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Stochastic optimal control of homogenous systems

Ying Hu ∗ Xiaomin Shi† Zuo Quan Xu‡

April 18, 2024

Abstract

This paper studies a new class of homogenous stochastic control problems subject to
cone control constraints. It extends the classical homogenous stochastic linear-quadratic
(LQ) problems to problems with nonlinear dynamics and non-quadratic cost functionals.
Similar to LQ problems, the optimal controls and optimal values of the new class problems
are closely related to some backward stochastic differential equations (BSDEs) which are
highly non-linear and new in the literatures. We prove the existence and uniqueness of the
solutions to these BSDEs under three different conditions using tools including truncation
function technique, log transformation etc. Finally, we provide feedback optimal controls
and optimal values in terms of the solutions to the aforementioned BSDEs by verification
argument. Because our solvability conditions are fairly general, many existing results in
homogenous LQ problems in both standard and singular cases are recovered by our results.

Keywords: Homogenous system; stochastic LQ problems; cone constraint; BSDE; existence
and uniqueness; verification theorem.

1 Introduction

Consider a controlled stochastic differential equation (SDE):

dXt = bt(Xt, ut) dt+ σt(Xt, ut)> dWt, X0 = x, (1.1)

and a related cost functional:

J(X,u) := E
[∫ T

0
ft(Xt, ut) dt+ g(XT )

]
, (1.2)

where u is the control variable, X is the corresponding state variable, and b, σ, f , g are given
deterministic or stochastic maps. The stochastic control problem associated with (1.1) and (1.2)
∗Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France. Partially supported by Lebesgue Center

of Mathematics “Investissements d’avenir”program-ANR-11-LABX-0020-01. Email: ying.hu@univ-rennes1.fr
†School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250100, China.

Partially supported by NSFC (No. 11801315). Email: shixm@mail.sdu.edu.cn
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong. Partially

supported by NSFC (No. 11971409), The Hong Kong RGC (GRF 15204622 and 15203423), the PolyU-SDU Joint
Research Center on Financial Mathematics, the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics,
the Research Centre for Quantitative Finance (1-CE03), and internal grants from The Hong Kong Polytechnic
University. Email: maxu@polyu.edu.hk

1

ying.hu@univ-rennes1.fr 
shixm@mail.sdu.edu.cn
maxu@polyu.edu.hk


is to minimize over control processes the cost functional J , and we introduce the associated value
function:

V (x) := inf
u∈U

J(X,u). (1.3)

More precise formulation will be given in the next section.
A vast number of papers deal with the above stochastic control problem (1.3) subject to

various conditions. Please refer the seminal books Yong and Zhou [13] and Pham [11] for a
systematic account on stochastic optimal control. There are two well-known approaches to
tackle the problem nowadays. The first one is called the dynamic programming. It leads to
the study of the so-called Hamilton-Jacobi-Bellman equations when all the maps b, σ, f, g are
deterministic. The other approach is called the (stochastic) maximum principle, which provides
a necessary condition for optimal control; see, e.g., Peng [10], Hu, Ji and Xue [4]. It leads to the
study of a system of forward and backward stochastic differential equations (FBSDEs) when
some of the maps b, σ, f, g are stochastic. Generally, such FBSDEs are fully coupled so that
they cannot be further reduced to simple forms.

But when the problem (1.3) is a linear-quadratic (LQ) problem, where the controlled dy-
namics is in linear form (i.e. b and σ are linear functions of x and u) and the cost functional
J in quadratic form (i.e. f and g are quadratic functions of x and u), its FBSDEs system
can reduce to a system of backward stochastic differential equations (BSDEs) only, which is
called the stochastic Riccati equations. This will significantly reduce the difficulty of solving
the problem since BSDE theory is well-established; see, e.g., [2, 12, 14].

Inspired by LQ problems, this paper proposes a new class of homogeneous stochastic control
problems, which extend the classical homogeneous LQ problems to new ones with nonlinear
controlled dynamics and non-quadratic cost functionals, but their FBSDEs can still reduce to
certain BSDEs which are similar to Riccati equations for LQ problems.

To introduce our new class of problem, we first define homogeneous functions as follows.

Definition 1.1 (Homogeneous function). Given a real constant p 6= 0 and a closed cone
Y ⊂ Rk, a function ϕ : Y → Rd is called a homogeneous function of degree p in y ∈ Y if

ϕ(λy) = λpϕ(y)

holds for any scalar λ > 0 and y ∈ Y .

Example 1.1. The following functions, possible random, are homogeneous of degree p > 0 in
(x, u) ∈ Rk×Rm:

|Ax+Bu|p, |Ax+B|u||p, |x|p + |u|p, (|x|2 + |u|2)p/2,

A(|x||u|)p/2 +B|x|p/3|u|2p/3, |Ax+ +Ax− +B>u+ −B>u−|p,
inf

(A,B)
|Ax+B>u|p, sup

(A,B)
|Ax+B>u|p.

As usual, x+ is the unique vector in Rk+ determined by x+ = argminy∈Rk
+
|y − x| for x ∈ Rk.

x− := (−x)+. We remark that any homogeneous function in (x, u) multiplied by F
(
u
|x| 1x 6=0

)
is still a homogeneous function of the same degree, where F is any function.
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In this paper, we only focus on scalar-valued state processes, namely Xt ∈ R in the process
(1.1) and the control constraint will belong to a closed cone Γ ⊆ Rm. Every problem in the new
class satisfies the following homogeneous assumption.

Assumption 1.1 (Homogeneous system). For all t ∈ [0, T ], the dynamic coefficients bt and
σt are homogeneous functions of degree 1 in (x, u) ∈ R×Γ; and the cost functional coefficients
ft and g are homogeneous functions of degree p 6= 0 in (x, u) ∈ R×Γ and x ∈ R respectively.

By setting λ = 2 and y = 0 in Definition 1.1, we see ϕ(0) = 0 if ϕ is homogeneous of degree
p 6= 0. Therefore, all the coefficients bt, σt, ft and g are zero at the origin of coordinates under
Assumption 1.1. We will use this fact without claim in the future.

Definition 1.2 (Homogeneous stochastic control problem). If the coefficients in the prob-
lem (1.3) satisfy Assumption 1.1, it is called a homogeneous (stochastic control) problem of
degree p 6= 0.

Clearly, the classical homogeneous LQ control problems are special homogeneous problems
of degree 2, therefore the new class of homogeneous problems, which allows non-linear state
processes and non-quadratic cost functionals, is an extension of the homogeneous LQ problems.

This paper focuses on the solvability of the homogeneous stochastic control problems under
three different conditions. Although this paper only studies the case p > 0, many results can be
parallel established for the case p < 0 without difficulties. We encourage the interested readers
to give the details.

The idea to solve homogeneous stochastic control problems stems from Hu and Zhou [6]
and Ji, Jin and Shi [7]. It is well known that for LQ stochastic control problems, the optimal
controls take state feedback form through the famous stochastic Riccati equations, see, e.g.,
Tang [12]. By performing Tanaka’s formula to X+ and X− respectively, it is proved in [6] that
the cone-constrained stochastic LQ problem admits a piecewise linear feedback optimal control
expressed in terms of the solutions of two BSDEs. The above method (combined with some
extra convex duality analysis) still works for mean-variance portfolio selection problems with a
specific kind of non-linear wealth dynamic studied in [7]. In the models of [6, 7], the optimal
(translated) state processes will never cross 0, i.e. it will remain positive (resp. negative) if the
initial state is positive (resp. negative). This phenomenon actually results from the homogeneity
of the control system. Therefore, our new homogeneous stochastic control problems will inherit
this property.

