obtained by Boubacar Mainassara
et al. (2022), we need the following assumptions:
A1l: 0y € © and O is compact.
Now, we rewrite the first equation of (1.1) as
_ _ _ — 1/2
g, = Dy, where 77, = (771,157 e 777d,t)/ = Ro/ Mt
Using the third equation of model (1.1), we may write

(§$)§0/2 — (T ( ))h60/2, Wlth T (_O) — dlag ((iﬁit’t)éo’l, . (iﬁit)(so’d) )

A2: V0 € O,det(By(z)) = 0= |z| > 1 for By(z) = Iz — Z?:1 By;#? and v(Cp) < 0, where (-) is
the top Lyapunov exponent of the sequence of matrix Cy = {Coy,t € Z} with the matrix Cy of size
(p+2q)d x (p+ 2q)d been defined by

o é — [
T;_7(70)’48—1@ T;_7(70)"401:11 T:—’(io)B()l:P

Ty Od(g—1)xd(p+q+1)
T—v(QO)A—l- T—v@o)A— T_’(QO)B
Cot = t 01:q t 01:q t 01:p ,
Odtg-—1)xdq Tag-1)  Odg-1xdp+1)
AOI:q AOI:q BOl:p
Od(p—1)x2dq Tap—1) Od(p—1)xd
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where the d x qd matrices Ag;. " = (Ag; - Ag'q) Agr.y = (Agy - .- Ag,) and Boi,g = (Boi - .. Bog) € Rdxpd,
A3: For i =1,...,d the distribution of 7j;;, is not concentrated on 2 points and P(7;, > 0) € (0,1).
A4: For Af(2) =>4 | Afzt and A (2) = D0 Agizt it p > 0, AT (1) + A (1) # 0, Ad (2), A (2)

and By(z) are left-coprime and the matrix

MAS,AF,Bo) = |a* (1) ..a* (d)a=(1)...a= ()b (1) .. byu(d)
q1 P 4 44
has full rank d, with ¢ = ¢ (60),q; = q; (6o) and p; = p;(fp) for any value of i, where g;" (6p),
q; (8), and p;(fy) denote the maximal degrees for any column 7 of the matrix operators .A(J)r , Ay and
By. We also denote by a++ (7) the column vector of the coefficients L by aq__, () the column vector

of the coefficients L% in the column 4 of .A , respectively A; and by by, (i) the column vector of the
coefficients LP¢ in the column 7 of By.

A5: R is a positive-definite correlation matrix for all § € ©.

A6: 6, G(i), where (2) is the interior of ©.

AT E|lnm||? < .

Then under Assumptions A1-A7, Boubacar Mainassara et al. (2022) showed that 0, — by as.
when n goes to infinity and \/n(6,, — ) is asymptotically normal with mean 0 and covariance matrix

Q := J'IJ7!, where J is a positive-definite matrix and I is a positive semi-definite matrix, defined
by
Ol (6p) Ol (6p) 021;(6y) . _
=1(6p) =E [ 50 ag |0 = T00) =E|—aonr | with 1(6) = g1, le, 4 log(det(H,)).

2.2. Estimation when the power & is unknown

Similar to the previous section we have sg = 2d + d*(p + 2q) + d(d — 1)/2 coefficients of model
(1.1) to estimate. In order to ensure that parameter ¢, is identified we need the following additional
assumption:

AS8: 1 has a positive density on some neighbourhood of zero.

For all 9 € A we let H; = Hy(¥9). We assume that H; is a strictly stationary and non anticipative

solution of
H, = DiRD;,, D, = diag (\/hlvt, L \/hd,t)

2/% (2.3)

hy = hy(9) = w+ZA+ ef )2 + AT (ef 5/2+ZBh5/2

Conditionally to the initial values §0’---,§1—an07 . ,El_p, for t > 1 the variable H; can also be
approximated recursively by

= DRDy Dy = diag («/BM, o ,/ﬁd7t>

q
hy :=hy(9) = |w+ Z Af (gl 2)5/2 + A7 (g2) ) + Z B; h6/2
i=1 j=1

2/

- 1 - - - -
Op = argmin=» " 4;(0),  4(9) = g;H; g, + log(det (Hy)). (2.4)



To ensure the asymptotic properties of the QMLE of ¥y for model (1.1) obtained by Boubacar Mainas-
sara et al. (2022), we need assumptions similar to those we assumed in the case when the power d, is
known. We will assume Assumptions A1-A6 with parameter 6 replaced by ¥ and the space parameter
O replaced by A.

Under Assumptions A1-A8 Boubacar Mainassara et al. (2022) showed that Uy — Uy a.s. when
n goes to infinity and \/ﬁ(én — ¥) is asymptotically normal with mean 0 and covariance matrix
Q:=J 'ZJ7, where J is a positive-definite matrix and Z is a positive semi-definite matrix, defined
by

0t,(9) Dy (V0)
99 o

0%44(Vo)

:| s j = j(’ﬂo) = |: :| with ft(’ﬂ) == §£Ht_1§t—|—log(det(7-lt)).

In all the sequel we denote by 9 the convergence in distribution. The symbol op(1) is used for a
sequence of random variables that converge to zero in probability.

3. Diagnostic checking with portmanteau tests

To check the adequacy of a given multivariate time series model, for instance for an estimated
VARMA(p, q) model, it is common practice to test the significance of the multivariate residuals auto-
covariances. In the MGARCH framework this approach is not relevant because the process 7, is always
a white noise (possibly a martingale difference) even when the volatility is misspecified. For this reason
the following portmanteau test is based on the squared residuals autocovariances. The null hypothesis
is

o : the process (g;) satisfies model (1.1).
3.1. Portmanteau test when the power d, is known
Let i, = 7(6,) = ]flt_l/z(én)gt = ﬁt_1/2§t be the QMLE residuals when p + ¢ > 0 and where

(0) = H, (0.
We define the autocovariances of the sum of squared residuals at lag h > 0, for h < n, by

Pp=7n(0,)  where F(0) = %Z [Tr(5:(0)][Tr(5e—r(0))]  with 5,(0) = 7(0)7;(0) — 14

t=h+1

= S AO)0) — d_ O)in(0) —d
t=h+1

= Y B 0 Al Oz~ d)
t=h+1

Similarly we define the "empirical" autocovariances of the sum of squared white noise at lag h by
1 n
rn=rn(0)  where rh(f) = — > [Tr(se(0))][Te(s-n(9))],
t=h+1

with s4(0) = n(0)n(8) — Iy and n.(6) = Ht_l/2(9)§t. It should be noted that rj, is not a statistic (unless
if p = ¢ = 0) because it depends on the unobserved innovations 7;.
For a fixed integer m > 1 and in the sequel we will also need these following vectors:

#, = (f1,...,7m)  and 1, = (r,...,7m) , such that 1 <m <n.

To ensure the invertibility of the asymptotic covariance matrix of the vector of the sum of squared
residuals autocovariances we need the following technical assumption on the distribution of 7.



A9: For d > 2, n; takes more than 3(d + 1) positive values and more than 3(d + 1) negative values.
Let St—1.4—m = (St—1,--.,St—m)’, where S; = njn; — d. The following theorem gives the asymptotic
distribution of the vector of the sum of squared residuals autocovariances.

Theorem 3.1. Under Assumptions A1-A7 and A9, if €, is the non-anticipative and stationary solu-
tion of the CCC-APGARCH(p, q) model defined in (1.1), then we have

ﬁrm—>N(o D), where D= (E[S?])* Ly +Cnd "LI7ICL + CuSy, o TE5 G

n—00 On,tm ™

is a non-singular matriz and where X =1 [T~ hjvec(mem, — 12)SiS}_1.4_,,] and the matriz Cp, is
given by (6.10) in the proof of Theorem 3.1.

The proof of Theorem 3.1 is postponed to Section 6.

Remark 3.1. When we assume that: E(n3) = 0, fori,=1,...,d; fori,j € {1,...,d} and i # j, nu
and nj; are mutually uncorrelated up to the fourth order and n;’s have the same fourth order moment,

we have: E [SE] = d (E [n3] —1) and =—(E[n}] —1)J1C},. Thus we obtain

n,'m
D=d(E[nh] = 1)’ I+ Co (JIT TV =2(E [pi] — 1) J ) C,.
Therefore we retrieve the well-known result obtained by Ling and Li (1997a).

The above theorem is useless for practical purpose because it does not involve any observable quantities.
In order to state our second result we need to define a consistent estimator of the asymptotic matrix
D (see Theorem 3.1).

In view of Boubacar Mainassara et al. (2022) the matrices I and J can be estimated by their
empirical or observable counterparts given by

f(z',j) = %f: Tr (( H etetH ) %I;t) Tr <<ﬁt_1 —ﬁ[lgtggﬁlt_l) E;—S?)]
t=1 v

Tr (ﬁt_laalgthlglgt)] for 4,5=1,...,s0.

R 1 —
and  J(i,7) = —Z
nt:l

Let Sén . and C,, be weakly consistent estimators of >, and C), involved in the asymptotic

9 I'm
normality of y/n#,,. Define the matrix C,, of size m x sg whose (h,i)—th element is given by

ém(h,i) = —% Z S, Tr <JflflaH57§9n)> forl<h<mand1l<i< sg,
t=h+1 ¢

where S = §;ﬁt_ lgt —d. The matrix ¥;  can be estimated by its empirical or observable counterpart
given by

: T o O,
S = = O Bvecliui~d) S8l where (i) = vec (H il
t=1 7

ﬁt_l/2> for 1 <i < sq.
Let D = &2, + Cp J ' IJ1CY, + émigmr + Z;m mé,’n and & =n~' 37, S? be weakly consistent
estimators of the matrix D and E [S7].

The above quantities are now all observable, we are able to state our second theorem which gives
the asymptotic distribution for quadratic forms of the autocovariances.



Theorem 3.2. Under the assumptions of Theorem 3.1 and Hg, we have

The proof of Theorem 3.2 is postponed to Section 6.

Remark 3.2. If we focuse on the following alternative hypothesis
H, : the process (g,) does not admit the representation (1.1) with parameter 6y,

at least one 1) = E[(n;m — d)(n}_ne—n — d)] # 0 under Hi. One may prove that under H,

A A—1a P 0/prH—1..0
t, D t,, ——r,, D ',
n—oo
where the vector v9, = (r,...,70). Therefore the test statistic nl, D™ 1%, is consistent in detecting

Hi.

The proof of this remark is also postponed to Section 6.
Consider the vector of the first m autocorrelations of the sum of squared residuals

R R R R Th
= (V.- p(m) where () = 2,
Corollary 3.1. Under the assumptions of Theorem 8.2, we have
A d D
Vnpm — N(0,D;)  where D; = 5 (3.1)
n—o00 / 2
(i - )
A =1 A d 2 ~ D
np;nDﬁ Pm ——— Xm where  Dj = 5 (3.2)

(& Sy (g — @)
The proof of Corollary 3.1 is postponed to Section 6.

Remark 3.3. Under the assumptions of Remark 3.1, we have: E[géHt_lgt —d)? = (E [772%] — 1) d, so
that D, = D/(E [4] = 1)°d? and Dy = D/ (R; —1)*d2,  for i=1,...,d, where kj =n~* " 7.
The adequacy of the CCC-APGARCH(p, ¢) model defined in (1.1) is then rejected at the asymptotic

level o when
nE, D8 > XA (- 0) or nifuD; > X1 a),

where X2, (1—a) represents the (1—a)-quantile of the chi-square distribution with m degrees of freedom.

3.2. Portmanteau test when the power is unknown

The results are close to those given in Section 3.1. It consists to adapt the notations in Section 3.1
by replacing 6y (resp. 6,) by Jo (resp. 9,,) and Hy (vesp. Hy) by Hy (resp. Hy).

To establish the asymptotic distribution of the portmanteau test statistic, when J, is unknown,
Assumption A9 is replacing by

A9 : For d > 2, n; takes more than 11d + 1 positive values and more than 11d + 1 negative values.

