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1Centrale Marseille, Aix Marseille Univ, CNRS, LIS, France

2Institute of Intelligent Software, China
3Institute of Advanced Research on Artificial Intelligence (IARAI), Austria

{felipe.torres,ronan.sicre,stephane.ayache}@lis-lab.fr,
zhanghanwei0912@gmail.com, yannis@avrithis.net

Abstract

Explanations obtained from transformer-based architec-
tures in the form of raw attention, can be seen as a class-
agnostic saliency map. Additionally, attention-based pool-
ing serves as a form of masking the in feature space. Mo-
tivated by this observation, we design an attention-based
pooling mechanism intended to replace Global Average
Pooling (GAP) at inference. This mechanism, called Cross-
Attention Stream (CA-Stream), comprises a stream of cross
attention blocks interacting with features at different net-
work depths. CA-Stream enhances interpretability in mod-
els, while preserving recognition performance.

1. Introduction

Convolutional neural networks (CNN) have attained
tremendous success in computer vision [22, 30], but inter-
preting their predictions remains challenging. Most expla-
nations are based on saliency maps, using methods derived
from class activation mapping (CAM). Vision transform-
ers [13] are now strong competitors of convolutional net-
works, characterized by global interactions between patch
embeddings in the form of self attention. Based on the clas-
sification (CLS) token, an explanation map in the form of
raw attention can be constructed. However, these maps are
class-agnostic, often of low quality [6], and dedicated inter-
pretability methods are required to explain models [9].

In CNNs, features are pooled into a global representation
by global average pooling (GAP). In transformers, a global
representation is obtained by cross-attention between patch
embeddings and the CLS token. In this work, we make a
connection between CAM-based saliency maps and raw at-
tention from the CLS token, observing that attention-based
pooling is a form of masking in the feature space. Moti-
vated by this observation, we design a pooling mechanism
that generates a global representation to be used at infer-

ence, replacing GAP and improving interpretability.

Our approach, called Cross-Attention Stream (CA-
Stream), consists of a branch in parallel with the backbone
network, allowing interactions between feature maps and
the CLS token through cross-attention at different stages of
the network. The CLS token embedding is a learnable pa-
rameter and, at the output of the stream, provides a global
image representation for classification.

More specifically, we make the following contributions:

1. We demonstrate that attention-based pooling in vision
transformers is the same as soft masking by a class-
agnostic CAM-based saliency map (section 3.2).

2. We design an attention-based pooling mechanism, inject
it in convolutional networks to replace GAP and study
its effect on post-hoc interpretability (subsection 3.3).

3. We show improved explanations for a trained model and
provides a class-agnostic raw attention map (section 4).

2. Related work

Deep neural networks interpretability is investigated though
Post-hoc interpretability or Transparency [20, 28, 55].

Post-hoc interpretability considers the model as a black-
box and provides explanations based on input and out-
put observations. These methods can be grouped into
sets of possibly overlapping categories. Gradient-based
methods [1–3, 43–46] use gradient information to visual-
ize the contribution of different input regions in an im-
age. CAM-based methods [8, 12, 16, 25, 41, 49] compute
saliency maps as a linear combination of feature maps to
highlight salient regions in the input image. Occlusion or
masking-based methods [14, 15, 32, 37, 40] instead com-
pute saliency maps based on the prediction changes induced
by masking the input image. Finally, learning-based meth-
ods [7, 10, 33, 40, 60] learn additional models or branches
to produce explanations for a given input.
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Figure 1. Cross-Attention Stream (CA-StreamCross-Attention Stream (CA-Stream) applied to ResNet-based architectures. Given a network
f , we replace global average pooling (GAP) by a learned, attention-based pooling mechanism implemented as a stream in parallel to f .
The feature tensor Fℓ ∈ Rpℓ×dℓ (key) obtained by stage Res-ℓ of f interacts with a CLS token (query) embedding qℓ ∈ Rdℓ in block CA-ℓ,
which contains cross attention (6) followed by a linear projection (10) to adapt to the dimension of Fℓ+1. Here, pℓ is the number of patches
(spatial resolution) and dℓ the embedding dimension. The query is initialized by a learnable parameter q0 ∈ Rd0 , while the output q5 of
the last cross attention block is used as a global image representation into the classifier.

