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Abstract

Earth Observation imagery can capture rare and unusual
events, such as disasters and major landscape changes,
whose visual appearance contrasts with the usual obser-
vations. Deep models trained on common remote sensing
data will output drastically different features for these out-
of-distribution samples, compared to those closer to their
training dataset. Detecting them could therefore help an-
ticipate changes in the observations, either geographical
or environmental. In this work, we show that the recon-
struction error of diffusion models can effectively serve as
unsupervised out-of-distribution detectors for remote sens-
ing images, using them as a plausibility score. Moreover,
we introduce ODEED, a novel reconstruction-based scorer
using the probability-flow ODE of diffusion models. We vali-
date it experimentally on SpaceNet 8 with various scenarios,
such as classical OOD detection with geographical shift and
near-OOD setups: pre/post-flood and non-flooded/flooded
image recognition. We show that our ODEED scorer signifi-
cantly outperforms other diffusion-based and discriminative
baselines on the more challenging near-OOD scenarios of
flood image detection, where OOD images are close to the
distribution tail. We aim to pave the way towards better
use of generative models for anomaly detection in remote
sensing.

1. Introduction
In recent years, deep learning has grown to be a staple of
image understanding in computer vision, Earth Observa-
tion included. Deep neural networks have been for several
years now the state of the art for many tasks, from biomass
estimation to land cover segmentation [64]. Despite their
impressive capacity for generalization, these models are still
trained on finite datasets. For predictive models, it is critical
to be able to detect when new observations fall outside of this
training set, as model performance can drop sharply. This
task called Out-Of-Distribution (OOD) detection [58], is a
specific case of anomaly detection and represents a major
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Figure 1. ODEED discriminates between pre and post-event images
by making larger reconstruction errors on the latter w.r.t. the LPIPS
metric (top). It can also isolate flooded areas from the other post-event
images when evaluating the reconstruction similarity with the MSE
(bottom).

challenge in improving the robustness of deep models.
Indeed, remote sensing imagery is facing a multitude of

possible distribution shifts, from a change of acquisition
sensor to a change of season to a change of geographical
area. Being able to detect these OOD images is helpful to
avoid considering degraded model predictions. In addition,
disasters such as floods, forest fires, and storms are also
unfrequent and catastrophic events, that are rarely observed
in remote sensing datasets. While technically not always
OOD, these events are “near” out-of-distribution observa-
tions as shown in Fig. 1, whose detection can be of great
help for disaster management and surveillance. Identifying
unusual observations can also help automate the curation of
new datasets by eliminating outliers caused by cloud cover,
sensor faults, or other artifacts.



Moreover, annotations are scarce in Earth Observation.
The huge mass of available images remains largely unla-
beled, due to the expert knowledge and time required to
do so. For this reason, OOD detectors tailored to remote
sensing data should be fully unsupervised, and be able to
model the data distribution without labels. Generative mod-
els have been advanced as a way to model the distribution
of the data and build likelihood estimators to detect OOD
samples [60]. In particular, recent works in classical com-
puter vision have established diffusion models as the new
state-of-the-art to detect out-of-distribution images [17]. Dif-
fusion models [51] are a family of unsupervised generative
models that model the underlying distribution of training
examples. They have outclassed previous models in image
generation, such as Generative Adversarial Networks, due to
their strong ability to model complex distributions without
mode collapse. Promising new works have shown that diffu-
sion models were applicable to Earth Observation imagery,
e.g. for cloud removal [46] or image synthesis [29].

In this paper, we demonstrate the relevance of uncondi-
tional diffusion models for OOD detection in remote sensing.
Several use cases are considered in our work: cloud detec-
tion, different geographical domains, pre- and post-disaster,
and flooded/non-flooded images (cf. Fig. 1). We introduce a
new ODEED specifically tailored to the latter use cases and
show it outperforms all existing baselines.