Theorem 3.3. Under Assumptions A1-A8 and A9’, if €, is the non-anticipative and stationary so-
lution of the CCC-APGARCH(p,q) model defined in (1.1), then we have

Vi, — N(0,D), where D= (E[S?])’ I +CnT 'TTCli +Cu%y . +%,  Ch
—00 nyI'm

n ﬂn,rm

is a non-singular matriz and where the matriz Cp, is given by (6.29) in the proof of Theorem 3.3.



The proof of Theorem 3.3 is postponed to Section 6.
In view of Boubacar Malnassara et al. (2022) the matrices Z and J can be estimated by

1(i,j) = %Z Tr << —H e 1y > 8;;:) Tr <<7:lt — A ety > 271;;)]

Tr <Ht 16%% 18Ht>] for i,j=1,...,s0.

and j(z’,j) —Z 50

Let Sy = g/H; ', — d and define the matrix C,, of size m x so whose (h,4)—th element is given by

ém(h,i) = —% Z S, Tr <7:[;187'gt7g9@> forl<h<mand1l<i<s.

The matrix C,, is a weakly consistent estimator of Cp,. The matrix X5 can also be estimated by

o [P - 5 & s ~1/20H4(In) 1,—1/2 ,
25 :E;j Yhivec(f,—d)SiS,_14—m Where hy(i) = (’H /$H /> for 1 <i < s.

Let D = #21,, + CnJ 2T 1C, + éngn e, 5 C! be a weakly consistent estimator of D.

In,rm
We are able to state the second theorem of this section which gives the asymptotic distribution for
quadratic forms of the sum of squared residuals autocovariances.

Theorem 3.4. Under the assumptions of Theorem 3.3 and Hg, we have

The proof of Theorem 3.4 is postponed to Section 6.
Remark 3.4. If we focuse on the following alternative hypothesis

H, : the process (g,) does not admit the representation (1.1) with parameter Vg,

at least one 1) = E[(n;m — d)(n}_ne—n — d)] # 0 under Hi. One may prove that under H,

i D¢, —>r 'p-1

m
n—o0

Therefore the test statistic nf"mf?_lf'm is consistent in detecting H;.

The proof of this remark is similar to that of Remark 3.2 and is omitted.

Corollary 3.2. Under the assumptions of Theorem 8.4, we have

D
VI —— N(0,D;) where D= 5 (3.3)
n—o00 / 2
(Bl — )
A A=A d 2 A D
10 D5 pm — = X where Dy = . (3.4)

(2 g —d?)’

The proof of Corollary 3.2 is postponed to Section 6.



A~

Remark 3.5. In wview of Remark 3.3, we have: D = D/(E [17?;/]—1)2612 and D, =
D/(ki —1)%d%,  for i=1,....d

The adequacy of the CCC-APGARCH(p, ¢) model, define in (1.1) is then rejected at the asymptotic
level @ when X R
ni#l D7, > x2, (1 —a) or nﬁ;anlﬁm > x2,(1—a).

In view of Corollary 3.1 (resp. Corollary 3.2) for any 1 < h < m, a 100(1 — a)% confidence region for
p(h) is given by

—M% < p(h) < ua% (reSp. - UQ% < p(h) < ua%>

where u, denotes the quantile of order 1 — « of the A/(0,1) distribution.

4. Numerical illustration

By means of Monte Carlo experiments we investigate the finite sample properties of the tests
introduced in this paper. The numerical illustrations are made with the free statistical software RStudio
(see https://www.rstudio.com).

We generate a bivariate CCC-APGARCH(0, 1) model (Model (1.1) with p =0 and g = 1)

1/2
& = Ho,g/ Tits
Hy; = Doy Ro Doy, Dy, = diag(\/h1,06, v/ h2,0t), (4.1)

5, /2 L
ﬁﬁg/ = wy + Ag (§;F—1)é°/2 + A01(§t—1)é0/27

for different values of §, € {(1,1),(0.8,1.5),(2,2),(3,2.5)} and where ho, = (h1ot, hoot), & =
!/ /
({Eft}z, {E;t}2> and g, = ({ait}z, {Eit}2) . The innovation process (1) is defined by

( .t ) ~TIDN(0, I5).
N2,
Considering other distributions for 7; does not affect the conclusion.

The coefficients of the data generating process (DGP for short) in (4.1) are chosen such that As-
sumption A2 holds. The coefficient wy is a vector of size 2 x 1, Agl, Ay, and Ry are matrices of size

2 x 2 taken as:
0.25 0.10 0.45 0.25
+ _ - _ eoA— +
A ( 0.10 0.15 > > Ao = ( 0.25 0.35 > i Aor 7 Aoy

0.2 1 07 oL
Wn = , Ry = and
=0 <0.3> 0 <0.7 1 ) N - 0.45 0.25 L N
A =An={ g5 035 )0 T Ao =

We simulated N = 1,000 independent replications of size n = 250, n = 500 and n = 2,000 of Model
(4.1) with coefficients (4.2).

For each of these N replications of model (4.1), we use the QMLE method to estimate the coefficient
0o € R when the power is known (resp. ¥ € R!3 when the power is unknown). After estimating
the model considered we apply portmanteau test to the sum of squared residuals for different values of
m € {1,...,12}, where m is the number of autocorrelations used in the portmanteau test statistic.

We use in the following tables 3 nominal levels o = 1%, 5% and 10%. For these nominal levels, the
empirical relative frequency of rejection size over the N independent replications should vary respec-
tively within the confidence intervals [0.3%, 1.7%], [3.6%, 6.4%] and [8.1%, 11.9%)] with probability 95%

(4.2)
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and [0.3%,1.9%)], [3.3%,6.9%] and [7.6%, 12.5%] with probability 99% under the assumption that the
true probabilities of rejection are respectively a = 1%, a = 5% and o = 10%.

We repeat the same experiments to examine the empirical power of the proposed test for the null
hypothesis of a bivariate CCC-APGARCH(0, 1) model of the form (4.1) against the following bivariate
CCC-APGARCH(1,1) alternative defined by

1/2
& = H()t/ U
Hy; = Dot Ro Do, Do = diag(+/h1,06, v/ h2,0t), (4.3)

dy/2 _ ., — dy/2

ligt = wo + A ()2 + Ay ()™ + Bk,

. LA . 0.43 0.1

where the matrices wg, Agy, Ay and Ry are given by (4.2) and By = 01 042 )

4.1. When the power is known

Table 2 (resp. Table 3) displays the empirical relative frequencies of rejection over the N independent
replications for the 3 nominal levels o = 1%, 5% and 10% when the DGP is the APGARCH(0, 1) model
(4.1)-(4.2) with Af;, = Ay, (resp. with A, # Ayy).

As expected, Tables 2 and 3 show that the percentages of rejection belong to the confidence interval
with probability 95% and 99%. Thus the type I error is better controlled.

In term of power performance, we investigate two experiments given in the following tables:

Table 4 displays (in %) the empirical power of the proposed test for the null hypothesis of the
CCC-APGARCH(0, 1) model defined by (4.1)—(4.2) with ¢, = (1,1) against the alternative given by
(4.1)—(4.2) when &, # (1,1).

Table 5 displays also (in %) the empirical power of the proposed test for the null hypothesis of a
bivariate CCC-APGARCH(0,1) model of the form (4.1) against the bivariate CCC-APGARCH(1,1)
alternative given by (4.3) when ¢ is known.

We draw the conclusion that:

a) in the first experiment given in Table 4, the portmanteau tests are more disappointing since they
fail to detect some alternatives of the form J§, # (1,1) when the null is §, = (1,1), except for
0 > (2,2) when n increases.

b) Whereas the second experiment given in Table 5 reveals that the portmanteau tests are much
more powerful to detect wrong values of the order (p,q) even when n is small.

4.2. When the power is unknown

In this case, the power ¢ is jointly estimated with the parameter 6y. As in the case where J,
is known, Table 6 (resp. Table 7) displays the empirical relative frequencies of rejection over the
N independent replications for the 3 nominal levels o = 1%, 5% and 10% when the DGP is the
APGARCH(0, 1) model (4.1)—(4.2) with Ad, = Ay, (resp. with A, # Ay;). Even in this case, Tables
6 and 7 show that the percentages of rejection belong to the confidence interval with probability 95%
and 99%. Thus the type I error is better controlled. In term of power performance, Table 8 shows that
the powers of the test are quite satisfactory even when n is small.

5. Adequacy of CCC-APGARCH models for real datasets

We consider the daily return of two exchange rates EUR/USD (Euros Dollar) and EUR/JPY (Euros
Yen). The observations covered the period from January 4, 1999 to March 9, 2021 which correspond to
n = 5,679 observations. The data were obtained from the website of the European Central Bank
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(http://www.ecb.int /stats /exchange/eurofxref/html /index.en.html). On these series, several CCC-
APGARCH(p, ¢) models of the form (1.1) have been estimated by QML. For each estimated model, we
apply the portmanteau tests proposed in Section 3 to the sum of squared residuals for different values
of m € {1,...,12} to test the adequacy of CCC-APGARCH models.

Table 1 displays the p—values for adequacy of the CCC-APGARCH(p, ¢) models for daily returns
of exchange rates based on m squared residuals autocovariances, as well as the true and estimated
powers (denoted 0, and 5) and the likelihood. When ¢, is known, the two corresponding models with
09 = (1,1) and 05 = (2,2) have the same number of parameters so it makes sense to prefer the model
with the higher likelihood (the likelihood is given in the last column of Table 1). According to this
criterion, the Log—likelihood of the preferred model is given in bold face (see Table 1).

Table 1 shows that the CCC-APGARCH(0,¢q) models (for ¢ = 1,2,3) are generally rejected
whereas the CCC-APGARCH(p, q) models are not generally rejected and seem more appropriate.
When §,, is known, the CCC-APGARCH(1,1) and CCC-APGARCH(2,1) models seem to be rele-
vant for g, = (USDy, JPY,)". In contrast, when ¢, is estimated, the CCC-APGARCH(2,1) and CCC-
APGARCH(2,2) models seem to be relevant for g,.

From the second last column of Table 1, we can also see that the estimated power $ is not necessary
equal to 1 or 2 and is different for each model.

The portmanteau test is thus an important tool in the validation process. From the empirical results
and the simulation experiments, we draw the conclusion that the proposed portmanteau tests based on
the sum of squared residuals of a CCC-APGARCH(p, q) controls well the error of first kind at different
asymptotic level a and is efficient to detect a misspecification of the order (p,q).
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Table 1: Portmanteau test p—values for adequacy of the CCC-APGARCH(p, ¢q) models for daily returns of
exchange rates of the (Dollar,Yen), based on m of the sum of squared residuals autocovariances.