In this paper, we extend the models of [6, 7] to a new class of homogeneous stochastic
control problems with possibly non-linear state processes and non-quadratic cost functionals.
We will show that the problem (1.3) admits an optimal control, in a state feedback form via
two associated BSDEs. We firstly prove the existence and uniqueness of solutions to the two
associated highly non-linear BSDEs based on truncation function technique, log transformation
and some delicate analysis. The famous result of Kobylanski [9] on quadratic growth BSDEs
plays a fundamental tool in our argument. Finally, the solutions of the associated BSDEs
are used to construct a candidate control which is verified to be admissible, hence optimal to
the original homogeneous stochastic control problem (1.3). We remark that the uniqueness of
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solutions to the BSDEs in [6] was obtained as a by product of the verification theorem. Here we
will provide a direct proof, based on the bounded mean oscillation (BMO) martingale theory,
which is interesting in its own from the point of view of BSDE theory.

The rest part of this paper is organized as follows. In Section 2, we present some notations
and the precise assumptions on the homogeneous stochastic control problem (1.3). Section 3
is devoted to establishing the solubility of two associated BSDEs under three different condi-
tions. In Section 4, we determine the optimal controls and optimal values to the homogeneous
stochastic control problems via the solutions to the two BSDEs through a straightforward and
rigorous verification theorem. Some concluding remarks are given in Section 5.

2 Preliminaries

Let (Ω,F ,P) be a fixed complete probability space on which are defined a standard n-
dimensional Brownian motion {Wt}t>0. Let {Ft}t>0 be the natural filtration of the Brownian
motion W augmented by the P-null sets of F . Let P be the predictable σ-field of [0, T ]×Ω. We
stipulate that, in what follows, all the processes under consideration, unless otherwise stated,
are P measurable.

We denote by Rm the set of m-dimensional column vectors, by Rm+ the set of vectors in Rm

whose components are nonnegative, by Rm×n the set of m× n real matrices, and by Sn the set
of symmetric n× n real matrices. Therefore, Rm ≡ Rm×1. For any matrix M = (mij) ∈ Rm×n,
we denote its transpose byM>, and its norm by |M | =

√∑
ijm

2
ij . IfM ∈ Sn is positive definite

(resp. positive semidefinite), we write M > (reps. >) 0. We write A > (resp. >) B if A,B ∈ Sn

and A−B > (resp. >) 0.
We fix a constant T > 0 throughout the paper to denote the control horizon. We use the

following notations throughout the paper:

L2
FT

(Ω;R) =
{
ξ : Ω→ R

∣∣∣ ξ is FT -measurable, and E(|ξ|2) <∞
}
,

L∞FT
(Ω;R) =

{
ξ : Ω→ R

∣∣∣ ξ is FT -measurable, and essentially bounded
}
,

L0
F(0, T ;R) =

{
φ : [0, T ]× Ω→ R

∣∣∣ φ is P-measurable
}
,

L2
F(0, T ;R) =

{
φ ∈ L0

F(0, T ;R)
∣∣∣ E ∫ T

0
|φt|2 dt <∞

}
,

L∞F (0, T ;R) =
{
φ ∈ L0

F(0, T ;R)
∣∣∣ φ is essentially bounded

}
,

L2, BMO
F (0, T ;Rn) =

{
Λ ∈ L2

F(0, T ;Rn)
∣∣∣∣ ∫ ·

0
Λ>s dWs is a BMO martingale on [0, T ]

}
.

These definitions are generalized in the obvious way to the cases that R is replaced by Rn,
Rn×m or Sn. For the definition of BMO martingales, we refer the reader to [8] or [5]. Here we
will use the following fact about BMO martingales: the Doléans-Dade stochastic exponential
E
( ∫ ·

0 Λ′ dW
)
is a uniformly integrable martingale if Λ ∈ L2, BMO

F (0, T ;Rn).
In our argument, s, t, ω, “P-almost surely” and “almost everywhere”, will be suppressed

for simplicity in many circumstances, when no confusion occurs. We shall use c, which can
be different at each occurrence, to represent some positive constant that may depend on the
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problem coefficients, but is independent of s, t, ω, P , Λ and any stopping times. We will use
the elementary inequality |xy| 6 ε|x|2 + 1

2ε |y|
2 frequently without claim.

Our aim is to solve the homogeneous stochastic control problem (1.3) associated with the
state process (1.1) and the cost functional (1.2), where the coefficients b : [0, T ]× Ω× R×Γ→
R, σ : [0, T ] × Ω × R×Γ → Rn, f : [0, T ] × Ω × R×Γ → R are given P ⊗ B(R) ⊗ B(Γ)-
measurable functions, g(x) is an FT -measurable random variable for any x ∈ R, and they fulfill
the homogeneous Assumption 1.1.

The class of admissible constrained controls is defined as the set

U :=
{
u : [0, T ]× Ω→ Γ

∣∣∣ u is a P measurable process and the corresponding state

process (1.1) admits a unique continuous solution X such that the cost

functional J(X,u) in (1.2) is well-defined and finite and E
[

supt∈[0,T ] |Xt|p
]
<∞

}
.

For any homogeneous function ϕ of degree p in (x, u) ∈ R×Rm, we have

ϕ(x, u) = |x|p
(
ϕ
(
1, u|x|

)
1x>0 +ϕ

(
−1, u|x|

)
1x<0

)
+ ϕ(0, u)1x=0 . (2.1)

We may use this property throughout our analysis without claim.

3 The associated BSDEs

Let p ∈ R. For (t, v, P,Λ)× [0, T ]× Γ× R×Rn, define the following (random) mappings:

G1,t(v, P,Λ) := ft(1, v) + 1
2p(p− 1)P |σt(1, v)|2 + pPbt(1, v) + pΛ>σt(1, v),

G2,t(v, P,Λ) := ft(−1, v) + 1
2p(p− 1)P |σt(−1, v)|2 − pPbt(−1, v)− pΛ>σt(−1, v),

and

G∗1,t(P,Λ) := inf
v∈Γ
G1,t(v, P,Λ),

G∗2,t(P,Λ) := inf
v∈Γ
G2,t(v, P,Λ).

Note that G∗1,t and G∗2,t may take the value of −∞.
Now we introduce the following two one-dimensional BSDEs:dP = −G∗1(P,Λ) dt+ Λ> dW, t ∈ [0, T ],

P (T ) = g(1),
(3.1)

and dP = −G∗2(P,Λ) dt+ Λ> dW, t ∈ [0, T ],

P (T ) = g(−1).
(3.2)

They will play the critical role in solving the control problem (1.3).

Definition 3.1. A stochastic process (P,Λ) is called a solution to the BSDE (3.1) (resp. to
(3.2)) if it satisfies (3.1) (resp. (3.2)), and (P,Λ) ∈ S∞F (0, T ;R) × L2

F(0, T ;Rn). The solution
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is called nonnegative if P > 0; and called uniformly positive if P > c for some deterministic
constant c > 0.

Note in the above definition, it is implicitly required that G∗1(P,Λ) (resp. G∗2(P,Λ)) is finite if
(P,Λ) is a solution to the BSDE (3.1) (resp. (3.2)), for otherwise the SDEs are not well-defined.

