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A COUPLING OF STATIONARY NAVIER-STOKES EQUATIONS

FOR TWO FLUIDS WITH NON-LINEAR INTERFACE

CONDITION

FRANCOIS LEGEAIS

ABSTRACT. We study a coupled system of two Navier-Stokes equations with a
non-linear friction condition at the interface between the two fluids. In a first
part, we prove the existence of weak solutions in the proper functional spaces.
To do that, we use a potential vector method to get the pressure as a function
of the velocity, which allows us to obtain error estimates and to conclude using
a fixed point argument. In a second part we develop a numerical finite elements
iterative method which leads us to error estimates and numerical simulations
with Freefem++ for different sets of data.
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We consider a two coupled fluids problem with a rigid lid assumption, driven by
two 3D steady Navier-Stokes equations with a Gauckler-Manning condition, also

2010 Mathematics Subject Classification. T6D05, 35Q30, 76F65, 76D03, 35Q30.
Key words and phrases. Fluid mechanics, Turbulence models, singular perturbations.

1



2 F. LEGEAIS

called friction law, at the interface [10] [23], and with a Navier condition at the top
and bottom boundaries of the domains €2; and €.
The equations are the following.

(ui . V)uz — I/iAui + Vp, = fi in Qz
V- u; = O, in Ql
aui
(1.1) Vi 8n’ﬁ = —Cp(uin —wjn)[uin —wjnl, on e
ou;,
Vi% = —cai(uin —Vy) on I';,
u; - n; =0 on F[nturia

for ¢ = 1,2, where the velocities (u1,us) = (a1 (Xp, 21), u2(Xp, 22)) are decomposed
as
u; = (Ui,h,’w), Ui p = (uz;muzy)

Moreover, x5, = (z,y) € Tq, where
[0, Ll] X [0, LQ]

72 ’
is a two dimensional torus, which means that for the sake of the simplicity, we
consider horizontal periodic boundary conditions:

V(n,k,q) e NXZxZ, D"a(r+kLi,y+qlLs,z)=D"u(z,y,z),

Ty =

in the sense of the distributions. The interface I'j,; is given by

Flnt = {(xhao)uxh € TQ}

The boundaries I'; are given by

Fl - {(Xhazf)axh S T2}7
which is the top of fluid 1 and

Ly = {(xn, 23 ), xn € Ta},
the bottom of the second fluid. For the simplicity we set
J1=[0,zf“], ZQEJQZ[ZQ_,O],

where 2" > 0 and z; < 0. In other word, the domains €2; can be defined as

Qi = Tg X J,L'.
Finally, the remaining terms are

p; the pressure of the fluid 1,

f; a source term,

V,; a fixed velocity, at the bottom and at the top,

v; > 0 is the cinematic viscosity of the fluid 4,

the coefficients Cp > 0 and ¢4; > 0 from the Gauckler-Manning’s law at
the interface and from Navier condition at the top and bottom.

This model suits particularly well to the ocean-atmosphere coupling, especially
with the Gauckler-Manning assumptions and Navier assumptions at the top, and
bottom, where the fixed Velocities V; can be considered as the speeds of the wind,
and of the current flow in higher or lower layers, as depicted in figure 1. The heights
z1 and z9 of the two layers can be chosen from centimeters to couple of meters.
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FIGURE 1. Geometry of the domain

The stationary Navier-Stokes problem (1.1) is hard to solve because of the non-
linearity coming from transport terms and the Gauckler-Manning condition. The
steady Navier-Stokes equations have been studied a lot, but not with such inter-
face conditions. We can find in [6] the study of such an equation for one fluid and
without the Navier condition at the top/bottom boundaries.

The aim is to prove the existence of weak solutions of system (1.1) and to give
some numerical tools through algorithms and error estimates, to get a better un-
derstanding of this model. We recall that we have deliberately chosen this model
for ocean-atmosphere interactions. It is less precise than primitive equations, since
we don’t consider many physical aspects, (see for instance [19], [24], [22]), but also
clearly easier to implement. It is a more realistic and complex toy model than
the stationary Stokes equations with continuous Navier conditions at the boundary
studied in [21].

The paper is organised in two main sections. The first one 2 is dedicated to
establish a variational formulation of (1.1) and to prove the existence of weak
solutions. The second part 3 is devoted to the numerical analysis of (1.1).
Different iterative finite element methods have been developed to obtain numerical
simulations of stationary Stokes and Navier-Stokes equations: see for instance [2],
[26], [11], [12], [13] or [29]. We follow this steps with a Galerkin finite elements
scheme and a linearization algorithm to bypass the non-linearity coming from the
convection term and the interface friction condition. We will get theoretical error
estimates and Freefem++ numerical simulations for different choices of data.

2. PROBLEM FORMULATION

Before we start introducing the functional spaces we need, we give some details
of the different steps. Let denote with VP the variational formulation of (1.1)
given in 2.2. The different operators involved in VP, corresponding to transport,
diffusion, pressure, friction terms, are analysed in 2.3, especially the compactness
properties which will be useful during the whole study. Besides, the subsection 2.4
is dedicated to recall all the useful properties satisfied by bounded sequences in
Sobolev spaces (existence of weak subsequential limit, compactness in L9, results



F. LEGEAIS

on traces, ...).

We will then give in section 2.5 and 2.6 a priori estimates for the velocity by
standard energy equality method, and for the pressure by potential vector methods
(as developed in [4]). The point is to express the pressure as a function of the
velocity. To do this, we will kill two birds with one stone and tackle another
concerning issue coming from the non-local free divergence term V - u; = 0. We

will approximate this condition by the new system

—eAp; +V -y,
Opi
on;

/Q Pi (x)dx

i

where € > 0 is small. This system
given velocity field u; belonging to the
can introduce the system where the free
approximation introduced above and we
ational formulation, where only u; = uf

0 in Qi,
0onI'; U,

0,

admits a unique solution p; = p; for a
suitable functional space. Therefore, we
divergence condition is replaced with the
denote with VP, the corresponding vari-
is involved. We will prove that the weak

solutions of VP, are converging to the weak solutions of VP. Thus it will remain
to achieve our goal to show that VP. admits weak solutions. This will be done in
2.8.2 by linearization of the non-linear transport and friction terms, and by use of
Schauder’s fixed point theorem, as summarized in the scheme below:

(u,p)

VP

Small perturbation Convergence

VP. (ue,pe)

) . Fixed point
Linearization
theorem

LYP. ¢ (Ucw, Pe,w)

FIGURE 2. Scheme of the proof

2.1. Functional spaces. We define the functional space W; by
(21) Wz = {11 € COO(TQ X Jz)7 u - ni|FInthi = O},
equipped with

(22) Hu||W1 = ||quL2(T2><Ji) + ||tru||L2(Fi)>

where u — tru denotes the trace operator. When there is no ambiguity, we will
write u instead of tru; this will be the case every time we use the L? norms on the
boundary.
Let W; denotes the completion of W; with respect to this norm. We define the
space W = W(Q) as

W = Wi x W,
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endowed with the norm
(2.3) ullfy = [lu[lfy, + 2|y, = [[Vul
where we use the notations

IVul§ 2,0 = [V

(2J,2,Q + Hu”%a,rv

(2),2,91 + ||V112||8,2,Q2
and
||11||%72,p = ||‘11||3,2,F1 + ||u2||3,2,rz-
W is a closed subspace of H'(Q1) x H'(Q2) so the W-norm |.||w is equivalent
over W to the classical H'-norm ||.||1 2.0

Proposition 2.1. The W-norm ||.|w and the H' norm |.|12 are equivalent.
Moreover, there exists a constant Ceq > 0 such that for every v.e W:

(2.4)

1
o IVlliz < lvliw < Cegllvi12.

eq
Remark 2.2. We cannot use the semi-norm |Vu|lo 2,0 because we don’t have a
Poincaré inequality in our domain.

We will seek the pressure in the space X := X (Q) = L%(;) x L?(Qy) which is
standard for the Navier Stokes equations. Since the pressure is up to a constant,
we can even consider the average space Xo(Q) := L3(€1) x L2(Q2), where

(2) L300 = (i € 1°@0), | mi=0).
2.2. Variational formulation. We will introduce some notations of the involved
operators in order to give the variational formulation of the problem (1.1).

First we recall that the velocity u we consider in the following is the couple
u = (uy,us), where u; and uy are the velocities of the fluids 1 and 2 on the domain
Qy and Q5. We have in particular

u=(u;,uy): R® x R® = R? x R?.
We will also use the notation p = (p1, p2), where p; and po are the pressure of the
fluids on their respective domains. Thus
p=(p1,p2): R*xR* = R x R.
To give a variational formulation of (1.1), we will use different operators:

e a bilinear diffusion operator a,
e a trilinear transport operator b,
e a bilinear pressure term d,

e a trilinear interface term g.

(1) Diffusion term
We introduce the bilinear diffusion operator a defined by

(2.6) a(u,v) = ai(ur, vi) + az(uz, va),
where v = (v1,vy), and where the diffusion operators a; and as are defined
by
(27) ai(ui,vi) = Vi/ Vui . Vvl-,
Q.

i

for ¢ € {1,2}.



6 F. LEGEAIS

We denote by A the continous operator W — W' associated with a,
given by:

(2.8) (A(u),v) = a(u,v).

(2) Transport term
Let b be the trilinear form defined by:

(2.9) b(u,v,w) = by (uy, vy, wi) + bz (uz, vo, wa),
where

(2.10) bi(ui, vi, wi) = % (/Q

i

(Wi - V)v; - w; —/

Q;

We will see in the next subsection different properties of this operator.
We also will consider B : W x W — W’ which satisfies
(2.11) (B(u,v),w) = b(u,u,u).