Lag m o .
Currency i 2 3 1 5 § 7 B 9 10 11 12 9o or & Log-lik
Portmanteau tests for adequacy of the CCC-APGARCH(0, 1) when d, is known
(USD,JPY) 0.880 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1,1) -0.1295
(USD,JPY) 0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (2,2) -0.1291
Portmanteau tests for adequacy of the CCC-APGARCH(0, 2) when §, is known
(USD,JPY) 0.401 0.520 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1,1) -0.1827
(USD,JPY) 0.492 0.045 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (2,2) -0.1844
Portmanteau tests for adequacy of the CCC-APGARCH(0, 3) when §, is known
(USD,JPY) 0.496 0.683 0.372 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1,1) -0.2002
(USD,JPY) 0.600 0.114 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (2,2) -0.2010
Portmanteau tests for adequacy of the CCC-APGARCH(1, 1) when J, is known
(USD,JPY) 0.118 0.214 0.362 0.074 0.022 0.027 0.039 0.063 0.064 0.039 0.035 0.042 (1,1) -0.3410
(USD,JPY) 0.280 0.479 0.677 0.232 0.110 0.146 0.216 0.254 0.207 0.159 0.159 0.140 (2,2) -0.3406
Portmanteau tests for adequacy of the CCC-APGARCH(2, 1) when §,, is known
(USD,JPY) 0.164 0.279 0.322 0.160 0.092 0.067 0.072 0.099 0.047 0.020 0.009 0.014 (1,1) -0.2492
(USD,JPY) 0.337 0.595 0.545 0.260 0.092 0.073 0.114 0.145 0.135 0.124 0.128 0.169 (2,2) -0.2858
Portmanteau tests for adequacy of the CCC-APGARCH(1, 2) when §, is known
(USD,JPY) 0.402 0.082 0.151 0.180 0.081 0.064 0.091 0.139 0.086 0.062 0.030 0.046 1,1) -0.2402
(USD,JPY) 0.610 0.082 0.102 0.025 0.013 0.004 0.007 0.008 0.006 0.009 0.013 0.007 (2,2) -0.2937
Portmanteau tests for adequacy of the CCC-APGARCH(2,2) when §, is known
(USD,JPY) 0.166 0.191 0.206 0.102 0.079 0.060 0.083 0.116 0.076 0.045 0.032 0.047 (1,1) -0.2559
(USD,JPY) 0.152 0.205 0.333 0.077 0.040 0.020 0.027 0.038 0.012 0.012 0.012 0.012 (2,2) -0.3062
Portmanteau tests for adequacy of the CCC-APGARCH(0, 1) when § is unknown
(USD,JPY) 0.518 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (4.595,1.201) -0.1321
Portmanteau tests for adequacy of the CCC-APGARCH(0, 2) when §, is unknown
(USD,JPY) 0.779 0.102 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1.743,1.496) -0.1856
Portmanteau tests for adequacy of the CCC-APGARCH(0, 3) when §, is unknown
(USD,JPY) 0.952 0.361 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (1.245,1.518) -0.2031
Portmanteau tests for adequacy of the CCC-APGARCH(1,1) when § is unknown
(USD,JPY) 0.044 0.084 0.167 0.040 0.031 0.046 0.077 0.111 0.118 0.102 0.129 0.087 (2.149,1.568) -0.3520
Portmanteau tests for adequacy of the CCC-APGARCH(2,1) when §, is unknown
(USD,JPY) 0.115 0.262 0.253 0.134 0.101 0.151 0.207 0.219 0.194 0.234 0.260 0.269 (2.229,1.578) -0.2756
Portmanteau tests for adequacy of the CCC-APGARCH(1, 2) when §, is unknown
(USD,JPY) 0.681 0.288 0.336 0.038 0.018 0.027 0.042 0.035 0.028 0.025 0.032 0.036 (1.618,4.547) -0.2805
Portmanteau tests for adequacy of the CCC-APGARCH(2,2) when § is unknown
(USD,JPY) 0.237 0.412 0.407 0.188 0.120 0.176 0.213 0.106 0.070 0.081 0.103 0.097 (0.921,2.033) -0.2783
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Table 2: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

) Length n Level Lag m
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.7 0.7 0.7 1.3 1.1 0.7 0.7 0.5 0.6 0.5 0.4 0.4
(1,1) 250 5% 3.6 4.8 5.3 6.3 6.6 5.2 5.5 4.9 4.6 4.6 4.4 4.0
10% 8.6 9.8 1.4 11.7 119 11.2 114 10.6 10.0 9.7 9.3 9.7
1% 0.8 0.7 0.7 0.8 1.2 1.4 0.9 1.1 0.9 0.9 0.8 0.8
(1,1) 500 5% 4.4 4.2 4.3 4.3 4.7 4.3 3.8 3.4 3.3 3.9 3.6 3.6
10% 8.5 9.1 10.3 8.9 9.8 102 104 94 9.3 8.2 8.5 9.0
1% 1.2 1.6 14 0.9 0.9 0.7 1.3 1.2 1.2 1.4 1.4 1.4
(1,1) 2,000 5% 4.1 4.7 5.3 5.5 6.0 5.6 6.0 5.0 5.1 5.8 5.7 5.3
10% 8.9 9.4 9.7 104 10.8 11.1 126 109 12.1 115 114 10.6
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.6 0.9 0.5 1.2 0.9 0.8 0.4 0.3 0.5 0.4 0.2 0.3
(0.8,1.5) 250 5% 2.4 3.9 4.8 5.8 5.0 5.1 5.4 4.3 4.5 3.9 4.0 3.8
10% 8.6 7.7 10.7 10.3 11.1 11.0 10.7 9.6 9.4 9.1 8.4 8.4
1% 0.6 0.5 0.9 0.7 1.1 1.2 1.1 1.0 0.7 0.7 0.8 0.9
(0.8,1.5) 500 5% 4.2 3.9 3.9 3.9 4.4 4.1 4.3 3.9 3.5 4.7 3.7 4.5
10% 8.4 8.1 9.6 8.3 9.8 9.7 9.7 9.1 9.1 8.5 7.7 8.7
1% 1.1 1.7 1.3 1.4 0.9 0.9 1.5 1.3 1.2 1.5 1.6 1.2
(0.8,1.5) 2,000 5% 4.6 4.9 5.4 5.7 5.8 5.6 5.8 5.6 5.5 5.9 6.2 5.2
10% 9.0 10.0 9.0 9.7 106 11.2 11.8 11.5 11.2 11.3 10.7 11.1
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.8 0.9 1.2 1.7 1.2 1.7 1.0 0.9 0.8 0.8 0.5 0.6
(2,2) 250 5% 4.2 6.0 6.7 6.9 6.4 6.7 6.4 5.9 5.7 5.1 4.9 4.6
10% 9.1 11.8 123 124 124 122 11.8 11.0 10.5 10.6 10.6 10.0
1% 0.6 0.8 0.8 1.0 1.3 1.1 1.2 1.2 1.1 0.6 0.7 0.8
(2,2) 500 5% 5.1 5.3 4.9 4.4 5.5 4.6 4.5 3.9 3.8 4.3 4.6 4.4
10% 99 10.2 102 9.7 94 102 9.6 9.2 9.2 10.0 8.7 9.7
1% 1.2 1.7 1.3 1.2 1.2 1.1 1.2 1.2 14 1.7 1.5 1.6
(2,2) 2,000 5% 4.5 5.5 5.7 6.1 6.3 6.5 6.3 5.0 5.9 5.7 5.8 5.4
10% 8.5 9.4 109 10.8 105 11.2 12,5 11.7 122 11.8 114 10.5
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.9 0.9 1.2 1.7 1.4 1.8 1.3 1.3 0.9 0.8 0.7 0.6
(3,2.5) 250 5% 4.7 5.7 6.7 6.9 6.2 6.6 5.9 5.7 5.6 4.9 4.7 4.7
10% 9.6 12.0 11.7 126 123 123 11.2 11.2 9.3 10.5 10.3 8.9
1% 0.6 0.9 0.9 1.0 1.3 1.0 1.1 1.3 1.2 0.6 0.7 0.7
(3,2.5) 500 5% 5.3 5.3 5.6 4.7 5.7 4.6 4.5 4.1 4.2 4.3 4.6 4.6
10% 111 104 99 101 100 107 99 101 9.2 9.5 8.9 9.6
1% 1.2 1.6 1.3 1.3 1.1 1.0 1.0 1.3 14 1.7 1.6 1.6
(3,2.5) 2,000 5% 4.6 4.9 5.8 6.2 6.0 6.4 6.5 5.3 5.5 5.7 5.8 5.2

10% 9.2 9.2 10.5 10.8 10.2 11.1 121 124 122 119 11.3 10.8
Model (4.1)—(4.2) with Aarl = Aj; when §, is known.
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Table 3: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

) Length n Level Lag m
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.8 1.2 0.9 1.6 1.6 0.9 0.8 0.9 0.7 0.5 0.4 0.5
(1,1) 250 5% 4.1 4.9 6.1 5.9 6.4 5.7 5.7 5.3 4.7 4.2 4.6 4.4
10% 8.7 10.7 121 12,5 124 11.7 114 105 114 10.2 9.3 9.5
1% 1.1 1.1 1.0 1.0 14 1.6 1.1 1.2 1.0 0.8 0.9 1.0
(1,1) 500 5% 4.8 5.5 5.1 4.6 5.2 4.6 4.5 3.9 4.0 4.3 4.3 4.2
10% 9.6 106 11.7 109 9.6 109 106 9.6 9.3 8.9 8.5 9.9
1% 1.2 1.7 1.6 1.4 1.1 1.3 1.5 1.2 1.2 1.5 1.7 1.4
(1,1) 2,000 5% 4.4 5.2 5.8 5.1 5.6 5.6 6.4 5.0 6.0 6.3 6.1 5.2
10% 8.7 9.2 106 97 11.3 11.1 122 10.7 11.7 119 115 11.1
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.5 0.9 1.3 1.3 1.4 1.3 1.0 0.8 0.8 0.5 0.3 0.6
(0.8,1.5) 250 5% 3.7 4.2 5.1 5.9 6.1 5.5 5.7 5.1 4.6 4.5 4.0 3.9

10% 9.3 9.9 116 11.3 114 11.6 103 10.5 10.5 9.9 9.1 9.0
1% 0.9 0.9 1.2 1.4 1.7 1.5 1.4 1.2 0.9 0.8 0.9 0.9

(0.8,1.5) 500 5% 4.4 5.2 5.2 4.3 5.1 4.8 4.6 4.3 4.2 4.7 4.8 4.6
10% 9.2 10.6 11.0 10.6 10.2 9.8 9.7 8.8 9.0 9.2 8.3 10.3

1% 1.1 1.5 1.2 1.3 1.7 1.2 1.5 1.3 1.1 1.5 1.8 1.5

(0.8,1.5) 2,000 5% 4.9 5.2 5.6 5.3 5.6 6.1 6.1 5.3 6.2 6.3 6.0 5.3
10% 8.5 10.3 109 10.1 109 106 12.1 116 114 11.7 11.8 10.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.2 1.3 1.1 1.7 1.5 1.6 1.2 1.0 0.9 0.7 0.3 0.5

(2,2) 250 5% 5.6 6.5 7.2 7.5 6.7 6.6 6.4 6.2 5.6 4.9 4.6 4.6
10% 10.2 11.8 134 127 134 130 123 11.3 11.1 116 10.0 10.3

1% 0.7 1.1 0.9 1.2 1.5 1.5 1.3 1.2 1.0 1.0 1.0 1.1

(2,2) 500 5% 5.8 5.8 5.8 5.0 5.6 5.2 5.2 4.4 3.9 4.7 4.7 5.0
10% 105 11.5 114 114 107 11.2 105 102 10.6 10.0 8.2 9.6

1% 1.3 1.4 1.1 1.2 1.4 1.3 1.3 1.0 1.3 1.6 1.9 1.7

(2,2) 2,000 5% 4.5 5.1 5.3 5.0 5.9 6.2 5.9 5.2 6.0 6.1 5.5 5.2
10% 9.3 9.5 104 9.9 10.8 109 116 114 11.8 121 11.0 10.7

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.4 1.2 1.4 1.7 1.8 1.8 1.6 1.1 1.0 0.8 0.4 0.4

(3,2.5) 250 5% 5.0 6.7 7.3 7.7 6.5 7.1 6.7 5.9 5.6 5.1 4.9 4.3
10% 9.7 11.8 136 129 131 128 119 11.5 114 11.3 105 9.2

1% 1.0 1.1 1.0 1.2 1.4 1.3 1.2 1.2 1.3 1.0 1.0 1.0

(3,2.5) 500 5% 5.9 6.0 5.5 4.9 5.3 5.0 4.8 4.2 3.8 4.4 4.3 4.6
10% 11.0 107 109 11.2 105 11.3 109 9.7 102 9.4 8.5 9.6

1% 1.0 1.5 0.9 1.2 1.3 1.2 1.5 1.0 1.3 1.6 1.7 1.8

(3,2.5) 2,000 5% 5.0 5.0 5.5 5.6 5.9 6.1 6.6 4.8 5.8 5.8 5.3 5.2

10% 9.9 9.2 10.5 10.2 109 10.8 11.2 11.7 121 11.8 11.2 10.1
Model (4.1)—(4.2) with Aarl # Ay, when g is known.
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Table 4: Empirical power of the proposed test for the null hypothesis of the CCC-APGARCH(0, 1) model defined

by (4.1) with §, = (1, 1) against the alternative given by (4.1) when §, # (1,1).