When the coefficients in (3.1) or (3.2) satisfy some boundedness assumption, we have better
estimates for their solutions shown as below.

Lemma 3.1. Suppose

ft(±1, 0), bt(±1, 0) ∈ L∞F (0, T ;R),
∫ T

0
|σs(±1, 0)|2 ds ∈ L∞FT

(Ω;R).

If (P,Λ) is a solution to the BSDE (3.1) or (3.2), then Λ ∈ L2, BMO
F (0, T ;Rn).

Proof. We now assume (P,Λ) is a solution to the BSDE (3.1). The case for (3.2) can be dealt in
the same way. Take a constantM > 0 an upper bound of |P |. Using 0 ∈ Γ and the boundedness
of coefficients, we have

G∗1,t(P,Λ) 6 G1,t(0, P,Λ)

= ft(1, 0) + 1
2p(p− 1)P |σt(1, 0)|2 + pPbt(1, 0) + pΛ>σt(1, 0)

6 c+ c|σt(1, 0)|2 + 1
5M |Λ|

2, (3.3)

where c is a positive constant that may depend on M .
We now show Λ ∈ L2, BMO

F (0, T ;Rn). For any stopping time τ 6 T , define a sequence of
stopping times:

τk = inf
{
t > τ :

∫ t

τ
|Λs|2 ds > k

}
∧ T.

Since Λ ∈ L2
F(0, T ;Rn), we see τk increasingly approaches to T as k → +∞. Applying Itô’s

formula to (P −M)2 and using (3.3) and 0 6M − P 6 2M , we get

E
[ ∫ τk

τ
|Λ|2 ds

∣∣∣ Fτ ] = (Pτk
−M)2 − (Pτ −M)2 + E

[ ∫ τk

τ
2(M − P )G∗1(P,Λ) ds

∣∣∣ Fτ ]
6 (Pτk

−M)2 + E
[ ∫ τk

τ
2(M − P )

(
c+ c|σs(1, 0)|2 + 1

5M |Λ|
2
)

ds
∣∣∣ Fτ ]

6 4M2 + E
[ ∫ τk

τ
4M

(
c+ c|σs(1, 0)|2 + 1

5M |Λ|
2
)

ds
∣∣∣ Fτ ].

Since
∫ T
0 |σs(1, 0)|2 ds is bounded and τ 6 τk 6 T , it follows

E
[ ∫ τk

τ
|Λ|2 ds

∣∣∣ Fτ ] 6 c+ 4
5E
[ ∫ τk

τ
|Λ|2 ds

∣∣∣ Fτ ],
where c is a positive constant that does not depend on τ or τk. Thanks to the definition of τk,
the expectations in above are finite, so

E
[ ∫ τk

τ
|Λ|2 ds

∣∣∣ Fτ ] 6 5c.

By sending k →∞ and using Fatou’s lemma, we conclude Λ ∈ L2, BMO
F (0, T ;Rn).

We now solve the BSDEs (3.1) and (3.2) under different conditions.
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Assumption 3.1. It holds that

ft(±1, 0) ∈ L∞F (0, T ;R+), g(±1) ∈ L∞FT
(Ω;R+),

and
ft(0, v), ft(±1, v) ∈ L0

F(0, T ;R+),

for any v ∈ Γ. Also, there are constants L, δ > 0 such that

max{|bt(±1, v)|2, |σt(±1, v)|2} 6 δft(±1, v) + L

holds for any v ∈ Γ and t ∈ [0, T ].

Theorem 3.2. Suppose Assumptions 1.1 and 3.1 hold and p > 1. Then there exists a unique
nonnegative solution (P,Λ) to (3.1) (resp. to (3.2)). Moreover, Λ ∈ L2, BMO

F (0, T ;Rn).

Proof. We will focus on the solvability of BSDE (3.1), and the proof for (3.2) is similar.
For notation simplicity, we write w1,t(v) = max{|bt(1, v)|, |σt(1, v)|}. Then Assumption 3.1

implies ft(1, v) > 1
δ

(
w1,t(v)2 − L

)+. Thanks to p > 1, we have

G∗1,t(P+,Λ) > inf
v∈Γ

[
ft(1, v) + pP+bt(1, v) + pΛ>σt(1, v)

]
> inf

v∈Γ

[1
δ

(
w1,t(v)2 − L

)+ − c(P+ + |Λ|)w1,t(v)
]

> inf
y∈R

[1
δ

(
y2 − L

)+ − c(P+ + |Λ|)y
]
.

Clearly,

inf
y262L

[1
δ

(y2 − L)+ − c(P+ + |Λ|)y
]

> inf
y262L

[
− c(P+ + |Λ|)y

]
> −c(P+ + |Λ|),

and

inf
y2>2L

[1
δ

(y2 − L)+ − c(P+ + |Λ|)y
]

> inf
y2>2L

[1
δ

(
y2 − 1

2y
2
)
− c(P+ + |Λ|)y

]
> −c(P+ + |Λ|)2,

so

G∗1,t(P+,Λ) > −c((P+ + |Λ|)2 + P+ + |Λ|). (3.4)

On the other hand,

G∗1,t(P+,Λ) 6 G1,t(0, P+,Λ)

= ft(1, 0) + 1
2p(p− 1)P+|σt(1, 0)|2 + pP+bt(1, 0) + pΛ>σt(1, 0)

6 c(1 + P+ + |Λ|). (3.5)
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Combining the above two estimates, we have

|G∗1,t(P+,Λ)| 6 c(1 + (P+)2 + |Λ|2). (3.6)

Let us consider the following linear BSDE with bounded coefficients:dP = −G1(0, P ,Λ) dt+ Λ> dW,

P (T ) = g(1).
(3.7)

Since ft(1, 0) > 0 and g(1) > 0, it admits a unique, nonnegative bounded solution (P ,Λ).
Take a constant M > 0 an upper bound of P . Let h : R → [0, 1] be a smooth truncation

function satisfying h(x) = 1 for x ∈ [−M,M ], and h(x) = 0 for x ∈ (−∞,−2M ] ∪ [2M,∞).
Since h is compactly supported and bounded, it follows from (3.6) that

|G∗1,t(P+,Λ)|h(P ) 6 c(h(P ) + (P+)2h(P ) + |Λ|2h(P )) 6 c(1 + |Λ|2).

According to [9, Theorem 2.3], there is a bounded, maximal solution (P̂ , Λ̂) to the following
BSDE dP̂ = −G∗1(P̂+, Λ̂)h(P̂ ) dt+ Λ̂> dWt,

P̂ (T ) = g(1).
(3.8)

Notice (P ,Λ) = (0, 0) is a solution to the following BSDE

P t = −
∫ T

t
c((P+

s + |Λs|)2 + P+
s + |Λs|)h(P s) ds−

∫ T

t
Λ>s dWs,

where c is given in (3.4). Then the maximal solution argument of [9, Theorem 2.3], combined
with (3.4), yields

P̂ > P = 0. (3.9)

On the other hand, since 0 6 P 6M , h(P ) = 1. It follows from (3.7) thatdP = −G1(0, P+
,Λ)h(P ) dt+ Λ> dW,

P (T ) = g(1).

