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Abstract

In the context of exascale programming, the PGAS-based Chapel is among the rare languages targeting the holistic handling of
high-performance computing issues including the productivity-aware harnessing of Nvidia and AMD GPUs. In this paper, we
propose a pioneering proof-of-concept dealing with this latter issue in the context of tree-based exact optimization. Actually, we
revisit the design and implementation of a generic multi-pool GPU-accelerated tree-search algorithm using Chapel. This algorithm
is instantiated on the backtracking method and experimented on the N-Queens problem. For performance evaluation, the Chapel-
based approach is compared to Nvidia CUDA and AMD HIP low-level counterparts. The reported results show that in a single-GPU
setting, the high GPU abstraction of Chapel results in a loss of only 8% (resp. 16%) compared to CUDA (resp. HIP). In a multi-
GPU setting, up to 80% (resp. 71%) of the baseline speed-up is achieved for coarse-grained problem instances on Nvidia (resp.
AMD) GPUs.
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1. Introduction

Graphics Processing Units (GPUs) have emerged as building
blocks in modern supercomputers1, reshaping the landscape of
high-performance computing (HPC). Their parallel processing
capabilities accelerate computations, making them invaluable
in addressing complex applications across diverse domains, in-
cluding scientific simulation, artificial intelligence, and opera-
tions research [1; 2; 3].

In the context of tree-based exact optimization, focus of this
paper, the consideration of GPUs in algorithms like backtrack-
ing or Branch-and-Bound (B&B), plays a crucial role in ex-
pediting decision-making processes, making them a valuable
asset in solving complex problems. It also raises multiple chal-
lenges related to the irregular workload, dynamic memory re-
quirement, and data exchanges of those methods.

Many works proposed efficient GPU-enhanced B&B algo-
rithms to solve challenging combinatorial optimization prob-
lems (COPs), such as the Permutation Flowshop Scheduling
Problem (PFSP) or the Knapsack problems [4; 5; 6; 7]. While
the latter demonstrate significant improvements compared to
CPU-based approaches, as well as a high scalability in terms
of GPUs count, they are generally implemented using a combi-
nation of a low-level GPU programming model, such as CUDA
or HIP, along with other parallel programming environments,
such as OpenMP or POSIX standard. The writing of such pro-
grams is usually complex (GPU memory (de)allocation, host-
device/device-host data transfers, GPU kernels, etc.), error-
prone, and often specific to a GPU architecture, e.g., Nvidia
or AMD.

1Top500 ranking of supercomputers worldwide (11/2023): https://
www.top500.org/lists/top500/2023/11/.

Moreover, the overall competing power is increasing and
modern architectures are getting more complex1, especially
with the arrival of the exaflop-level Frontier supercomputer in
the Top500 ranking in June 2022. Even though we can rea-
sonably say that the hardware bet has paid off, the software
challenge is currently being addressed in some exascale initia-
tives such as Partitioned Global Address Space (PGAS) mod-
els [8; 9].

In the last two decades, PGAS-based parallel environments
based on higher-level abstraction have emerged, e.g., X10,
UPC, and Chapel. In addition, some efforts have been made to
support GPU programming on such environments [10; 11; 12].

In this work, we focus on the Chapel programming lan-
guage [13]. It is a versatile PGAS-based parallel programming
language specifically designed for high-level, productive de-
velopment across various architectures, seamlessly supporting
multi-core, distributed and GPU computing environments.

To the best of our knowledge, the only work targeting GPU-
accelerated tree-search in Chapel is the one of Carneiro et
al. [14]. It implements a GPU-based tree-search algorithm in
Chapel, targeting permutation-based COPs. The proposed algo-
rithm exploits Chapel’s iterators by combining a partial search
strategy with pre-compiled CUDA kernels for more efficient ex-
ploitation of the intra-node parallelism. Extensive experimenta-
tion on big N-Queens problem instances shows that up to 90%
of the linear speed-up can be achieved.