do Length n Level « Lag m
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.8 1.2 0.9 1.6 1.6 0.9 0.8 0.9 0.7 0.5 0.4 0.5
(1,1) 250 5% 4.1 4.9 6.1 5.9 6.4 5.7 5.7 5.3 4.7 4.2 4.6 4.4
10% 8.7 107 121 125 124 11.7 114 105 114 102 9.3 9.5
1% 1.1 1.1 1.0 1.0 1.4 1.6 1.1 1.2 1.0 0.8 0.9 1.0
(1,1) 500 5% 4.8 5.5 5.1 4.6 5.2 4.6 4.5 3.9 4.0 4.3 4.3 4.2
10% 9.6 106 11.7 109 96 109 10.6 9.6 9.3 8.9 8.5 9.9
1% 1.2 1.7 1.6 1.4 1.1 1.3 1.5 1.2 1.2 1.5 1.7 1.4
(1,1) 2,000 5% 4.4 5.2 5.8 5.1 5.6 5.6 6.4 5.0 6.0 6.3 6.1 5.2
10% 8.7 9.2 106 97 11.3 11.1 122 10.7 11.7 119 115 11.1
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.5 1.2 1.0 1.6 1.4 1.3 0.8 0.9 0.7 0.7 0.5 0.4
(0.8,1.5) 250 5% 4.4 5.2 6.3 5.9 5.3 6.4 5.9 5.8 5.3 4.9 4.5 4.7
10% 9.5 107 114 124 12,7 124 11.6 11.2 103 103 10.1 10.0
1% 1.0 1.0 1.1 1.0 1.4 1.5 1.3 1.2 1.0 1.0 0.9 1.1
(0.8,1.5) 500 5% 5.3 5.2 5.4 5.0 5.3 4.5 4.4 4.1 4.2 4.5 4.5 4.4
10% 10.3 105 114 11.0 108 10.1 10.0 9.2 9.2 10.0 9.2 9.2
1% 1.4 1.5 1.2 1.2 1.7 1.3 1.4 1.4 1.4 1.2 1.4 1.3
(0.8,1.5) 2,000 5% 4.8 5.3 5.7 5.5 5.9 6.4 5.8 5.8 6.7 6.3 6.2 6.0
10% 9.9 10.1 11.0 10,5 11.6 11.6 121 11.6 11.8 129 122 114
1 2 3 4 5 6 7 8 9 10 11 12
1% 1.8 2.4 1.7 1.9 2.0 1.9 1.5 1.1 0.7 0.6 0.5 0.7
(2,2) 250 5% 8.4 9.1 9.8 8.6 8.5 7.8 8.0 7.0 5.8 5.8 5.0 5.1
10% 148 162 16.1 16.1 15.7 16.0 13.7 124 132 11.8 11.2 10.7
1% 3.1 3.4 3.2 2.7 2.3 2.6 2.8 2.1 1.9 1.9 2.0 1.9
(2,2) 500 5% 11.1 13.6 11.7 10.8 94 9.5 8.1 7.6 7.6 7.6 6.3 7.1
10% 18.8 199 198 186 176 16.2 159 15.0 14.7 140 13.0 14.0
1% 10.3 11.0 9.8 8.3 8.1 6.9 6.4 5.7 5.9 5.5 5.6 4.8
(2,2) 2,000 5% 254 29.1 251 230 212 193 179 180 174 16.6 157 14.7
10% 35.8 395 365 345 319 30.1 297 285 270 262 259 26.0
1 2 3 4 5 6 7 8 9 10 11 12
1% 1.9 2.4 1.8 1.7 2.1 2.0 1.6 0.9 0.9 0.6 0.4 0.7
(3,2.5) 250 5% 8.2 9.7 9.5 9.2 8.2 7.8 7.1 7.1 5.8 5.3 5.3 5.1
10% 152 16.7 16.1 16.7 16.0 15.8 144 127 127 124 106 11.2
1% 3.7 3.6 3.7 2.7 2.5 2.6 2.6 2.5 1.8 2.0 2.2 2.2
(3,2.5) 500 5% 115 13.1 123 11.5 9.9 9.8 9.0 8.6 8.4 7.9 7.2 8.1
10% 194 213 203 197 179 171 170 16.2 149 143 144 145
1% 11.0 128 109 10.0 9.0 8.2 7.5 7.0 6.8 6.4 6.0 5.4
(3,2.5) 2,000 5% 26.3 31.7 284 257 227 21.2 205 208 194 183 175 175
10% 38.7 443 405 38.0 354 337 326 31.0 298 294 286 274

Model (4.1)—(4.2) with A(J)r1 # Ay when ¢ is known.
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Table 5: Empirical power of the proposed test for the null hypothesis of a bivariate CCC-APGARCH(0, 1) model
of the form (4.1) against the bivariate CCC-APGARCH(1, 1) alternative given by (4.3) when §, is known.

do Length n = Level a Lag m
1 2 3 4 5 6 7 8 9 10 11 12
1% 11.1 12.7 21.2 22.6 20.2 16.5 13.5 10.7 9.4 7.1 6.5 5.5
(1,1) 250 5% 25.0 36.0 49.7 50.5 48.0 44.3 40.3 35.6 320 289 26.8 24.8

10% 35.1 522 66.6 68.9 65.3 61.4 56.7 52.0 489 459 420 39.9
1% 276 426 65.1 72.4 70.6 66.8 63.7 57.7 523 488 440 39.6
(1,1) 500 5% 46.1 717  89.4  92.2 91.1 90.4 86.7 83.3 80.7 77.0 757 72.3
10% 57.8 84.1 949 96.3 96.2 95.1 94.0 926 899 876 852 83.7
1% 780 97.5 993  99.6 99.8 99.8 99.8 99.8 99.8 99.7  99.7 99.8

(1,1) 2,000 5% 87.9 99.3 99.7 99.9 99.9 99.9 99.9 99.9 99.8 99.8  99.8 99.8
10% 923 99.6 999 99.9 99.9 99.9 99.9 99.9 999 99.9 999 99.9

1 2 3 4 5 6 7 8 9 10 11 12

1% 125 126 18.8 204 16.3 13.9 11.6 9.6 7.2 6.2 5.7 5.0

(0.8,1.5) 250 5% 244 342 471 483 46.3 41.2 37.4 32.5 280 25.0 246 21.7

10% 342 499 64.1 64.7 62.6 58.6 53.6 50.6 46.6 44.3  40.2 37.2
1% 26.8 37.7 559 @ 62.7 61.3 58.3 53.4 47.8 424 389 346 29.1
(0.8,1.5) 500 5% 45.3 659 80.8 86.6 85.3 83.2 80.8 776 736 709 68.7 62.8
10% 55.7 79.4 911 93.1 93.0 91.8 89.9 87.8 856 83.0 799 77.8
1% 71.9 909 95.7 97.8 98.2 98.0 98.0 98.1 97.6  97.1 96.6 96.9

(0.8,1.5) 2,000 5% 84.4 96.7 98.3 98.8 99.3 99.2 99.2 99.3 99.1 987 98.8 98.8
10% 87.4 98.3 98.7 99.3 99.3 99.3 99.3 99.3 993 99.3 99.1 99.3

1 2 3 4 5 6 7 8 9 10 11 12

1% 146 13.3 21.8 23.6 22.3 19.0 16.3 12.8 10.7 104 9.1 7.4

(2,2) 250 5% 304 38.3 53.0 57.0 53.8 49.5 45.5 39.8 36.1 332 30.1 27.8

10% 41.7 53.3 68.8 73.2 71.5 67.0 63.4 57.7 548 51.6 469 44.3
1% 349 447 66.3 74.0 74.5 72.6 68.2 64.4 59.6 55.9 50.4 45.8
(2,2) 500 5% 55.1 70.9 886 923 91.5 90.8 89.1 874 854 819 792 77.5
10% 64.4 827 946 96.2 97.0 96.0 95.3 94.3 928 91.1 89.6 87.7
1% 84.6 96.2 98.7 994 99.6 99.8 99.8 99.8  99.7 99.7 994 99.3

(2,2) 2,000 5% 929 99.1 995 99.8 100.0  99.9 99.8 999 999 99.9 999 99.9
10% 95.0 99.5 99.8 100.0 100.0 100.0 100.0 100.0 99.9 99.9 100.0 100.0

1 2 3 4 5 6 7 8 9 10 11 12

1% 201 173 239  26.3 25.3 22.9 20.2 18.5 16.2 127 11.6 9.5

(3,2.5) 250 5% 41.7 422 548 57.6 55.7 52.2 49.0 46.3 423 390 37.8 34.7

10% 51.6 59.0 69.6 73.1 73.1 69.5 67.1 629 60.1 57.5 54.0 50.6
1% 45.8 48.3 59.7  66.0 68.8 67.7 66.0 66.0 61.4 58.0 54.7 50.4
(3,2.5) 500 5% 67.0 71.7 834 86.2 87.8 87.7 86.0 86.2 85.0 82.3 80.3 77.5
10% 76.5 822 914 922 93.5 93.7 93.3 926 919 90.0 89.7 87.9
1% 86.2 91.5 954 96.1 96.9 97.7 97.9 979 981 98.0 979 98.2
(3,2.5) 2,000 5% 93.2 96.9 98.1 98.3 98.9 98.8 99.0 99.2 99.1 98.8 989 98.9
10% 946 97.6 98.7 99.0 99.2 99.4 99.5 99.5 995 994 995 99.4

Model (4.3) with A(J)r1 # Ay, when ¢ is known.
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Table 6: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

) Length n Level Lag m
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.6 1.1 1.0 1.6 1.3 1.0 1.0 1.0 0.6 0.3 0.3 0.5
(1,1) 250 5% 5.1 5.4 6.1 7.2 6.4 6.4 6.1 5.6 5.5 5.2 4.8 4.8

10% 104 103 114 114 125 123 11.8 10.5 10.1 11.1 10.7 10.5
1% 0.5 0.9 1.1 1.1 1.3 1.0 1.0 1.0 0.9 1.1 0.8 0.7

(1,1) 500 5% 4.3 4.9 4.1 4.8 4.3 4.8 4.8 4.3 4.5 4.5 4.3 4.3
10% 9.1 10.1  10.2 8.9 9.8 9.5 9.8 10.0 8.9 9.0 9.2 9.9

1% 0.8 1.3 1.1 1.0 1.4 0.8 1.2 1.2 1.4 1.4 1.5 1.1

(1,1) 2,000 5% 4.2 4.6 5.9 5.4 5.9 5.8 6.0 5.8 5.3 5.3 5.4 4.7
10% 8.6 94 107 102 100 106 12.0 11.3 122 125 114 10.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.5 0.8 1.3 1.2 0.9 1.0 0.8 0.5 0.6 0.5 0.5 0.5

(0.8,1.5) 250 5% 5.0 4.9 6.4 7.1 6.8 5.8 5.9 5.4 5.7 4.7 4.8 5.0

10% 9.4 104 120 131 130 129 122 10,5 11.0 10.2 10.0 10.7
1% 0.9 1.1 1.0 1.3 1.5 1.1 1.2 1.2 1.2 0.9 0.8 1.0

(0.8,1.5) 500 5% 4.4 4.2 4.4 5.2 4.9 4.9 4.8 4.6 4.3 4.7 4.3 4.8
10% 8.2 9.3 9.8 9.9 10.3 10.6 10.1 9.8 9.3 9.5 9.8 10.1

1% 0.9 1.4 1.2 1.2 1.3 0.9 1.3 1.2 1.3 1.6 1.5 1.4

(0.8,1.5) 2,000 5% 4.4 5.4 5.6 5.6 6.1 5.4 5.9 6.0 6.3 5.7 6.0 4.9
10% 9.4 9.6 11.2 105 101 11.7 121 11.3 120 11.9 114 10.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.0 1.6 1.6 1.8 2.0 1.6 1.2 1.2 0.8 1.2 1.4 1.0

(2,2) 250 5% 6.2 8.2 7.0 6.4 4.8 5.6 5.8 5.6 6.2 5.0 5.4 5.8

10% 120 134 144 124 108 10.8 11.0 10.0 9.6 11.8 11.4 10.6
1% 0.9 0.9 0.9 1.3 1.2 1.1 1.2 1.2 1.0 0.8 0.7 0.9

(2,2) 500 5% 5.2 5.2 4.9 5.3 5.6 4.5 4.8 4.6 4.2 4.6 4.8 4.8
10% 10.5 108 11.0 11.0 103 10.8 103 10.3 9.7 10.1 9.1 10.9

1% 1.2 1.4 1.1 0.9 1.4 1.1 1.3 1.3 1.4 1.4 1.5 1.6

(2,2) 2,000 5% 5.4 5.0 5.2 5.7 6.1 6.4 6.8 5.5 5.8 5.8 5.5 5.9
10% 8.8 105 11.1 10.8 109 11.2 121 119 128 124 11.2 10.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.0 2.6 2.0 1.6 1.6 1.8 1.4 1.4 1.2 1.6 1.4 1.0

(3,2.5) 250 5% 7.4 7.4 8.8 7.4 6.4 6.0 5.6 5.8 5.4 5.2 5.2 5.2
10% 11.8 148 130 144 114 126 116 114 104 114 11.6 10.0

1% 0.8 0.9 0.7 1.1 1.4 1.5 1.4 1.5 1.1 0.9 0.9 1.0

(3,2.5) 500 5% 4.9 4.9 5.6 5.2 5.8 4.3 4.1 4.7 4.8 4.8 4.8 5.1
10% 11.0 11.0 105 10.7 109 11.0 11.2 10.1 10.2 9.6 9.5 11.1

1% 1.0 1.4 1.2 1.4 1.0 1.2 1.1 1.4 1.5 1.4 1.6 1.9

(3,2.5) 2,000 5% 5.2 4.9 5.5 5.9 6.5 6.4 6.9 5.8 5.9 6.0 6.0 5.9

10% 9.7 10.8 114 103 105 10.7 122 123 129 121 11.7 10.8
Model (4.1)—(4.2) with Aarl = Aj; when ¢, is unknown.
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Table 7: Empirical size of the proposed test: relative frequencies (in %) of rejection of an APGARCH(0, 1).