(3) Pressure term
We define the pressure term d(u, p) by

(2.12) d(u,p) = di(uy,p1) + d2(uz, p2),
where
(2.13) di(ug, p;) :/ PV -y,
Q;
for i € {1, 2}.
We can also consider D : X — X' which verifies
(2.14) (D(p),v) :=d(v,p),

for every v € W.
(4) Interface term
We define the non-linear interface term g(u,v,w) by

(2.15) g(u,v,w) = Cp / [wih — Wyl (Vi — Vi) - (Wi — Wyn),

Trnt

and G : W — W' the interface operator by
(2.16) (G(u),v) = g(u,u,v).

(5) Bottom and top terms
The term we have to consider is
(2.17)

2 2
Cd,1 / (w1 —Vi1)-vi+ego / (ug—Vy) vy = Z ca,i(Wi, Vi)r, — Z ca,i{Vi, Vi)r,,
Iy T2 i=1 i=1
where V; is a given velocity at the bottom and at the top of the domain.
We will split (2.17) into two different terms: the first one
cg1{u1, vi)r, + ca2(uz, vo)r,
will be associated with a bilinear operator and the remaining term
ca,1{V1,vi)r, +ca2(Va,va)r,
to a linear one. Let h be defined by
(2.18) h(u,v) = hyi(u1,v1) + ha(ug, va),
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where
(219) hi(ui7vi) = Cdﬂ'/ u; -V,
T
for i € {1, 2}.
It is a bilinear operator and we can define H : W — W' as
(2.20) (H(u),v) = h(u,v).

The remaining term
ca,1{V1,vi)r, +ca1{Va,va)r,
will be added to the source term in the next paragraph.

Remark 2.3. This term can be seen as a drive speed term at the top and at
the bottom. It is classical in lid driven cavity test frameworks for instance.

(6) Source term
As explained, we will need to take into consideration the top and bottom
given velocities V;, which can be seen as source terms as well. Thus, we
define (f,v)q as

(2.21) (f,v)a = (f1,v1)a, + (f2,v2)a, +ca1(V1,vi)r, + ca2(Va, voir,,

where
(2.22) (fi, vi)o, = / fivi,
for i € {1,2}.
Instead of writing (f,v)q we will use (f,v) whenever there is no ambi-
guity.

We are now able to give the variational formulation of the problem (1.1) and the
definition of what we mean by weak solutions.

Definition 2.4. (weak solution)
We say that (u = (ug,uz),p = (p1,p2)) € W x X is a weak solution to problem
(1.1) if for every (v,q) € W x X,

(VP) { ZEE: ;2 i%('uv u,v) —d(v,p) + g(u,u,v) + h(u,v) = (f,v)q,

In other words, Problem (1.1) can be written as: find (u,p) € W x X, such that

(2.23) { é(ul)lilg(ul’nu;;r G(u,u)+ H(u) — D(p) =f € W/,

2.3. Properties of the operators.

2.3.1. Diffusion term. In the following we will consider v = inf(vq, v2).
We have the straightforward inequality we will use a lot in the future estimates:

Proposition 2.5.
(2.24) v|[Vulp2,0 < a(u,u),
for everyu e W.
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2.3.2. Transport term. This trilinear form verifies different properties and many
different inequalities. In particular the non-linear transport term b verifies the

lemma

Lemma 2.6. Let (u,v,w) € W3, the trilinear form b verifies the following prop-

erties:
(1)
(2.25)

(2)
(2.26)

(3)
(2.27)

Proof.

(- P, = 32 0wl et o' e — |

(2.28)

b is continuous on W x W x W and verifies the inequality
b(u, v, w) < Cy[ullw[vwlwlw,

where Cp, = Cp() > 0 is the best constant satisfying the inequality.
b is antisymmetric, i.e

b(u,v,w) = —b(u,w, v),
in particular b(u,v,v) =0, and b(u,u,u) = 0.

When the fluids are incompressible and verify the condition V-u; = 0, then

bi(uivviawi) = / (uz . V)Vz‘ * Wy,
Q

i

which is exactly the transport term in (1.1).

(1) We will mainly use the Cauchy-Schwarz inequaliy with the Sobolev
embedding H'(Q;) — LP(Q;), p < 6. It gives

[((0i - V)vi,wi)a,| < Cllullos.0;[VVlozalw]

0,4,
< Clullw[vllwllwllw.
The same estimate can be obtained for the term ((u; - V)w;, ul)Q , hence
(2.25).
It follows from the definition of b and b;.
We have

V)V, w; ), = uk (%) 0 v? ()’ (x)dx
(0 V)vi wo, ;ﬂ}xwm<>xw,

where u¥ is the k-th component of u;. We have thanks to the Stokes
formula:

w23k ! ) )
k.j Q
= (ui ‘N, Vv; 'Wi)l“i - (V s, Wy VZ)Q - ((uz : V)Wz‘,Vi)Q”
which holds for any u;, v;, w; € CH(;)3.
Taking u; € W;, the term (u; - n, v, - w;)p, vanishes and we get
((ui : V)Viywi)ﬂi = —(V s W, Wy - Vi)ﬂi - ((uz : V)Whvi)(li'

It remains to show that (2.28) is still valid when u,v,w belong to W,
without additional regularity. Thanks to the density of W; in W; and of
C1(9;)? in H'(Q;)? and thanks to the continuity estimates

|(V-u, wi - vi)o, < Crlluill2,0,

[((w; - V)wi, vi)a,
where C; depends only on ;, the relation (2.28) holds for any u;, v;, w; €
W. Finally, the incompressibility condition V - u; = 0 gives (2.27).

Vi”l,?,ﬂi Will1,2,Q;)

< Cafluifl12,0,

villi2.0: Will1,2,0,
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d

Remark 2.7. The choice of the operator b; instead of the more classical ((u; - V)v; - w;)q,
comes from the incompressibility condition. Even without the condition V -u; = 0,
the operator b; satisfies (2.27), which would have not been the case with ((u; - V)v; - w;)g

K

2.3.3. Interface term. We recall that the interface terms g and G are defined in
(2.15) and (2.16) by

g(u,v,w) = CD/ Wi n = wn|(Vin = Vjn) - (Win = Wjn),
Flnt
and
<G(u)v V> = g(u, u, V)'

We will show in this part that the interface terms are well defined in the varia-
tional formulation.
Lemma 2.8. For every u,v,w, the term g(u,v,w) does exist and checks the in-
equality
(2:29) lg(u, v, w)| < Cgllullw|lv]lwlvlw,
where the constant Cy > 0 depends only on Cp and §1.

Proof. We have thanks to the Cauchy-Schwarz inequality

lg(u, v, w)| < Cpllur — uszlloar,[[vi = valloar, [[wi — wa
and because of the triangular inequality:
lg(u, v, w)]
< Cp(Jafloar; + lluzlloar,)(Ivilloar, + [[valloar,)(Iwillozr, + [|ws

Using the Sobolev trace embedding results H'(€);) < L?(I';) and H'(€;) <
L*(T';) and the corresponding injection constants C; o and C; 4, we get

lg(u, v,w)| < Cp(C14l|Vuillo.o, + C2.4l|Vuzllo,.0,)(CralVVilloo, + C24lVVvallo,)
(C12[VWillo,0, + C22[|Vwa

and we obtain

0,2,I'y>

l0,2,01)-

0,2);

lg(u, v, w)| < C¢[[Vullo2,0l Vo2l VVloz20;
where C; = Cp(Cy.4 + Ca,4)*(C1,2 + Ca2), which finally leads to
lg(u,v,w)| < Cyllullw|vlwlvlw,

using the norms equivalence (2.4), where Cy = C;Ceq.

It is convenient to introduce the function g € W defined by
(2.30) g(v) = vlvl,
which gives in particular

g(u,u,v) = CD/ g(u; —ug) - (vq — va),

Ty
for every u,v e W.
The application g satisfies the following properties:

Lemma 2.9. There exists a constant ¢ depending only on ) such that
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(1) g is positive and satisfies
(2.31) 0<g(u)-u=u

for every u € R3.
(2) g is monotone:

(2.32) 0<(g(u) = g(v))- (u=v),
and satisfies
(2.33) [Vg(u)| < cful,

for every u,v € R3.
(3) Letu e W: then g(u) € L*(T;) and

(2.34) g(w)lo.2.r, < ellulfy-
(4) For any u,v € W,
(2.35) 19(0) = g(V)II < e([ullw + [[v]lwlla = vw.

Proof. (1) The result is straightforward.
(2) Tt is straightforward as well.
(3) The proof is similar to the proof of the lemma (2.8) with the use of Sobolev
embedding trace theorems.
(4) Doing a Taylor expansion, we obtain for every x € 'y

g(u(x)) - g(v(x)) = /01 Vg(tu(x) + (1 = t)v(x)) - (u(x) — v(x))dt.
Using the control of the gradient (2.33), we have
9(u(x)) — g(v(x))| < %(\U(X)I + [v(x))u(x) - v(x)],
which gives by integration and thanks to the Cauchy-Schwarz inequality
(2.36) law) =5 < Sl + Vil u =i

and hence to (2.35) using again the injection H*(€;) < L*(T;).