This work provides a different design and implementation of
a GPU-accelerated tree-search in Chapel. This is based on a
generic multi-pool approach including a load-balancing mech-
anism. The implementation is based on the native GPU sup-
port of Chapel and does not require any additional program-
ming environment, in contrast to the cited references. More-
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over, Chapel allows to compile and execute the same code on
different GPU architectures, without additional effort. The pro-
posed algorithm is instantiated on the backtracking method and
experimented on the N-Queens problem. The experiments are
conducted on Nvidia and AMD GPU-powered systems, and
compared to CUDA- and HIP-based implementations, respec-
tively.

The remainder of the paper is organised as follows. Section 2
presents some background on parallel tree-search. Then, we
describe in Section 3 the design and implementation of the pro-
posed algorithm in Chapel, along with the CUDA-based base-
line. The latter are then evaluated and compared in terms of
performance in Section 4. Finally, Section 5 draws the conclu-
sions and highlights the future perspectives.

2. Parallel tree-search

2.1. Serial tree-search

Tree-search algorithms are strategies that implicitly enumer-
ate a solution space, dynamically building a tree. They start
with a root node representing the initial problem to be solved,
and nodes are branched during the search process, generating
children nodes more constrained than their father node. The
generated nodes are evaluated, and then, the valid and feasible
ones are stored in a pool-like data structure. The search gen-
erates and evaluates nodes until the data structure is empty or
another termination criterion is satisfied.

During the search, if an undesirable state is reached, the
algorithm discards this node and then chooses an unexplored
node in the pool. This action prunes some regions of the solu-
tion space, preventing the algorithm from unnecessary compu-
tations. However, the pruning of subproblems makes the shape
of the tree irregular, which might result in load imbalance when
parallel computing is used.

Different strategies exist to expand tree nodes, such as Depth-
First Search (DFS) or Breadth-First Search (BFS). In DFS, we
explore the node branch as far as possible before backtracking
and expanding other nodes. It is easily implemented by storing
generated, but not yet evaluated, nodes in a stack (last-in, first-
out, LIFO). In contrast, BFS explores all nodes at the present
depth prior to moving on to the nodes at the next depth level
and is generally implemented using a queue (first-in, first-out,
FIFO). In this work, DFS is preferred since the memory require-
ments of BFS often become excessive.

2.2. Parallel tree-search

The most general and most frequently used model to par-
allelize tree-search algorithms is the parallel tree-exploration
model [15]. It consists in exploring several disjoint subspaces
in parallel, meaning that multiple DFS, rooted in different tree
nodes, are performed in parallel, as shown in Fig. 1. Searching
these parts requires no (e.g., in backtracking) or minimal (e.g.,
in B&B) communication between workers.

We adopt a collegial multi-pool approach, in which each
worker manages its own pool [16]. This approach alleviates
the bottleneck problem that occurs in single-pool approaches

Figure 1: Illustration of the parallel tree-exploration model.

Figure 2: Illustration of the parallel evaluation of nodes model.

but raises the issue of balancing the workload between multiple
pools. In this work, we adopt a static load balancing mech-
anism, which consists in evenly distributing the workload be-
tween workers before the parallel tree-exploration starts.

2.3. GPU-accelerated tree-search
We exploit GPU devices using the parallel evaluation of

nodes model in which the generated nodes are evaluated in
parallel, as shown in Fig. 2. More precisely, we combine this
model with the parallel tree-exploration one by parallelizing the
evaluation operator of each independent worker. This model is
data-parallel, intrinsically synchronous, and fine-grained (the
cost of the node evaluation), which is an execution model that
fits GPUs well. It is well-adapted in cases where the cost of the
node evaluation function is high compared with the rest of the
algorithm.

3. Design and Implementation

We first present in Section 3.1 a background on GPU pro-
gramming in Chapel. Then, we provide in Section 3.2 the de-
sign and implementation of the proposed GPU-accelerated tree-
search algorithm in Chapel. Finally, we present in Section 3.3
the CUDA-based baseline implementation used in our experi-
mental evaluation.

3.1. GPU programming in Chapel
Chapel is a versatile parallel programming language specifi-

cally designed for productive parallel computing at scale [13].
It supports a multi-threaded execution model via high-level ab-
stractions for data parallelism, task parallelism, concurrency,
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and nested parallelism. Chapel’s locale type enables users to
specify and reason about the placement of data and tasks on
a target architecture in order to tune for locality and affinity.
Chapel applies the partitioned global address space paradigm
and supports global-view data aggregates with user-defined im-
plementations, permitting operations on distributed data struc-
tures to be expressed in a natural manner. Chapel supports code
reuse and rapid prototyping via object-oriented design, type in-
ference, and features for generic programming. Existing code
can be integrated into Chapel programs (and vice-versa) via in-
teroperability features.