Transparency modifies the model or its training process
to explain it. These approaches are grouped according to
the nature of the explanation they provide. Rule-based
methods [50, 51] approximate the model using a decision
tree as a proxy. Hidden semantic-methods [4, 54, 56, 58]
learn disentangled semantics following a hierarchical struc-
ture or object-level concepts. Prototype-based methods
learn prototypes seen in training images to explain models
from intermediate representations. Attribution-based meth-
ods [17, 24, 39, 59] propose modifications to the network
or its training process, improving interpretable properties
of post-hoc attribution methods. Finally, saliency-guided
training [24, 26] design and train a model that aligns images
with their saliency based masks during training enhancing
recognition and interpretability properties.

Our approach aligns with attribution-based methods.
Specifically, we introduce a learnable cross-attention
stream, producing a representation that replaces GAP.

Attention-based architectures Attention is a mechanism
introduced into convolutional neural networks to enhance
their recognition capabilities [5, 36, 42]. Following the
success of vision transformers (ViT) [13], fully attention-
based architectures are now competitive with convolutional
neural networks, while drawing inspiration from them to
enhance their recognition capabilities [19, 23, 29, 52].

Unlike similar approaches combining ideas from convo-
lutions in transformers [27, 31, 47], we propose to add an
attention-based pooling mechanism in convolutional mod-
els, enhancing post-hoc interpretability properties without
degrading classification accuracy.

3. Method

3.1. Preliminaries and background

Notation Let f : X → RC be a classifier network
that maps an input image x ∈ X to a logit vector y =
f(x) ∈ RC , where X is the image space and C is the num-
ber of classes. A class probability vector is obtained by
p = softmax(y). The logit and probability of class c are

respectively denoted by yc and pc = softmax(y)c. Let
Fℓ ∈ Rwℓ×hℓ×dℓ be the feature tensor at layer ℓ of the net-
work, where wℓ × hℓ is the spatial resolution and dℓ the
embedding dimension, or number of channels. The feature
map of channel k is denoted by F k

ℓ ∈ Rwℓ×hℓ .

CAM-based saliency maps Given a class of interest c
and a layer ℓ, we consider the saliency maps Sc

ℓ ∈ Rwℓ×hℓ

given by the general formula

Sc
ℓ := h

(∑
k

αc
kF

k
ℓ

)
, (1)

where αc
k are weights defining a linear combination over

channels and h is an activation function. Assuming global
average pooling (GAP) of the last feature tensor FL fol-
lowed by a linear classifier, CAM [57] is defined for the last
layer L only, with h being the identity mapping and αc

k the
classifier weight connecting channel k with class c.

Self-attention Let Xℓ ∈ Rtℓ×dℓ denote the sequence of
token embeddings of a vision transformer [13] at layer ℓ,
where tℓ := wℓhℓ + 1 is the number of tokens, including
patch tokens and the CLS token, and dℓ is the embedding
dimension. The attention matrix A ∈ Rtℓ×tℓ expresses
pairwise dot-product similarities between queries (Q) and
keys (K), normalized by softmax over rows:

A = softmax

(
QK⊤
√
dℓ

)
. (2)

For each token, the self-attention operation is then defined
as an average of all values (V ) weighted by attention A:

SA(Xℓ) := AV ∈ Rtℓ×dℓ . (3)

At the last layer L, the CLS token embedding is used as a
global representation for classification as it gathers informa-
tion from all patches by weighted averaging, replacing GAP.
Thus, at the last layer, it is only cross-attention between CLS
and the patch tokens that matters.
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Figure 2. Comparison of saliency maps generated by different CAM-based methods, using GAP and our CA-Stream, on ImageNet images.
The raw attention is the one used for pooling by CA-Stream.