2. Related Work

2.1. Diffusion models

Diffusion models are a powerful family of generative models
that take inspiration from score-matching [22, 50, 54]. They
were first derived in the discrete-time formulation as Markov
chains [20, 49] before the introduction of continuous-time
diffusion models building upon stochastic and ordinary dif-
ferential equations [25, 52]. As generative models, it has
been observed that denoising diffusion models produce high-
quality samples both in unconditional [25, 52] and condi-
tional image generation [12, 26, 43, 45] and outperform
previous approaches, notably Generative Adversarial Net-
works (GANs) [12] as they do not exhibit mode collapse.
Diffusion models proved their synthesis capabilities not only
for images but also for video [7, 21], audio [31, 32, 44],
text [3, 34], and protein design [56, 59]. In addition to the
synthesis performances, diffusion models are now used for a
variety of tasks, from image segmentation [1, 28] to inverse
problems solving [27].

In remote sensing, the application of diffusion models
to Earth Observation is relatively new. RSDiff [47] trains
a cascade of a low-resolution diffusion model that feeds
into a text-conditioned super-resolution diffusion model that
synthesizes remote sensing images based on textual descrip-
tions. SatDM [4] uses a conditional DDPM, conditioned

on building footprints, to generate new labeled samples to
train deep networks for building extractions. Espinosa and
Crowley [13] extends this idea to a DDPM conditioned on
semantic maps using ControlNet [61] to generate new syn-
thetic aerial imagery of Scotland. While generating fake
remote sensing imagery has limited practical applications,
diffusion models have been adapted to solve classical EO
tasks, such as change detection and cloud removal [46] and
super-resolution [19, 35, 57]. In this work, we will leverage
the modeling ability of diffusion models not to generate new
data, but to estimate the plausibility of EO images and iden-
tify unusual observations, i.e. find images that are out of the
distribution of “usual” acquisitions.

2.2. Out-of-distribution detection

Out-of-distribution (OOD) detection is a special case of
anomaly detection. Early works focused on detecting OOD
samples that fell outside the training dataset of machine
learning models, to prevent failure in the predictions. The
first approaches required a dataset of “unusual” samples in
order to train OOD detectors in a supervised manner [33, 39].
These approaches restrict the definition of the OOD samples
since we are not considering all possible OOD outside the
distribution of interest [8, 55]. Recent approaches are post-
hoc, i.e. they rely on features extracted from pre-trained
models. In this way, we avoid retraining neural networks for
the specific task of OOD detection and benefit from existing
pretrained features. In general, the goal is to assign a score
to an observation. If it is greater than a threshold, then the
image is considered in-distribution, and OOD otherwise.

Numerous OOD scorers assume that there is a discrimi-
native model, e.g. a classifier or a segmenter, that has been
trained on some dataset. Post-hoc scorers try to discrimi-
nate between out-of-distribution and in-distribution samples
based only on the predictions of a classifier or segmentation
model. They assess the model certainty on its prediction and
samples whose predictions have high uncertainty scores are
considered OOD [36, 38]. However, there has recently been
a surge in fully unsupervised OOD scorers, i.e. scorers that
do not depend on a discriminative model. These scorers can
therefore be used even on unlabeled datasets. For example,
some post-hoc scorers have been introduced to work on the
features learnt by self-supervised models [40, 48].

Similarly, reconstruction-based OOD scorers rely on gen-
erative models to reproduce an image given a corrupted
version of it. The corruption can be e.g. downsampling
for Autoencoders (AE) and Variational Autoencoders (VAE)
[11, 63, 65] or noise for diffusion models [15, 18, 37]. In
principle, the generative model has learned the training dis-
tribution and should have lower reconstruction errors on
in-distribution samples (ID) than on OOD samples. The
reconstruction error can be evaluated with different simi-
larity metrics depending on the nature of the samples. For



images, common metrics are the Mean-Squared Error (MSE)
and the Learned Perceptual Image Patch Similarity (LPIPS),
the latter being more aligned with human perception [62].
As diffusion models proved robust reconstruction faculty,
several OOD scorers employ them in the context of images
denoising [15, 18] or inpainting [37]. In addition, as diffu-
sion models have a variational interpretation [30], Goodier
and Campbell [17] proposed an OOD scorer based on diffu-
sion models’ ELBO, linking the reconstruction error to the
statistical likelihood.

In remote sensing, OOD detection has been a somewhat
niche topic. To the best of our knowledge, the only works
on detecting OOD remote sensing images are those from
Gawlikowski et al. [16] and Coca et al. [10]. Gawlikowski
et al. [16] introduced an OOD scorer based on a Dirichlet
Prior Network linked to a classification model trained on
remote sensing images to detect a shift in the classes, in
sensor characteristics, or in geographical areas that would
reduce classification accuracy. Coca et al. [10] later adapted
this work to a self-supervised model to detect satellite images
containing burned areas. As these images were rare in the
training dataset, they were able to characterize them as OOD.
We will show that this approach is a promising avenue to
detect unusual events in remote sensing imagery.