In Chapel, GPU devices are seen as sub-locales, and code
can be deployed on them using the on-clause. This clause
allows the user to specify the locale, potentially remote, on
which a task is to be executed. Inside such GPU sub-locales,
Chapel supports two memory strategies to manage data: ar-
ray_on_device (default) which stores array data directly on
the device and store other data on the CPU host in a page-locked
manner, and unified_memory which implicitly manages
the migration of data to and from the GPU as necessary.

Chapel will launch kernels for all eligible loops that are en-
countered by a task executing on a GPU sub-locale. Loops are
eligible when: (1) they are order-independent, (2) they only
make use of known compiler primitives that are fast and local,
(3) they do not call out to extern functions and (4) they are free
of any call to a function that fails to meet the other criteria or
accesses outer variables. Any code in a GPU sub-locale that is
not within an eligible loop will be executed on the CPU.

It is worth to mention that the GPU support of Chapel is a
work in progress and still suffers from some limitations:

• Interoperability: The use of most extern functions within
a GPU eligible loop is not supported; only a limited set of
functions used by Chapel’s runtime library are supported.
This is particularly restrictive given that rewriting existing
software is generally prohibitively expensive.

• Portability: Not all GPU architectures are yet supported,
e.g., Intel GPUs. In addition, it is not currently possible to
compile for multiple AMD GPU architectures at the same
time.

• Functionality: Some Chapel-specific features, such as dis-
tributed arrays, are not supported within GPU kernels. The
latter implements arrays whose indices are mapped to dif-
ferent (remote) locales, and could be extended to GPU
sub-locales as well.

3.2. GPU-accelerated tree-search in Chapel
3.2.1. Single-GPU approach

Fig. 3 shows the flowchart of our GPU-accelerated tree-
search algorithm. The tree exploration starts on the CPU, and
each node taken from the work pool is evaluated, potentially
pruned, and branched. We evaluate and prune before branch-
ing in order to avoid the generation of the non promising nodes.
The children nodes resulting from the branching operation are
then inserted back into the pool. This process is repeated un-
til the pool is empty. In order to exploit GPU-acceleration, we

Figure 3: Flowchart of the proposed GPU-accelerated tree-search algorithm.

Algorithm 1: Single-GPU tree-search in Chapel

1var pool = new Pool();
2var root = new Node();
3pool.add(root);
4

5while pool.notEmpty() {
6if (pool.getSize() < m) {
7var parent = getNode(pool);
8evaluate_generate_children(parent, pool);
9}
10else {
11var parents: [] Node = getNodes(pool, M);
12var labels: [] uint(8) = noinit;
13on here.gpus[0] { //execute on GPU
14const parents_d = parents; //host-to-device
15var labels_d: [] uint(8) = noinit;
16evaluate_gpu(parents_d, labels_d); //kernel
17labels = labels_d; //device-to-host
18}
19generate_children(parents, labels, pool);
20}
21}
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Figure 4: Approaches for launching many GPUs (kernels): a) sequential ver-
sion; b) parallel version using multi-threading.

offload a chunk of nodes on the GPU when the pool size Q is
sufficiently large, i.e., Q > m, where m is the minimum num-
ber of nodes to offload on the GPU. The number of transferred
nodes is q = min(Q,M), where M is the maximum number of
nodes to offload on the GPU. m and M are parameters that al-
low us to avoid the GPU starvation that usually occurs at the
beginning and the end of the search process, and to control the
size of the data transfer, respectively. When the GPU retrieves
the nodes, the latter are then evaluated in parallel, and the non
promising nodes are labelled. Finally, the array of labels is sent
back to the CPU, which uses it to prune and branch.