Applying comparison theorem to (3.8) and the above BSDE with Lipchitz continuous driver
yields

P̂ 6 P 6M. (3.10)

Combining (3.10) and (3.9), we can assert that h(P̂ ) = 1. Together with (3.8) and (3.9), we see
(P̂ , Λ̂) is actually a solution to (3.1). By virtue of Lemma 3.1, Λ̂ ∈ L2, BMO

F (0, T ;Rn).
We are now ready to prove the uniqueness. Suppose (P,Λ) and (P̃ , Λ̃) are two solutions of

(3.1). Then 0 6 P, P̃ 6M for some constant M > 0, and Λ, Λ̃ ∈ L2, BMO
F (0, T ;Rn).
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Define processes

(U, V ) =
(

ln(P + a), Λ
P + a

)
, (Ũ , Ṽ ) =

(
ln(P̃ + a), Λ̃

P̃ + a

)
,

where a > 0 is a small constant to be determined later. Then (U, V ) and (Ũ , Ṽ ) ∈ L∞F (0, T ;R)×
L2, BMO
F (0, T ;Rn). Furthermore, by Itô’s formula,dU = −

[
H∗(U, V ) + 1

2V
′V
]

dt+ V ′ dW,

UT = ln(G+ a),
(3.11)

where

H∗t (U, V ) = inf
v∈Γ
Ht(v, U, V ),

and

Ht(v, U, V ) =ft(1, v)e−U + 1
2p(p− 1)(1− ae−U )|σt(1, v)|2

+ p(1− ae−U )bt(1, v) + pV >σt(1, v).

Noticing U is bounded and using Assumption 3.1, we have

Ht(0, U, V ) 6 c(1 + |V |).

On the other hand, since 0 6 P 6 M , e−U = 1
P+a > 1

M+a and 1− ae−U = P
P+a ∈ [0, 1). Since

p > 1, it follows 1
2p(p− 1)(1− ae−U )|σt(1, v)|2 > 0.

Therefore, under Assumption 3.1,

Ht(v, U, V )−Ht(0, U, V ) > ft(1, v)e−U + p(1− ae−U )bt(1, v) + pV >σt(1, v)− c(1 + |V |)

>
w1,t(v)2 − L
δ(M + a) − cw1,t(v)(1 + |V |)− c(1 + |V |)

>
(w1,t(v) + 1)2

δ(M + a) − c(1 + w1,t(v))(1 + |V |)

> 0,

if w1,t(v) > c′(1 + |V |) with a sufficiently large constant c′. So we conclude

H∗t (U, V ) = inf
w1,t(v)6c(1+|V |)

Ht(v, U, V ). (3.12)

Similar estimates hold if (U, V ) replaced by (Ũ , Ṽ ).

Set Ū = U − Ũ , V̄ = V − Ṽ . Then (Ū , V̄ ) is a solution to the following BSDE,dŪ = −
[
H∗(U, V )−H∗(Ũ , Ṽ ) + 1

2(V + Ṽ )′V̄
]

dt+ V̄ ′ dW,

ŪT = 0.
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Applying Itô’s formula to Ū2, we deduce that

Ū2
t =

∫ T

t

{
2Ū
[
H∗(U, V )−H∗(Ũ , Ṽ ) + 1

2(V + Ṽ )′V̄
]
− V̄ ′V̄

}
ds−

∫ T

t
2Ū V̄ ′ dW. (3.13)

We now estimate Ū
(
H∗(U, V )−H∗(Ũ , Ṽ )

)
. Let c2 be a large positive constant to be chosen.

Set

Ht(v, Ũ , U, V ) =(ft(1, v) + c2)e−Ũ + 1
2p(p− 1)(1− ae−Ũ )|σt(1, v)|2 − c2e

−U

+ p(1− ae−U )bt(1, v) + pV >σt(1, v).

Then we can rewrite H in terms of H,

H∗t (U, V )−H∗t (Ũ , Ṽ ) = inf
w1,t(v)6c(1+|V |)

Ht(v, U, V )− inf
w1,t(v)6c(1+|V |)

Ht(v, Ũ , Ṽ )

= inf
w1,t(v)6c(1+|V |)

Ht(v, U, U, V )− inf
w1,t(v)6c(1+|Ṽ |)

Ht(v, Ũ , Ũ , Ṽ )

= inf
w1,t(v)6c(1+|V |)

Ht(v, U, U, V )− inf
w1,t(v)6c(1+|V |)

Ht(v, Ũ , U, V )

+ inf
w1,t(v)6c(1+|V |)

Ht(v, Ũ , U, V )− inf
w1,t(v)6c(1+|Ṽ |)

Ht(v, Ũ , Ũ , Ṽ ).

(3.14)

Choose a > 0 and c2 such that

1
2p(p− 1)a < 1

δ
, c2 >

L

δ
.

Then by Assumption 3.1,

ft(1, v) + c2 −
1
2p(p− 1)a|σt(1, v)|2 >

1
δ

(w1,t(v)2 − L) + c2 −
1
2p(p− 1)aw1,t(v)2 > 0.

Consequently, for every given (v, U, V ), the map

Ũ 7→ Ht(v, Ũ , U, V )

is decreasing, so

Ū
[

inf
w1,t(v)6c(1+|V |)

Ht(v, U, U, V )− inf
w1,t(v)6c(1+|V |)

Ht(v, Ũ , U, V )
]
6 0. (3.15)

On the other hand, noting that U and Ũ are bounded and recalling Assumption 3.1, we
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have ∣∣∣ inf
w1,t(v)6c(1+|V |)

Ht(v, Ũ , U, V )− inf
w1,t(v)6c(1+|Ṽ |)

Ht(v, Ũ , Ũ , Ṽ )
∣∣∣

6 sup
w1,t(v)6c(1+|V |+|Ṽ |)

∣∣Ht(v, Ũ , U, V )−Ht(v, Ũ , Ũ , Ṽ )
∣∣

= sup
w1,t(v)6c(1+|V |+|Ṽ |)

∣∣− c2(e−U − e−Ũ )− pa(e−U − e−Ũ )bt(1, v) + pV̄ >σt(1, v)
∣∣

6 sup
w1,t(v)6c(1+|V |+|Ṽ |)

c(|Ū |+ |V̄ |)(1 + w1,t(v))

6 c(1 + |V |+ |Ṽ |)(|Ū |+ |V̄ |). (3.16)

Therefore, we can define a process β, satisfying |β| 6 c(1+|V |+|Ṽ |), hence β ∈ L2, BMO
F (0, T ;Rn),

in an obvious way such that

2Ū
[

inf
w1,t(v)6c(1+|V |)

Ht(v, Ũ , U, V )− inf
w1,t(v)6c(1+|Ṽ |)

Ht(v, Ũ , Ũ , Ṽ )
]
6 |β|Ū2 + 2β>Ū V̄ . (3.17)

Moreover, notice that U and Ũ are bounded and combing (3.14)-(3.17), we have

2Ū
[
H∗t (U, V )−H∗t (Ũ , Ṽ ) + 1

2(V + Ṽ )′V̄
]
− V̄ ′V̄ 6 |β|Ū2 + cβ>Ū V̄ . (3.18)

Together with (3.13), we see

Ū2
t 6

∫ T

t
(|β|Ū2 + cβ>Ū V̄ )ds−

∫ T

t
2Ū V̄ ′ dW.

Now one can repeat the proof of [5, Theorem 3.5] to get Ū = V̄ = 0. This completes the proof
of uniqueness.