3. Methods
In this work, we investigate diffusion models for OOD de-
tection and focus on three diffusion-based scorers:
• Diffusion loss scorer based on the time-truncated diffu-

sion losses which average reconstruction errors;
• One-step denoising scorer focusing on the denoising

performances at fixed timestep;
• ODEED (ODE Encoding Decoding) scorer, a new OOD

scorer leveraging PF-ODE trajectory accuracy as a way to
discriminate between in and out-of-distribution samples.

3.1. Background on Diffusion Models

Continuous-time diffusion models generalize discrete-time
diffusion models to the infinite timesteps case. They do
not rely on Markov chains but on Stochastic Differential
Equations (SDEs) instead, both for the diffusion and the
denoising processes. Let us consider a diffusion process
{xt}t∈[0,T ], with fixed boundary conditions x0 ∼ p0(x) =
pdata(x) and xT ∼ pT (x) = pprior(x), and pt(xt) denote
the marginal density at time t. This diffusion process is a
solution to the following SDE:

dxt = f(xt, t)dt+ g(t)dwt (1)

where f : Rd × [0, T ] → Rd is the drift, g : [0, T ] → R∗
+ is

the diffusion coefficient and wt is the standard Wiener pro-
cess (i.e. Brownian motion). This diffusion process corrupts
the original image x0 into a Gaussian noise xT . We know

from [2] that the forward SDE in Eq. (1) admits a reverse
SDE mapping pT to p0:

dxt =
[
f(xt, t)− g(t)2∇x log pt(xt)

]
dt+ g(t)dw̄t (2)

Moreover, these diffusion processes share the property of ad-
mitting a deterministic process preserving the same marginal
distributions pt for all t ∈ [0, T ]. It is described by the
Probability Flow Ordinary Differential Equation (PF-ODE):

dxt =

[
f(xt, t)−

g(t)2

2
∇x log pt(xt)

]
dt (3)

Then, the ODE allows encoding samples from the data distri-
bution into the prior distribution by integrating Eq. (3) from
t = 0 to t = T and vice-versa.

Both the backward SDE Eq. (2) and the PF-ODE Eq. (3)
equations include the score function ∇x log pt that has no
known close form in practical cases. In this paper, we are
embracing the diffusion framework proposed by [25], in
which the score function derives from a perfect denoiser D:

∇x log pt(x) =
1

t2

(
D(x, t)− x

)
(4)

We approximate this denoiser with a neural network Dθ

optimized to reduce the reconstruction loss at every time t:

Ex0∼p0Eϵ∼N (0,t2I)

[
λ(t)∥Dθ(x0 + ϵ)− x0∥22

]
(5)

3.2. Detecting OOD with diffusion models

In addition to the generation abilities of continuous-time
diffusion models, they can be used in the context of out-of-
distribution detection. We leverage three scorers using diffu-
sion models, based on their reconstruction performances.

First, we want to evaluate the effectiveness of the loss
function as an OOD scorer. The intuition behind this is that
diffusion models should generalize to in-distribution samples
unseen during train but fail on OOD samples, resulting in a
greater loss. Since in our case, both in and out-of-distribution
are satellite images, we argue that the differences in recon-
struction can be observed at small times. Indeed, diffusion
models generate images by first placing the overall struc-
ture (large times) and then fill-in the details (small times)
[6, 42]. Thus, we compute the reconstruction error Eq. (5)
for several times below a given threshold t0. In other words,
for a given image, we sample N noise corrupted versions
of it with increasing times t1, . . . , tN , then we estimate the
N reconstructions with the learned diffusion model Dθ and
compute the weighted average loss:

Sloss
t0 (x0) = −Et,ϵ

[
λ(t)∥Dθ(x0 + ϵ)− x0∥22

]
(6)

where t ∼ U(0, t0) and ϵ ∼ N (0, t20I). We experiment
with two different weighting functions λ(t): the training
weighting function [25] and a linear weighting as in [17].
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Figure 2. Illustration of the one-step denoising and ODEED scorers. (Left) The one-step denoiser samples multiple corrupted versions of
the original image xt0 ∼ pt0(x|x0) thanks to the forward SDE and then evaluates similarity scores on the one-step reconstructions made
with the diffusion model Dθ . (Right) The ODEED scorer encodes the initial image into a unique latent xt0 with the PF-ODE estimated with
Dθ and then decodes the latent. For the true PF-ODE, in-distribution samples’ reconstruction is perfect.