) Length n Level Lag m
1 2 3 4 5 6 7 8 9 10 11 12
1% 0.7 0.9 1.4 1.9 1.1 1.2 0.8 0.5 0.7 0.4 0.3 0.6
(1,1) 250 5% 4.2 5.3 5.8 6.6 6.2 5.5 5.9 5.6 5.2 4.7 4.8 4.4

10% 9.1 9.6 123 113 126 132 120 10.6 11.0 10.5 9.7 9.7
1% 0.5 0.9 1.1 1.0 1.5 1.4 1.3 1.2 1.1 1.1 0.9 0.8

(1,1) 500 5% 4.6 5.0 4.8 4.8 5.5 5.5 4.8 4.0 4.2 4.5 4.5 4.9
10% 9.7 10.0 104 104 101 10.7 11.0 10.0 9.3 9.6 8.3 9.8

1% 1.5 1.4 1.4 1.2 1.5 1.3 1.6 1.0 1.3 1.8 1.8 1.2

(1,1) 2,000 5% 4.5 4.6 5.1 4.9 5.4 5.8 6.1 5.4 5.8 6.1 6.0 5.4
10% 9.4 9.2 10.6 104 11.0 106 109 114 11.2 120 109 10.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.5 1.1 1.3 1.7 1.5 1.4 11 0.6 0.7 0.8 0.5 0.5

(0.8,1.5) 250 5% 4.5 5.1 6.2 6.7 5.5 5.7 6.0 5.1 5.0 5.1 4.3 4.4
10% 9.5 100 121 119 124 127 11.0 10.7 10.0 10.0 9.6 10.0

1% 1.2 1.2 1.1 1.2 1.6 1.4 1.2 1.0 1.1 1.3 1.2 1.0

(0.8,1.5) 500 5% 5.4 5.7 4.8 5.4 5.7 4.9 5.1 4.4 4.6 4.7 4.9 5.3
10% 10.0 103 11.2 103 10.8 10.6 11.1 10.0 9.7 9.4 9.1 10.2

1% 1.4 1.3 1.0 1.2 1.8 1.4 1.4 1.3 1.4 1.7 1.9 1.4

(0.8,1.5) 2,000 5% 4.5 5.5 5.7 5.8 5.5 5.8 6.9 5.6 6.3 6.0 6.4 5.4
10% 9.2 102 11.3 106 101 11.2 113 116 121 122 122 10.7

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 1.2 1.8 2.0 1.2 1.0 1.0 0.6 0.6 0.6 1.0 0.8

(2,2) 250 5% 5.0 6.4 6.4 6.4 4.8 4.8 5.4 5.2 5.8 5.4 5.0 5.4
10% 106 11.2 134 124 106 106 104 102 10.6 11.6 114 10.0

1% 1.0 1.2 1.1 1.2 1.5 1.6 1.8 1.4 1.2 1.3 1.0 0.9

(2,2) 500 5% 5.1 6.1 5.7 5.8 5.7 5.8 5.8 4.2 4.7 4.6 4.8 5.1
10% 9.8 119 121 124 116 116 11.1 108 10.1 10.0 9.0 9.5

1% 1.1 1.3 1.1 1.2 1.7 1.3 1.7 1.2 1.3 1.8 1.7 1.6

(2,2) 2,000 5% 4.8 5.0 5.8 5.5 6.1 5.9 6.1 5.4 5.7 5.5 5.5 5.5
10% 10.2 10.2 10.1 106 108 114 11.3 11.6 124 123 11.2 10.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.0 1.4 1.8 2.0 1.0 1.0 0.8 1.0 0.8 0.8 0.8 1.0

(3,2.5) 250 5% 6.0 6.4 7.4 6.2 4.2 5.2 6.2 4.2 5.2 5.4 5.6 4.6
10% 11.6 11.8 13.6 122 102 10.2 104 10.6 9.8 10.4 10.2 10.6

1% 1.0 1.1 1.2 1.3 1.5 1.4 1.8 1.8 1.3 1.0 1.1 1.0

(3,2.5) 500 5% 6.0 6.3 5.4 5.7 5.7 5.3 4.9 4.3 4.0 4.5 4.8 5.1
10% 11.8 129 116 12.0 122 122 115 11.0 10.6 9.7 9.5 10.3

1% 1.2 1.5 1.1 1.1 1.7 1.4 1.8 1.5 1.4 1.9 1.7 1.7

(3,2.5) 2,000 5% 5.1 4.9 5.9 6.0 5.7 6.3 6.6 5.7 5.6 5.9 5.6 5.5

10% 10.8 10.1 106 11.0 11.3 109 114 120 126 120 11.0 10.2
Model (4.1)—(4.2) with Aarl # Ay, when g is unknown.
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Table 8: Empirical power of the proposed test for the null hypothesis of a bivariate CCC-APGARCH(0, 1) model
of the form (4.1) against the bivariate CCC-APGARCH(1, 1) alternative given by (4.3) when §, is unknown.

do Length n Level a Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 21.6 19.6 23.8 27.8 23.0 20.4 16.6 13.0 11.2 10.0 9.8 8.2

(1,1) 250 5% 37.0 436 54.6  55.0 50.0 46.4 43.0 39.0 34.8 31.4 30.8 27.8
10% 472  56.4 67.2  69.8 68.0 62.4 58.4 54.8 52.2 49.6 45.2 42.2

1% 46.8 53.8 69.2 728 71.8 70.2 65.6 60.0 56.2 53.4 46.8 43.4

(1,1) 500 5% 68.6 77.0 88.6 91.0 91.0 88.8 86.2 83.4 82.0 78.2 75.4 73.2
10% 76.6 874 952 954 96.0 95.4 93.6 92.0 89.4 88.0 86.2 85.8
1% 96.7 99.2 99.6 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9  100.0
(1,1) 2,000 5% 98.2 99.8 99.9 99.9 99.9 99.9 99.9 99.9 100.0 99.9 100.0 100.0
10% 99.1 100.0 99.9 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0

1 2 3 4 5 6 7 8 9 10 11 12

1% 20.8 17.4 20.8 20.2 18.2 13.6 11.2 10.2 8.0 6.8 6.0 5.0

(0.8,1.5) 250 5% 38.2 406 47.8 488 46.8 43.0 37.0 33.6 29.4 24.6 24.4 23.2
10% 496 56.2 66.0 66.6 63.2 59.2 53.8 51.0 46.4 43.4 42.0 39.4

1% 475 492 61.7 65.6 63.2 60.9 55.4 50.1 46.2 41.0 38.7 32.9

(0.8,1.5) 500 5% 67.5 745 844 875 86.0 83.6 82.4 78.7 75.3 71.7 69.1 65.0
10% 75.5 84.5 921  94.0 93.2 92.4 90.4 88.2 86.8 83.4 81.6 79.5

1% 92.8 96.2 98.1 98.7 98.8 98.7 98.5 98.4 98.2 97.8 97.5 97.8

(0.8,1.5) 2,000 5% 96.0 983 99.0 99.3 99.4 99.4 99.4 99.3 99.2 98.9 99.1 99.2
10% 97.2 993 99.3  99.6 99.6 99.5 99.5 99.5 99.5 99.5 99.5 99.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 14.4 17.2 23.2 23.0 22.0 19.0 17.8 15.0 11.6 11.2 8.2 7.2

(2,2) 250 5% 29.0 388 56.8 59.0 55.2 50.4 45.2 43.2 38.0 35.0 32.0 29.0
10% 378 578 722 724 71.8 69.2 65.8 59.0 53.8 52.2 48.4 46.4

1% 404 51.8 69.8 76.6 76.6 73.6 70.6 65.8 61.6 58.2 52.8 47.6

(2,2) 500 5% 59.6 76.6 90.0 92.0 91.4 91.8 90.2 87.8 86.0 82.6 79.8 77.6
10% 69.4 86.2 94.8 97.0 95.6 95.8 95.4 94.8 94.2 93.0 91.2 89.4

1% 91.8 982 99.0 994 99.7 99.7 99.8 99.8 99.8 99.8 99.6 99.5

(2,2) 2,000 5% 96.0 994 99.7 100.0 100.0 99.9 99.8 99.9 99.9 99.9 99.9 99.9
10% 97.0 996 99.9 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 99.9

1 2 3 4 5 6 7 8 9 10 11 12

1% 24.6 24.8 33.2 36.8 36.8 33.2 29.6 26.6 23.2 21.8 19.2 16.4

(3.,2.5) 250 5% 41.0 52.0 62.0 644 64.8 62.4 57.0 54.8 50.8 46.8 43.6 43.2
10% 488 644 724 76.2 75.0 75.4 72.8 69.2 68.4 65.2 62.2 60.4

1% 52.8 56.6 67.0 71.6 72.4 70.4 67.4 65.8 63.4 59.2 56.6 55.6

(3.,2.5) 500 5% 66.6 77.8 85.8 87.2 88.6 89.4 88.0 88.2 87.4 84.6 81.6 80.0
10% 746 84.6 92.0 92.0 93.6 93.6 93.4 92.8 91.4 91.0 91.2 90.4

1% 90.4 93.7 95.6 96.7 97.7 97.6 97.8 98.0 97.7 98.0 97.8 97.9

(3.,2.5) 2,000 5% 944 969 983 98.8 98.9 99.0 99.2 99.3 99.1 98.8 99.0 99.0
10% 96.4 983 989 99.3 99.3 99.4 99.5 99.6 99.3 99.3 99.5 99.5

Model (4.3) with A§1 # Ay, when J, is unknown.

6. Appendix : Proofs of the mains results

To prove the main results we need some tools from Boubacar Mainassara et al. (2022) summarized
in the following lemma.

6.1. Preliminaries

Lemma 6.1.

Elle*/?)° < oo,

For all # € O, recall that E%)ﬂ

E sup ||
0co

(Boubacar Mainassara et al. (2022))
Under Assumptions A1-A7 and for s €]0,1[, we have

3o/2

20

< 00,

~§
E sup ||2g¢%||* < cc.
0cO

(0) is the strictly stationary and non-anticipative solution of (2.1).