0,4,'r>

O

Remark 2.10. When we will look for estimates in the variational formulation, we
will take as a test v.=u and consider the term g(u,u,u) which verifies

(2.37) g(u,u,u) >0,
because of the property (2.31) satisfied by §.
We can now give and prove some properties satisfied by G:
Lemma 2.11. (1) The application G : u — G(u) maps W to W' and verifies
(2.39) 1G () < Clul,.

(2) G is positive, i.e, (G(u),u) >0 for everyu € W.
(3) The friction operator G satisfies

(2.39) 1G(v) = GW)llw < C A+ [IViiw + [Iwllw) v — wllw,

(4) G is monotone.
(5) G is continuous and compact.



Proof.

(2)
3)

(G(u) = G(v), W) < c([[Vulloz.a + [VVllo2.0)[V(a—v)|

(4)
()

(6)
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(1) By definition of G and g, we have the duality relationship
<G(u)’ V> = (g(u)7 V)FI;
which gives
(G(u),v)| < llg(a)llo.2,r, v

Combining it with (2.34) and the Sobolev trace embedding theorem, this
gives

0,2,T;-

(G (), V)| < clVaW)IF 2.0l VY020

The results comes from (2.37).
We have for every u,v,w € W

(G (w) = G(v), w)| < [lg(w) = g(¥)llo2,r, [Wllo2r,
and thanks to the estimate on g (2.35),

0,2,Q ”vaO,Q,Q-

The monotonicity of G is derived directly from the monotonicity of g.
The continuity of G comes from the property (2.39), which states that G
is Lipschitz over any bounded set of .

Let (u,), € WY which weakly converges to u € W. We will show that
(G(uy,))n is strongly converging in W', up to a subsequence. We will need
compact Sobolev embedding to "level up” the weak convergence of (u,),
into strong convergence of (G(uy,)),. Since (uy,), is weakly converges to u
in W, by definition of the W-norm, we have the weak convergence of (u, ),
to u in the space HY/ 2(I';). Moreover, we have the compact embedding
H'Y?(T;) < L3(T'y), which means that up to a subsequence, the sequence
(lun,—ullo,3,r; ) is converging to zero. We can make appear such L3-norms
using the Holder and Cauchy-Schwarz inequality:

(G(un) = G(w),v)] < ¢f|(Jun] + |u])[u, —u

< dllfun| +[ulllo,3,0; [un = ulfozr, v

0,3/2,T'r ||V 0,3,I';

0,3,z

The term |||u,| + |ulljo,3,r, can be bounded by triangular inequality since
the sequence (||uy,|[w)n is bounded. Still denoting the constant ¢ which
depends on Q, ||uljp,s,r, and on sup||lu,|w, we get

neN

(G (un) — G(),v)| < ¢[u, —ul

0,307 VVvllo.2,0,

using one more time the Trace Sobolev embedding H*(€;) — L3(I'7). Fi-
nally

1G(un) = G(u)llw < c[u, —u

03r; — 0,
n— o0

which concludes the proof according to the previous remarks.
O

Remark 2.12. In the proof of the compactness result, we haven’t used the estimate
of § with L*(T'1)-norms (2.36) because there is no compact embedding of HY/?(T'r)
to L*(T;) for n = 3. Nevertheless it would have worked for n = 2.
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2.4. Compactness tools: VESP and PESP. In what follows, we will often have
to use the same kind of arguments. We will have to consider velocity sequences
(Vn)nen belonging to W, which are solutions of an approximate problem, and we
would like to pass to the limit in the equations. It will be also the case for pressure
sequences (Pp)nen belonging to X.
Lets start with the velocities and introduce the Velocity Extracting Subsequences
Principle (VESP).
(1) VESP.
Assume that we have an priori estimate obtained from energy inequalities
of the form

vl < C, ¥n € N,

where C' > 0 does not depend on n. Different properties can be retrieved
from this inequality. Denote by Bo C W the ball or radius C' centered in
zero, we get

(a)

(d)

From the Banach Alaoglu theorem: the ball B¢ is relatively compact
in W, wich means there exists a velocity v € B¢ and subsequence
(Vi )keN Of (Vi )nen such that v, )ren weakly converges to v when
k — oo. Moreover thanks to the Sobolev embedding theorem, the
subsequence (v, )ren strongly converges to v in LP(2), when 1 <
p < 6 in dimension 3,and when 1 < p in dimension 2.

From the Riesz-Fischer theorem,it also converges a.e in €2, and there
exists A, € LP(2) such that Vk € N, |v,, | < A,, a.e in Q.

The sequence of the traces (7(vy, ))ren weakly converges to the trace
v(v) in H'/2(T) and from the trace continuity theorem and the Sobolev
embedding results, it also strongly converges in LI(T'), for 1 < ¢ < 4
in dimension 3 (the dimension of I" is 2 in that case).

Again, from the Riesz-Fischer theorem, the sequence (v(vy, ))ren con-
verges a.e in I', and there exists B, € L%(I') such that Vk € N,
|7(vn,)] < ByaeinT.

Remark 2.13. To simplify, we will always write v,, instead of v,, con-
sidering that all the convergences are up to a subsequence. To sum up, we
have:

vV, ——V
n—oQ

LP(Q
vnﬁv, 1<p<6,

n—oo
H1/2 (F)
—_ N

n— oo

Y(v),
L(I)

Y(vn) —=(v), 1 <g< 4
n—oo

9

Y (Vi)

Definition 2.14. We say that the limit v of the subsequence (vy), s a
VESP-limit of (vy,)n when it satisfies all the previous properties.

(2) PESP. The Pressure Extracting Subsequence Principle (PESP) is defined
as well.

(3) Convergence lemma. We will consider non-linear terms in our equations.
It is more difficult to pass to the limit in these terms than in the linear ones.
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We give a small lemma to easily pass to the limit in the non linear terms b
and g whenever we apply the VESP to velocity sequences.

Lemma 2.15. Let (vy)nen and (Wp)nen be two bounded sequences in W.
Let v and w be VESP-limits of these sequences. We also assume that
(Wn)nen strongly converges to w in W. Then

(2.40) lim b(vy, vy, Wy) = b(v, v, w),
n—oo

(2.41) lim g(vy, vy, Wwy) = g(v, v, w).
n—oo

Proof. Let give the proof of the first claim on b. we have by definition

1
b(vn,vn,wn):(/ Vn®wn:an—/vn®vn:an>7
Q Q

and
b(V,V,W)1(/V®W:VV/V®V:VW>.
2 \Ja o

According to the a-property of the VESP, we have in particular

4 3
v, (L7() v,

n—00
(L' ()®

W, ——— W
n—o0

[\)

Thus, we have the strong convergences

v. ow, L Lo w
(2.42) ( L"QTQO)O)Q
Vp, @V, ————VRV.
n—oo

Moreover, still from the a-property of the VESP, we have the weak conver-
gences

Oy, @)
(2.43) nooo
vw, LD gy

n—oo

Vv,

which gives combined with (2.42) the convergence (2.40). The second claim
about the convergence of the g-term is a consequence of the compactness
property given in 2.11. (I

2.5. A priori estimate for the velocity.

Proposition 2.16. Let (u,p) be any weak solution of the problem (1.1). Then u
satisfies the energy equality

(2.44) a(u,u) + g(u,u,u) + h(u,u) = (f,u),

leading to the estimate
2

C 2
(2,45) /‘Hu”?/vﬁ ;q|f|‘(2),2+ (max(cd,hccz,z))

min(cd,l y Cd72)

V113 2,0

where the constant p is defined by
1

@ = min(v, §Cd71, 50(1,2)7
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and where the constant C¢q is given in the norm equivalence result 2.1. In the
following, it will be more convenient to use the simplified a priori estimate

(2.46) [allfy < Cyers

where Cyey is given by

C? (max(cq.1,cq2))?
C = eq f 2 4 - ;1o ~a, 2 .
ve ,U/Q | ||0,2 /imln(cd,l, Cd,2) || | 0,2,I

Proof. We take v.=u € W as a test in (VP) and we consider each term one after
another. Since V - u = 0, the pressure term (p, V- u) = 0. We also have thanks to
antisymmetry property 2.6 of the trilinear form b that b(u, u,u) = 0. This gives us

a(u,u) + g(u,u,u) + h(u,u) = (f,u),

which is the energy equality (2.44). Moreover, the non-linear term ¢ satisfies
g(u,u,u) >0 . Thus:

a(u,u) + h(u, w) < (£, u).

Recall that the left hand term equals

V|3 2.0, + v2Vuzlg o g, + caalluinllgar, + cazlluzaldor,

and the right hand term is

/ fi-w +/ forus+ecg1 | Vi-wmp+cqge | Va-ugp,
(921 Qo Iy I's

according to (2.21).
Consequently, by definition of the product norms on €2, we get thanks to the Cauchy-
Schwarz inequality

v[|Vullg 2,0 +min(ca, ca2)l[ulg o0 < [[Elloz2lulli 2,0 + max(ea, ca2) [ Viozrulozr.
Using the Young’s inequality, we obtain

1 . (max(cq.1,ca2))?
IV a0+ 5 min(ea,caz) Il < [0zl 0 + G O VIR,

We use the equivalence result (2.4) between the two norms ||.||1.2,0 and ||.||w and
the Young’s inequality to get

(max(cq,1, Cd’g))z
2 min(ch, Cd,Q)

pllulffy < Ceqlifllo2lullw + VI3 2,1

where = min(v, %cd,l, %Cd,g). Finally we get using the Young’s inequality again:

2

C (maX(Cd.l, Cd 2))
pllullfy < ;qlf —

min(cq,1,ca,2)

? 2
IVIG.2r

|g,2 +
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2.6. A priori estimate for the pressure. In this section, we will use the poten-
tial vector method to express the pressure as a function of the velocities.