Assumption 3.2. It holds that

ft(±1, 0) ∈ L∞F (0, T ;R+), g(±1) ∈ L∞FT
(Ω;R+),

and
ft(0, v), ft(±1, v) ∈ L0

F(0, T ;R+),

for any v ∈ Γ. Also, there is a constant L > 0 such that |σt(±1, v)| 6 L holds for any v ∈ Γ
and t ∈ [0, T ]; for any constant ε > 0, there is a constant Lε > 0 such that

|bt(±1, v)| 6 εft(±1, v) + Lε

holds for any v ∈ Γ and t ∈ [0, T ].

This covers two important cases: (1) the volatility coefficient σt does not depend on the control;
(2) both the drift coefficient bt and volatility coefficient σt are bounded.

Theorem 3.3. Suppose Assumptions 1.1 and 3.2 hold and p > 1. Then there exists a unique
nonnegative solution (P,Λ) to (3.1) (resp. to (3.2)). Moreover, Λ ∈ L2, BMO

F (0, T ;Rn).
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Proof. The proof is similar to that of Theorem 3.2. We only point out the main differences.
Under Assumption 3.2 and p > 1,

G∗1,t(P+,Λ) > inf
v∈Γ

[
ft(1, v) + pP+bt(1, v) + pΛ>σt(1, v)

]
> inf

v∈Γ

[
ft(1, v)− pP+|bt(1, v)|

]
− inf
v∈Γ

ft(1, v)− c|Λ|

= m(P+)− c|Λ|, (3.19)

where we used the fact that infv∈Γ ft(1, v) > 0 and

m(x) := inf
v∈Γ

[
ft(1, v)− px|bt(1, v)|

]
− inf
v∈Γ

ft(1, v), x ∈ R .

We now show m is a real-valued function on (−c, c) for any c > 0. Indeed, by taking ε = 1/(pc)
in Assumption 3.2, one has, for x ∈ (−c, c),

m(x) > inf
v∈Γ

[
ft(1, v)− pc

(
ft(1, v)/(pc) + L1/(pc)

)]
− ft(1, 0)

= −pcL1/(pc) − ft(1, 0) > −∞.

Meanwhile,

m(x) 6 ft(1, 0)− px|bt(1, 0)| 6 ft(1, 0) + p|x|(ft(1, 0) + L1) <∞.

Therefore, m is a real-valued function on R. It is also trivial to see that m is decreasing and
concave (thus continuous) on R with m(0) = 0. One can replace (3.4) by the above lower bound
(3.19) to show the existence.

To establish the uniqueness, we choose constants a, ε > 0 such that 0 < εp(1−ae−U ) < 1
2e
−U .

Then

Ht(v, U, V )−Ht(0, U, V )

> ft(1, v)e−U + p(1− ae−U )bt(1, v) + pV >σt(1, v)− c(1 + |V |)

> ft(1, v)e−U − p(1− ae−U )(εft(1, v) + Lε)− c(1 + |V |)

>
1
2ft(1, v)e−U − c(1 + |V |) > 0

if ft(1, v) > c′(1 + |V |) with c′ being a sufficiently large constant. Hence,

H∗t (U, V ) = inf
ft(1,v)6c(1+|V |)

Ht(v, U, V ).

Now we can replace (3.16) by∣∣∣ inf
ft(1,v)6c(1+|V |)

Ht(v, Ũ , U, V )− inf
ft(1,v)6c(1+|Ṽ |)

Ht(v, Ũ , Ũ , Ṽ )
∣∣∣

6 sup
ft(1,v)6c(1+|V |+|Ṽ |)

∣∣Ht(v, Ũ , U, V )−Ht(v, Ũ , Ũ , Ṽ )
∣∣

= sup
ft(1,v)6c(1+|V |+|Ṽ |)

∣∣− c2(e−U − e−Ũ )− pa(e−U − e−Ũ )bt(1, v) + pV̄ >σt(1, v)
∣∣

6 c(1 + |V |+ |Ṽ |)(|Ū |+ |V̄ |),
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where we used |bt(±1, v)| 6 ft(±1, v) + L1 to get the last inequality.

Assumption 3.3. It holds that

ft(±1, 0) ∈ L∞F (0, T ;R+), σt(±1, 0) ∈ L∞F (0, T ;Rn), g(±1) ∈ L∞FT
(Ω;R+),

and
ft(0, v), ft(±1, v) ∈ L0

F(0, T ;R+),

for any v ∈ Γ. Also, there are constants L, δ > 0 and η > 0 such that

|bt(±1, v)| 6 δ|σt(±1, v)|2 + L, g(±1) > η,

holds for any v ∈ Γ and t ∈ [0, T ].

Theorem 3.4. Suppose Assumptions 1.1 and 3.3 hold and p > 1 + 2δ. Then there exists a u-
nique uniformly positive solution (P,Λ) to (3.1) (resp. to (3.2)). Moreover, Λ ∈ L2, BMO

F (0, T ;Rn).

Proof. Since p > 1 + 2δ, there is a constant ε > 0 such that p− 1− 2δ − 2ε > 0. For P > 0, we
have

Λ>σt(1, v) 6 εP |σt(1, v)|2 + |Λ|
2

2εP ,

so it follows from Assumption 3.3 that

G∗1,t(P,Λ) = inf
v∈Γ

[1
2p(p− 1)P |σt(1, v)|2 + ft(1, v) + pPbt(1, v) + pΛ>σt(1, v)

]
> inf

v∈Γ

[1
2p(p− 1)P |σt(1, v)|2 − pP (δ|σt(1, v)|2 + L)− εpP |σt(1, v)|2 − p|Λ|2

2εP
]

= inf
v∈Γ

1
2(p− 1− 2δ − 2ε)|σt(1, v)|2pP − LpP − p|Λ|2

2εP

> −LpP − p|Λ|2

2εP
> −c(P + |Λ|2/P ), (3.20)

where we used p− 1− 2δ − 2ε, p, P > 0 to get the the second inequality.
Let c be the constant given in (3.20). Let h : R → [0, 1] be a smooth truncation function

satisfying h(x) = 0 for x ∈ (−∞, 1
2ηe
−cT ], and h(x) = 1 for x > ηe−cT . Noting (3.5) and (3.20),

according to [9, Theorem 2.3], there exists a bounded maximal solution (P̂ , Λ̂) to the following
BSDE dP̂ = −G∗1(P̂ , Λ̂)h(P̂ ) dt+ Λ̂′ dW,

P̂T = g(1).
(3.21)

Notice that (P ,Λ) = (ηe−c(T−t), 0) satisfies the following BSDE:dP = c(P + |Λ|2/P )h(P ) dt+ Λ′ dW,

P T = η.

Then the maximal argument in [9, Theorem 2.3] applied to the above two BSDEs yields

P̂ > P > ηe−cT .

13



It hence follows h(P̂ ) = 1. Together with (3.21), we see (P̂ , Λ̂) is actually a uniformly positive
solution to (3.1).

