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A B S T R A C T

In this study, the recently developed higher-order Haar wavelet method (HOHWM) was applied in the vibration
analysis of nanobeams. The method was evaluated for different boundary conditions. The complexity analysis of
HOHWM was performed, and the factors influencing the complexity were determined. The numerical results
obtained were compared with those of the widely used Haar wavelet method (HWM) and the exact solution. In
comparison with HWM, the application of HOHWM decreased the absolute error of the solution and increased
the order of convergence.

1. Introduction

The higher-order Haar wavelet method (HOHWM) was developed
recently [1] as an improvement of the widely used Haar wavelet
method (HWM). In the study, the HOHWM was adopted for the vi-
bration analysis of nanobeams.

HWM was developed by Chen and Hsiao [2,3] for solving lumped
and distributed parameter system problems and extended to different
applications of differential [4–8], integro-differential, and integral
equations [9–12]. New areas where HWM can be applied include the
engineering covering analysis of composite structures [13–18] and solid
mechanics [19]. In [13], HWM was applied for the free-vibration
analysis of orthotropic plates. In [14], an HWM-based delamination
detection algorithm was developed for composite beams. In
[15,14–18], HWM was adopted for the free-vibration analysis of com-
posite laminated conical and cylindrical shells and annular plate
structures. In the monograph [19], the integration techniques used for
solving differential and integro-differential equations were described,
and various applications of HWM, including solid mechanics, evolution
equations, optimal control theory, and damage detection using machine
learning methods, were discussed. The non-uniform HVM has been
described in previous studies [20,21].

Accuracy and numerical complexity are critical factors that should
be considered before using any numerical method. HWM is a relatively
simple method [15–19], and the convergence theorem and error esti-
mates for HWM have been presented in [22,23]. It has been stated that
the order of convergence of HWM, based on the Chen and Hsiao ap-
proach [1], is equal to two. In the case of fractional differential

equations, the convergence of HWM has been discussed in [24]. In
fractional ordinary differential equations, the order of convergence of
the HWM is equal to two if the higher-order derivative α in the frac-
tional differential equation exceeds one (α > 1) [24]. However, in the
case of 0 < α < 1, the order of convergence of HWM tends to 1 + α.

Detailed comparisons of HWM, the finite difference method, and the
differential quadrature method (DQM) have been drawn by a research
team [22,23,25]. Based on the results obtained in [22,23,25], HWM
needs to be significantly improved to compete with other efficient and
straightforward formulation-based numerical methods used in en-
gineering design, such as DQM.

Motivated by the above problem, HOHWM has been introduced in a
previous study [1]. The proposed HOHWM can be used to solve com-
plex problems with excellent accuracy. However, the HOHWM has been
applied in the case of some simple problems alone. A thorough and
accurate analysis is required in solving various classes of problems to
obtain a more realistic picture of HOHWM. In this study, an attempt
was made to use HOHWM in the vibration analysis of nanobeams.

2. Haar wavelet family

In the following analysis, the notation used in [7] is employed. The
Haar functions h x( )i are defined as

h x
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In (1) and (2), i m k 1= + + , where m 2 j= (M 2J= ) corresponds to
the resolution, and the parameter k indicates the location of a particular
square wave. The scaling function is defined as h x( ) 11 ; thus, m 0= ,

A,1 = and B.2 3= = The Haar functions are orthogonal to each other
and are used as basis functions. Any integrable square and finite
function f x( ) in the interval A B[ , ] can be expanded into Haar wavelets
as

f x a h x( ) ( )
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=
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The integrals of the Haar functions (1) of order n can be computed
as [7]
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By applying the transform x A B A( )/( )= , the interval A B[ , ]
can be replaced with the unit interval [0, 1].

3. HOHWM

The n-th order ordinary differential equation in the general form is
considered as

G x u u u u u( , , , , ... , ) 0n n( 1) ( ) = (5)

Based on HOHWM introduced in [1], the Haar wavelet expansion is
expressed as
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In (6), n represents the order of the highest derivative included in
the differential equation. Hence, when s 1= , the derivative of order
n 2+ is expanded into Haar wavelets. The even value of the increase in
the wavelet expansion order is based on the analysis performed and
previous experience.

The solution of the differential Eq. (5) u x( ) can be obtained by in-
tegrating (6) n 2+ times with respect to x as
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Where the boundary terms, S x( )BT and H x( )BT , are expressed as

S x c x
r

( )
!BT

r

n

r
r

0

1

=
= (8)

H x c x
r

( )
!BT

r n

n s

r
r2 1

=
=

+

(9)

The boundary terms S x( )BT and H x( )BT include n s2+ integration
constants cr , from which n can be determined from the boundary con-
ditions.