3.2. Motivation

Cross-attention Let matrix Fℓ ∈ Rpℓ×dℓ be a reshaping
of feature tensor Fℓ at layer ℓ, where pℓ := wℓhℓ is the
number of patch tokens without CLS, and let qℓ ∈ Rdℓ be
the CLS token embedding at layer ℓ. By focusing on the
cross-attention only between the CLS (query) token qℓ and
the patch (key) tokens Fℓ, attention A (2) is now a 1 × pℓ
matrix that can be written as a vector a ∈ Rpℓ

a = A⊤ = softmax

(
Fℓqℓ√
dℓ

)
. (4)

Here, Fℓqℓ expresses the pairwise similarities between the
global CLS feature qℓ and the local patch features Fℓ. Now,
by replacing qℓ by an arbitrary vector α ∈ Rdℓ and writ-
ing the feature matrix as Fℓ = (f1ℓ . . . fdℓ

ℓ ), attention (4)
becomes

a = hℓ(Fℓα) = hℓ

(∑
k

αkf
k
ℓ

)
. (5)

This takes the same form as (1), with feature maps F k
ℓ vec-

torized as fkℓ and the activation function defined as hℓ(x) =
softmax(x/

√
dℓ). We thus observe the following.

Pairwise similarities between one query and all patch to-
ken embeddings in cross-attention are the same as a linear
combination of feature maps in CAM-based saliency maps.

One difference between (1) and (5) is that (5) is class-
agnostic, although it could be extended by using one query
vector per class. For simplicity, we choose the class-
agnostic form. We also choose to have no query/key pro-
jections. However, we do provide additional experiments in
the appendix.

Pooling or masking We integrate an attention mechanism
into a network such that making a prediction and explaining
it are inherently connected. In particular, considering cross-
attention only between CLS and patch tokens (4), equa-
tion (3) becomes

CAℓ(qℓ, Fℓ) := F⊤
ℓ a = F⊤

ℓ hℓ(Fℓqℓ) ∈ Rdℓ . (6)

By writing the transpose of feature matrix as F⊤
ℓ =

(ϕ1
ℓ . . .ϕ

pℓ

ℓ ) where ϕi
ℓ ∈ Rdℓ is the feature of patch i, this

is a weighted average of the local patch features F⊤
ℓ with

attention vector a = (a1, . . . , apℓ
) expressing the weights:

CAℓ(qℓ, Fℓ) := F⊤
ℓ a =

∑
i

aiϕ
i
ℓ. (7)

We can think of it as as feature reweighting or soft masking
in the feature space, followed by GAP.

Now, considering that a is obtained exactly as CAM-
based saliency maps (5), this operation is similar to oc-
clusion (masking)-based methods [14, 15, 32, 37, 40, 49,
53] and evaluation metrics [8, 32], where a CAM-based
saliency map is commonly used to mask the input image.
We thus observe the following.

Attention-based pooling is a form of feature reweight-
ing or soft masking in the feature space followed by GAP,
where the weights are given by a class-agnostic CAM-based
saliency map.

3.3. Cross-attention stream

Motivated by these observations, we design a Cross-
Attention Stream (CA-Stream) in parallel to any network.
It takes input features at key locations of the network and
uses cross-attention to build a global image representation
and replace GAP before the classifier. An example is shown
in Figure 1, applied to a ResNet-based architecture.

Architecture More formally, given a network f , we con-
sider points between blocks of f where critical operations
take place, such as change of spatial resolution or embed-
ding dimension, e.g. between residual blocks on ResNet.
We decompose f at these points as

f = g ◦ GAP ◦ fL ◦ · · · ◦ f0 (8)

such that features Fℓ ∈ Rpℓ×dℓ of layer ℓ are initialized as
F−1 = x and updated according to

Fℓ = fℓ(Fℓ−1) (9)
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for 0 ≤ ℓ ≤ L, where pℓ is the number of patch tokens
and dℓ the embedding dimension of stage ℓ. The last layer
features FL are followed by GAP and g : RdL → RC is the
classifier, mapping to the logit vector y.