Second, as the learned diffusion model Dθ is a denoiser
conditioned on time, we leverage its reconstruction perfor-
mances in one-step denoising, as shown in Fig. 2 (left). For
several values to t0, we investigate the ability of the model
to reconstruct an initial image x0 from a noised version
xt ∼ pt(xt|x0). To do so, we sample several noises and av-
erage a reconstruction error across the samples, considering
a single denoising step:

Sdenoiser
t0 (x0) = −Eϵ∼N (0,t20I)

[
d(Dθ(x0 + ϵ)− x0)

]
(7)

where d(·, ·) is a similarity measure, e.g. MSE or LPIPS. In
practice, we observe that the denoiser Dθ reconstructs well
from noised versions of x0 for small values of t0.

3.3. ODEED scorer for OOD detection

Due to the stochastic nature of the diffusion process using the
forward SDE Eq. (1), proceeding to several integrations of
the forward SDE from an initial image x0 to time t0 produces
multiple xt0 ∼ pt0(xt0 |x0). It is also true that reversing the
diffusion process from a latent xT with the backward SDE
Eq. (2) generates several denoised images. This means that
stochastic samplers lead to various reconstructions that can
be more or less distant from the initial image, depending on
the level of stochasticity used, introducing estimation errors
in the reconstruction scores.

In contrast, integrating the PF-ODE Eq. (3) from 0 to
t0 encodes the initial image x0 into a unique noisy latent
xt0 . Conversely, integrating it from t0 to 0 allows us to get
back to the exact initial image. In other words, the trajectory
is fully deterministic. This property is fundamental in the
context of reconstruction-based scorers, as diffusion models
can propose exact reconstructions of the initial images.

Based on this observation, we introduce ODEED a novel
reconstruction-based OOD scorer based on the PF-ODE tra-
jectories (Fig. 2 right). To do so, we approximate the true

score function in Eq. (3) with the diffusion model Dθ fol-
lowing Eq. (4). Let ODEθ(·, t1 → t2) denote the operation
of integrating the Dθ-approximated ODE from t1 to t2 with
a numerical solver. Our scorer operates in two phases:
1. Encoding: we encode the clean image x0 into a unique

noisy latent xODE
t0 by integrating the ODE from the start-

ing time t = 0 to the intermediate time t = t0.

xODE
t0 = ODEθ(x0, 0 → t0) (8)

2. Decoding: we solve the ODE with decreasing times from
t0 to 0, i.e. denoising the latent to a clean image that is
the reconstruction x̂ODE

0 of the original sample.

x̂ODE
0 = ODEθ(x

ODE
t0 , t0 → 0) (9)

Then, we define the OOD scorer from the similarity be-
tween the reconstructed and the original images.

SODE
t0 (x0) = −d(x0, x̂

ODE
0 ) (10)

Once again, this difference measures how well the diffu-
sion model can reconstruct the clean observation x0. Com-
pared to previous scorers, it is entirely deterministic and
therefore should better represent whether x0 belongs to
the modeled distribution, without being influenced by the
stochastic trajectories.

4. Experiments
4.1. Toy Problem: Cloud Cover Detection

To test the relevance of our approaches, we experiment with
the simple task of discriminating between cloud-free images
and cloudy images. Cloud detection can be achieved with
well-designed features and deep learning techniques. Never-
theless, it is an easy use case on which we want to test the
reconstruction-based approaches with diffusion models.



Figure 3. The three scenarios derived from the SpaceNet 8 dataset.
The first two setups focus on the impact of floodings while the third
one centers around geographical domain shift.