The higher-order wavelet expansion (6) does not provide high ac-
curacy results. The accuracy of the solution significantly depends on the
conditions used for determining the integration constants. The fol-
lowing two algorithms are proposed for determining the remaining 2 s

integration constants [1]:

a) Uniform grid points

x i
N

x i
N

i s, 1 , 0, ..., 1i i= = = (10)

b) Selected Chebyshev–Gauss–Lobatto grid points (nearest to the
boundary from both sides)
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In the case of s 1= , both algorithms reduce to the same conditions,
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Conditions (12) indicate that the differential equation should be
satisfied at the boundary points (in addition to the collocation points).

4. Case study: Free-vibration analysis of nanobeams

In the following analysis, HOHWM is used for the free-vibration
analysis of Euler–Bernoulli (EB) nanobeams. By applying the non-local
Eringen theory in the differential form [26], the governing differential
equation of the Euler–Bernoulli nanobeam can be derived as [27,28]
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In (13)–(14), L denotes the nanobeam length, EI is the bending
stiffness, m0 is the moment of inertia, and is the natural frequency of
vibration. The non-local parameter µ is defined as µ e a0

2 2= , where e0
and a are the material properties and internal characteristic length,
respectively. The boundary conditions derived from the non-local beam
theory are expressed as follows [29]:
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Clamped-pinned (C–P),
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Clamped-clamped (C-C),
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W dW
dX

d W
dX

µ
L

W d W
dX

µ
L

dW
dX

(0) 0, (0) 0, (1) (1) 0, (1)

(1) 0.

2

2

2

2

3

3

2

2

= = + =

+ = (18)

The non-local boundary conditions (15)–(17) are equivalent to the
corresponding boundary conditions for local beams. In the literature,
condition (18) is often used in its analogue form based on the local
beam theory, i.e.,

W dW
dX

d W
dX

d W
dX

(0) 0, (0) 0, (1) 0, (1) 0.
2

2

3

3= = = = (19)

In general, condition (18) cannot be directly reduced to (19), and
such simplification is not justified if no further analysis is performed for
a considered problem.

By substituting solution (7) and its derivatives into governing dif-
ferential Eq. (13) and satisfying boundary conditions (15)–(18) and

J. Majak, et al. Materials Today Communications 25 (2020) 101290

2



complementary conditions (12), the algebraic system of equations can
be obtained to determine the values of the frequency parameter .

5. Numerical results and discussion

The numerical results obtained for evaluating HOHWM have high

accuracy. The results obtained by applying the widely used HWM and
the HOHWM proposed by the authors are presented and compared in
Tables 1–8(grid points (10) were employed). Four different boundary
conditions were examined (P-P, P-C, C-C, and C–F). The values of the
non-local parameters, µ 5= and length L =10 nm, were used. In Tables
1,3,5, and 7, the first four values of the frequency parameter for HWM

Table 1
First four values of frequency parameter of C-C nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N 1 2 3 4 1 2 3 4

4 4.2529522 5.9996954 8.2207223 8.2343050 4.2019212 5.9202688 8.1915833 8.1915833
8 4.2073252 5.8739237 7.1963937 8.2603407 4.1923145 5.8176301 7.0937118 8.1542282
16 4.1956216 5.8272627 7.1001098 8.1287993 4.1917216 5.8111156 7.0631097 8.0646311
32 4.1926692 5.8148779 7.0711262 8.0770461 4.1916850 5.8107172 7.0612321 8.0589523
64 4.1919293 5.8117403 7.0636290 8.0632499 4.1916827 5.8106925 7.0611163 8.0586046
128 4.1917442 5.8109534 7.0617398 8.0597519 4.1916825 5.8106910 7.0611092 8.0585831
256 4.1916980 5.8107565 7.0612666 8.0588744 4.1916825 5.8106909 7.0611088 8.0585817
512 4.1916864 5.8107073 7.0611482 8.0586548 4.1916825 5.8106909 7.0611088 8.0585816
Ex. 4.1916825 5.8106909 7.0611088 8.0585816 4.1916825 5.8106909 7.0611088 8.0585816

Table 2
Fundamental frequency parameters 1 , absolute errors, and rates of convergence of C-C nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N Frequency Absolute error Conv. rate Frequency Absolute error Conv. rate Error ratio