(6.1)



Moreover, there exists K a random constant that depends on the past values of {e1,t <0} and 0 < p < 1
such that

R »

Thus, for iy = 1,...,d, since min <hff;1 p(@),fsz’? /2(9)) > w = 1in£dw( i), the mean-value theorem
) k) 7
implies that

h 2 (6) — i (6)

- 2) 5 s
sup i, 1(6) — iy 1(6)] < 5 supma (k1 (6), 5" /%(6)) sup

0co 0.1 0 11,t » it 9co 11,t 11,t
2K 1 - . .
< sup — | sup max (hilvt(H), hil,t(9)> PP < Kp', (6.3)
50,%'1 fce W/ gco

and similarly

sup h?/2(9) _pl2 (6)‘ < sup max (h(itéo Zl)/2(0) iz(-l_éo'“)ﬂ(e)) sup h(-so’il/2(9) - iz(-so’ilm(e)

0c6 11,t 11,t 0.i1 9 » Tt 0c6 11,t 11,t
K 1 -
< (Sup —> sup max (hiﬁ(@), hlll/i(ﬁ)) ot < Kpt. (6.4)
5072'1 e W/ gco

From (6.3) we can deduce that, almost surely, we have

sup | H:(0) — H(0)|| < Ko, . (6.5)
0cO
Since ||R™Y| is the inverse of the eigenvalue of smaller module of R and ||D; || = [min;(h m)] for
1=1,...,d, we have
sup 17 (6)] < sup 1D 217 < sup [minfe(o)| 1771 < . (6:)
0cO 0cO fco L

by using the fact that R is a positive-definite matriz (see Assumption A5), the compactness of © and
the strict positivity of the components of w. Similarly, we have

sup [|H; (0)]] < K. (6.7)
0co

There exists a neighborhood V(0y) of 0y € (2) such that: for all vg > 1, 41 = 1,...,d and all 1,j =
1,...,s1 we have

1 ah60 i /2 ro 1 82 60 21/2 o
E sup Wt (9)] < oo and  E sup iyt (0) <oo. (6.8)
0V (6o) hff'il /2 00; 6eV (o) hff’;l /2 89Z89]

In the case where the power is unknown, the vector of parameter becomes ¥ and we replace H; by H;
and 6 by 1. The previous results must be adapted in consequence.

6.2. Proof of Theorem 3.1
We decomposed this proof in following steps.

(i) Asymptotic impact of the unknown initial values on the statistic #,,.

(14) Asymptotic distribution of \/nt,,.
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(737) Invertibility of the matrix D.

Recall that

) = = > [Te(su@)[Te(sen(6)]  with (6) = n(O)i(6) Lo
t=h+1
= =) OO — iy @nn(6) ~d
t=h+1
= = 157 €)= Al 1 HE Oz = )
t=h+

(i) Asymptotic impact of the unknown initial values on the statistic ¥,
Let Si(0) = e} H; '(0)g; — d and Sy(0) = g, H; ' (0)g, — d. We observe that

rn(0) — in(0) — % S (0 +be),

t=h+1

where a; = S;_1,(0)(S¢(8) — S¢(8)) and by = (S;_1,(0) — S;_n(6))S:(0). We obtain

la¢| = |§£_th__lh(9)§t—h -

e\ H;(0) (HL(0) — HL(0) 7 (0)z
= [Te(H 2, (0)zrnshn — 1) | TeCH O) (Ho(0) — H0) 7 (9)ze)

< sup (1H; " Ollles-nei-all + 12al) (17 @1HO) = E@I1H O)llect]) -

Now using (6.5), (6.6) and (6.7), we have
las] < Kp'(gi-ngi—n + d)ie

We have the same bound for |b;|. Using the inequality (a + b)® < a® + b°, for a,b > 0 and s €]0, 1],
(6.1) and Holder’s inequality, we have for some s* €]0, 1] sufficiently small

Zsup|at|

Vn = geo

Sk

<E

ZSUPHKP (Et—netn + La)esgtl
n = pco

1 Sk N
< ts*
=K (75) 20

We deduce

We have the same convergence for by, and for the derivatives of a; and b;. Consequently we obtain

or(0)  OF(0)

o0y’ oy’

Vnllrm(0o) — Em(6o)ll = op(1),

‘ = op(1). (6.9)
USC]

The unknown initial values have no asymptotic impact on the statistic t,.
(i) Asymptotic distribution of \/nf,,

We now show that the asymptotic distribution of \/nt,, is deduced from the joint distribution of
\/nry, and the QMLE.
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Using (6.9) and a Taylor expansion of r,,(-) around 6, and 6, we obtain

Vit = Vit 00) + 22T il — bo)
= Vi (80) + 2D il ) + o (1),
for some 6* between &, and fy. For i,j = 1,...,so the first and the second derivatives of S;(§) give
B0 — v | Oy 0 250
%29%(99; _ Tr[ t <e>%§_")ﬂgl<e>§t§;m1w>ag;i") —Ht—l(e)gtg;H;l(e)a;gg(;)
Oz 70750 0.

In view of (6.8), there exists a neighborhood V() of 6y such that

0251 (0)S:(9)

E_sup 9600

0V (6o)

o~

Fori=1,...,s0,let hy(i) = |:V6C (HOt /2 (0H(60)/06;)H, _1/2)] and we define the matrix of size d? x s,

h; = (h(1)]...|h(s0)). For a fixed rj, using the previous inequality, Assumption A7, the almost sure
convergence of 8* to 6y, a second Taylor expansion and the ergodic theorem, we obtain

Irn07) _ Il L 1y s o) =K [st_hg‘;ﬂ =K [St_hTr <H&1a}ge(fo)>]

00, 00, n—00
—E [S;—phi(i)vec(Iy)]

by the fact E[S;0S5;_1(60)/06] = 0 and using the property Tr(A'B) = (vec(A))'vec(B). Note that
C'(h, 1) is the (h,i)-th element of the matrix C),. Consequently we have

8r’59(f90) — Co =[O Dishemsizss = ~F | (Si-10-m) (Bivee(L) ] (6.10)
where S¢_1.4—m = (Si—1,...,St—m)’. It follows that
Vit =/ 4 Cr/1(6, — 00) + op(1). (6.11)
From ((3’ 1) it is clear that the asymptotic distribution of \/nf,, is related to the asymptotic behavior
of v/n(8, — 6(,r},)". We note that

R 1¢(0o)
V(B — o) = ( Zat °>,
with 1;(0) = ,H; ' (8)e, + log(det(H,(A))). The derivatives are recursively calculated with respect to
Hy(0) for a fixedi=1,...,s0

0l¢(0o)
00;

We then deduce that

_ _ _1, OH(6 —1/20H(0p) . — ! ,
=Tr |(Hy,' — H0t1§t§;H0tl)$:| == [Vec <H0t1/2$H0t1/2>:| vec(s;) = —hy(i)vec(sy).

oly(00) ([ Oly(0o) (0o)\" _ .
20 —< o0 o0, = —hyvec(sy).
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n ~
Observe that /nr,, =n~1 3" S;_1.4-mS;. Now we can obtained the asymptotic distribution of \/n (6, —
t=1
0;,r.,) by applying the central limit theorem to the multivariate martingale difference

— —1p/ ! "
- t 9 —1T—m ) -1 - U = .
{Tt ({7 Bjvec(s)}  Sira-mSi) 5 FLy = o(n u<t)}

The expectation of the distribution is given by

J~1h)vec(s;) J I hiElvec(s;) | 7Ly ]
St—1.5¢ St—lE[St‘fzz—ﬂ

E [Tt‘]::—l] =E t—1| =

St m St St—mE[Se| F/ 4]

because (Si—;);>1 is measurable with respect to the o-field F,' | and E[S;] = E[nn] — d = 0 and
E[vec(st)] = vec[E(mm;) — I5) = 0. For i = 1,...,d, the variance is given by

DI X5
=:=E [T = <E,A o gm>

On,rm rm
B ( Jrg! E [J—lh;vec(st)Sth_lzt_m]) (6.12)
N E [St—lzt—m (VeC(St))/ Sthtz]_l] (E [Stz] )2 Im ’ .

which leads to

n—oo

1 < d
— ) T, —— N(0,8).
NG ; ‘ (0,5)
Using (6.9) and (6.12), the asymptotic distribution of \/nt,, gives

Vi —— N(0,D),

n

where D is a matrix defined as follows
D:= lim Var(y/nt,,) = Jim Var(v/nry,) + Cp, Ul_)n;o Var(v/n(6,, — 90))} cr
+Cp, [nh_)n;o Cov(vn(b, — bo), \/ﬁrm)]
+ | Jim Cov(v/a(By — o). viirn)|
=B, + O " LITICL + Oy L 8GO

(797) Invertibility of the matrix D
Note that by using the relation vec(ABC) = (C’ ® A)vec(B) we can also rewrite hy(i) as follows

h,(i) = |:V6C <H0_t1/2 alge(éo)H&l/2>] = [Ho_tl/z ® H&lp] vec <8Hat7£00)> = H;d;(i),

where H; = [Ho_tl/2 ® H&lp] and d¢(i) = vec (0H;(0)/90;). Thus we define the matrix of size d? x s,
dt = (dt(l)‘ N ‘dt(So)) such that ht = tht-

To study the invertibility of the matrix D we write V = S;_1:4—m St — CpnJ ! alta(go) such that
ol (6 _
EVV'] =E [(S7)St-1:4-mSi_1:4-m] — E [(Sast_lzt_m 3(90)] Jlc,
_ Ol (6p) _ Ol (00) Ol (6p)] _
—C,, 1]E t / . - 1]E 1,
Cnd [ 20 (Si_1:4—mSt) | + Cmd 20 20 J O,

=%, +3  Cr+CnSs , +Cnd 'IT7Cpp.

On,tm
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We can rewrite the vector V' as
V =Si_1.4-mS: + C’mJ_ldéHévec(st).
If the matrix E[VV'] is singular, then there exist a vector A = (A1,..., Ap)’ not equal to zero such that
NV = NSi_14-mSt + pdjHjvec(s) =0,  ass., (6.13)

with u = NC,,J~'. We have pu # 0, else N'S;_1.4—mS; = 0 almost surely, that implies there exists
j €{1,...,m} such that S;_; be mesurable respect to the o-field {S,,t—1 <r <t—m} with r # t—7j.
That is impossible because the S; are independent and not degenerated. Consequently (6.13) becomes

L S0 aHt ) S0 a
/mﬁgym Zm =Z pigg: [(Dor © DogJvec(Ro)] =0 as.,

Z

s1 a(D ® D 50 ovec(R
- Z Ot Ot) C(R()) + Z ,ui(DOt ® DOt)# =0 a.s.. (614)
i=s141 !

Since the vectors dvec(Ry)/00;, i = s1+1,...,so are linearly independent, the vector (fs,1,-- -, fs)
is null and thus Equation (6.14) yields
51
(Dot ® Do)
PPLTLON

96, ec(Rp) =0, as.. (6.15)

i=1

The rows 1,d + 1,...,d? of the Equation (6.15) yield

E:ufﬂgfwzzo, a.s. (6.16)
i=1 ‘

We have fori; =1,...,dandi=1,...,5s1

80,4, /2 2/%0,i1 80,1, /2
omt00) 2 (153") ) =~ x i g (6.17)
00; 90); O Soay O R 2 0g, O '

41,0t

where the derivatives involved in (6.17) are defined for all § € © recursively by

00,i1 /2 d p 30,i5 /2
Oh; 17 (0) Oh,
i1,t .. i2,t—1
——— =c(0) + § E B;(iy, i) ——F—,
o0 bt 00

30, 0, 0, 0,
— + 1 + " + i + td
ei(6) = (0, L0 () o ()0 () e ()

B 30,iy _ b0,i, B 30,iy _ b0,i,
0,,..., <5i17t_1) ,0,..., <€Z~d’t_1> ,0,..., <5i17t_q> ,0,..., <5id,t—q> ,

i 80,i4/2 80,41 /2 80,i4/2 !
o,,..,hh¢_1,o,..,hw¢_1,o,..,hhi_p,o,..,hwi_p,”.,o>.

(6.18)

The distribution of 7, is non-degenerated, so Equation (6.13) becomes

NV =NSi_14-m +p/dH1 =0, as.
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where 1 represents a vector composed by 1 of size d®> x 1. For iy = 1,...,d and in view of (6.17) we
can write

00,i1 /2
LOh; (e
NV = NSi_1.t-mh 5‘“1/2 +Z “t (0) =0, as. (6.19)
where pf = 2p;/d04,
Denote by R; a random variable measurable with respect to o{n,,u < t} whose value will be
modified along the proof. Thus we write

d
50 11/2 —I— 80, — (s — 80,
iyt Z [ o1 (115 82) (g7, 1 1)°2 + Agy (i1, 42) (65, 4 1) | + Re—2.