Algorithm 1 shows a pseudo-code of the proposed algorithm
in Chapel. First of all, we initialize the pool of nodes, as
well as the root node (lines 1-3). The pool is implemented
as a dynamic-sized stack supporting the basic pushBack and
popBack operations, and each Node contains only the infor-
mation required to generate its children nodes. Then, we iterate
over each node in the pool until the latter is empty (line 5).
When the pool contains less than m elements, the exploration
is done on the CPU, meaning that one node is taken, evalu-
ated, and its children are generated before their insertion back
to the pool (lines 6-9). Otherwise, we offload a bulk of nodes
on GPU for their evaluation in parallel. The parent nodes are
first taken from the pool on the CPU (line 11), offloaded on the
GPU (line 14), and their children are then evaluated in parallel
(line 16). labels contains the results and allows the CPU to
generate and prune the children nodes (line 19).

3.2.2. Multi-GPU approach
This variant of the previous algorithm exploits multiple GPU

devices to allow more computational resources. In addition, we
use task-parallelism in order to launch the GPU kernels concur-
rently, as shown in Fig. 4. Basically, each task will be respon-
sible for handling a specific GPU. More particularly, each task
manages a privatized pool of nodes and follows the flowchart of
Fig. 3. In order to avoid critical load imbalance between tasks
during execution, we preliminary perform a partial search se-
quentially until we have G × m nodes in the pool, where G is
the number of GPU devices. This set of nodes is then statically
distributed between tasks in a round-robin fashion (node l goes

Algorithm 2: Multi-GPU tree-search in Chapel

1var pool = new Pool();
2var root = new Node();
3pool.add(root);
4

5//partial search
6while (pool.getSize() < G*m) {
7var parent = getNode(pool);
8evaluate_generate_children(parent, pool);
9}
10

11coforall taskId in 0..#G with (ref pool) {
12var pool_l = new Pool();
13fillPool(pool_l, pool);
14

15while pool_l.notEmpty() {
16if (pool_l.getSize() < m) {
17var parent = getNode(pool_l);
18evaluate_generate_children(parent, pool_l);
19}
20else {
21var parents: [] Node = getNodes(pool_l, M);
22var labels: [] uint(8) = noinit;
23on here.gpus[taskId] { //execute on GPU
24const parents_d = parents; //host-to-device
25var labels_d: [] uint(8) = noinit;
26evaluate_gpu(parents_d, labels_d); //kernel
27labels = labels_d; //device-to-host
28}
29generate_children(parents, labels, pool_l);
30}
31}
32}
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Algorithm 3: Single-GPU tree-search in C+CUDA

1Pool pool;
2Node root;
3pool.add(root);
4

5while (pool.notEmpty()) {
6if (pool.getSize() < m) {
7Node parent = getNodes(pool);
8evaluate_generate_children(parent, pool);
9}
10else {
11Node* parents = malloc(q * sizeof(Node));
12parents = getNodes(pool);
13Node* parents_d;
14uint8_t* labels_d;
15cudaMalloc(parents_d);
16cudaMalloc(labels_d);
17cudaMemcpy(parents_d, parents, HostToDevice);
18evaluate_gpu<<<nBlocks, blockSize>>>(parents_d,

labels_d);
19cudaMemcpy(labels, labels_d, DeviceToHost);
20cudaFree(parents_d);
21cudaFree(labels_d);
22generate_children(parents, labels, pool);
23free(parents);
24free(labels);
25}
26}

to GPU l mod G).
Algorithm 2 shows a pseudo-code of the proposed algorithm

in Chapel. In contrast to the previous algorithm, lines 6-9 con-
tain the implementation of the partial search on CPU. Then,
we use the Chapel’s coforall-statement to create task par-
allelism (line 11). The latter creates and launches one task per
loop iteration, i.e., here, the number of GPU devices. Its with-
clause indicates the shared variables between tasks; here, the
pool of nodes resulting from the partial search. This pool is then
read by each task to fill their privatized pool, hereafter called
pool_l (lines 12-13). The fillPool procedure contains the
static load balancing mechanism. Finally, the remaining algo-
rithm is similar to lines 5-21 of Algorithm 1, except that now,
each task uses its privatized local pool.

3.3. CUDA-based baseline implementation
In this section, we present the CUDA-based baseline imple-

mentation. The latter implements the algorithm presented in the
previous section.