Method AUC ↑ FPR95% ↓ R2 ↑

Image mean 88.3 41.6 58.4
Diffusion MSE 85.1 29.1 49.4
Diffusion LPIPS 84.3 29.2 37.6

Table 1. Results for OOD detection on the Sentinel-2 Cloud Mask
Catalogue where OOD samples are images with cloud coverage
above 10%. Diffusion models-based approaches are competitive
with the baseline and show good results for both AUC and FPR95%

Experimental setup For this task, we employ the pre-trained
discrete-time diffusion model from [46], trained on 8000
64 × 64 pixels RGB cloud-free images from the Sentinel-
2 Cloud Mask Catalogue dataset [14]. Cloud-free images
are in-distribution samples and images with cloud coverage
above 10% are OOD. Since the model was only trained on
cloud-free images, we expect it to fail to reconstruct images
with clouds. As the model is discrete time, we first consider
only the one-step denoising scorers. We also use the mean
pixel intensity as a naive scorer baseline.

4.2. SpaceNet 8

We then extend our experiments to more challenging appli-
cations by considering the SpaceNet 8 dataset [23].

Dataset SpaceNet 8 is a dataset of paired pre- and post-
flooding images from East Louisiana and Germany. It is
composed of 3-band RGB images from Maxar satellites.
It includes segmentation masks for both the roads and the
buildings while distinguishing between flooded and non-
flooded objects. We downsample the original images by a
factor of 2 to produce 256× 256 patches and apply overlap
on the training set. We obtain 5864 pre and post-event pairs
for the Germany subset and 17660 pairs for Louisiana.

Experimental setup Using the images and annotations,
we derive three different scenarios of OOD detection on

SpaceNet 8, each using a different definition of OOD. This
allows us to test the abilities of different OOD scorers to de-
tect various types of “out-of-distribution”, shown in Fig. 3:

1. Pre-flood vs Post-flood images: in this scenario, the
OOD detector aims at discriminating between images
prior to the flood (in-distribution samples) and images
after the flood (out-of-distribution) within the same geo-
graphical domain (Germany or East-Louisiana).

2. Flooded vs non-flooded areas images: in this scenario,
the OOD detector should discriminate between images
with no flood (in-distribution) and images with a visible
flood (out-of-distribution). In-distribution images include
post-event images that do not have a visible flood. The
labeling is done based on the segmentation masks: an
image is considered OOD if it contains pixels belonging
to the “flooded building” or “flooded road” class in the
ground truth.1

3. Domain OOD: in this case, we want to detect a geo-
graphical shift, i.e. discriminating images taken in East
Louisiana from images taken over Germany. We consider
only pre-event images in this setting.

We want to highlight that in all scenarios, the diffusion
models are trained on pre-event images only and without any
annotations, nor post-event images.

Baselines. We compare the diffusion models and ODEED
with several well-established OOD detection techniques.

As a reconstruction-based baseline, we train an autoen-
coder on pre-event images for each geographical domain.
We use either the MSE or the LPIPS distance on the recon-
struction in image space as a score. We also consider the
Mahalanobis distance DM in the latent space Eq. (11) and
estimate the covariance matrix Σ and the mean µ on the train
set [5, 11]. The final score is then a linear combination of
the latent space and image space distances:

SM =−
[
αDM (E(x)) + β∥x− x̂∥2

]
(11)

where DM (z) =
√

(z − µ)Σ−1(z − µ) (12)

For exhaustiveness, we also compare our models to OOD
scorers-based discriminative models, even though these mod-
els require to be trained on an annotated dataset in the first
place. We train a segmentation model fθ on SpaceNet 8 for
each pre-event domain to predict the classes “background”,
“roads” and “buildings”. We then extract OOD scores from
this model using standard approaches from the literature:
• Maximum Class Probability (MCP) [24, 41] simply con-

sider that if the model is confident about a prediction then

1Note that this proxy is perfectible and has some failure cases (i.e.
flooded areas with no roads or buildings are considered “non-flooded”),
which might inflate the number of false positives. FPR results for this setup
should therefore be interpreted as a higher bound.