To do this, we first need a lemma on the elliptic regularity of a Neumann problem
on the Torus.

Lemma 2.17. Let u € H%(Q) be the unique solution of the Neumann problem

—Au = fin Q,
(2.47) e —=0onT
Jou=0
where Q =TIy x [0,1]. Then we have the estimate:
(2.48) [ullz2 < Cfllo,2-
Proof. See the section 2.9 at the end of this chapter. O

We will use this lemma to obtain an a priori estimate on the pressure. We recall
that

(2.49) X = L%() x L*(Qs)

is the pressure space equipped with the norm:
) ) 1/2
Iplx = (lpa22a) + IP2laan)
where p = (p1,p2) € X.

Lemma 2.18. We can find a test w € W and a constant Cq depending only on Q
such that

(2.50) (p,V-w) =—|pll%,

and

(2.51) [wllw < Callpl|x.

Proof. Let v; € H%(€;) be the unique solution of the Neumann problem
—Awv; = P; in Q;,

(2.52) i =0 on I NTint,
Jo, vi =0.

for ¢ = 1,2. We have
[vill 20,y < Cill BillL2 (0,
where C; only depends on €;. Let w; = Vuv;, which satisfies
Ov;
w; € H' ()%, w; -nyp,nr,, = e

on

LiNTines
and
Iwillzr1 @) < Cill Pill2(a,)-
Let w = (w1, ws). Then, w € W and there exists a constant Cq such that
[wlw < Callpllx-
Taking w as test in (1.1) gives us that

(P, V- w) = —|lp|%-
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This will allow us to show the following a priori estimate for the pressure.

Proposition 2.19. Let (u,p) be any weak solution of the problem (1.1). Then
there exists a positive constant C), depending on the domain and on the data such
that

(2.53) Ipl% < Gy

Proof. Let take w obtained in the lemma 2.17 as test in (1.1). We have the following
equality

(2.54) Ipl% = (£, w) — a(u,w) — b(u, u,w) — g(u,u,w) — h(u,w).

We will give an upper bound of each term of the right hand side. Let p > 0 to be

fixed later. By using the operator inequalities (2.25) 2.8,Cauchy-Schwarz inequality
and Young’s inequality,we get

max(vy, vg)?

(255) )| < B+ Sy
2 C{? 4 P 2
(2.56) b(u,u, w)| < Cy|[ulliy[[wllw < %HUHW + 5wl
C? p
(2.57) lg(u,u,w)| < TQHUH% + S lIwliy,
P 2
max(can,ca2)’ 2 | Py 2
(2.58) (h(a,w)| < ———————lullyy + S [lwlliy,
2p 2
and
C? max(cq,1, ¢4,2)>
(2.59) [{f,w)| < 2pq||f||3,2+# (Vg 2r, + IV2lg 2r,) +pollwllFy

According to the lemma 2.17, w verifies the inequality

[wlw < Callpllx-

Putting (2.54), (2.55), (2.56), (2.57),(2.58) and (2.59) together, we obtain
(2.60)
2

1
Ipl% < +3PCQIIPI|§(+2? (2max(vf, 13, ¢ 1, o)l + (Cy + Co)lulliy + Caata) ,
where Cygq is given by
Cuata = CLIIEI5 2 + max(ca, ca2)® (IVillg 2,r, + IValld2r,) -
We can choose
=0
and replacing it in (2.60) gives

(2:61) |pl% < 8Cq (2max(v, 13, ch 1,5 o) ullfy + (Cb + Cy)lulliy + Caata) -
Using the a priori estimate on the velocity (2.46), we finally obtain
Ipll% < Cp,

where C), is given by

C, =8Cq (2 max(uf, V%, 0(21717 03’2)071@1 +(Cr+ Cg)Cfel + Cdata) .
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2.7. Uniqueness.

Theorem 2.20. Recall that v = min(v4,vs), we also define the constants C1,,, and
CQ,V by
1/2
2
0,2> ’
2C 1

1/2
Co = 2y (carlVile, +cazlValle, + 2113)

Chp

1
Cruvi= oty (carlVilRr, +caallValfr, + L I

and

If v verifies the condition
(2.62) v>Cr,+Cay,
a weak solution (u,p) € W x Xq of the problem (VP) is unique.

Proof. Let (u*,p*) and (u™*, p**) be two different solutions of (VP) and let define
u=u"—u** and p=p* — p**.
We substract the equations (VP) corresponding to (u*,p*) and (u*™*,p**) and we
obtain:

a(u7 V) + b(u*a u, V) + b(ll, U*a V) - d(p7 V- V) + <G(u*) - G(u**)a V>
(2.63) +(H(u*) — H(u**),v) =0,

d(qv V- V) =0,

for every (v,q) € W x Q.
We take v = u in (2.63), and we study the different terms.

e The transport term verifies b(u*,u,u) = 0 thanks to 2.6, and we also get

(2.64) |b(u, u*,u)| < Cp||Vu 3)2||Vu*||072.

Since u* is a solution of (VP), we can use the estimate (2.45) in (2.64)
which gives:
1/2
)
0,2 .

x Ch 1
(2.65) |b(u,u*,u)| < m”quaQ (Cd,1Vl||g,1‘1 +caal[Vallgr, + ;Hf

e Since V - u = 0,The pressure term d(p,V -u) = 0.

e The friction term (G(u*) — G(u**),u) satisfies the inequality
(2.66)
(G(u") = G(u™),u)| < C(||[Vu"|

2C
< ZaIvulds (carl Vil

0.2 + [IVu**{lo.2) [Vull§ 5

1 1/2
b, + caalValle, + S13

thanks to the continuity of G given in (2.9).
e Finally the top and bottom boundary term (H(u*) — H(u**),u) verifies

wmﬂ<mmmwlgmﬁ+ﬁfmi

:Cd,1||u1||g,2,rl + Cd72||u2||8,2,F2'



18 F. LEGEAIS

Putting this together, we get by triangular inequality
a(u,u) 4+ (H(u") — H(u™),u) < |b(u,u”, u)[ + (G(u*) — G(u™), u)l,
hence

Cy

J1/2

2C 2 2 2 1 2 1z
+ 2519l (carlVilde, + caalValle, + S16135)

1/2
1
v[[Vul[§ 2 + yallullf 2.r < IVulf3 2 (Cd,1V1II3,r1 +eazlValdr, + y|f3,2>

where 4 = min(cq,1, ¢4,2)-
We recognize the constants C',, and C3 ,, which gives

(v = Cro = Co)[IVl§ 5 +vallufl§ o p <0,

and finally
min (v — C1,, — Ca,7a) [ullfyy < 0.

Using the condition on the data (2.62), we obtain ||u|ly = 0 , hence u* = u**.
Taking as a pressure test q = p gives d(p,w) = 0 for every w € W. By using a
density result, this remains true for every w € D(2)3. Then, p = 0 a.e in Q, and
equal to zero since it belongs to Xj.

O

2.8. Approximated Linearized Problem. The aim of this section is to prove
the existence theorem:

Theorem 2.21. Iff = (f,f5) € L?(Q1)3x L?(Q2)3 and V = (V1,Va) € L?(T1)3 x
L3(T')3, there exists a weak solution (u,p) € W x X of the initial problem (1.1).

Since we cannot use "De Rham” arguments to retrieve the pressure from the
velocity, we will add a small perturbation on the divergence term. This will allow us
to "decouple” the pressure and the velocity, and to obtain e-solutions (approximate
solutions).

For a given € > 0, We introduce the following approximate problem

(w; - V)u; — v;Au; + Vp; = f; in Q;
—€Ap; +V-u; =0, in Q;
ou; p,
vieg = = =Cp(Win = win)[Vin = Vinl, on Fing
8111:Zh
(2.67) Vi = = —Cai(Win = Vi) on T,
u; - n; =0 on F[ntUFi7
Opi
3p =Y on 'y UT;
n;
p; =0
Q;

The point is that this new system formally converges to the initial system (1.1)
when ¢ — 0. We will now consider a pressure problem which will allow us to
eliminate the pressure term p in the system (2.67). Let e > 0 and u € W be fixed.
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We extract some equations involving the pressure in (2.67) and put them together
which gives the Neumann problem:

—eAp; +V-u; =0, in Q,,

Ipi

(268) 671'11 = 07 on Flnt U Fia

/ pi=0
Q;

This problem is well-posed when we consider the space Qo = Qo(Q2) defined by

Qo= {q=(q1,42) € Q= H' () x H' (D), /.qi =0, vie{1,2}},

Ql

equipped with the semi-norm [|[Vqllo.2.0 :== (V1§ 2.0, + ||ng||872’92)1/2 (equiva-
lent to the classical Sobolev norm ||.||1 2, thanks to the Poincaré-Wirtinger inequal-
ity). According to the classical Lax-Milgram theorem, the problem (2.68) admits a
unique weak solution p € Qo U H?(§2) which verifies the variational formulation:
for every q € H*(Q)3,

(2.69) e(Vp,Va)q + (V-u,q)q =0.

Since we have existence and uniqueness of the pressure p solution of (2.68), we can
define the map

. W — Q07
(2.70) P { u — p, the unique weak solution of (2.68).

Lemma 2.22. The map P- is linear and continuous. Moreover, we have the esti-

mate
1
|P| =0 () .