3.3.1. Single-GPU implementation
Algorithm 3 shows a pseudo-code of the single-GPU tree-

search algorithm in C+CUDA. The only differences with Algo-
rithm 1 are the explicit calls to the standard procedures from

the CUDA programming model: cudaMalloc and cud-
aFree for the allocation and deallocation of memory on the
GPU (lines 15-16,20-21), respectively, cudaMemcpy for the
data transfers between the CPU host and the GPU device
(lines 17,19), and the 〈〈〈...〉〉〉 syntax for the configuration
of the kernel launch (line 18).

In addition to this, we also have to handle CUDA-
specific syntax not shown in these code snippets, such as
the __global__, __host__, and __device__ qualifiers
which control where a function is to be executed (CPU or GPU)
and whether it can be called from both depend on their function-
ality and requirements. Moreover, the multiple threads of the
GPU SIMT architecture are handled using built-in unique iden-
tifiers for threads and blocks, such as blockIdx.x, block-
Dim.x, and threadIdx.x.

3.3.2. Multi-GPU implementation
Algorithm 4 shows a pseudo-code of the multi-GPU tree-

search in C+OpenMP+CUDA. OpenMP is used to handle
multi-threading and, more particularly, the concurrent launch-
ing of GPU kernels, as already shown in Fig. 4. The OpenMP’s
#pragma omp parallel for construct is used similarly
to the Chapel’s coforall in order to create one thread per
loop iterations (lines 11-12), here again the number of GPU
devices. This is followed by the cudaSetDevice CUDA
procedure to map each thread to a device, similarly to the
here.gpus built-in variable of Chapel. The remaining of the
algorithm is similar to lines 5-26 of Algorithm 3.

4. Experimental evaluation

4.1. Experimental protocol
We evaluate our algorithm on the N-Queens problem, which

consists of placing N non-attacking queens in an N × N chess-
board, i.e., two queens must not share the same row, column,
or diagonal. Fig. 5 illustrates a valid solution to the 4-Queens
problem. More precisely, we determine the exact number of
solutions of the instances. The largest known solution count
to date is for the N = 27 instance that contains approximately
235e15 solutions [17].

It is worth mentioning that we use the N-Queens problem as a
proof-of-concept that motivates further improvements in solv-
ing related COPs. As those problems generally require more
computational effort per node, we introduce a parameter g to
control the granularity of the N-Queens instances. More par-
ticularly, each node evaluation contains g safety check(s). This
allows one to investigate different scenarios and is implemented
as follows:

for each node to evaluate:
for i from 0 to g:

check if node safe;
if safe:

process it;

In this paper, the following experiments are performed on
different GPU architectures:
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Algorithm 4: Multi-GPU tree-search in C+OpenMP+CUDA

1Pool pool;
2Node root;
3pool.add(root);
4

5// partial search
6while (pool.getSize() < G*m) {
7Node parent = getNode(pool);
8evaluate_generate_children(parent, pool);
9}
10

11#pragma omp parallel for num_threads(G) shared(pool)
12for (int taskId = 0; taskId < G; taskId++) {
13cudaSetDevice(taskId);
14Pool pool_l;
15fillPool(pool_l, pool);
16

17while (pool_l.notEmpty()) {
18if (pool_l.getSize() < m) {
19Node parent = getNodes(pool_l);
20evaluate_generate_children(parent, pool_l);
21}
22else {
23Node* parents = malloc(q * sizeof(Node));
24parents = getNodes(pool_l);
25Node* parents_d;
26uint8_t* labels_d;
27cudaMalloc(parents_d);
28cudaMalloc(labels_d);
29cudaMemcpy(parents_d, parents, HostToDevice);
30evaluate_gpu<<<nBlocks, blockSize>>>(

parents_d, labels_d);
31cudaMemcpy(labels, labels_d, DeviceToHost);
32cudaFree(parents_d);
33cudaFree(labels_d);
34generate_children(parents, labels, pool_l);
35free(parents);
36free(labels);
37}
38}
39}

Figure 5: Valid solution of the 4-Queens problem.

Table 1: Summary of the Chapel environment configuration for compilation
and execution on GPU.