In parallel, we initialize a classification token embed-
ding as a learnable parameter q0 ∈ Rd0 and we build a
sequence of updated embeddings qℓ ∈ Rdℓ along a stream
that interacts with Fℓ at each stage ℓ. Referring to the
global representation qℓ as query or CLS and to the local
image features Fℓ as key or patch embeddings, the interac-
tion consists of cross-attention followed by a linear projec-
tion Wℓ ∈ Rdℓ+1×dℓ to account for changes of embedding
dimension between the corresponding stages of f :

qℓ+1 = Wℓ · CAℓ(qℓ, Fℓ), (10)

for 0 ≤ ℓ ≤ L, where CAℓ is defined as in (6).
Image features do not change by injecting our CA-

Stream into network f . However, the final global image rep-
resentation does, hence the prediction does too. In particu-
lar, at the last stage L, qL+1 is used as a global image repre-
sentation for classification, replacing GAP over FL. There-
fore, final prediction is g(qL+1) ∈ RC . Unlike GAP, the
weights of different image patches in the linear combina-
tion are non-uniform, enhancing the contribution of relevant
patches in the prediction.

Training The network f is pretrained and remains frozen
while we learn the parameters of our CA-Stream on the
same training set as f . The classifier is kept frozen too.
Referring to (8), f0, . . . , fL and g are fixed, while GAP is
replaced by learned weighted averaging, with the weights
obtained by the CA-Stream.

Inference As it stands, the CA-Stream is an addition to
the baseline architecture, which enhances the interpretabil-
ity properties of a model. We thus investigate interpretabil-
ity using CAM-based methods on both baseline GAP and
CA-Stream in the following section.

4. Experiments

Experimental setup We train and evaluate our models on
the ImageNet ILSVRC-2012 dataset [11], using the train-
ing and validation sets respectively. We experiment on
pretrained and frozen ResNets [22] and ConvNeXt [30]
models and provide more details in the appendix. We
measure the interpretability properties of our approach by
first generating saliency maps employing existing methods
based on CAM (Grad-CAM [41], Grad-CAM++ [8], Score-
CAM [49]) with and without CA-Stream. Then, follow-
ing [53], we compute changes in the predictive power of
a masked image measured by average drop (AD) [8] and
average gain (AG) [53], the proportion of better explana-
tions measured by average increase (AI) [8] and finally the

NETWORK POOLING ACC↑

ResNet-50 GAP 74.55
CA 74.70

ConvNeXt-B GAP 83.72
CA 83.51

NETWORK ATTRIBUTION POOLING AD↓ AG↑ AI↑ I↑ D↓

RESNET-50

Grad-CAM GAP 13.04 17.56 44.47 72.57 13.24
CA 12.54 22.67 48.56 75.53 13.50

Grad-CAM++ GAP 13.79 15.87 42.08 72.32 13.33
CA 13.99 19.29 44.60 75.21 13.78

Score-CAM GAP 8.83 17.97 48.46 71.99 14.31
CA 7.09 23.65 54.20 74.91 14.68

CONVNEXT-B

Grad-CAM GAP 33.72 2.43 15.25 52.85 29.57
CA 19.45 13.96 32.89 86.38 45.29

Grad-CAM++ GAP 34.01 2.37 15.60 52.83 29.17
CA 36.69 8.00 21.95 85.39 53.42

Score-CAM GAP 43.55 2.23 15.67 50.96 39.49
CA 23.51 11.04 27.35 83.41 60.53

Table 1. Interpretability metrics of CA-Stream vs. baseline GAP

for different networks and interpretability methods on ImageNet.

impact of different extents of masking via insertion (I) and
deletion (D) [32].

Qualitative results In Figure 2, we show saliency maps
obtained using either GAP and CA, as well as the raw at-
tention representation from CA-Stream. We observe that
CAM-based attributions obtained using our CA are similar
to those generated with GAP. We expect this behaviour as
we do not modify the model or the weighting coefficients.
Since raw attention is class-agnostic, it can be used to gain
insight on what the model attends to in unseen data. We
iterate upon this in the appendix.