4 4.2529521700 6.13E-02 4.2019211501 1.02E-02 6.0
8 4.2073251614 1.56E-02 1.9697 4.1923144940 6.32E-04 4.0180 24.8
16 4.1956215705 3.94E-03 1.9896 4.1917215791 3.90E-05 4.0165 100.9
32 4.1926691558 9.87E-04 1.9973 4.1916849616 2.43E-06 4.0058 405.9
64 4.1919293050 2.47E-04 1.9993 4.1916826803 1.49E-07 4.0237 1651.3
128 4.1917442318 6.17E-05 1.9998 4.1916825402 9.35E-09 3.9991 6601.7
256 4.1916979566 1.54E-05 2.0000 4.1916825315 5.89E-10 3.9876 26180.7
512 4.1916863874 3.86E-06 2.0000 4.1916825309 4.62E-11 3.6728 83473.9
Exact 4.1916825309 4.1916825309

Table 3
First four values of frequency parameter of P-P nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N 1 2 3 4 1 2 3 4

4 2.8598909 4.8880373 6.3080053 6.8987493 2.8428724 4.8142654 6.3396626 7.2254732
8 2.8463962 4.8144371 6.2515130 7.4239029 2.8419048 4.7863384 6.1823723 7.3201046
16 2.8429831 4.7922526 6.1926857 7.3211362 2.8418464 4.7847254 6.1715395 7.2789698
32 2.8421278 4.7865389 6.1763981 7.2879452 2.8418427 4.7846272 6.1708930 7.2765332
64 2.8419138 4.7851009 6.1722427 7.2792892 2.8418425 4.7846211 6.1708531 7.2763842
128 2.8418603 4.7847408 6.1711988 7.2771044 2.8418425 4.7846207 6.1708506 7.2763750
256 2.8418470 4.7846507 6.1709376 7.2765569 2.8418425 4.7846207 6.1708505 7.2763744
512 2.8418436 4.7846282 6.1708722 7.2764200 2.8418425 4.7846207 6.1708505 7.2763743
Ex. 2.8418425 4.7846207 6.1708505 7.2763743 2.8418425 4.7846207 6.1708505 7.2763743

Table 4
Fourth frequency parameters 4 , absolute errors, and rates of convergence of P-P nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N Frequency Absolute error Conv. rate Frequency Absolute error Conv. rate Error ratio

4 6.8987493323 3.78E-01 7.2254732229 5.09E-02 7.4
8 7.4239028763 1.48E-01 1.3560 7.3201045863 4.37E-02 3.4
16 7.3211362360 4.48E-02 1.7207 7.2789698203 2.60E-03 4.0746 17.2
32 7.2879451853 1.16E-02 1.9518 7.2765332261 1.59E-04 4.0299 72.8
64 7.2792892297 2.91E-03 1.9890 7.2763842065 9.88E-06 4.0080 295.1
128 7.2771044177 7.30E-04 1.9973 7.2763749468 6.16E-07 4.0020 1184.5
256 7.2765569370 1.83E-04 1.9993 7.2763743689 3.85E-08 4.0005 4741.7
512 7.2764199873 4.57E-05 1.9998 7.2763743328 2.40E-09 4.0012 18984.5
Exact 7.2763743304 7.2763743304
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and HOHWM are listed. In the last row of the tables, the exact solution
is presented. It can be observed from Tables 1,3,5, and 7 that the fre-
quency values corresponding to HWM and HOHWM converge to the
exact solution. However, for all the four boundary conditions con-
sidered in this study, the frequency values obtained using HOHWM
were significantly more accurate than those of HWM.

In Tables 2,4,6, and 8, the values of the selected frequency, the
absolute error, and the convergence rates for HWM and HOHWM are
listed. It can be observed from Tables 2,4,6, and 8 that for the four
considered boundary conditions, the absolute error for HOHWM is
significantly smaller than that of HWM. The error ratio results pre-
sented in the last column of these tables were obtained as the ratio of

Table 5
First four values of frequency parameter of C-P nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N 1 2 3 4 1 2 3 4

4 3.5357562 5.4539367 6.6969477 8.2279913 3.5058838 5.3700299 6.8514940 8.3621163
8 3.5108943 5.3547831 6.7237092 7.8496068 3.5026514 5.3142475 6.6376515 7.7400666
16 3.5045643 5.3220815 6.6473201 7.7305361 3.5024564 5.3108912 6.6190989 7.6780044
32 3.5029743 5.3135473 6.6254170 7.6887165 3.5024444 5.3106869 6.6179820 7.6742277
64 3.5025763 5.3113932 6.6197950 7.6776997 3.5024436 5.3106743 6.6179132 7.6739967
128 3.5024768 5.3108535 6.6183808 7.6749131 3.5024436 5.3106735 6.6179090 7.6739824
256 3.5024519 5.3107184 6.6180267 7.6742145 3.5024436 5.3106734 6.6179087 7.6739815
512 3.5024456 5.3106847 6.6179382 7.6740397 3.5024436 5.3106734 6.6179087 7.6739814
Ex. 3.5024436 5.3106734 6.6179087 7.6739814 3.5024436 5.3106734 6.6179087 7.6739814