To establish the uniqueness, notice P̂ is uniformly positive, so we can take a = 0 in the
proof of Theorem 3.2. Under Assumption 3.3, we have

|bt(±1, v)| 6 |σt(±1, v)|2(δ + ε)

when |σt(1, v)|2 > L/ε. Therefore,

Ht(v, U, V )−Ht(0, U, V )

> ft(1, v)e−U + 1
2p(p− 1)|σt(1, v)|2 + pbt(1, v) + pV >σt(1, v)− c(1 + |V |)

>
1
2(p− 1− 2δ − 2ε)p|σt(1, v)|2 − pL− p|V ||σt(1, v)| − c(1 + |V |) > 0,

if |σt(1, v)| > c′(1 + |V |) with c′ being a sufficiently large constant. Hence,

H∗t (U, V ) = inf
|σt(1,v)|6c(1+|V |)

Ht(v, U, V ).

Recall that a = 0, so we can replace (3.16) by∣∣∣ inf
|σt(1,v)|6c(1+|V |)

Ht(v, Ũ , U, V )− inf
|σt(1,v)|6c(1+|Ṽ |)

Ht(v, Ũ , Ũ , Ṽ )
∣∣∣

6 sup
|σt(1,v)|6c(1+|V |+|Ṽ |)

∣∣Ht(v, Ũ , U, V )−Ht(v, Ũ , Ũ , Ṽ )
∣∣

= sup
|σt(1,v)|6c(1+|V |+|Ṽ |)

∣∣− c2(e−U − e−Ũ ) + pV̄ >σt(1, v)
∣∣

6 c(1 + |V |+ |Ṽ |)(|Ū |+ |V̄ |).

Hence, the estimate (3.16) still holds and the reminder argument is similar as before.

4 Verification: solution to the stochastic control problem (1.3)

In this section, we will solve the stochastic control problem (1.3) by providing an optimal
control expressed by the solutions to BSDEs (3.1) and (3.2) obtained in the previous section.

Theorem 4.1. Suppose G1 and G2 are lower semi-continuous w.r.t. v and one of the following
cases holds:

Case I: Assumptions 1.1 and 3.1 hold and p > 1;

Case II: Assumptions 1.1 and 3.2 hold and p > 1;

Case III: Assumptions 1.1 and 3.3 hold and p > 1 + 2δ.

Then the problem (1.3) admits an optimal feedback control of time t and state X:

u∗(t,X) = v̂1,tX
+ + v̂2,tX

−; (4.1)
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with the corresponding optimal value:

inf
u∈U

J(x, u) = P1,0(x+)p + P2,0(x−)p,

where (P1,Λ1) and (P2,Λ2) are the unique nonnegative solutions (in Case I and Case II) and
uniformly positive solutions (in Case III) to (3.1) and (3.2), respectively; and v̂1 and v̂2 are any
P-measurable processes such that

v̂1,t ∈ Γ, G1,t(v̂1,t, P1,t,Λ1,t) = G∗1,t(P1,t,Λ1,t),

v̂2,t ∈ Γ, G2,t(v̂2,t, P2,t,Λ2,t) = G∗2,t(P2,t,Λ2,t).

Proof. In any case, we know the existence of (P1,Λ1) and (P2,Λ2) by Theorems 3.2, 3.3 or
3.4. In particular, we have the finiteness of G∗1,t(P1,t,Λ1,t) and G∗2,t(P2,t,Λ2,t). Thanks to the
homogeneity, we also have ft > 0 in all cases.

Step 1. We first show the existence of v̂1 and v̂2 and provide some estimates for them. In
Case I, we have, recalling w1,t(v) = max{|bt(1, v)|, |σt(1, v)|},

G1(v, P1,Λ1)− G∗1(P1,Λ1) > G1(v, P1,Λ1)− G1(0, P1,Λ1)

> ft(1, v) + pP1bt(1, v) + pΛ1σt(1, v)− c(1 + |Λ1|)

>
1
δ

(w1,t(v)2 − L)− c(1 + |Λ1|)(1 + w1,t(v)) > 0,

if w1,t(v) > c′(1+|Λ1|) with c′ being a sufficiently large constant. Similarly, we have G2(v, P2,Λ2)−
G∗2(P2,Λ2) > 0 if w2,t(v) > c′(1 + |Λ2|). Thanks to the finiteness and lower semi-continuity of
G1 and G2 w.r.t. v, we see that v̂1 and v̂2 exist and are real-valued and satisfy

w1,t(v̂1) 6 c(1 + |Λ1|), w2,t(v̂2) 6 c(1 + |Λ2|),

so

|bt(1, v̂1)|+ |σt(1, v̂1)| 6 c(1 + |Λ1|), |bt(2, v̂2)|+ |σt(2, v̂2)| 6 c(1 + |Λ2|). (4.2)

The existence and finiteness of v̂1 and v̂2 in Cases II and III can be established similarly. In
Case II, one can show that

ft(1, v̂1) 6 c(1 + |Λ1|), ft(1, v̂2) 6 c(1 + |Λ2|), (4.3)

which together with Assumption 3.2 implies

|bt(1, v̂1)| 6 c(1 + |Λ1|), |bt(2, v̂2)| 6 c(1 + |Λ2|), |σt(1, v̂1)|+ |σt(2, v̂2)| 6 c. (4.4)

In Case III, one can show that

|σt(1, v̂1)| 6 c(1 + |Λ1|), |σt(2, v̂2)| 6 c(1 + |Λ2|), (4.5)

which together with Assumption 3.3 implies

|bt(1, v̂1)| 6 c(1 + |Λ1|2), |bt(2, v̂2)| 6 c(1 + |Λ2|2). (4.6)

15



Step 2. Next we establish the following lower bound

J(X,u) = E
[∫ T

0
ft(Xt, ut) dt+ g(XT )

]
> P1,0(x+)p + P2,0(x−)p, (4.7)

for any admissible control u ∈ U .
Note we have p > 1 in all cases, so for any admissible control u ∈ U , by [1, Lemma 2.2],

d(X+
t )p = p(X+

t )p−1(bt(Xt, ut) dt+ σt(Xt, ut)> dWt)

+ 1
2p(p− 1)(X+

t )p−2 1Xt>0 |σt(Xt, ut)|2 dt,

−d(X−t )p = p(X−t )p−1(bt(Xt, ut) dt+ σt(Xt, ut)> dWt)

+ 1
2p(p− 1)(X−t )p−2 1Xt<0 |σt(Xt, ut)|2 dt.

Applying Itô’s lemma to P1,t(X+
t )p and P2,t(X−t )p respectively, we get

d(P1,t(X+
t )p) = 1Xt>0

[1
2p(p− 1)P1,t(X+

t )p−2|σt(Xt, ut)|2 − (X+
t )pG∗1,t(P1,t,Λ1,t)

+ p(X+
t )p−1(P1,tbt(Xt, ut) + Λ>1,tσt(Xt, ut))

]
dt

+
[
(X+

t )pΛ1,t + pP1,t(X+
t )p−1σt(Xt, ut)

]>
dWt,

and

d(P2,t(X−t )p) = 1Xt<0
[1
2p(p− 1)P2,t(X−t )p−2|σt(Xt, ut)|2 − (X−t )pG∗2,t(P2,t,Λ2,t)

− p(X−t )p−1(P2,tbt(Xt, ut) + Λ>2,tσt(Xt, ut))
]

dt

+
[
(X−t )pΛ2,t − pP2,t(X−t )p−1σt(Xt, ut)

]>
dWt.