We remind that g = Hét/ ni and g; = Holt/ 277[ . We decompose Equation (6.19) in two terms. The
first one of (6.19) can be rewritten

0,
d d 2
b0,y /2 . /2 .. .
)\/St—lzt—mhiitl (90) = Z A(Jﬁ (Z1,22) Z H07/t_1(l27]1)77jt,t—1
ia=1 ji=1
d 30,
. 1/2 .. .y -
+A0; (i1, 12) Z Hoé_1(22a]1)77j1,t_1 Ry
Jji=1
d d 90,5
. /2 ;. .
+ Z Aéﬁ(h,m) Z Ho,{t—l(wajl)??jt,t—l
io=1 Jj1=1
d 30,
_ . /2 .. .y —
+Ag; (i1, 2) Z HO,/t—l(Z2a,71)77j1,t—1
Jji=1
d d
X ()\1 Zm%t_1> + <)\1 Znit_1> Ri_s + Ri_s, (6.20)
i=1 i=1
by using the fact that
d
NSt—tiem = MSi1+ Ria =M Z 771'27t_1 + Ri—2.
i=1

The second term of (6.19) can also be rewritten as

L On" ;1/ 200) o )
21 _ * + ; " _ .
B Z Py ind (€141 + 15 4 1y 4 q)a2 (51'271&—1) 02| + Ry o
io=1
d [ d 30,15
* 1/2 . .
- Z Hiy+iod Z HO,/t—l(Z%Jl)U;Lt_l
2=1 j1=1
80,15
THL s ) Z HOt 1012, 1)1, 41 + Ri—2, (6.21)
Jji=1
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where the vector p* = (uf, ..., pu5, )"
Combining the expressions (6.20) and (6.21), Equation (6.13) comes down almost surely to

d d 80,12
NV = Z Agy (i1, 32) Z Hé,/tz—1(i2,j1)77jt,t—1
i=1 ji=1
d %0,z
+Agy (71, 72) Z H(%,/t2—1(i27j1)77j_1,t_1 Ry

Ji=1
30,y

d d
. /2 . .
+ Z A(J)rl(ll,w) ZHO,/t—l(Z%]l)n;;,t—l
i9=1

Jji1=1

d %0,z d d
— . . 1/2 ,. . _ 2 2
+Ag (i1, i2) Z H0,4—1(12731)77j1,t—1 <)‘1 Zni,t—1> + <Z 77i,t—1> Ry
ji=1 i=1 i=1
d d 00,ig d 80,4
/2 ,. . 1/2 . .
+ Rt Z Z Ho,/t_1(l2,31)77;17t_1 + Z Ho,/t_1(22731)77j1,t_1 + Ri_o =0,
i2=1 Ji=1 j1=1
or equivalent to the two equations
d d / 50’7'.2 d 5
. 172 ,. .
Z A(Jﬁ (Zl, 22) Z HO,t—l(Z2y]1)"7jt7t_1 [/\1 Z ("7;;7t_1) + Ri o
io=1 7j1=1 i9=1
d d %0,z d )
/2 . .
+ Rt_Q Z Z HO,é—l(Z?’]l)njt,t—l + Rt_g Z (n:;,t—l) + Rt_g =0 a.s. (6.22)
i2=1 \j1=1 i9=1
d d / 60'i2 d 5
. /2 . . - _
Z AOI (ZI,ZQ) Z HO,t—l(Z%]l)njht_l [Al Z (niz,t—1> + Rt_g
i2=1 J1=1 io=1
d d 80,2 d )
12 .. .. _ 3
F R I | Y HY gy | A Rie Y (Mae) F R =0 as.  (623)
io=1 \ji=1 ia=1

When d =1, from (6.22) and (6.23) we retrieve an equation of the following form obtained by Carbon
and Francq (2011)
fly) = alyo*? + bly|® + ey +d = 0,

which cannot have more than 3 positive roots or more than 3 negative roots, exceptifa =b=c=d = 0.
When d > 2 and also from (6.22) and (6.23), for a fixed component, we obtain an equation of the
form

d d d
F) = ailyl 24> byt + 3" eyl + ay? + bly| + ¢ = 0.
i=1 i=1 i=1
Note that an equation of this form can not have more than 3(d + 1) non negative roots or more than
3(d + 1) non positive roots for d > 2, except if a; =b; =¢c; =a=b=c=0.
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By Assumption A9, Equations (6.22) and (6.23) imply that A\; [222 L A (i1, i2) + Agy (i1, d2) | = 0.

But under the assumption A4, if p > 0, Ag(1)* + A; # 0. It is impossible to have A, (i1,i) =
Ady(i1,i) =0, for all i = 1,...,d. Then, there exists an 4o such that A;(i1,io)" + A1 (i1,40)” # 0 and
we then have A\; = 0.

In the general case, Equation (6.14) necessarily leads

Aa_l(ilvio) + Aal(ibio) == AE]’_q(ilviO) + A(;q(ibi(]) = 07 VZ'Ovil = 17 cee 7d7

that is impossible under the assumption A4 and A = 0. This is in contradiction with X'V = 0, almost
surely, that leads that the assumption of non invertibility of matrix D is absurd. O

6.3. Proof of Theorem 3.2

The almost sure convergence of DtoDasn goes to infinity is easy to show using the consistency
result. We remind the expression of the matrix D

D=%,, +CnJ "IJ'Cl,+CpY; . +%,  Ch.

n,I'm On,rm

The matrix D can be rewritten as
D=%., +A+B+ B,

where the matrices A and B are given by

A= (Cp—Cp)J LI IC + Cp(J =T HIJ I+ C j (I—I1J-tc!,
1

+CpJ (I =T Y +Cpd T (C’ )+

with A = émj_lfj_lé;n and B = émfién r,, Where 29 =—(Ri —1) C,,J L. Finally we have

n,r'm

A ~ A~ ~

D—D=(%, -5 )+ (A—A)+(B-B)+ (B - B.
For any multiplicative norm we have
1D = D|| < |Zr,, = Srll + 1A= Al + || B = B| + | B = B
Observe that

1A = All < [1Crm = Gl HIICT I+ NG T~ = THIZT G
FICll ML = 21T+ NGl T HI NI = T HIIC
HICallITH LT I Con = Coall,
<N Con = Conlll T NN NGl + WGl 1T = TN HICra
HCllIl T = TH1T I+ ICm I T 1T = TG,
+|Crm HHj_lHHfHHj_llH\Cm ~ Cul, (6.24)
1B = Bl < [|Cn — CunlllIZs, ., I + 1CulllIS5, ., (6.25)

On,rm GnyrmH'

In view of (6.7) and (6.8), we have ||C),|| < oco. We also have ||| < co. Because the matrix J is
nonsingular, we have ||.J~!|| < co and

[J~'=J7 Y — 0, a.s.
n—oo
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by consistency of §,,. Under Assumption A7, we have |E [m,n: — d]2 | < K. Using the previous arguments
and also the strong consistency of 6,,, we have

E [mime — d]2 — R — 0, a.s.and ||Cy, — Cpll vd 0, a.s.

We then deduce that Equations (6.24) and (6.25) converge almost surely to 0 when n — oo and the

conclusion follows. Thus D — D almost surely.
n—oo
To conclude the proof of Theorem 3.2, it suffices to use Theorem 3.1 and the following result: if

LD . #) N (0, D), with D nonsingular, and if D — D in probability, then n/, D~ '#,, ﬁ) X2,
Od

6.4. Proof of Remark 3.2

We suppose that #; holds true. One may rewrite the above arguments in order to prove that there
exists a nonsingular matrix D* such that

Vi(Em —12) —4 5 A (0,D%) . (6.26)

n—oo

The matrix D* is given by D* = X0 + crJ-trjter + CrXg, o + Eé 0 C}/, where the matrices

Yo and Eén,r% are obtained from the asymptotic distribution of \/ﬁ(é;z —6), 1), — rolm)’. The (h,i)-th
element of the matrix C, is geven by
0S5, 0Si_p

C*(h,l) =E St_ha—ei+5t 89Z

Now we write

VD28, = D7V /n(#,, —1%) + D72 /nr®,
=DV /n(ty, — %) + D7Y2/nxl, + op(1) .

Then it holds that

ntl, D', = (VD™ V#,) x (vVnD™Y?8,,)
= n(Bpm —10) D — 10) 4 20 (B — 1) D0 + nr® D710, 4 0p(1). (6.27)

By the ergodic theorem, (£, — r% ) D 'r’ = op(1). By Lemma 17.1 in van der Vaart (1998), the
convergence (6.26) implies that

where (Z;)i1<i<m are iid. with A(0,1) laws and the \;’s are the eigenvalues of the matrix
D~Y2D*D~1/2. Reporting these convergences in (6.27), we deduce that

& D' = (B — 10D (B — 10) + 2(Fm — 10 )Y D10 4+ 10 'D70 4 op(1)
/

=0 ' D70 4 op(1)

and the remark is proved. O
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6.5. Proof of Corollary 3.1
Note that if the model is correct we have

n

~ 1 r—1/A a.s. — 2
Fo== > [l (On)ey — AP S BleiH e, — dJ? = E [jm — d]
t=h+1

From (6.11) we have \/n(7y—79) = op(1). Applying the central limit theorem to the process ([e,H; ‘e, —
d)?)tez, we obtain

1

V(o — o)) = (e H; e, — d? —Elg Hy ', — d?) + 0p(1) 225 N (0, ).

So we have \/n(#y — rg) = Op(1) and v/n(ro — E[e}H; ‘e, — dJ*>) = Op(1). Now, using (6.11) and the
ergodic theorem, we have
i 0 .V (Bl H, e, — dI” — 7o
ny\—-—- s r7—1 5 | = \/ﬁrh ) 7—1 24
ro  ElgiH; g —d EleiH; g, — d]*7o

) _ op(1),

which means /np(h) = /nin/Ele,H; ‘e, — d)? + Op(n~='/?). For h =1,...,m, it follows that

) No S
NPm = +op(1). 6.28
Thus from (6.28) the asymptotic distribution of the sum of squared residuals autocorrelations \/npp,
depends on the distribution of \/nf,,. Consequently we have

- D
lim Var (\/ﬁﬁm) = lim Var( - \/_ﬁlr 2> =Dy = 5
n—00 n—00 E[gth &t — d] (E[ééHt_lét _ d]2)

Thus the first result (3.1) of Corollary 3.1 is proved.
The proof the second result (3.2) of Corollary 3.1 is the same that the one given for Theorem 3.2
and the proof is completed. O

6.6. Proof of Theorem 8.3

We follow the arguments and the different steps that we used in the proof of Theorem 3.1. As in
the case where §, was known, the proof is decomposed in the following points which will be treated in
separate subsections.

(1) Asymptotic impact of unknown initials values on the statistic #,.
(77) Asymptotic distribution of \/nf,.
12¢) Invertibility of the matrix D.

y

There are many similarities with the proof of Theorem 3.1. We only indicates where the fact that the
power is estimated has an importance is our reasoning.

(i) Asymptotic impact of unknown initials values on the statistic #,,

The proof of the asymptotic impact of the initial values on the statistic T, is the same than the
one where §, was known. It suffices to adapt this step by replacing 6 by ¥ and H; by H;.

(79) Asymptotic distribution of /nt,,

The asymptotic distribution of \/nf,, is similar to that the one when the power d, is assumed to
be known. We adapt this step by replacing again 6 by 9 and H; by H;. The only difference resides in
the estimations of the derivatives when we differentiate with respect to d;, ¢ =1,...,d.
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For instance the (h,i)-th element of the matrix C,, denoted by C(h,?) is given by

C(h,i) =E [st_h ggﬂ = —E [St_hTr <%5t1 a}gg‘))ﬂ = —E [S,—ph}(i)vec(Iy)] -

Consequently we have
Cm = [C(h, )] 1<h<mi<i<sy = —E [(St_l;t_m) (h;vec(ld))’] : (6.29)

(797) Invertibility of the matrix D
The proof of the invertibility of matrix D needs to have some modifications compared to the case
where the power J, is assumed to be known. The start of the proof stay identical, it suffices only to

replace H; by H; and 6 by ¥. We rewrite hy(i) as follow

hy(i) = [ (’H_l/2 37'315190)}(_1/2)] = [’H&m ®H0t1/2:| ec <a}gq§?o)> = H.d, (i),

where H; = [Hatl/z ®’H&1/2] and d.(i) = vec (0H(V9)/0V;). Thus we define the matrix of size

d? x sg, d; = (d¢(1)]...|ds(s0)) such that hy = H;d;. To study the invertibility of the matrix D we let
V =St 1:4-mSt — Cn T ~101:(99) /00 such that E[VV’'] = D. We can also rewrite the vector V as
V =Si_1.4—mSt + ij_ld:e vec(sy).