Pre-flood/Post-flood Non-flooded/flooded Domain OOD
Method Germany Louisiana Germany Louisiana Germany Louisiana

Discriminative
Segmentation

MPC 52.6/98.9 41.1/98.4 67.4/80.0 61.0/94.3 69.8/93.4 47.7/95.5
Neg-Entropy 59.6/97.7 42.8/95.9 64.3/80/0 60.7/97.1 76.3/92.2 48.8/94.3
DeepKNN (k=5) 51.9/80.7 76.4/38.9 70.1/86.7 54.3/100 93.6/28.7 80.9/38.6
Energy Logits 67.9/88.6 67.9/88.6 56.4/80.0 60.9/97.1 84.7/70.9 50.4/92.0

Generative
Diffusion Loss

Training 50.4/84.1 52.3/88.5 59.7/100 71.0/71.4 67.0/86.0 55.9/98.8
Linear 49.2/85.2 53.2/88.5 70.0/100 75.7/71.4 60.4/83.1 57.0/98.0

Reconstruction based
Autoencoder MSE 28.4/96.6 26.3/95.1 57.9/100 68.5/85.7 84.9/79.9 28.3/96.6

LPIPS 21.1/97.7 27.5/96.3 55.6/100 69.5/77.1 75.2/54.9 41.4/100
Mahalanobis 48.9/95.1 30.8/97.1 51.4/94.9 72.5/90.6 49.6/95.0 52.0/94.8

1-step denoising MSE 28.8/81.8 42,2/73.3 68.5/100 73.4/77.1 86.3/20.9 33.5/97.7
LPIPS 74.5/59.1 90.9/35.7 60.5/100 76.8/65.7 79.6/52.5 82.1/85.2

ODEED (Ours) MSE 65.6/76.1 69.0/80.3 83.6/33.3 86.9/42.9 41.2/97.1 60.9/95.4
LPIPS 87.9/20.5 94.5/24.6 75.3/73.3 64.1/85.7 54.3/97.5 68.3/70.4

Table 2. Results for OOD detection on the Germany and Louisiana subsets of SpaceNet 8 (AUC ↑ / FPR95% ↓). ODEED in combination
with the LPIPS metric yields the strongest results on the pre/post flood scenario for both domains. Paired with MSE, ODEED delivers the
highest AUC and lowest FPR95% for the non-flooded/flooded scenario.

the maximum predicted class probability will be high.

SMCP(x) = max
k

P (k = y|x) = max
k

fθ(x) (13)

• Negative Entropy: if the model is unconfident about its
prediction then the probability mass will be spread across
all classes, resulting in a high entropy:

Sneg-H(x) = −H(p) =

K−1∑
k=0

P (k = y|x) logP (k = y|x)

(14)
• Energy-Logits (EL) [36] computes the free-energy on the

logits distribution. We denote gθ the sub-network of fθ
predicting the logits.

SEL(x) = −E(x; gθ) = T log

K−1∑
k=0

eg
(k)
θ (x)/T (15)

• DeepKNN [53], which applies a k-nearest neighbors algo-
rithm to the features extracted from the last layer.

Diffusion models Our diffusion models are trained based
on Karras et al. [25], using the unconditional U-Net back-
bone from [52] with [64, 128, 128, 256, 256] channels in
the downsampling blocks and the reverse for the upsampling
blocks. Time information is sinusoidally embedded on 64
channels and then fed to a linear layer and SiLU activa-
tion. Models are trained for 40000 steps with a batch size
of 80 (approximately 48 hours), a learning rate of 2e−4, and
AdamW optimizer. To improve training stability, we use

gradient clipping and exponential moving average. We sam-
ple using the second-order Heun solver [25] with L = 20
discretization steps except in the case of small noise levels
(t0 < 1), where we integrate with 5 steps, as too many sam-
pling steps hinder sampling quality. t0 hyperparameter is
tuned on a held-out validation set.

Autoencoders For a fair comparison, we derive the AE
architecture from the U-Net backbone of the diffusion model
by removing the time embedders and skip connections. We
train the autoencoders for 20000 steps with a batch size of
80, a learning rate of 2e−4, and AdamW optimizer. We set
h = 512 for the latent space dimension as it achieved the
best reconstruction results on the validation set. Coefficients
α and β of the Mahalanobis distance Eq. (11) are tuned on
the validation set to match the reciprocal of the standard
deviation of their respective distance [11].

Segmentation models We train DeepLabV3 segmentation
models [9] for a maximum of 1400 steps with a batch size of
32 and use early stopping. We set the learning rate to 2e−4

and optimize the model’s parameters with AdamW.