Proof. The linearity is easy to check. Let us prove that P. is continuous. Let
u € W and p = P.(u). We chose q = p as a test in the variational formulation
(2.80). Thanks to the Stokes formula, we get

(2.71) elVpllg 2.0+ (V-u,p)a =0,
and using the Neumann condition

Op;
0 n;

=0on 'y, UL
, we get
eI Vpll§ 2.0 — (w0, Vp)o = 0.

Thus by Cauchy-Schwarz inequality:

19plloze < lullw,
where C' > 0. O

A direct consequence of the energy equality (2.71) is the following result:
Lemma 2.23. Let u € W and p = P.(u). We have the inequality
(V- u,p)a <0.
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We can now ”transform” the problem (2.67) using the linear map P, to ”get rid
of” the pressure p. This problem becomes

(w; - V)u; + 2w (V- w;) — 1Au; + VP.(u;) = f; in

Ouip

2712) Vitgnr = —Cp(Win — wjn)|vin — vjnl, on I'rpe
2.72 dus
WTZ’ = —cq,i(wi,n — Vi) on I';,
n;
u; - n; =0 on FIntUFi7

where the only unknown is the velocity field u = (uy, us).
The next step is to study the variational formulation associated with (2.72).

2.8.1. Perturbed variational formulation. Following our plan, the variational prob-
lem VP, associated with (2.72) is:
find u € W such that, Vv € W,
(VP&)
a(u,v) + cqg(u, vir +b(u,u,v) — (P.(u),V-v)g + g(u,u,v) = {f,v)qg + c4(V,V)r.

In the future, we will have to pass to the limit. Therefore, we need some a priori
estimates to keep going on.

Lemma 2.24. Let ¢ > 0, u. be any solution of VP. and p. = P-(u.). We have
the same kind of estimates as in the previous section, i.e:

(2'73) HusHW < va
and
(2.74) [Pello.2.0 < Cp,

where C,, and C), are the constants obtained in 2.45 and 2.19.

Proof. The proof is following the same steps as in 2.16 and 2.19.
We are taking u. as a test in (VP.) which leads to

a(ue,ue) + Cd”us”g,Q,l" +b(ue, ue,ue) — (pe, V- ug)o + g(ue, ue, ue)

(2.75) = (f,uc)o + ca(V,u)r.

The difference between (2.75) and the previous a priori estimates is the pressure
term —(p., V - uc)q which was vanishing according to free divergence condition in
(1.1). Hopefully, we can get rid of this term using the lemma 2.23 stating that
—(pe, V - uc)q < 0, which gives

(276) a(usaus)"‘cd”us”gg,r"_b(usvus»ue)"_g(ueausaus) < <f,u5>g—|—cd<V,uE>p.

The remaining steps of the proof are exactly the same as in subsections 2.5 and
2.6, which yields to the given estimates.
O

The next step is to show that if we are able to have a solution u. of the approxi-
mated problem VP., we can consider the couple (u., P:(u.)), pass to the limit and
get a solution of the initial problem VP. This leads to the proposition:

Proposition 2.25. Let ¢ > 0, u. be a solution of VP, and p. = P:(u:). We
consider u and p any VESP-limit and PESP-limit of the sequences (uc)eso and
(Pe)e>o0- Then, (u,p) is a solution to VP.
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Proof. By definition of the approximated problem VP., we have for all v € W:
(2.77)
a(us, V) + Cd<u€; V>F + b(uEa Ue, V) - <p€7 V- V>Q + g(uev Ue, V) = <fa V>Q + <V7 V>F~

According to the lemma 2.24, (u.,pc) is bounded in W x @Qg. We can then use
the VESP and PESP to obtain VESP and PESP limits u and p. It remains to
prove that (u,p) is solution of the initial variational problem VP. We will pass to
the limit in two different problems. First, in the variational formulation (2.77) to
retrieve the problem VP. Second, in the perturbation pressure problem 2.68.

First passage to the limit. Let v € W. The weak convergence of (u.)c>o
gives

a(ug,v) — a(u,v),

(278) uE7v>F —0> <uv V>F7

< e—
(

P, V- V)a 5 (»,V-v)a

Moreover, using the convergence properties of lemma 2.15, we get

279) {b(us,ue,v) E)b(u,u,v),

g(u65u57v) mg(uauav)'

Since (ue, pe) is solution of (2.77) for all v € W, we deduce from (2.78) and (2.79)
that (u,p) satisfies the variational formulation

a(u,v) + cg{u, vir + b(u,u,v) — (p, V-v)qg + g(u,u,v) = (£,v)q + (V,v)p,

for all v € W, which is exactly the first equation in VP.
Second passage to the limit.

We now consider the singular pressure problem 2.68. Let q € . The variational
formulation (2.80) gives

(280) _E<p57 Aq>Q + <v . 1157(1>Q =0.

Again, using the weak convergences of (u:)e>o to u in W and of (pc)eso to p in
Q, we have

e—0

- (Voue, gy — (V- u,q)q,
(2:81) (P, Ad)e — (P, Ag)a.

This yields —e({p., Aq)q — 0 and from (2.80) we obtain
e—

(2.82) (V- u,q)o =0,

for every q € (. We recognize the second equation of the variational problem VP.
Conclusion
We have proved that for a given solution (u., pg) of (??), we can retrieve a couple
(u,p) € W x Q, which satisfies the two equations of the variational formulation
VP.
It remains to prove that we can find solutions of the perturbed problem.
O
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2.8.2. Linearized problem. A way to obtain solutions of the problem (?7?) is to
linearize it. The Lax-Milgram theorem will enable us to obtain weak solutions
of the linearized problem, and the Schauder fixed-point theorem will allow us to
retrieve solutions of the perturbed problem.

. The non-linear terms b and g will be linearized as follows: let w € W be a fixed
velocity, we replace the terms b(u,u,v) and g(u,u,v) respectively by b(w,u,v)

and g(w,u,v). We then solve the problem
(LP. o) a(u,v) +b(w,u,v) — d(P.(u),v) + g(w,u,v) + h(u,v) = (f,v)q,
v ea(p,q) +d(q,u) = 0,

for every (v,q) € W x Q. According to the previous construction of P.(u), it
remains to prove the proposition

Proposition 2.26. Let w € W. The variational formulation: find u € W such
that

(2.83) a(u,v) +b(w,u,v) —d(P.(u),v) + g(w,u,v) + h(u,v) = (f,v)q,
for every v € W, admits a unique solution u.w € W.

Proof. We will use the Lax-Milgram to prove it. We can rewrite the previous
formulation in: find u such that

Ac(u,v) = L(v),
for every v € W, where the bilinear form A. is defined by
Ac(u,v) = a(u,v) + b(w,u,v) — d(P-(u),v) + g(w,u,v) + h(u, v),
and the linear form L by
L(v) = (f,v)a + hv(v).

According to the properties of the different operator involved shown in 2.3, A
is bilinear continous. Moreover, since

(1) b(w,u,u) =0, according to lemma 2.6
(2) —d(P-(u),u) > 0 according to 2.23,
(3) g(w,u,u) > 0 according to lemma 2.9,
we have
As(ua u) > a(uv u) + ﬁ(ua 11)
> v||Vul§ 5.0 + min(eq, caz2) [ullf 2.r
> min(v, cq1, caz)|ull
hence A, is also verifying the coercivity property. We can use the Lax-Milgram

theorem which concludes the proof.
O

We can also give an priori estimate for the velocity:

Proposition 2.27. Let w € W and u. v the unique solution of (LP.w). Then
we have the same estimate as in 2.24, which does not depend nor on e, neither on
w.

(2'84) ”us,w”W < Cy.
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We have proved the existence of a weak solution u. w depending on the small
perturbation € and on the the given velocity field w. The next step is to use a fixed
point theorem to get a solution of the problem LP..

We introduce the application T. which maps the fixed velocity w to the unique
solution u. w of previous problem (LP. w).

(2.85) { W= W,

W = U w.

The unique solution of (LP. ) will be denoted (U w, Pew)-

We aim to show that T; verifies the assumptions of the Schauder theorem to get
a fixed point and a solution of the problem LP..

We have to check the following properties:

(1) T. is continuous over W,
(2) There exists a positive constant C' such that T.(Bc) C Be for Be the
closed ball of W of radius C,
(3) T. is compact.
To prove the first point, we will show that 7. is weakly continuous, then use it
to show that it is continuous.
We need a first weak convergence lemma:

Lemma 2.28. Let (W, )nen be weakly convergent tow in W. Then the sequence of
the solutions (ul, )n of the linear problem LP. , associated with w, converges

weakly to the solution u. v, of the linear problem associated (LPew) with w.

To simplify the notation, we will denote by u the term u, , and by u” the term
Uc,w, Whenever there is no ambiguity.

Proof. We can apply the VESP to (wj,),en: there exists a unique VESP-limit
w. Let (u™, p,,) denote the solution of the linear problem LP. , associated with
w,,. We deduce from the estimate (2.84) that (u",p,)), ¢y is bounded in W x X
uniformly on n. We can apply the VESP to (u"),en and the PESP to (9p)nen-
Let u be a VESP-limit and p a PESP-limit.

We want to prove that (u,p) is the solution of LP. . Let (v,q) € W x Q.
Using the properties (2.40),(2.41) we have the convergences:

a(u",v) —— a(u,v),
n—oo

b(wp,u",v) —— b(w,u,v),

9(Wn, 0", v) —— g(w,u, v),
d(Ppn,v) —— d(p, V),
d(q,u") —— d(q,u"),

which implies that (u,p) is the solution of LP, .