Quantitative evaluation In Table 1, we compare the in-
terpretability properties when using our CA vs. GAP. In the
appendix we provide comparisons with more models and
datasets. We observe that CA-Stream provides consistent
improvements over GAP in terms of AD, AG, AI and I met-
rics, while performing lower on D. Deletion (D) has raised
concerns in previous works [9, 53]. As (D) gradually black-
ens pixels, out-of-distribution data [18, 21, 34] is produced,
possibly introducing bias [38]. Moreover, non-spread at-
tributions tend to perform better [53], which is likely the
reason for lower performance.

5. Conclusion
In this work we observe that attention-based pooling in
transformers is similar if not the same as forming a class
agnostic CAM-based attribution. Based on this observation,
we build upon this representation to mask features prior to
the classification layers of a model, enhancing interpretabil-
ity of existing image recognition models using GAP. Our
method improves interpretability metrics while maintaining
recognition performance.
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Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation. PloS one,
2015.

[3] David Baehrens, Timon Schroeter, Stefan Harmeling, Mo-
toaki Kawanabe, Katja Hansen, and Klaus-Robert Müller.
How to explain individual classification decisions. J. MLR,
2010. 1

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Network dissection: Quantifying inter-
pretability of deep visual representations. In CVPR, pages
6541–6549, 2017. 2

[5] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,
and Quoc V Le. Attention augmented convolutional net-
works. In ICCV, 2019. 2

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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A. More on the connection between Attention
and CAM

Following the explanation of Cross-Attention acting as a
class agnostic version of CAM demonstrated in section 3.2,
we provide a visual explanation of this connection in Fig-
ure 3.

F

α

* =

CA / CAM

= α1 * αd *+ +…

F1 Fd

Figure 3. Visualization of eq. (5). On the left, a feature tensor
F ∈ Rw×h×d is multiplied by the vector α ∈ Rd in the channel
dimension, like in 1 × 1 convolution, where w × h is the spa-
tial resolution and d is the number of channels. This is cross at-
tention (CA) [13] between the query α and the key F. On the
right, a linear combination of feature maps F 1, . . . , F d ∈ Rw×h

is taken with weights α1, . . . , αd. This is a class activation map-
ping (CAM) [57] with class agnostic weights. Eq. (5) expresses
the fact that these two quantities are the same, provided that
α = (α1, . . . , αd) and F is reshaped as F = (f1 . . . fd) ∈ Rp×d,
where p = wh and fk = vec(F k) ∈ Rp is the vectorized feature
map of channel k.

B. More on experimental setup
Implementation details Following the training recipes
from the pytorch models1, we choose the ResNet proto-
col given its simplicity. Thus, we train over 90 epochs
with SGD optimizer with momentum 0.9 and weight decay
10−4. We start our training with a learning rate of 0.1 and
decrease it every 30 epochs by a factor of 10. Our models
are trained on 8 V100 GPUs with a batch size 32 per GPU,
thus global batch size 256. We follow the same protocol
for both ResNet and ConvNeXt, though a different protocol
might lead to improvements on ConvNeXt.

C. More Visualizations
In addition, Figure 4 shows examples of images from the
MIT 67 Scenes dataset [35] along with raw attention maps
obtained by CA-Stream. These images come from four
classes that do not exist in ImageNet and the network sees
them at inference for the first time. Nevertheless, the atten-
tion maps focus on objects of interest in general.

D. More Architectures
Table Table 2 presents interpretability metrics for both
ResNet18 and ConvNeXt-S. Complementary experiments
are reported on Table 3 for CUB and Pascal VOC for
ResNet 50.