5. Results
We evaluate our OOD detectors using two standard binary
classification metrics, by varying the detection threshold:
AUC (Area Under Curve) and FPR95% (False Positive Rate
at Recall 0.95). For the latter, note that ID samples are
considered as positives and OOD samples are negatives, i.e.
FPR95% denote how many OOD samples are wrongly con-
sidered as in-distribution for a 95% recall of the ID samples.
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Figure 4. Impact of t0 on AUC for ODEED + MSE metric on the
geographical domains (a) Germany and (b) Louisiana.

5.1. Preliminary results: cloud cover

We report in Tab. 1 OOD detection results on the cloud cover
dataset. We observe that the diffusion model’s reconstruction
error is indeed higher on cloudy images, as shown by a high
AUC using the diffusion + MSE score. This was expected as
the model is trained only on cloud-free images. Diffusion-
based methods produce competitive results in terms of AUC
with respect to the naive baseline and achieve the best re-
sults in terms of FPR95% with a gain of 12.5 points for the
diffusion MSE score against the naive baseline.

To evaluate the calibration of the scores, we perform a
linear regression of the OOD score with the cloud cover-
age percentage. The naive baseline (mean pixel intensity)
achieves the highest R2 coefficient (more clouds implies
more bright pixels). However, diffusion model scorers also
correlate well with the cloud coverage, indicating that more
cloudy images tend to be classified as “more OOD”. These
first results show that diffusion-based scorers discriminate
between in and out-of-distribution samples on the simple
task of cloudy image detection. This suggests their effective-
ness for use cases where no naive baselines exist.

5.2. Main results

We report in Tab. 2 the OOD scorer’s performances on the
Germany and Louisiana subsets of SpaceNet 8. In the near-
OOD setting (pre-flood/post-flood and non-flooded/flooded),
AE exhibits poor OOD detection abilities, with AUC well
under the 0.5 random baseline. Discriminative OOD de-
tectors fare better but still misclassify a lot of OOD im-
ages as in-distribution, as shown by the high FPR95. In
contrast, the best AUC and FPR95% results are achieved
with our ODEED method for the pre/post-event and the non-
flooded/flooded scenarios. On the pre/post-event OOD setup,
the combination of ODEED + LPIPS outperforms the best
baseline by a margin of 13.4 points on the Germany dataset
and 3.6 pts on the Louisiana dataset in terms of AUC. We
notice a gain of -38.6pts of FPR95% on the pre/post-event
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Figure 5. Impact of t0 on AUC for ODEED + LPIPS metric on (a)
Germany (b) Louisiana.

Germany experiment when using the ODEED + LPIPS and
a gain of -11.1 for the same setup on the Louisiana dataset.
Interestingly, while best results are obtained with the pair
ODEED + LPIPS for the pre/post-event setup on both ar-
eas, the MSE brings the ODE-encoding to top performances
on the non-flooded/flooded scenarios with 83.6 AUC and
33.3 FPR95% on Germany and 86.9 AUC and 42.9 FPR95%
on Louisiana. We hypothesize that this difference is linked
to the difference between ID and OOD samples in the two
scenarios: in the first scenario the satellite images have dif-
ferent global aspects, whereas floods are locally spatialized
elements of the same global context.

For all setups, reconstruction-based methods based on
diffusion models outperform the autoencoder-based ones.

The largest performance gap reaches 39.0 (87.9 vs. 48.9)
and 63.7 pts (94.5 vs. 30.8) in AUC on the pre/post-flood
scenario for respectively Germany and Louisiana. The nar-
rowest gap is set on the Germany/Louisiana domain OOD
case where autoencoder-based methods are on par with dif-
fusion models (respectively 85.6 and 86.3 in top AUC).

Yet, the ODEED scorer performs poorly on the domain
change detection. We suspect that the model generalizes
enough to reconstruct images from other domains for small
noise levels. This idea is reinforced by the decent perfor-
mances of the one-step denoisers in this scenario: best AUC
(82.1) with LPIPS on the Louisiana dataset and second best
on the Germany dataset (86.3) with MSE, while achieving
the best FPR95% (20.9). DeepKNN yields top results in
domain OOD on the Germany dataset and second best on
the Louisiana domain. This could indicate that segmentation
models learn features that are more domain-specific than the
reconstruction models, and therefore generalize worse when
switching geographical areas. Finally, Tab. 2 shows that dif-
fusion model losses, independently of the weighting function
used, are poor likelihood estimators in our settings. The var-
ious dynamics of the reconstruction errors may explain the
poor OOD detection performance of diffusion losses which
average the latter over a large time range.