If the matrix E[V'V'] is singular, then there exists a vector A\ = (A1,...,\;)" not equal to zero such
that
NV = NSi_1.4-mSi + pdiHjvec(sy) = 0,  as., (6.30)

with u = NCp,J~'. We have u # 0, else N'S;_1.4—mS; = 0 almost surely, that implies there exists
j €{1,...,m} such that S;_; be mesurable respect to the o-field {S,,t—1 <r <t—m} with r # t—7.
That is impossible because the S; are independent and not degenerated. Consequently (6.30) becomes

R ath 00) X0
pd, = Z pidy(7) ZM = Z 99, [(Dot ® Dot)vec(Rp)], a.s. (6.31)
i=1 i—1

We can then rewrite (6.31) in order to separate the derivatives of the matrix H; when we differentiate
with respect to the vectors 6 and §. It follows that

S O[(Doy® D R 9Dy ®D
p'dy = Z i (Do aeo't)vec( )] + Z Nii( 25' t)vec(Ro), a.s.
i=1 ! i=sa+1 E
N 9D ®D - avec Ry)  ~~ 0D @
= Z Ot Ot) vec(Ro) + Z pi(Dot @ Dot) ———= 0 Z Moo ; 2 vec(Rp) =0
i=s1+1 i=s2+1
(6.32)
Since the vectors dvec(Ry)/00;, i = s1+1,..., sy are linearly independent, the vector (fs, 11, -, fsy)
is null and thus Equation (6.32) yields
- Dy @ D d(Dy ® D
Zﬂim Z 1 t ® t)vec(Ro) =0, as. (6.33)
; 00,
=1 1=s9+1
The rows 1,d + 1,...,d? of the Equation (6.33) yield
S Ohy (o) S Ohy (o)
 —  — = 0, .S. 6.34
;u ) +i:§+1u %, as (6.34)
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We have foriy =1,...,dandi=1,...,51

5072' /2 2/60’i1 [ ir /2
Ohiy (Vo) g (hil’tl > (9) = 2 s r x —— 8hz’f:t1/ (¥0) (6.35)
00, 0, VT S o 20, '
11,
where the derivatives involved in (6.35) are defined for all ¥ € A recursively by
83y /2 d 0i0 /2
O, /= () b Oh; %~ (9)
11,t _ 9 Bz L i2,t—1
5 cr( )+;; (11722)780 ;
with
5y 5, 5y 5,
) = (0o 100 (25,0) ™ O () ™ 00 (2my) ™ 0 ()™
— diy — dig - %y - Jig
0,,..., (5i1,t—1> ;0,000 (6id’t_1> ,0,..., (5i1,t—q) ;0,004 <5id,t—q) ,
85, /2 ) 85, /2 8, /2 !
0,,...,hh}t_l,o,...,hidtjt_l,o,...,hilft_p,o,...,hidfft_p,...,o) .
(6.36)
So we can focus on the derivatives with respect to ¢:
diq /2
8}12'1 t 2 8. /2 1 8hz 1
o L =6 —1 (h.” ) ut | —1,....d 6.37
8(5]' (52'1 Lt J: 1(5,1 08 Mt t h§i1t/2 8(5] J ( )
11,
with
8}]/ 11/2 q d P ah Z2t/2
i = 2 [AT G ) los(efu) (i) + AT ) w5 (5 + 30 D Bili i) =t
i=1 io=11=1
= A{ (i1, 7) log(e;. Ejt— G ;_t—l)(Sj + Ay (i1, ) log(gj_,t—l)(gj_,t—1)5j + Ri—2, (6-38)
where d;;, denotes the Kronecker symbol. We also remind that
9 /2 d
hiy et ( Z [ G (i, i) (e, )20 +A(Tl(ilaiz)(fi_z,t_1)6o'i2] + Ry (6.39)
The distribution of 7, is non-degenerated, so Equation (6.30) becomes
NV =NSi_14-m +p/dH1 =0, as.
In view of (6.35) and (6.37), we can finally write
o129 5y /2
5z /2 2, ( 8hz t (190)
NV = NSy 1t-mhs; +Z 1 Zumz 5%
8i1 /2 8, /2
mﬁszh;/ (o) log (h1*(W0)) =0, as.  (6.40)

32



where pf = 24; /004y, 151, = 2Mitsy/00i; and when 7 = i1 we have uf . = 2,u2-1+32/587i1. Recall that

g = H1/277t and g, = 7—[2/217; and we decomposed (6.40) in four terms. The first one leads to
30,
51y /2

d d
. 1/2 ..
1,t (190) Z Aa_l (Zl’ 22) Z Hoé—l(m"h)n;vt_l

ig=1 Jji=1

NSt—14-mhy,!

30,y

d
L 12 .
+Ag (i, i2) Zﬂoﬂ_l(lzajl)njl,t_l Ry
Jji=1

d 30,y

d
.o 1/2 .. .
+ Z Aéﬁ(h,m) ZHO,/t—l(Z%]l)njt,t—l

12=1 Jji=1
30,

d
— /2 ;. N =
+ A5, (i1, 42) Z HO,/t—l(Z%]l)njl,t—l

Jji=1

d d
x (Al Z 77i2,t—1> + <)‘1 Z 77i2,t—1> Ri 9+ Ry, (6.41)
i=1 i=1
by using (6.39) and the fact that
d
NSittom = NSt + Bz = A Z M1+ Rio.
i=1

Using (6.36), the second term of (6.40) can be rewritten

8h5° i /2 (19
w

d
21,t . 5o
e Z ['ull'ﬂzd ’2 t— 1) o2 +1u11+(12+4)d2( i,t— 1) o 2] + Ri_o
io=1
d 80,i
= Z z1+22d Z HOt 1(Z2"71)77j1t 1
i2=1 ji=1
30,
+N11+(zz+q Z Hot 1 127]1)77J1t 1 + Ri_o, (6.42)

J1=1

where the vector pu* = (uf, ..., uk, )"
Now using (6.38) the third term of the equation (6.40) can be rewritten as

d an /% (9,) d %0.iz
Z/‘Hsg 21 : = Z Wit | Adu(i1,i2) log Z HOt 1(12’31)7731t 1 Z H(l),/tz—l(i%jl)njt,t—l
0i in=1 =1 ji=1
d d %0,z
A7 (inyiz)log | > Hol G,y o | | D0 Mol (o i), ooy +Rio (643)
Jji=1 j1=1
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Finally by using (6.39), the last term of (6.40) can be rewritten as

d 30,y

d
* 0, /2 0iy /2 « .. 1/2 .. .
Mz‘1+52hilft (J0) log <hilft (190)) = Hij4s9 Z A(J)rl (i1,12) Z Hoﬁ_l(m,h)n;;t_l

io=1 7j1=1
d d %0,z
_ . 12 .
+ Z A (i1, 42) Z Holy—1 (2, J1)mj, 41 + Ry
ia=1 j1=1
30,iy

d d
. /2 . .
x log | Ri—o + Z A(Jﬁ(lhw) Z HO,/zf—l(Z2’jl)77;;7t—1

i9=1 Jj1=1

d 30,

d
. 2 .
+ Z A (i1, 42) Z 7'[0,/t—1(22731)77j1,t—1 : (6.44)

ia=1 ji=1

Combining Equations (6.41), (6.42), (6.43) and (6.44) and by separating the non negative terms and
the non positive terms, Equation (6.40) is equivalent to the two equations

d d 80,z d )

. 12 . .
Z A(Jﬁ(lh i2) Z Ho,/t_1(l2,31)77;7t_1 [)\1 Z (U;g,t_1> + Ry—o
io=1 Jj1=1 i9=1

d ) d d " %0,z
+ * . . +

+ B2 ) (”im—l) + B2+ ) iy | D Mol (200005 4

ig=1 ip=1 j1=1

d d ) d ) 80,12

« o 12 . . 12 . .

+ D Hirep A (i1 i2)log | D0 Myl (2, )i oo | | D2 Mol (i gy,
in=1 J1=1 g=1
d d %0,z
* .. 1/2 . .
= My sy Z A(—)i_l (117 22) Z Hoé_1(227]1)77jt7t_1 4+ Ri_o
ip=1 j1=1
d d 80,12
. 12 . .
x log | Ri_o + Z Aé’l (i1,12) Z 7—[07/15_1(22,]1)17;.; 1 =0, a.s. (6.45)
i2=1 J1=1
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30,y

d d d
2
. /2 .. .\ _ _
Z AOl (217 Z2) Z HO,/I‘/_1(Z2,]1)77]'1¢_1 [Al Z (niz,t—:l) 4+ Ry o
io=1 7j1=1 io=1
d 5 d d " 80,12
+ Rz ) <77i_z,t—1> +Riat Y g | D Pl (ia j0m;, o
io=1 io=1 Jj1=1
30,4
d d p d e 2
" . 1 N Ly
+ Z Hig 45,401 (11, 02) log Z Ho,t—l(z27]1)77j17t—1 Z Ho,t_1(l2731)77j17t_1
i2=1 Jj1=1 Jji1=1
d d 90,5
N . /2 ,. .\
— s | D Anliniz) [ Y Ho,/t_l(lzdl)??jl,t_l + Ri—2
=1 ji=1
d d Siy
— . 1/2 ;. .\ _
x log | Ry_o + Z Ay (i1, 12) Z Hoé_l(ZQ,jl)njl’t_l =0, a.s. (6.46)
=1 ji=1

When d = 1, from (6.45) and (6.46) we retrieve an equation of the following form obtained by
Boubacar Mainassara et al. (2021)

aly|®? + b+ c(|y|2)] log[b + c(ly[2)] + [d + elog(ly)]lyl2 + fy° +9 =10

which cannot have more than 11 positive roots or more than 11 negative roots, except if a = b =c =
When d > 2 and also from (6.45) and (6.46), for a fixed component, we obtain an equation of the
form

d d d d
D ailyl > byl T+ eyl + > dilog(Jyl)lyl
=1 =1 =1 =1

d d
+ (e - Zeilyl‘”) log (f + Zfi|y|5i> gy +hlyl +k =0,

i=1 i=1

Note that an equation of this form can not have more than 11d + 1 non negative roots or more than
11d 4+ 1 non positive roots for d > 2, unless a; = b; =¢; =d; =¢; = fi=e=f=g=h=k=0.
By the assumption A9’, Equations (6.45) and (6.46) imply that
Aoy A i2) + A5 Gy i2)| = 0 and piyy, [0 AG G, i2) + Aqy(inyiz)| = 0 for all i =
1,...,d. But under the assumption A4, if p > 0, Ag(1)™ +.4;5 # 0. It is impossible to have Ag; (i1,7) =
A(J{l(z'l,i) =0, foralli =1,...,d. Then, there exists an iy such that Agi(i1,i0)" + Ao1(i1,%0)~ # 0 and
we then have Ay =0 and pj ,, = 0.

In the general case, Equation (6.33) necessarily leads

Aa_l(ilviO) + Aal(ilyi(]) == Aa_q(ilai()) + A(;q(ihi(]) = 07 vZ.Oail = 17 cee 7d7

that is impossible under Assumption A4 and then A = 0. This is in contradiction with 'V = 0, almost
surely, that leads that the assumption of non invertibility of matrix D is absurd. O

6.7. Proof of Theorem 3.4

The proof is the same to that of Theorem 3.2 in the case where the power J, is assumed to be
known. O
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6.8. Proof of Corollary 3.2

The proof is the same to that of Corollary 3.1 in the case where the power ¢, is assumed to be
known. O
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