1https://github.com/pytorch/vision/tree/main/references/classification

NETWORK ATTRIBUTION POOLING AD↓ AG↑ AI↑ I↑ D↓

RESNET-18

Grad-CAM
GAP 17.64 12.73 41.21 63.13 10.66
CA 16.99 17.22 44.95 65.94 10.68

Grad-CAM++
GAP 19.05 11.16 37.99 62.80 10.75
CA 19.02 14.76 40.82 65.53 10.82

Score-CAM
GAP 13.64 12.98 44.53 62.56 11.37
CA 11.53 18.12 50.32 65.33 11.51

CONVNEXT-S

Grad-CAM
GAP 42.99 1.69 12.60 48.42 30.12
CA 22.09 14.91 32.65 84.82 43.02

Grad-CAM++
GAP 56.42 1.32 10.35 48.28 33.41
CA 51.87 9.40 20.55 84.28 52.58

Score-CAM
GAP 74.79 1.29 10.10 47.40 38.21
CA 64.21 8.81 18.96 82.92 57.46

Table 2. of CA-Stream vs. baseline GAP for more networks and
interpretability methods on ImageNet.

CUB-200-2011 - RESNET-50

POOLING ACC↑

GAP 76.96
CA 75.90

INTERPRETABILITY METRICS

METHOD POOLING AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM GAP 10.87 10.29 45.81 65.71 6.17
CA 10.44 17.61 53.54 74.60 6.56

Grad-CAM++ GAP 11.35 9.68 44.32 65.64 5.92
CA 11.01 16.50 51.63 74.64 6.21

Score-CAM GAP 9.05 10.62 48.90 65.58 5.94
CA 6.37 19.50 60.41 74.22 2.14

PASCAL VOC 2012 - RESNET-50

POOLING MAP↑

GAP 78.32
CA 78.35

INTERPRETABILITY METRICS

METHOD POOLING AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM GAP 12.61 9.68 27.88 89.10 59.39
CA 12.77 15.46 34.53 88.53 59.16

Grad-CAM++ GAP 12.25 9.68 27.62 89.34 54.23
CA 12.28 16.76 34.87 89.02 53.34

Score-CAM GAP 14.8 6.76 36.41 71.10 39.95
CA 10.96 21.35 43.82 89.21 51.44

Table 3. Accuracy, respectively mean Average Precision, and in-
terpretability metrics of CA-Stream vs. baseline GAP for ResNet-
50 on CUB and Pascal dataset.

Results on CUB in Table 3 show that our CA-Stream
consistently provides improvements when the model is fine-
tuned on a smaller fine-grained dataset.

E. Ablation Experiments

We conduct ablation experiments on ResNet50 because of
its modularity and ease of modification. We investigate the
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Figure 4. Raw attention maps obtained from our CA-Stream on images of the MIT 67 Scenes dataset [35] on classes that do not exist in
ImageNet. The network sees them at inference for the first time.

effect of the cross attention block design, the placement of
the CA-Stream relative to the backbone network.

Cross attention block design Following transform-
ers [13, 48], it is possible to add more layers in the
cross attention block. We consider a variant referred to
as PROJ→CA, which uses linear projections WK

ℓ ,WV
ℓ ∈

Rdℓ×dℓ on the key and value

CAℓ(qℓ, Fℓ) := (FℓW
V
ℓ )⊤hℓ(FℓW

K
ℓ qℓ) ∈ Rdℓ , (11)

while (10) remains.

BLOCK TYPE #PARAMS ACCURACY

CA 6.96M 74.70
PROJ→CA 18.13M 74.41

Table 4. Different cross attention block design for CA-Stream.
Classification accuracy and parameters using ResNet-50 on Im-
ageNet. #PARAM: parameters of CA-Stream only.

Results are reported in Table 4. We observe that the
stream made of vanilla CA blocks (6) offers slightly bet-
ter accuracy than projections, while having less parameters.
We also note that most of the computation takes place in
the last residual stages, where the channel dimension is the
largest. To keep our design simple, we choose the vanilla
solution without projections (6) by default.

CA-Stream placement To validate the design of CA-
Stream, we measure the effect of its depth on its perfor-
mance vs. the baseline GAP in terms of both classification
accuracy / number of parameters and classification metrics
for interpretability. In particular, we place the stream in
parallel to the network f , starting at stage ℓ and running

through stage L, the last stage of f , where 0 ≤ ℓ ≤ L.
Results are reported in Table 5.