We can even get a stronger result based on the energy method:

Lemma 2.29. Let (Wn)nen be weakly convergent to w in W. Then (u™)nen
strongly converges in W to u, where u™ = T.(w,,), and u = T (w).
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Proof. We know from the previous lemma 2.28 that (u™),en is weakly converging
in W to u. It remains to show that (||u”||w)nen is converging to |ju|| and we will
have the strong convergence since W is an Hilbert space. According to the energy
equalities, we have

a(u™,u") 4+ g(w,,u",u") = (f,u"),
a(u,u) + g(w,u,u) = (f,u).
According to the convergence property (2.41) and to the weak convergence, we get
g(w’n7 una un) —_— g(W, u, u)a
n—oo

(f,u,) n—>—oo> (f,u).

‘We deduce

a(u”,u") —— a(u,u).
n—oo

The norm induced by the bilinear form a is equivalent to ||.||y which finally gives

™l —— [[ullw,

and which combined with the weak convergence of (u"),en in W to u gives the
strong convergence. O

Lemma 2.30. The application T, is weakly continuous.

Proof. Let (w,,)nen be weakly convergent to w in W, and u” = T'(w,,). We have
to prove that (u™),en weakly converges to u = T'(w). We already know from the
previous lemma that a subsequence can be extracted from (u™),ecn that converges
to u. But as the solution of the linear problem associated with w is unique, u is
the unique weak limit of (u™),en. O

Lemma 2.31. The application T, is continuous over W.

Proof. This is as direct consequence of the weak continuity of 7. and of the lemma
2.29. ([l

Proposition 2.32. The application T, has a fized point. Therefore, the non-linear
problem (VP.) admits a weak solution u..

Proof. We have proved that T is continuous. Let C' > 0 the constant given by the
a priori estimate ||ullw < C obtained in (2.84). Let Bc C W be the closed ball of
radius C centered in 0. We have by construction T'(B¢) C Be. It remains to prove
that T'(Bc¢) is compact. As T(B¢) is a closed subspace of the metric space W, we
will show that from any sequence (u"),en in T'(Bc¢), we can extract a subsequence
which converges in W.
Let w,, € B¢ be such that u™ = T'(w,,). Since these sequences are bounded, we
can extract subsequences that weakly converge respectively to w and u. We deduce
from lemma ?? that u = T(w) C B¢ and from lemma 2.31 that (u"),en strongly
converges to u, which proves that T'(Bg) is compact.
We can then use the Schauder’s fixed point theorem which concludes the proof.

O
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VP (u,p)

Small perturbation Convergence

VP, (ue, pe)

. . Fixed point
Linearization
theorem

LYP. ¢« (Ucw;Pew)
FIGURE 3. Scheme of the proof

2.8.3. Conclusion. To summarize what we have done and proved, we recall the
scheme of the existence proof in figure 3.

In the previous subsections, we have proved the proposition 2.26, which grants
the existence and uniqueness of a weak solution (U. w,Pew) Of the linearized ap-
proximate problem (LP. ), for a given w € W. Then, we deduce from the
Schauder’s fixed point the existence of a weak solution u. of (VP.) (proposition
2.32) and consequently the existence of a weak solution (ug,pg) to approximate
problem (2.67).

Finally, the proposition 2.25 establishes the existence of weak solutions of the initial
problem (1.1) by passing to the limit of £ towards 0.

Putting this together with the uniqueness theorem 2.20, we have finally proved the
existence and uniquess theorem:

Theorem 2.33. Suppose that f = (fi,£2) € L?(Q1)>xL?(Q2)? and V = (V1,V3) €
L2(T'1)% x L3(T9)3.

There exists a unique weak solution (u,p) € W x Xy of the system (1.1), under the
condition (2.62). The different given parameters have to ensure the relation:

v > Cl,u + C?,ua
where v = min(vq, ve) and
o, 1 1/2
Cro = oty (carlVale, + caalValle, + Z11Zs)
and 1o
20 1
Caui= 25 (carlVillr, + calVallr, + 1)

Remark 2.34. This condition comes from the uniquess theorem 2.20. It is verified
whenever the viscosities coefficients v, and vo are “big” compared to the other terms
involved.

2.9. Technical lemma.

Lemma 2.35. Let u € H%() be the unique solution of the Neumann problem

—Au = fin £,
(2.86) g—ﬁ =0onT

Jou=0
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where Q =TIy x [0,1]. Then we have the estimate:
(2.87) [ull2,2 < C|l fllo,2-

Proof. We consider the Fourier decomposition of u and f:

u(z,z) = Z ug(2)e™®,

kez
and
flz,2z) = ka(z)eikw.
kEZ
Define now the H? norm associated with the space = II, x [0, 1]:
1
(2.88) lull35 = Z/ (luk ()1 + B2 |ug, (2) | + K ur|*dz) -
0

keZ
The Fourier decomposition of (2.86) gives for every k € Z:

(2.89) /0 —ujl(2) + k*up(2)dz :/o fr-

Taking v € H{ as a test function and by the Green’s formula , we get

1 1 1
/ upv' + k2 / ULV = / frv.
0 0 0

Taking v = u; and thanks to the Young inequality, we obtain the estimate

! 712 2 ! 2 k2 2 1 ! 2
k < — —
/0 ug|” + /O uel” < 5 /0 || +2k2/0 | fl®,
1 2 1 1
k 1
112 2 2
A ‘uk| + 92 A |uk| = 2k2\/0 |fk| )
and

1 1 1
(2.90) /kﬂumg/ |fk|2—2/ K2 Ju 2.
0 0 0

According to (2.89), we have

hence

1 1
J A R e e R S A
0 0

1
:/ W unl? + |ful? + K Ju 2
0

1 1
33/ |fk|2—3/ K2l
0 0
1
gs/ fil?
0

using (2.90). Summing this inequality for z € Z gives the estimate we want.
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3. ITERATIVE ELEMENT METHOD FOR STEADY NAVIER-STOKES EQUATIONS
WITH FRICTION CONDITIONS

3.1. Introduction. We will consider in the following a problem slightly different
form the study we have done previously. Instead of considering the spaces €2; and
Qy as Il x [0, 2], we will assume that they are both bounded domains in R4,
where the boundary is at least Lipschitz. Therefore we will also replace the peri-
odic boundary conditions “on the sides” by the Dirichlet condition u; =0 on I'; 4,
1 < ¢ < 2, where I'; ; denotes the ”left” and "right” sides of the boundary of €,
(see figure 4).

(111' . V)ul - l/iAlll' + Vpl = fz in Qz
V. u; = 0, in Ql
ou; h
i = —Cp(wn —wip)|uin —ujnl, on Ty
3.1 ani
(3:1) Ou;p, )
Vi on —cai(uin — Vi) on T,
u;-n; =0 on 'y UTY,
u; = on I’
I
T
s 0 (ug,p1) I'1s| yatmosphere surface layer
Flnt
Las Qo (ug,p2) Ly s cean first layer
25 v, T

FIGURE 4. Geometry of the domain

We will give the proper functional setting of this problem in the section 3.2 and
introduce a finite element Galerkin approximation in section 3.3.

Thanks to the Oseen iterative method which consists in a linearization of the
trilinear transport term, we will be able to do some numerical simulations in
Freefem++. We establish in section 3.4 the stability and error estimates rela-
tively to the iterative method we have chosen. The plan of what we will do can be
summarized in the scheme 5.

3.2. Functional setting. The benefit of considering this new problem relies on the
Poincaré inequality, which will enable us to change the functional spaces we have
introduced in the section 2, and to consider ”classical” Sobolev spaces associated
with the norm coming from the scalar product.
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VP (u,p)
Galerkin Scheme lup —ul| + |lpn — p||

VP (un, Pn)

n __ n o__
Oseen Linearisation gy = wnll + [lp5; = pal

method

LYP +———— (u},p})
FIGURE 5. Scheme of the error estimates

Definition 3.1. We introduce the Sobolev space Hj (€)% by
H&js(ﬂi)d = {ui S Hl(Qz) N tr(ui) =0 on Fi,s} .

To simplify the notations, we will denote by W; the space H&ys(ﬂi)d and we finally
introduce the Hilbert product space

W = W1 X WQ.
Thanks to the Poincaré inequality, the spaces W; are equipped with the usual scalar
product (Vu;, Vv;) and with the equivalent norm ||u|w, = ||Vu|lo, for u;,v; € W,.

We denote by Y the space
Y = L?(Q)% x L*()?,
and by X the space
X = L2(21)% x L3(Q2)%
It remains to take into consideration the free divergence condition. We can intro-
duce two other spaces: we denote by V the closed subset of W given by

V={ueW, V-u;=0, vl <i<2},
and we denote by H the closed subset of Y defined by
H={ueY, V-u;=0,u; - n; =00n 'y, UT;, V1 <i <2},

More details on the spaces can be found in [26] [11]. We denote the Stokes operator
by A = —PA, where P is the L?-orthogonal projection of Y onto H. Following
the notations of the section 2, the variational formulation of problem ... reads: find
(u,p) € W x X such that for all (v,q) € W x X,

(3.2) a(u,v) +b(u,u,v) +d(u,q) —d(v,p) + g(u,u,v) + h(u,v) = (f,v).

The following existence and uniqueness of solution of (3.2) can be easily adapted
from the results of section 2 and from [11], [26].

Theorem 3.2. Assume that Q1 and Qo are smooth enough (if they are convex
polygons/polyedra in dimension 2 and 3 for instance). Given £ in W', there exists
at least a solution (u,p) € W x X wich satisfies (3.2) and

c (f,v)
3.3 Vullo < SIEl_1, IIF]l_1 = s :
(33 IVullo < 1611, -1 = sup -
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where v = min(vy, va). Moreover, if v and £ satisfy the condition of theorem 2.20,
the solution pair is unique.