Variable Value
CHPL_RT_NUM_THREADS_PER_LOCALE 8
CHPL_RT_NUM_GPUS_PER_LOCALE 8
CHPL_LOCALE_MODEL gpu
CHPL_GPU nvidia / amd
CHPL_GPU_ARCH sm_70 / g f x906
CHPL_GPU_MEM_STRATEGY array_on_device

• single-GPU: We evaluate and compare the execution time
of our Chapel single-GPU implementation against the
baseline implementations.

• multi-GPU: We evaluate and compare the performance of
our Chapel multi-GPU implementation against the base-
line implementations in terms of speed-up.

4.2. Parameters settings
The following system configurations are used:

• Nvidia Tesla V100: Intel Xeon E5-2698 v4 (Broadwell) @
2.20GHz, 512 GiB, equipped with 8 Nvidia Tesla V100-
SXM2-32GB (32 GiB);

• AMD Radeon Instinct MI50: AMD EPYC 7642 (Zen 2)
@ 2.3GHz, 512 GiB, equipped with 8 AMD Radeon In-
stinct MI50 32GB (32 GiB).

The implementation is based on Chapel 1.33.0 and uses
LLVM 15.0.7 as Chapel’s back-end compiler. Moreover, Ta-
ble 1 summarizes the environment configurations used for com-
pilation and execution on GPU. The CUDA baseline is com-
piled and executed using gcc 10.4.0 and CUDA 11.7.1. While
Chapel allows one to compile and execute the same code on
both Nvidia and AMD GPU architectures without any change
in the code2, we translated our CUDA-based source code into
portable HIP C++ automatically using the hipify-perl
tool [18] to target AMD GPUs. In that case, the ROCm/HIP
hipcc 4.5.0 compiler is used.

In this work, we consider the N-Queens instance from 14
to 17. Table 2 summarizes the solution count of these in-
stances along with the tree size obtained with our algorithms.
The smallest instance (N = 14) exhibits a tree size of 27e6
nodes and is solved sequentially in less than a second, while
the biggest one (N = 17) contains 8e9 nodes and requires ap-
proximately five minutes. In the following, each experiment
is performed 5 times, and the results shown correspond to the
average. Additionally, in the absence of explicit mention, the
variable g is assigned to 1.

4.3. Experimental results
4.3.1. Single-GPU

We can see in Fig. 6 the normalized execution time of our
Chapel implementation compared to the baselines. The re-

2Chapel, however, requires different environment configurations.
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Table 2: Summary of the N-Queens instances solved in this paper.

N solution count tree size
14 365,596 27,358,552
15 2,279,184 171,129,071
16 14,772,512 1,141,190,302
17 95,815,104 8,017,021,931
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Figure 6: Normalized execution time of the Chapel implementation compared
to the CUDA and HIP baselines on the Nvidia V100 and AMD MI50 GPU
architectures, respectively.

sults are given for both the Nvidia and AMD GPU architec-
tures. Using the Nvidia GPU, the Chapel implementation is
surprisingly 15% faster than the CUDA baseline solving the
14-Queens instance, while it is between 3% and 8% slower on
the bigger instances. Using the AMD GPU, the Chapel im-
plementation is 10% faster than the HIP-based one solving the
14-Queens instance, but then 16% slower on average on the
other instances. Chapel’s expressive and user-friendly syntax
results in a more readable and maintainable code, as seen in
Section 3.2.1, but may incur a performance cost for certain
computational tasks, particularly those with fine-grained par-
allelism, where the more explicit control provided by CUDA
and HIP lead to optimizations not easily achieved in Chapel.
Finally, the observed twofold increase in performance degra-
dation on the AMD GPU architecture compared to Nvidia is
likely attributable to the more recent and potentially less opti-
mized support for AMD GPUs in Chapel (introduced in version
1.30.0), as opposed to the more established and optimized sup-
port for Nvidia GPUs (available since version 1.26.0).

