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A HIGHER-DIMENSIONAL VERSION OF FÁRY’S THEOREM

KARIM ADIPRASITO AND ZUZANA PATÁKOVÁ

Abstract. We prove a generalization of István Fáry’s celebrated theorem to higher di-
mensions. Namely, we show that if a finite simplicial complex X can be a piece-wise
linearly embedded into a d-dimensional PL manifold M , then there is a triangulation of
M containing X as a subcomplex.

Fáry’s theorem is simple:

Theorem 1 ([Fáry48]). Any simple, planar graph can be drawn without crossings in the
plane so that its edges are straight line segments.

That is simpler and more beautiful than rarely possible. So, could this be true in greater
generality? Initially, the answer is no. There are many complexes that have an embedding
into an Euclidean space, but not one that is affine on every simplex [AKM23, BS92]: In
other words, when embedding k-dimensional complexes into Rd, and d ≤ 2k, it can happen
that the complex embeds, but does not embed linearly. In other dimensions, as one says, the
linear and piecewise linear picture coincide, but only for a trivial reason: Every simplicial
complex of dimension k has a geometric realization in Rd if d exceeds 2k.
So, paper done, right? There is no positive theorem, apparently.
Except, there is: We prove the following:

Theorem 2 (Kind-of Fáry’s theorem). Consider X a finite simplicial complex, and a
piecewise linear embedding φ : X −→ M , where M is a PL d-manifold. Then there is a
triangulation M ′ of M that contains X as a subcomplex.

Throughout the paper we consider finite simplicial complexes, and refer the reader to
Zeeman [Zee63] for an introduction to PL topology.

Some people may consider this theorem as a folklore, but as knowledge of PL topology is
gradually lost, we feel it is useful to record it here. We note that it is necessary to modify
the embedding map φ : X −→ M to achieve this.

Example 3. Consider a 2-dimensional simplex σ, that we wish to embed into the 4-sphere
S4 as follows: Assume S4 is the suspension of a triangulated S3, with apex points n and s.
Consider γ a knot in S3, and the 2-dimensional disk n ∗ γ, where ∗ stands for a join.

Choose now a ”bad” homeomorphism φ sending (σ, ∂σ) to the pair (n ∗ γ, γ) so that in
particular some interior point of σ is mapped to γ. Obviously, every point of the image
φ(σ◦) apart from n has a flat neighborhood with respect to σ, that is, a neighborhood
where the embedding is homeomorphic to the standard embedding of R2 into R4.

Let us first note a lemma of Bing that almost solves the problem:
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Lemma 4 (Section I.2, [Bing83]). Consider X̃ a simplicial complex, and a simplexwise

linear embedding φ : X̃ −→ M , where M is a PL d-manifold. Then there is a triangulation

M̃ of M that contains X̃ as a subcomplex.

Bing only proved this in the case ofM being a 3-manifold, but his proof extends naturally
to the case of arbitrary dimension. In order not to rely on this, we note that it is enough

that some subdivision of X̃ extends to a triangulation of M .

Lemma 5 (Chapter 1, Lemma 4 [Zee63]). Consider X̃ a simplicial complex, and a

simplexwise linear embedding φ : X̃ −→ M , where M is a PL d-manifold. Then there is a

triangulation M̃ of M that contains some subdivision of X̃ as a subcomplex.

1. The proof

1.1. Subdivisions. Recall that a stellar subdivision of a simplicial complex ∆ at a simplex
σ is the result of removing all simplices of Nσ∆, the collection of simplices in ∆ containing
σ, and attaching the cone vσ ∗ ∂Nσ∆ to it along the natural identification map.

Recall that the derived subdivision of a simplicial complex ∆ is the simplicial complex
D∆ of all order chains of simplices (or equivalently, applying stellar subdivisions at all faces
in reverse order of inclusion1).