Table 6
Second frequency parameters 2 , absolute errors, and rates of convergence of C-P nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N Frequency Absolute error Conv. rate Frequency Absolute error Conv. rate Error ratio

4 5.4539366655 1.43E-01 5.3700299238 5.94E-02 2.4
8 5.3547830478 4.41E-02 1.6995 5.3142475012 3.57E-03 4.0538 12.3
16 5.3220814715 1.14E-02 1.9510 5.3108911549 2.18E-04 4.0369 52.4
32 5.3135473336 2.87E-03 1.9890 5.3106869237 1.35E-05 4.0114 212.9
64 5.3113932401 7.20E-04 1.9973 5.3106742643 8.42E-07 4.0031 854.8
128 5.3108534600 1.80E-04 1.9993 5.3106734748 5.26E-08 4.0008 3422.8
256 5.3107184369 4.50E-05 1.9998 5.3106734255 3.29E-09 4.0002 13694.8
512 5.3106846762 1.13E-05 2.0000 5.3106734224 2.05E-10 4.0001 54782.8
Exact 5.3106734222 5.3106734222

Table 7
First four values of frequency parameter of C-F nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N 1 2 3 4 1 2 3 4

4 1.9102142 4.2167386 6.1057431 8.2168319 1.8964604 4.1031049 5.9598791 8.0646605
8 1.8998043 4.1240966 5.9401009 7.1849371 1.8963922 4.0947736 5.8620845 7.0575996
16 1.8972389 4.1016257 5.8769759 7.0712640 1.8963873 4.0942348 5.8554436 7.0290903
32 1.8965998 4.0960520 5.8605262 7.0384176 1.8963870 4.0942004 5.8550230 7.0272928
64 1.8964402 4.0946613 5.8563797 7.0299969 1.8963870 4.0941982 5.8549965 7.0271803
128 1.8964003 4.0943138 5.8553411 7.0278796 1.8963870 4.0941980 5.8549948 7.0271733
256 1.8963903 4.0942270 5.8550813 7.0273496 1.8478879 1.8963870 1.8963870 4.0941980
512 1.8963878 4.0942053 5.8550164 7.0272170 1.8963870 4.0941980 5.8549947 7.0271728
Exact 1.8963867 4.0941980 5.8549947 7.0271728 1.8963870 4.0941980 5.8549947 7.0271728

Table 8
Fundamental frequency parameters 1 , absolute errors, and rates of convergence of C-F nanobeam.

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N Frequency Absolute error Conv. rate Frequency Absolute error Conv. rate Error ratio

4 1.9102141659 1.38E-02 1.8964603982 8.55E-05 161.7
8 1.8998043116 3.42E-03 2.0166 1.8963922163 6.06E-06 3.8185 563.9
16 1.8972389104 8.52E-04 2.0040 1.8963873058 4.02E-07 3.9147 2119.3
32 1.8965997964 2.13E-04 2.0010 1.8963869780 2.59E-08 3.9583 8217.8
64 1.8964401564 5.32E-05 2.0002 1.8963869568 1.64E-09 3.9793 32439.6
128 1.8964002551 1.33E-05 2.0001 1.8963869555 1.03E-10 3.9898 129123.1
256 1.8963902803 3.32E-06 2.0000 1.8963869554 6.47E-12 3.9958 513892.4
512 1.8963877866 8.31E-07 2.0000 1.8963869554 4.09E-13 3.9841 2032319.8
Exact 1.8963869554 1.8963869554
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the errors of HWM to those of HOHWM. The rate of convergence tended
to two for HWM and four for HOHWM. The formulas used for com-
puting the rates of convergence are derived in [30].

6. Complexity analysis

The results obtained above confirm the superiority of HOHWM over
HWM with respect to accuracy and convergence rate. However, extra
computational costs were involved in achieving the higher accuracy,
because the more accurate results were often obtained with sig-
nificantly increased computational effort. In the case study, the most
complex and time-consuming task involved solving the system of al-
gebraic equations for determining the values of the frequency para-
meter . If the boundary conditions and complementary conditions are
determined, the rank of the algebraic system is the same for HWM and
HOHWM for the same mesh (number of collocation points). The matrix
equations used for determining the values of the frequency parameter λ
are expressed in Table 9. The detailed expressions of the matrices Ai are
omitted in this paper for the sake of conciseness.