4.3.2. Multi-GPU
Fig. 7 shows the speed-up achieved by the Chapel imple-

mentation compared to the CUDA-based baseline on the Nvidia
GPU architecture. We can first see that at the finest granular-
ity (g = 1), the performance of the Chapel implementation is
quite limited. Indeed, we note a speed-up of 70% of the linear
one using 4 GPUs, while there is no performance gain using
more GPUs. In contrast, we observe in the coarser-grained ex-
periment (g = 10, 000) that the performance results are much
better since we achieve up to 75% of the linear speed-up us-
ing 8 GPUs. When the granularity is large, the computational
time tends to be equivalent or larger than the generated par-
allel overheads, which produces better speed-up results. Us-
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Figure 7: Speed-up achieved by our Chapel implementation compared to the
CUDA-based implementation executed on the Nvidia V100 GPUs. Results are
shown for different instances and granularities.
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Figure 8: Speed-up achieved by our Chapel implementation compared to the
HIP-based implementation executed on the AMD MI50 GPUs. Results are
shown for different instances and granularities.
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ing the CUDA baseline, we achieves up to 69% of the ideal
speed-up on 8 GPUs for the biggest instance (N = 17) and the
finest granularity, while it reaches up to 84% at coarser-grain.
Compared to Chapel, the CUDA implementation is scalable in
terms of GPU counts for large instances even at low granular-
ity, meaning that the low-level programming of CUDA allows
minimal overheads. For its best results, Chapel achieves 80%
of the baseline speed-up using 8 GPUs.

Another major observation is that increasing the instance size
does not significantly increase the speed-up using Chapel, while
this is the case using CUDA. This behaviour happens in scenar-
ios where the overheads generated by the execution of the pro-
gram are proportional to the workload. In particular, increasing
the number of nodes in the tree increases the communication
between the CPU hosts and the GPU devices, as well as the ac-
cess to the work pool, which increases the general overheads of
the Chapel program.

The previous experiments have been conducted similarly on
the AMD GPU architecture. Fig. 8 shows the results compared
to the HIP-based implementation, which are quite similar to the
ones obtained comparing Chapel to CUDA on the Nvidia archi-
tecture. However, we note in this configuration that the perfor-
mance gap between Chapel and the baseline is a little further
away than on the Nvidia GPUs. For its best results, Chapel
achieves 71% of the baseline speed-up using 8 GPUs. This can
still be related to the less optimized Chapel support for AMD
GPUs than for Nvidia ones, as observed in the single-GPU set-
ting.

5. Conclusions and future works

This paper provides the design and implementation of a
GPU-accelerated tree-search algorithm in Chapel. The latter is
based on a generic multi-pool approach including a static load
balancing mechanism. As a proof-of-concept, it has been in-
stantiated on the backtracking method and experimented on the
N-Queens problem. The approach has been evaluated in terms
of performance and compared to CUDA- and HIP-based base-
line implementations on a Nvidia and an AMD GPU architec-
ture, respectively.

In a single-GPU setting, we demonstrate that the Chapel’s
high-level of abstraction generates a performance loss of only
8% on the Nvidia architecture, while it is at least twice as much
on the AMD GPU. Moreover, the Chapel multi-GPU version
is outperformed by its counterparts on fine-grained problem in-
stances, but achieves on coarse-grained ones up to 80% and
71% of speed-up on the Nvidia and AMD GPUs, respectively.
In conclusion, we demonstrate experimentally in the context of
GPU-accelerated tree-search that Chapel’s high-level expres-
sive and user-friendly syntax results in a more readable and
maintainable code but incurs a performance cost for compu-
tational tasks, especially with fine-grained parallelism, where
the more explicit control provided by CUDA or HIP leads to
optimizations not easily achieved in Chapel. Nevertheless, we
can expect the Chapel implementation to be quite efficient on
big COPs, since those problems generally involve a large com-
putational workload.

In the future, we plan to optimize our Chapel code further
in order to reduce the performance gap with the baseline im-
plementations. In addition, we are looking to instantiate our
approach on the B&B tree-search method to solve large COPs,
such as PFSP. Some of its best-known instances have remained
unsolved for 25 years and still represent a substancial chal-
lenge for HPC. In order to face such a large computational
workload, we plan to extend the current approach to distributed
multi-GPU systems, involving many more GPU devices. This
will probably require the design and implementation of a more
scalable load balancing mechanism. Finally, we also intend to
investigate the use of the Chapel’s DistBag_DFS [19] pre-
defined data structure, which implements a parallel-safe dis-
tributed dynamic multi-pool for large scale tree-based applica-
tions.
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