We have another regularity result we can adapt from He and Wang [14].
Theorem 3.3. Assume that £ € Y. The solution pair (u,p) of (3.2) satisfies
v|[Aullo + IVpllo < cffllo-

3.3. Finite element Galerkin approximation. Let A~ > 0 be a real positive
parameter, which will be the length of the mesh triangulation edge. We introduce
Wi x Xp, the finite element subspace of W x X characterized by Jj, a partitioning of
Q1 x Qs into triangles. Examples of such finite elements subspaces and partitioning
can be found in Girault and Raviart [11] or in Ciarlet [7]. We can also define the
subspace V}, of Wy, given by

(3.4) Vi ={vr € Wi, d(vi, Qn) =0, YQu € Xu},
and the L? orthogonal Leray projector P, on Vj,.

We assume that the couple W}, x X, satisfies the approximation properties:

(1) For each v € D(A) and Q € H'(Q;) x H'(Qy), there exists a velocity
approximation 7, v € W) and a pressure approximation p,Q € Xj such

that
(3-5) V(v =mnv)llo < chl|Av]jo, |Q = prQllo < ch|Qll1,
(2) we have the inverse inequality
(3.6) IVvillo < ch™Yvillo, Vvi € Wy
(3) and we have the inf-sup inequality: for each Qj, € X}, there exists vy, € Wy,

(different from zero) such that

(3.7) d(vn, Qn) = Bl1QrlolVVallo,

where [ is a positive constant depending on ().

This kind of condition is classical; see [1] for instance.

Examples of spaces W}, and X}, such that the approximation hypothesis is verified
can be found in Girault Raviart [11] or in Bercovier-Pironneau [2].
Let (v, Q) € W x X be given, we will denote by (Rp(v,Q), Qn(v,Q)) € W), x X,
the Stokes projection defined by

(3.8) (VRp,Vvy) —d(vh, Qr) + d(Rh, qn) = (VVv,Vvy) —d(Vh, q) + d(v, qn),
for all (vp,qn) € Wy, x Xp,. We have the following inequalities (proved in[26] or
[11]):

(3.9) [1Rr = vllo + hl[V(Rr = V)[lo < ch (Vo + llgllo) ,

for all (v,q) € W x X and

(3.10)  [[Rn = vllo + A (IV(Bhr = V)llo + |Qn — allo) < ch® ([[Av]lo + llall1),

for all (v,q) € D(A) x (H (1) x H(Q2)) U X. Finally we can define a dis-
crete version of the Stokes operator A by A, = —PyAy, given by (—Apuy, vy) =
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(Vuy, Vvy), for all (up,vy) € W2. We make the additional assumption that the
projected laplacian operator A, = — P, /Ay, verifies that

(3.11) (G(un), Apup) =0, (H(up), Apup) =0
We get the gradient control inequalities
(3.12) Wlvalls < IVVallg, I VVallg < [14nvalls,

for all v;, € W,
We will use some inequalities verified by the trilinear form b ([12]):

Lemma 3.4. The trilinear form b satisfies the estimates

|b(up, vi, w)| + |b(Vh, up, w)| + |b(W, up, vp)|

1 1/2 1/2 1/2 1/2
(3.13) < eoll Anvallo I vallg han g [ 7unllg” [ wllo

1 1/2 1/2 1/2
+ el Anvallg *1vally* Vg wllo,

and

[b(up, vi, w)| + |b(Vh, up, w)| + |b(w, up, vp)]

1/2 1/2

(3.14)
< ol Vvallo" [IVurllo™ Iwllo,

for all uy, vy, € Vi, w € W, where cg > 0 depends only on ).

The Galerkin approximation corresponding to the problem (3.1) reads as follows:
find (uh,ph) € Wy, x X}, such that for all (Vh,qh) e Wy x Xy,

(3.15)
a(up, vy) + b(up, up, vy) + d(ap, qn) — d(vi, pr) + h(uag, vi) + g(ug, up, vp)
= (f,Vh).

We can now prove the following stability and convergence results of the approxi-
mation.

Theorem 3.5. Under the assumptions (3.5),(3.6) and (3.7), (up, pp) satisfies the
stability and error estimates:

(3.16) [Vaplo < e,
2c
(3.17) lAnunllo < £,
(3.18) lu = wapllo + h (el V(= un)llo + Ip = prllo) < ch?,

where ¢; depends on the constants cq 1,cq,2, on the viscosities v and va, and on the
functions [[f|[—1, [[Villo,r,.[|Vallo,r.-

Proof. By taking (vp,qn) = (ap,pn) € Wi X Xj in (3.15), we have the same
inequality as in (2.45), which gives ||Vuy|lo < 1.



NS COUPLING WITH NON-LINEAR INTERFACE CONDITION 31

Then, we take v, = Apuy € Wy and ¢, = 0 in (3.15) and we use (3.12), (3.13),
(3.16), the hypothesis on A, (3.11) and the uniqueness condition (2.63) to get:

1
vl Anun [} < 4c0(||Ahuh||”2||Vuh|”2||uh||”2||Vuh”2|Ahuh||o

+ ||Ahuh|”2|uh|“2||Vuh||o||Ahuho) + £ lloll Anu o

1 _
< georo I Awunllg IV unllo’ + 1€l Axuro.

which gives thanks to the Young inequality and(3.16):

145 -
vl Annllo < ZlAwunllo + 3e6 [ Vunld + £l
145
< SllAnunllo + 76800 26 + [1Ello

14
< 5||Ahuh||o + c[[f]lo-

It remains to prove the last inequality. We use the Stokes projection in(VP),
which gives
vi(VR}, VVi)a, +v2(VR}, VVa)a, = d(Vi, Q) )ey — d(Va, QF)es
(319) + d(leilu Qh)Ql + d(VQR%U Qh)QQ + b(u7 u, Vh) =+ <G(u)7 Vh> + <H(u)5 Vh>
= (fv Vh),

for all (vi,qn) € Wj, x X, where (R}, Q%) = (Rh(u, u,p), Qi (viu,p) |, i € {1,2},

and (Ryp,Qp) = <(R}L,Ri), (Q}, Q,QL)) Substracting (3.15) from (3.19) and setting
(en,mn) = (Rn — up, Qn — pp), we get

(3.20) a(en,vi) — d(vp,mn) + d(vien, qn)o, + d(veen, qn)o, + b(u —up,u,vy)

' + b(up, u —up, vp) +(G(u) — G(up), vi) + (H(u) — H(up), vp) =0

We take v;, = ey, and g, = (v 'n},v5 'n?) in (3.20) which gives, by calculations
and property of the trilinear form b:

a(ep,en) + blen,u,ep) + b(u— Ry, u,ep) + b(uy,u— Ry, ep)
+ (G(u) — G(up),ep) + (H(u) — H(up),ep) = 0.

We will use the following estimates (more details can be found in [12]):

(3.21)

lenllze < cllVenllo,
(3.22) [Vup|[zs + [[upl[ze < c[|Apunfo,
[Vul[zs + [luflz < c[[Aulo.
e The three different transport terms satisfy the inequalities:
blen, u,en)| < Cy|[Vullof[Venrl[
< Cyer[|Venl[5,

thanks to (3.16).
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Besides,

bu — By, u,e5)] < cb(nwnmnehnm + |u||Loo||Veh|o)u— Rullo
< Cyel| Aullo|[Venollu — Rallo
< ch?|[Verlo.

according to the Stokes projection result (3.10). Last but not least:

b(unu — Ryen)] < cb(VuhnLanehnm n |uhanHVehno)nu—Rhno
< Cyel|Apuplfo||Venr|lo/lu — Ryllo
< ch2||Veh||o,

thanks again to (3.10) and to (3.17).
e The G-term verifies

(G(u) — G(up),en)| < O<||Vu||3 + ||Vuh||§> [V(a =)ol Venrllo
< 20| Ven|* + 203 ||V (u — Ry)||[[Venllo
< 20¢||Ven|* + ch||Ven|lo,

still thanks to (3.10).
e Finally,the H-term satisfies

[(H (u) = H(up), en)| < ¢l|V(u—un) ol Verllo
< || Ve[|V (w = Ra)llol[Venllo + ¢l Venll3
< ch||Venllo + cl[Ven|3.
Putting these five previous inequalities in (3.21), we obtain
(v — Cyey — 203 — O)||Ven|lo < ch + 2ch?.
i.e,
(3.23) [Venllo < ch + O(h?).

Getting back to the variational formulation (3.20)and taking v, = ep,qn = 0,
we obtain

a(en,en) — d(en,nn) + blen, u,ep) +b(u— Ry, u,ep) + b(uy, u— Ry, ep)

3.24
B2 (G) — Gl en) + () ~ (), e) =0
Using the inf-sup condition (3.7) in (3.24), we get

BllnullolVenllo < vlIVenl|§ + [blen, u,en) + b(u — Ry, u,ep) + b(up, u— Ry, ep)|
+[(G(u) — G(un),en) + (H(u) — H(up),en)l,

Hence from the previous inequalities:

(3.25) BlinnllolIVenllo < ¢ Venllg + chl|Venllo + ch?|[Ven|[5.
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We can finally prove the last inequality. Thanks to the triangular inequality:

(3.26)
viu =l + A@|[V(u—wp)lo + lp = pallo) < vllenllo + h(v[Vien)lo + Innllo)

+vlu = Rpllo + h(¥[[V(u = Ra)llo + [lp = Qnllo),

where

vlienllo + h(v[[V(en)llo + [Innllo) < ch + O(h?)

comes from the inequalities (3.23) and (3.25).
The other term verifies (3.10), thus

vu— Rpllo + ||V (u = Ry)llo + llp — Qnllo) < ch®.
Putting these two estimates in (3.26), we finally obtain
v[u—upllo + AV (a—up)llo + llp — prllo) < ch + O(h?).
O

Remark 3.6. We only have a first order estimate in h, compared to second order
in "more classic” Navier Stokes problems (see for instance [16],[13]).