Pre-flood/Post-flood Non-flooded/flooded
Domain Germany Louisiana Germany Louisiana
Model Dθ G Dθ L Dθ L Dθ G Dθ G Dθ L Dθ L Dθ G

1-step
denoising

MSE 28.8/81.8 26.2/100 42,2/73.3 23.2/98.0 68.5/100 65.6/100 73.4/77.1 71.9/74.3
LPIPS 74.5/59.1 76.8/51.1 90.9/35.7 87.5/31.6 60.5/100 64.5/100 76.8/65.7 77.4/71.4

ODEED
MSE 65.6/76.1 61.0/70.5 69.0/80.3 80.8/30.7 83.6/33.3 70.0/60.0 86.9/42.9 76.0/51.4
LPIPS 87.9/20.5 84.0/18.2 94.5/24.6 94.6/06.1 75.3/73.3 45.8/80.0 64.1/85.7 60.8/60.0

Table 3. Results obtained in OOD detection (AUC ↑ / FPR95% ↓) using, on a given geographical domain, a model trained on another
domain. We note that the differences in performance are slight, both in AUC and in FPR95. A minor difference can be seen in the case of
ODE encoding in the pre/post scenario, where the high AUC over Louisiana is preserved (94.5 vs. 94.6 when using LPIPS).

Effect of t0 on OOD detection We now evaluate the impact
of the corruption time t0 used in the ODEED method, as
it can be tuned on a validation set. We observed experi-
mentally that its effect on the OOD detection performances
depends on the task and on the similarity measure considered.
For example, Fig. 4 highlights that using the MSE as the
score results in higher AUC scores for small t0 in the flood
OOD scenario, while it reaches the highest performance
for medium intermediate times for the pre/post OOD setup.
This might indicate that smaller t0 should be preferred for
more localised anomalies. On the contrary, Fig. 5 shows that
the LPIPS ability to discriminate between the pre and post-
event images is higher for early t0 whereas giving the best
results on non-flooded/flooded images for intermediate noise
levels. We attribute this to the perceptual effect of LPIPS,
where localised changes result in small LPIPS variations,
and therefore need a higher t0 to isolate flood events.

Cross domain performances The poor results of ODEED
on geographical domain OOD lead us to question the gen-
eralization of diffusion models to new areas. Tab. 3 shows
that OOD detection performance remains close, even when
switching the models’ domains. Naturally, reconstruction er-
rors are higher on the domain for which the diffusion model
has not been trained, i.e. Dθ Germany provides lower quality
reconstruction on Louisiana images than Dθ Louisiana (and
vice-versa). Nevertheless, we show in Fig. 6 that the distribu-
tion of the scores is shifted both for in and out-of-distribution
samples. This means the detection threshold has also to be
shifted, however, detection abilities are preserved, as illus-
trated by the similar AUC and FPR95% for the same-domain
and cross-domain setups. This is promising for the detection
of anomalies even under non-stationary data distributions.

6. Conclusion

In this work, we evaluated the effectiveness of diffusion mod-
els to detect out-of-distribution Earth Observation images.
We introduced the ODEED scorer that leverages the deter-
ministic reconstruction capabilities of continuous-time dif-
fusion models. We evaluated these approaches for 1) cloud
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Figure 6. LPIPS shift on pre/post-event Louisiana OOD in func-
tion of t0, from 0.05 (top), 0.5 (middle), to 5.0 (bottom), for
ID (left) and OOD (right) samples. On the Louisiana dataset,
LPIPS increases when using Dθ Germany (xdomain) instead of
Dθ Louisiana (source). As t0 increases, the shift is less severe.

detection and 2) a challenging ensemble of OOD detection
tasks on the Space-Net 8 dataset. We demonstrated that our
ODEED scorer significantly outperforms baselines in the
more challenging flood-related scenarios, showing the inter-
est of diffusion models to detect “near-out-of-distribution”
remote sensing imagery, such as images of floods. These
findings open the door to new approaches to detect rare
events from unlabeled EO data using generative modeling.
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