Given two simplicial complexes Γ ⊆ ∆, we say that Γ is an induced subcomplex of ∆
if every simplex in ∆ with all vertices in Γ is a simplex in Γ as well. It is easy to see
that if Γ ⊆ ∆, then the derived subdivision of Γ is an induced subcomplex of the derived
subdivision2 of ∆, see Figure 1.1 for illustration.
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Figure 1.1. Derived subdivision DΓ as an induced subcomplex of the de-
rived subdivision D∆. Example shows a 4-cycle Γ = {12, 23, 34, 14} (we
list only the top dimensional faces) and ∆ = {12, 23, 34, 14, 24} on the left,
∆ = {124, 23, 34} on the right, respectively.
The vertex v certifies that the final complex is not strongly induced.

Consider now the biased derived subdivision of a pair of simplicial complexes Γ ⊆ ∆: It is
obtained by applying stellar subdivisions at faces of ∆ not in Γ, in order of reverse inclusion;
for illustration see Figure 1.2 (left). In the followig lemma we relate it to strongly induced
subcomplexes: A subcomplex Γ of a simplicial complex ∆ is a strongly induced subcomplex
of ∆ if for every simplex σ in ∆ \ Γ, Γ ∩ stσ ∆ consists of a single simplex, where stσ ∆
is the star of σ in ∆, that is, the simplicial closure of all faces of ∆ containing σ. Note
that strongly induced subcomplex is automatically an induced subcomplex, the opposite
implication does not hold as demonstrated on Figure 1.1.

1I.e. we first subdivide all facets, then all the faces of codimension 1, etc.
2Derived subdivisions are “compatible” in the following sense: the derived subdivision of Γ coincides

with the derived subdivision of ∆ restricted to Γ.
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Lemma 6. Let Γ be an induced subcomplex of ∆ and let ∆′ be the biased derived subdivision
of the pair Γ ⊆ ∆. Then Γ is a strongly induced subcomplex of ∆′.

Proof. Let σ be a simplex of ∆′ not in Γ. We want to show that there is a simplex τ of Γ
such that

τ = Γ ∩ stσ ∆
′.

The vertices of ∆′ correspond to faces of ∆ not in Γ, and vertices of Γ. Hence, seeing
σ as a union of its vertices, it consists of the disjoint union of a face σ̂ of Γ and a chain
σ1 < σ2 < · · · < σk of faces in ∆ not in Γ, where σ̂ < σ1. The intersection of stσ ∆

′ with
Γ coincides with the intersection σ1 ∩ Γ ⊆ ∆. Since Γ is induced in ∆, the latter is a face.
See Figure 1.2 for illustration. □
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Figure 1.2. On the left: biased derived subdivision ∆′ of the pair Γ ⊆ ∆,
where ∆ is a 2-simplex and Γ is the edge spanned by vertices 1 and 2. On
the right: let Γ ⊆ ∆ be as on the left and let σ = {1, 123} be the highlighted
edge of ∆′. Then σ̂ = {1}, σ1 = {123}, stσ ∆′ is the highlighted subcomplex
and Γ ∩ stσ ∆

′ = Γ ∩ σ1 = 12.

1.2. Edge contractions & subdivisions. Let Γ be a simplicial complex. An edge con-
traction is the operation of removing the neighborhood NeΓ of the edge e = {0, 1} and
identifying N0∂NeΓ and N1∂NeΓ; we denote the result by CeΓ. We say that the edge e
is valid if CeΓ is a simplicial complex and call it a valid edge contraction. Notice that the
edge e is valid if and only if e is not contained in a missing simplex of Γ, by which we mean
a simplex which is not contained in Γ but whose all proper faces are. See Figure 1.3 for
illustration.

An edge subdivision, denoted by SeΓ, is a stellar subdivision at the edge e. Let Γ be a
(induced) subcomplex of ∆ and let e be an edge in Γ, then SeΓ is a (induced) subcomplex
of Se∆. See Figure 1.3 for illustration.

Now we inspect the relation between valid edge contraction and a strong inducedness.