By standard construction, there is a sequence of increasing stopping times {τk} with limk τk = T

such that, after summing the above two equations,

E
[∫ τk

0
ft(Xt, ut) dt+ P1,τk

(X−τk
)p + P2,τk

(X−τk
)p
]

= P1,0(x+)p + P2,0(x−)p + E
∫ τk

0
ϕt(Xt, ut) dt, (4.8)

where

ϕt(x, u) = ft(x, u) + 1x>0
1
2p(p− 1)P1,t(x+)p−2|σt(x, u)|2 − (x+)pG∗1,t(P1,t,Λ1,t)

+ p(x+)p−1(P1,tbt(x, u) + Λ>1,tσt(x, u))

+ 1x<0
1
2p(p− 1)P2,t(x−)p−2|σt(x, u)|2 − (x−)pG∗2,t(P2,t,Λ2,t)

− p(x−)p−1(P2,tbt(x, u) + Λ>2,tσt(x, u)). (4.9)

We now show that ϕt(x, u) > 0 for any x ∈ R, u ∈ Γ and t ∈ [0, T ]. Since u ∈ Γ and Γ is a
cone, v := u

|x| 1x 6=0 ∈ Γ. Recall that, under Assumption 1.1, ft is homogeneous of degree p and
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bt, σt are homogeneous of degree 1 in (x, u), so

ϕt(x, u) = 1x>0 |x|p
(1

2p(p− 1)P1,t|σt(1, v)|2 − G∗1,t(P1,t,Λ1,t)

+ p(P1,tbt(1, v) + Λ>1,tσt(1, v)) + ft(1, v)
)

+ 1x<0 |x|p
(1

2p(p− 1)P2,t|σt(−1, v)|2 − G∗2,t(P2,t,Λ2,t)

− p(P2,tbt(−1, v) + Λ>2,tσt(−1, v)) + ft(−1, v)
)

+ 1x=0 ft(0, u)

> 0,

by the definitions of G∗1 , G∗2 and ft(0, u) > 0. Now it follows from (4.8) that

E
[∫ τk

0
ft(Xt, ut) dt+ P1,τk

(X+
τk

)p + P2,τk
(X−τk

)p
]
> P1,0(x+)p + P2,0(x−)p.

Since ft > 0, we can apply the monotone convergence theorem to the integral in above; and since
E
[

supt∈[0,T ] |Xt|p
]
<∞ and P1 and P2 are bounded, we can apply the dominated convergence

theorem to the other two terms to get

E
[∫ T

0
ft(Xt, ut) dt+ P1,T (X+

T )p + P2,T (X−T )p
]
> P1,0(x+)p + P2,0(x−)p.

Since P1,T = g(1), P2,T = g(−1) and g is homogenous, the estimate (4.7) is established.
Step 3. We next show the following claims hold:

Claim (i). The state process (1.1) admits a unique continuous solution, denoted by X∗,
under the feedback control u∗ given in (4.1);

Claim (ii). J(X∗, u∗) = E
[∫ T

0 ft(X∗t , u∗t ) dt+ g(X∗T )
]
6 P1,0(x+)p + P2,0(x−)p;

Claim (iii). E
[

supt∈[0,T ] |X∗t |p
]
<∞.

Claims (i)-(iii) show that u∗ is an admissible control in U to the problem (1.3). Furthermore,
Claim (ii) and (4.7) indicate that u∗ is indeed an optimal control to (1.3). Therefore, the proof
of the theorem will be complete if Claims (i)-(iii) can be proved. We now prove them one by
one.

Proof of Claim (i). Substituting the feedback control u∗ into the state process (1.1), and
using the homogeneous property of bt and σt, we have

dXt = bt(Xt, u
∗(t,Xt)) dt+ σt(Xt, u

∗(t,Xt))> dWt

= 1Xt>0Xt[bt(1, v̂1) dt+ σt(1, v̂1)> dWt]

+1Xt<0Xt[bt(−1, v̂2) dt+ σt(−1, v̂2)> dWt],

X0 = x.

(4.10)

By the estimates (4.2)-(4.6) and Λ1,Λ2 ∈ L2, BMO
F (0, T ;Rn), according to Gal’chuk [3, basic

theorem on pp. 756-757], the SDE (4.10) admits a unique continuous solution, which is clearly
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given by

X∗t =


X∗1,t, if x > 0;

0, if x = 0;

X∗2,t, if x < 0;

(4.11)

where

X∗1,t = x exp
{∫ t

0

(
bs(1, v̂1)− 1

2 |σs(1, v̂1)|2
)

ds+
∫ t

0
σs(1, v̂1)> dWs

}
,

X∗2,t = x exp
{∫ t

0

(
bs(−1, v̂2)− 1

2 |σs(−1, v̂2)|2
)

ds+
∫ t

0
σs(−1, v̂2)> dWs

}
.

This completes the proof of Claim (i).

Proof of Claim (ii). Thanks to the continuity of X∗, the estimates (4.2)-(4.6) and
ϕt(X∗t , u∗t ) = 0, we know, after recalling (4.8), there is a sequence of increasing stopping times
{τk} with limk τk = T such that,

E
[ ∫ ι∧τk

0
fs(X∗s , u∗s) ds+ P1,ι∧τk

(X∗,+ι∧τk
)p + P2,ι∧τk

(X∗,−ι∧τk
)p
]

= P1,0(x+)p + P2,0(x−)p, (4.12)

for any stopping time ι valued in [0, T ]. Now applying Fatou’s lemma to the left hand side of
above leads to

E
[∫ ι

0
ft(X∗t , u∗t ) dt+ P1,ι(X∗,+ι )p + P2,ι(X∗,−ι )p

]
6 P1,0(x+)p + P2,0(x−)p. (4.13)

Especially, we deduce Claim (ii) by taking ι = T in above.
Furthermore, in Case III, we have ft > 0 and P1 and P2 are uniformly positive, so (4.13)

implies

sup
ι

E[|X∗ι |p] 6 K in Case III (4.14)

with some constant K, where the supreme is taken over all stopping times ι valued in [0, T ].

Proof of Claim (iii). We now prove

E
[

sup
t∈[0,T ]

|X∗t |p
]
<∞.

This is trivial by (4.11) when x = 0. We only deal with the case x > 0 since the case x < 0 can
be dealt similarly.

Case I. Under Assumptions 1.1 and 3.1, we have

|X∗s |p−1|bs(X∗s , u∗s)| = |X∗s |p|bs(1, v̂1)| 6 |X∗s |p(δfs(1, v̂1) + L)1/2

6
1
2 |X

∗
s |p(δfs(1, v̂1) + L+ 1) = 1

2(δfs(X∗s , u∗s) + (L+ 1)|X∗s |p),
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and

|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 = |X∗s |p 1X∗s 6=0 |σs(1, v̂1)|2

6 |X∗s |p 1X∗s 6=0(δfs(1, v̂1) + L) = δfs(X∗s , u∗s) + L|X∗s |p.

Let a be any real constant. Applying Itô’s lemma [1, Lemma 2.2] to eat|X∗t |p gives

eat|X∗t |p = xp +
∫ t

0
eas
(
a|X∗s |p + p|X∗s |p−1 sgn(X∗s ) bs(X∗s , u∗s)

+ 1
2p(p− 1)|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2

)
ds

+
∫ t

0
easp|X∗s |p−1 sgn(X∗s )σs(X∗s , u∗s)> dWs

6 xp +
∫ t

0
eas
(
a|X∗s |p + 1

2p(δfs(X
∗
s , u
∗
s) + (L+ 1)|X∗s |p)

+ 1
2p(p− 1)(δfs(X∗s , u∗s) + L|X∗s |p)

)
ds

+
∫ t

0
easp|X∗s |p−1 sgn(X∗s )σs(X∗s , u∗s)> dWs.