We can add another control inequality
Theorem 3.7.
(3.27) IV (a—wp)lo +[lp = pallo < ch + O(h?)

which comes straightforwardly from the previous inequations.

3.4. Stability of the method and error analysis. We define the linearized
numerical scheme corresponding to the problem (3.1) with:

—1 .
(ul - Vu? = —y;Aul + Vp =f1; in €
V.uy =0, in ©;
n
auivh _ C n n n—1 n—1 T
Vi on. D(ui,h - uj,h)|ui,h —U;p |, on I'rne
(3.28) n;
) oul',, ’
“y — n
v; (91’1i = —cd,i(ui,h — VZ) on FZ‘,
u?-n; =0 on I'p UTY,
u? =0 on Fi,57

for n > 1.
The weak formulation associated with (3.28) can be seen as an Oseen iterative
method (see [13]):

We start from the couple (u),p?) € W), x X}, defined by the discrete Stokes
problem on © = Q7 x s

(3.29) a(u),vi) — d(vi,pp) + d(uy, qn) = (£,v4),
for all (vp,qn) € Wi, x Xp,.

Remark 3.8. The two Stokes problems for the two different fluids can be solved
separately on Qq and o since there is no boundary condition involving the two
fluids at this point.
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The iterative method at order n reads:
(3 30) a(u27 Vh) - d(vhaph) + d(uha Qh) + b( uh7 Vh) <G(uh7 uZ 1) Vh>
+ <H(u2)v h> = (fvvh)v

for all (v, qn) € Wp, x X}, where the map G is the discrete version of G and verifies
(3.31) (G(ap,up™), vi) :/F (ufy, —ugy)ufyt —ug | (vin — van).

I
This leads to the the stability result:

Theorem 3.9. The iterative method is unconditionally stable, meaning that the
couple (u},py) defined by the scheme (3.30) satisfies

(3.32) v[[Vuillo < [If]l-1,
and
(3.33) [Anugllo < ca,

for all n > 0, where ¢y depends on vi,va, ||f]lo (and on Q through different Sobolev
embedding theorems).

Proof. The result is verified for n = 0,by definition of uf as a solution of a standard
Stokes problem. We assume that the first inequality is true at the step n and we
will prove it for the step n + 1. Taking v, = u}™', ¢, = p}*! € W), x X, in (3.30)
at the step n + 1, we get

a(up ™ wp ™) + (G lap ) gt (H (), up ) = (F,up .
Besides, both G and H-terms satisfy
(Gup™ up), up™t) >0,

and

Hence, we get the estimate
V||V [ < (1] -1 [V ag o,

and the first claim is proved.

The second claim will be proved without iteration argument. Taking v, =
AthH and g, = 0 in (3.30) at the step n + 1, recalling that Aj, satisfy the
inequality (3.17) and cancel the G and H-terms, we get by Cauchy-Schwarz and
transport trilinear term (3.13) inequalities:

1 ~1/4 1/2 3/2
vl Arag I < ol Anug o + Seore IV R o Vg o A,
and from the Young inequality:
—~1/2 v
vl Apup G < HfHO||Ath+1HO+ZC(2)’)’0 / Vg 51V ol Anway ™ flo+ 5 [ Anag ™ 5.
Thanks to (3.32), we obtain
1 ~1/2
S Awai o < [Ello + i 12,
for all n > 0, which gives the stability estimate (3.33) and concludes the proof. O
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A corollary from the stability theorem 3.9 and the a priori estimates from the
theoretical section is the boundedness result:
Lemma 3.10. There exists C > 0 depending only on the data such that
(3.34) lanllw, < C and [[ui{lw, <C,
for alln > 0.

We define the errors between the Galerkin theoretical velocities and the Galerkin
approximated velocities obtained from the Oseen scheme e} = u} — u, and the

pressure errors 7y’ = pj — p.
This leads to the error convergence result:

Theorem 3.11. Provided the condition on the data
C(Cy+ Ch) <
min(vy, ve, ¢4,1,¢q,2) — CCp

(3.35)  min(vy,va,c41,c42) — CCp >0 and 1,

the method is converging and we have the error estimate:

2 C(Cy+Cp) it
n < - X
lerllw < (min(yl,yg,cd,l,cdg) - CCp IEll—

v
Proof. We consider the difference at the n-th step, between the equations satisfied
by (un, pr) and by (u}, py), which gives the relation

(3.36)

a(ef,vi) +ble} " up, vi) + b(u e, vi) + g(up,up~t vy) — glun, un, vi)
(3.37) +h(ey, vi) — d(va,np) + d(ey, qn) =0,
for n > 1 and (vp, qn) € Wi, X Q.

Consider the difference g(uj, uZ_l, vp) — g(up, vy), we have

g(up, up ™t vp) = g(up, vi)
—Cp [ (= gl = g = (= waal, — uaal) (Vs — vas),
I'r

and denoting Uy :=uy;, —uy, and Uy :=uyp, —ugp, Vo = Vi p — Vo, we get
ol vi) = glunva) = Cp [ (UFIU = UV,
I'r

s / (UL UL — UP[U| + U U] — Up[UL)V,,
I'r

= Co [ (UR(UR = [UA) + U4l (U}~ Un)) Vs
I
We get by the triangular inequality
lg(up,up=" vi) = g(an, vi)llw, < Cop (UL Iw, e} lw, + 1 0xllw, ler]) [ Vallw,
= Cp ([upllw, ler lw, + lanllw, llexllw, ) Vallw,

< CCp (lley lw, + llehllw, ) [V llw,,

using the stability result 3.10..
Choosing vj, = e} and g, = 1} in (3.36), we get

a(eZ7 e2)+b(e2_17 Up, e2)+b(uqu_17 e;zla e2)+g(u2a uZ_la e;zl)*g(uha Up, eZ)+h(eZ? e;zl) =0.
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Using the properties of the different operations, this yields to
min(v1, v, cq1; ca2)lleh iy, < Cbllunllw, lleqllw,ller ™ w, +CChb (e ™" lwi, + llef ) lenllws,,
hence

(min(v1,v2, €41, ¢a2) — CCp) [lef[lw, < (CCy + CCp) |le ™ [|w,-

Using again the stability result 3.10, we conclude thanks to the recursivity principle.
O

Remark 3.12. The major issue of this convergence result is the fact that it is
difficult to have access to the constants C and Cy involved. Nevertheless, choosing
small values of Cp relatively to the range of values of v1,v2,cq.1 and cq2 guarantees
both conditions. We will see in the numerical simulations an example of this criteria
being not fulfilled.

3.5. Numerical simulations. Finally, we are numerically simulating with Freefem++
the problem (3.28) thanks to the Oseen linearisation method.
We consider P2 finite elements for the velocities and P1 finite elements for the
pressure. The figure 6 shows the mesh we have used in Freefem-+-+.

We also decide to consider different viscosities: v; = 0.4 and v, = 0.08 and
horizontal periodic boundary conditions, where 7 =1 x 0.6 and Q5 =1 x 0.4,
The convergence criteria we consider is
Ju —

(0™ [| s

where the tolerance error £,,; = 1073. Note that the stopping criteria is based on
the relative error. The source f has been chosen constant equal to 1 everywhere in
the domains and the constants cq41 and cq2 equal to 1. The velocity V has been
chosen such that the air velocity at the top V1 = 1 and the water velocity at the
bottom V = 0.1.
The table 1 shows the number of iterations until the stopping criteria (3.38) is
fulfilled, for different values of Cp.
We have proved that there is convergence if the condition (3.35) is fulfilled; we
don’t know what is happening when it is not fulfilled.
In this configuration, we have seen that there was quite a fast convergence when
Cp < 2, but when Cp — 2.1, the simulation is ”exploding” and the numerical
results are not what we expect. The figure 7 shows the simulation of the flows
after 144 iterations for Cp = 1 and the figure 8, the case Cp = 2.5 after only 3
iterations.

(3.38) < Etol,
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FIGURE 6. Mesh for the domain € = Q7 x Q9

Value of Cp | First value of n | [[u?||zz | |[ub|lz2 | ||z | ||| @
0.1 160 5.48849 | 16.1656 | 4.42758 | 15.9186
0.2 152 5.48479 | 16.1702 | 4.38152 | 16.0235
0.5 146 5.47764 | 16.1937 | 4.32994 | 16.3304

1 144 5.46818 | 16.2515 | 4.29199 | 16.7047

2 461 5.45242 | 16.4263 | 4.25692 | 17.2604
2.01 558 5.45227 | 16.4292 | 4.2564 | 17.2688
2.02 722 5.45214 | 16.4313 | 4.25593 | 17.2738
2.03 1325 5.45208 | 16.4322 | 4.25607 | 17.2753
2.05 8250 5.45192 | 16.4341 | 4.25618 | 17.2771
2.1 +00

TABLE 1. Convergence rate for different values of C'p
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