Lemma 7. Let Γ be a strongly induced subcomplex of ∆ and let e be a valid edge of Γ. Then
CeΓ is a strongly induced subcomplex of Ce∆. In particular, Ce∆ is a simplicial complex.

Proof. First we show that Ce∆ is a simplicial complex. We need to argue that e is a valid
edge in ∆, which follows from the obvious fact that missing simplices of ∆ intersecting Γ
in more than a single vertex are missing simplices of Γ.

Clearly, CeΓ is a subcomplex of Ce∆. Let us now assume for contradiction that CeΓ is
not strongly induced in Ce∆. That is, there exists a simplex σ in Ce∆ \ CeΓ for which
CeΓ ∩ stσ Ce∆ is more than a single face. We may assume that σ does not intersect CeΓ.
Since CeΓ∩ stσ Ce∆ is the image of Γ∩ stσ ∆ under the contraction operation, Γ∩ stσ ∆ is
not a single simplex either. □
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Figure 1.3. Example of an edge contraction and an edge subdivision. Edge
f is not valid as it is contained in a missing simplex determined by vertices
1, 2 and 6. Edge e is valid in ∆ and Ce∆ is a simplicial complex. Let Γ be a
subcomplex of ∆ with top dimensional faces 25, 45. Then SeΓ is a subcomplex
of Se∆, but it is not induced as certified by vertices v, 4, 5.

Let us now look at the relation between edge subdivision and a strong inducedness.

Lemma 8. Let Γ be a strongly induced subcomplex of ∆ and let e be an edge of Γ. Then SeΓ
is a strongly induced subcomplex of (Se∆)′, where ′ denotes the biased derived subdivision
of the pair SeΓ ⊆ Se∆.

Proof. Since SeΓ is an induced subcomplex of Se∆, we can apply Lemma 6. □

Proof of Theorem 2. Let us note that becauseX embeds piecewise linearly, there is a refine-

ment X̃ of X that embeds simplexwise linearly. Let M̃ denote the simplicial triangulation
of M output by the Bing Lemma 4 (or alternatively the Zeeman Lemma 5), i.e. we have

that the subdivision X̃ of X is a subcomplex of M̃ .

Consider now the simplicial complex sd M̃ , which is the biased derived subdivision of

the pair DX̃ ⊆ DM̃ , where D denotes the operation of derived subdivision. In words, we

get sd M̃ by first applying the derived subdivision to M̃ and X̃ (this makes the derived

subdivision DX̃ an induced subcomplex DM̃), and then performing the biased derived

subdivision at the obtained pair. By Lemma 6, DX̃ is a strongly induced subcomplex of

sd M̃ .
Recall that by results of Alexander [Ale30], and Newman [New31, Corrolary 10:2d], two

PL homeomorphic complexes are related by edge subdivisions and valid edge contractions.
Hence, we apply a suitable sequence of edge subdivisions and valid edge contractions of

edges of DX̃ ⊆ sd M̃ to transform DX̃ into X. Lemmata 7 and 8 allow us to extend the

edge contractions and edge subdivisions to the whole complex (sd M̃ at the first step), while
the edge subdivision is followed by the respective biased derived subdivision as explained
in Lemma 8. It follows that the resulting triangulation M ′ of M is the desired one.

Note that Lemmata 7 and 8 guarantee that M ′ is indeed a triangulation, meaning that
it stays a simplicial complex in each step during the proccess (in order to extend the
edge contraction from a subcomplex to the whole complex we need the subcomplex to be
strongly induced, see Lemma 7). Note also that the biased derived subdivisions following
edge contractions used in Lemma 8 do not change the respective subcomplex, so they are



A HIGHER-DIMENSIONAL VERSION OF FÁRY’S THEOREM 5

irrelevant with respect to the sequence of edge subdivisions and valid edge contractions we
need to perform (by the result of Alexander and Newman), however they are obviously
relevant for the triangulation. □
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