Construct a sequence of stopping times as follows:

θk := inf
{
t > 0

∣∣∣ |X∗t | > k
}
∧ T.

Since X∗ is continuous, θk increasingly converges to T as k → ∞. By the Burkholder-Davis-
Gundy (BDG) inequality,

E
[

sup
t∈[0,θk]

∣∣∣∣ ∫ t

0
easp|X∗s |p−1 sgn(X∗s )σs(X∗s , u∗s)> dWs

∣∣∣∣]

6ME
[( ∫ θk

0
e2as|X∗s |2(p−1)|σs(X∗s , u∗s)|2 ds

)1/2]

6ME
[

sup
t∈[0,θk]

eat/2|X∗t |p/2
(∫ θk

0
eas|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 ds

)1/2]

6
1
2E
[

sup
t∈[0,θk]

eat|X∗t |p
]

+M2E
[ ∫ θk

0
eas|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 ds

]

6
1
2E
[

sup
t∈[0,θk]

eat|X∗t |p
]

+M2E
[ ∫ θk

0
eas
(
δfs(X∗s , u∗s) + L|X∗s |p

)
ds
]
, (4.15)

whereM is a constant independent of k and a. Combining the above two estimates, we conclude,
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for a 6 −1
2p

2L− 1
2p−M

2L,

1
2E
[

sup
t∈[0,θk]

eat|X∗t |p
]
6 xp + E

[
sup

t∈[0,θk]

∫ t

0
eas
(
a|X∗s |p + 1

2p(δfs(X
∗
s , u
∗
s) + (L+ 1)|X∗s |p)

+ 1
2p(p− 1)(δfs(X∗s , u∗s) + L|X∗s |p)

)
ds
]

+M2E
[ ∫ θk

0
eas
(
δfs(X∗s , u∗s) + L|X∗s |p

)
ds
]

6 xp + E
[

sup
t∈[0,θk]

∫ t

0
eas
(
a+ 1

2p
2L+ 1

2p+M2L
)
|X∗s |p ds

]

+
(1

2p
2 +M2

)
δE
[

sup
t∈[0,θk]

∫ t

0
easfs(X∗s , u∗s) ds

]

6 xp +
(1

2p
2 +M2

)
δeaTE

[ ∫ T

0
fs(X∗s , u∗s) ds

]
6 c,

where the last inequality is due to Claim (ii) and non-negativity of P1 and P2 and fs. Now
applying Fatou’s lemma, the proof of Claim (iii) in Case I is complete.

Case II. In this case, σt is bounded. Recall that x > 0 and (4.11), applying Hölder’s
inequality yields

E
[

sup
t∈[0,T ]

|X∗t |p
]

= xp E
[

sup
t∈[0,T ]

exp
{∫ t

0

(
pbs(1, v̂1)− 1

2p|σs(1, v̂1)|2
)

ds+
∫ t

0
pσs(1, v̂1)> dWs

}]

6 cE
[

sup
t∈[0,T ]

exp
{∫ t

0

(
2pbs(1, v̂1) + (2p2 − p)|σs(1, v̂1)|2

)
ds
}]1/2

× E
[

sup
t∈[0,T ]

exp
{
−
∫ t

0
2p2|σs(1, v̂1)|2 ds+

∫ t

0
2pσs(1, v̂1)> dWs

}]1/2
.

The estimate (4.4) holds in Case II, so

E
[

sup
t∈[0,T ]

exp
{∫ t

0

(
2pbs(1, v̂1) + (2p2 − p)|σs(1, v̂1)|2

)
ds
}]

6 E
[

exp
{
c

∫ T

0
(1 + |Λ1|) ds

}]
<∞,

where the last inequality is due to standard estimate for BMO martingales. It is left to show

E
[

sup
t∈[0,T ]

Yt

]
<∞, (4.16)

where

Yt = exp
{
−
∫ t

0
2p2|σs(1, v̂1)|2 ds+

∫ t

0
2pσs(1, v̂1)> dWs

}
.

Since σt is bounded, Y is a martingale with E[Y k
T ] <∞ for any k > 1. Then the estimate (4.16)

comes from martingale inequality immediately. This complete the proof of Claim (iii) in Case
II.
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Case III. We now study Case III. Under Assumptions 1.1 and 3.3, we have

p|X∗s |p−1|bs(X∗s , u∗s)| 6 δp|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 + L|X∗s |p. (4.17)

Similar to Case I, applying Itô’s lemma to eLt|X∗t |p gives

eLt|X∗t |p = xp +
∫ t

0
eLs
(
L|X∗s |p + p|X∗s |p−1 sgn(X∗s ) bs(X∗s , u∗s)

+ 1
2p(p− 1)|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2

)
ds

+
∫ t

0
eLsp|X∗s |p−1 sgn(X∗s )σs(X∗s , u∗s)> dWs (4.18)

> xp +
(1

2(p− 1)− δ
)
p

∫ t

0
eLs|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 ds

+
∫ t

0
eLsp|X∗s |p−1 sgn(X∗s )σs(X∗s , u∗s)> dWs. (4.19)

Define

θk := inf
{
t > 0

∣∣∣∣ |X∗t |+ ∫ t

0
|σs(1, v̂1)|2 ds > k

}
∧ T.

Since X∗ is continuous, by (4.5) we see θk is a sequence of stopping times that increasingly
converges to T as k →∞. Noticing

|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 = |X∗s |p|σs(1, v̂1)|2,

recalling δ < 1
2(p− 1) and (4.14), it then follows from (4.19) that

E
[ ∫ θk

0
eLs|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 ds

]
6

E
[
eLθk |X∗θk

|p
]

(1
2(p− 1)− δ)p

6
KeLT

(1
2(p− 1)− δ)p

.

We notice (4.15) holds except for the last inequality, so it follows from (4.14), (4.17), (4.18) and
the above estimate that

E
[

sup
t∈[0,θk]

eLt|X∗t |p
]

6 xp + 1
2E
[

sup
t∈[0,θk]

eLt|X∗t |p
]

+M2E
[ ∫ θk

0
eLs
(
|X∗s |p−2 1X∗s 6=0 |σs(X∗s , u∗s)|2 + 2L|X∗s |p

)
ds
]

6 xp + 1
2E
[

sup
t∈[0,θk]

eLt|X∗t |p
]

+M2
(

KeLT

(1
2(p− 1)− δ)p

+ 2KTeLT
)
.

In this estimate the constants are independent of k, so Claim (iii) in Case III follows from
Fatou’s lemma.

5 Concluding remarks

In this paper, we introduced and solved a new class of homogeneous stochastic control
problems with cone control constraints in three different situations. The optimal value and
optimal control in the state feedback form are provided in terms of solutions to two associated
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BSDEs via rigorous verification procedure. The solvability of these BSDEs is interesting in its
own from the point of view of BSDE theory. Further research along this line can be interesting
as well; for instance: (1) Please note that the state process (1.1) is one-dimensional, so it is
interesting to investigate the problem (1.3) with multi-dimensional state process. Does it admit
the state feedback optimal control like (4.13)? (2) When the state process are discontinuous
(e.g. with Poisson jumps), how to solve the problem (1.3)?
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