ACCURACY AND PARAMETERS

PLACEMENT CLS DIM #PARAM ACC↑

S0 − S4 64 6.96M 74.70
S1 − S4 256 6.95M 74.67
S2 − S4 512 6.82M 74.67
S3 − S4 1024 6.29M 74.67
S4 − S4 2048 4.20M 74.63

INTERPRETABILITY METRICS

METHOD PLACEMENT AD↓ AG↑ AI↑ I↑ D↓

GRAD-CAM

S0 − S4 12.54 22.67 48.56 75.53 13.50
S1 − S4 12.69 22.65 48.31 75.53 13.41
S2 − S4 12.54 21.67 48.58 75.54 13.50
S3 − S4 12.69 22.28 47.89 75.55 13.40
S4 − S4 12.77 20.65 47.14 74.32 13.37

GRAD-CAM++

S0 − S4 13.99 19.29 44.60 75.21 13.78
S1 − S4 13.99 19.29 44.62 75.21 13.78
S2 − S4 13.71 19.90 45.43 75.34 13.50
S3 − S4 13.69 19.61 45.04 75.36 13.50
S4 − S4 13.67 18.36 44.40 74.19 13.30

SCORE-CAM

S0 − S4 7.09 23.65 54.20 74.91 14.68
S1 − S4 7.09 23.65 54.20 74.92 14.68
S2 − S4 7.09 23.66 54.21 74.91 14.68
S3 − S4 7.74 23.03 52.92 74.97 14.65
S4 − S4 7.52 19.45 50.45 74.19 14.46

Table 5. Effect of stream placement on accuracy, parameters and
interpretability metrics for ResNet-50 on ImageNet. Sℓ−SL: CA-
Stream runs from stage ℓ to L (last); #PARAM: parameters of CA-
Stream only.

From the interpretability metrics as well as accuracy, we
observe that stream configurations that allow for iterative
interaction with the network features obtain the best per-
formance, although the effect of stream placement is small
in general. In many cases, the lightest stream of only one
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cross attention block (S4 − S4) is inferior to options allow-
ing for more interaction. Since starting the stream at early
stages has little effect on the number of parameters and per-
formance is stable, we choose to start the stream in the first
stage (S0 − S4) by default.

Class-specific CLS As discussed in subsection 3.3, the
formulation of single-query cross attention as a CAM-based
saliency map (1) is class agnostic (single channel weights
αk), whereas the original CAM formulation (1) is class
specific (channel weights αc

k for given class of interest c).
Here we consider a class specific extension of CA-Stream
using one query vector per class. In particular, the stream
is initialized by one learnable parameter qc

0 per class c, but
only one query (CLS token) embedding is forwarded along
the stream. At training, c is chosen according to the target
class label, while at inference, the class predicted by the
baseline classifier is used instead.

ACCURACY AND PARAMETERS

REPRESENTATION #PARAM ACC↑

Class agnostic 32.53M 74.70
Class specific 32.59M 74.68

INTERPRETABILITY METRICS

METHOD ThRepresentation AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM Class agnostic 12.54 22.67 48.56 75.53 13.50
Class specific 12.53 22.66 48.58 75.54 13.50

Grad-CAM++ Class agnostic 13.99 19.29 44.60 75.21 13.78
Class specific 13.99 19.28 44.62 75.20 13.78

Score-CAM Class agnostic 7.09 23.65 54.20 74.91 14.68
Class specific 7.08 23.64 54.15 74.99 14.53

Table 6. Effect of class agnostic vs. class specific representation
on accuracy, parameters and interpretability metrics of CA-Stream
for ResNet-50 and different interpretability methods on ImageNet.
#PARAM: parameters of CA-Stream only.

Results are reported in Table 6. We observe that the class
specific representation for CA-Stream provides no improve-
ment over the class agnostic representation, despite the ad-
ditional complexity and parameters. We thus choose the
class agnostic representation by default. The class specific
approach is similar to [50] in being able to generate class
specific attention maps, although no fine-tuning is required
in our case.
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