It can be noticed in Table 9 that the algebraic system of equations is
more complex for HOHWM, except in the case of P-P boundary conditions,
where the complexities of HWM and HOHWM are the same. The accuracy
obtained by applying HWM at 512 collocation points was already
achieved using HOHWM at 16 or 32 collocation points (Tables 2,4,6, and
8). The MATLAB function, polyeig, in which the generalised Schur de-
composition algorithm was used to compute the eigenvalues, was applied.
This approach has a cubic complexity O d N( )3 3 in both the size of the
matrix N and the degree d of the characteristic equation. The complexities
of the solution of the algebraic systems of equations for HWM (O N( )3 ) and
HOHWM O d N( )3 3 computed for the different boundary conditions are
listed in Table 10. In the case study and considered boundary conditions,
the iterative solution of the 16 × 16 or 32 × 32 non-linear system
(HOHWM) was computationally more straightforward than the solution of

the 512 × 512 linear system (HWM) system of equations.
The values of the degree d of the characteristic equation listed in

Table 10 were specified based on the characteristic polynomials ex-
pressed in Table 9. The use of HOHWM produces solutions with the
same accuracy and lower computation costs than HWM, despite the
iterative procedure caused by the nonlinearity.

The corresponding results for macro-beams (local theory) are pre-
sented in Table 11 to understand the effect of the non-local beam theory
better.

In Table 11, the C–F boundary condition was determined using (19),
and the non-local conditions were omitted. In the case of the local beam
theory, the characteristic equation for HOHWM was non-linear (quad-
ratic) for only the cantilever beam. The complexity comparison of HWM
results with those of HOHWM for the C–F beam was similar to that of
the non-local C–P beam (see the second row of Table 10).

7. Conclusions

In this study, HOHWM was adopted for the free-vibration analysis of
nanobeams. The obtained results were validated against the exact so-
lution and compared with HWM. From the results, it was found that
HOHWM outperformed HWM. The rate of convergence of HOHWM
increased from two to four, and the absolute error decreased by several
magnitudes (depending on selected mesh). It was shown that the nu-
merical complexity of the solution depended on the boundary condi-
tions and the applied local or non-local beam theory. Using selected
boundary conditions, HOHWM produced results with the same accu-
racy at lower computational costs, in comparison with HWM.
Therefore, HOHWM can be considered as an improved form of HWM.

CRediT authorship contribution statement

J. Majak: Conceptualization, Methodology, Software, Investigation,
Supervision, Writing - original draft. B. Shvartsman: Formal analysis.
M. Ratas: Software, Investigation. D. Bassir: Conceptualization,
Methodology. M. Pohlak: Software, Writing - review & editing. K.
Karjust: Software. M. Eerme: Software.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Table 9
Matrix equations for determining the values of frequency parameter (nanobeam, non-local theory).

Boundary conditions HWM HOHWM

P-P A A 00 1+ = A A 00 1+ =
C–P A A 00 1+ = A A A 00 1 2 2+ + =
C-C A A 00 1+ = A A A A 00 1 2 2 3 3+ + + =
C–F (simplified) A A 00 1+ = A A A A 00 1 2 2 3 3+ + + =
C–F (non-local) A A A A 00 1 2 2 3 3+ + + = A A A A A A 00 1 2 2 3 3 4 4 5 5+ + + + + =

Table 10
Matrix equations for determining values of frequency parameter (nanobeam, non-local theory).

Boundary conditions HWM (512 collocation
points)

HOHWM (32 collocation points) HOHWM (16 collocation points)

P-P 5123 1.34E+08 1 323 3× 3.28E+04 1 163 3× 4.10E+03
C–P 5123 1.34E+08 2 323 3× 2.62E+05 2 163 3× 3.28E+04
C-C 5123 1.34E+08 3 323 3× 8.85E+05 3 163 3× 1.11E+05
C–F (simplified) 5123 1.34E+08 3 323 3× 8.85E+05 3 163 3× 1.11E+05
C–F (non-local) 3 5123 3× 1.21E+09 5 323 3× 4.10E+06 5 163 3× 5.12E+05

Table 11
Matrix equations for determining the values of frequency parameter (macro-
beam, local theory).

Boundary conditions HWM HOHWM

P-P A A 00 1+ = A A 00 1+ =
C–P A A 00 1+ = A A 00 1+ =
C-C A A 00 1+ = A A 00 1+ =
C–F A A 00 1+ = A A A 00 1 2 2+ + =
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