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In one of its recent volumes, The Journal of Physical Chemistry C published a paper entitled 

“Room-Temperature and Ultrafast Synthesis of Highly Luminescent and Extremely Small Eu
3+

-

Doped YVO4 Nanocrystals” (J. Phys. Chem. C 2023, 127, 5075−5081. DOI: 

10.1021/acs.jpcc.3c00125).
1
 This study focuses on the research field of luminescent rare-earth-

doped nanocrystals, a topic that has been present in the literature since approximately 2000 and 
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continues to be actively explored.
2–9

 The primary objective of such studies is to develop 

synthetic methods that can produce nanocrystals with the highest possible emission yield, as is 

known for bulk compounds, thereby facilitating novel applications in bio-labeling, displays, and 

sensors.
10–17

 

In this context, the work of Pan and co-workers is noteworthy because it reports an impressive 

absolute photoluminescence quantum yield (PLQY) of 62% for 3.6 nm YVO4:Eu
3+ 

nanoparticles 

prepared by a ligand-assisted co-precipitation method.
1
 This emission performance is extremely 

close to the bulk solid (PLQY=70% for 5 mol% of Eu
3+

).
14 

Shortly after, the same group reported 

in Inorganic Chemistry the synthesis of 2.7 nm LaPO4:Ce
3+

,Tb
3+

 nanoparticles with a PLQY of 

74%, an extremely high value for nanocrystals of such a small size.
18 

The great appeal justifying the publication of these works stems from the fact that sub-5 nm 

oxide-based particles easily prepared at room temperature exhibit emission properties nearly 

identical to their bulk counterparts. Nevertheless, based on our experience of over two decades in 

luminescent rare-earth-doped nanocrystals, particularly YVO4- and LaPO4-based compounds, we 

are convinced this is a misleading fact. This letter presents three fundamental reasons why 

extremely small oxide-based luminescent nanoparticles cannot display such a high PLQY. As 

additional evidence, we reproduced the synthesis reported in the paper, leading to more 

reasonable results than those reported by the authors. 

Firstly, surface is a major source of luminescence quenching in small particles, even overcoming 

concentration effects.
19,20

 Considering that the synthesis was carried out in protic solvents (i.e., 

water and ethanol) using carboxyl and amine ligands, it is likely that the obtained nanocrystals 

are covered with species showing high-energy phonons (e.g., OH, NH, and CH groups). These 
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are well-known to quench the emission of Eu
3+

 via multiphonon relaxation mechanisms.
21

 

Consequently, nanoparticles generally exhibit a decreased PLQY compared to bulk solids.
7,15,22

 

Additionally, the authors state that the ligands ensure complete passivation of surface defects by 

butyrate/butylammonium ion pairs.
18 

If this claim were entirely valid, all the spectroscopic 

properties of the obtained nanocrystals should be similar to those of the bulk material, including 

the optimal Eu
3+

 concentration. However, the optimal Eu
3+

 concentration (31 mol%) was six 

times higher than the reported value for the bulk solid (5 mol%).
1,14,22

 Such a high value of 

optimal Eu
3+

 content is commonly reported for nanoparticles as a result of altered energy transfer 

processes that also lead to the degradation of PLQY.
15,22

 

Lattice distortions are a second source of emission quenching. Generally, energy transfer 

processes after light absorption predominantly occur through exchange interactions,
23,24 

which 

are favored by an efficient overlap of the wave functions. For YVO4:Eu
3+

, a V-O-Y angle around 

170° enhances the σ bonding overlap and explains its outstanding luminescence.
23

 However, 

lattice distortions in nanoparticles caused by crystalline defects or limited size (e.g., oxygen 

vacancies, reduced vanadium species, dangling bonds, and inhomogeneous strain)
16,25

 change the 

energy migration through decreasing wave function overlaps. This results in an increased non-

radiative decay and decreased PLQY. To overcome this issue, treating the solids at very high 

temperatures (~1000 °C) is crucial. We devised a facile method permitting high-temperature 

treatments of nanocrystals without aggregation or growth.
22,26

 The resulting nanoparticles 

exhibited a reduced defect density and improved emission performance.
22

 

Nevertheless, annealed particles did not exhibit the same bulk performance due to the impact of 

dielectric effects on the emission yield. This issue is intrinsic to the small size and represents a 

limitation that cannot be overcome by any surface treatment. It has indeed been shown in several 
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systems that the radiative decay rate depends strongly on the refractive index of the medium 

surrounding the particles.
5,8,22

 This effect is particularly pronounced for oxide compounds since 

the refractive index of the medium (solvents or air) is lower than that of the bulk solid. This leads 

to a significant decrease in the radiative decay rate and emission efficiency. The extension of this 

decrease depends on the refractive index of the surrounding medium and the volume fraction 

occupied by the nanoparticles. Clear evidence for such behavior has been reported by Meltzer 

and co-workers
5
 in the case of Eu

3+
-doped Y2O3 nanocrystals immersed in different media and 

by us in our previous work involving annealed YVO4:Eu
3+

 nanoparticles.
22

 

Based on these arguments, we propose the following reflection to illustrate the consequences of a 

PLQY of 62% for YVO4:Eu
3+

 nanoparticles. The emission of Eu
3+

 in YVO4 arises almost 

exclusively from the 
5
D0 state.

6,16
 Hence, the PLQY (i.e., overall quantum yield - the ratio 

between the photon flux emitted and the photon flux absorbed by the sample at a given 

wavelength) is proportional to and limited by the internal quantum yield () of the 
5
D0 state, 

which is defined as the ratio between the radiative decay rate (ARAD) and the total decay rate 

(ATOT) of this emitting state.
15

 The total decay rate (ATOT) is given by the reciprocal of the 

luminescence lifetime ( , Eq.1): 

  
    

    
 

    

          
        (Eq. 1) 

Therefore, a PLQY of 62% implies that the internal quantum yield of the 
5
D0 state must be 

greater or equal to 62% (≥ 62%). The results of Pan and co-workers indicate a 
5
D0 

luminescence lifetime of 0.6 ms for that sample showing PLQY of 62%.
1
 Consequently, this 

sample should involve a radiative decay rate at least higher than 1033 s
-1

, and a non-radiative 
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decay rate lower than 634 s
-1

. We will assume this lower limit value of ARAD=1033 s
-1

 for the 

purpose of our further discussion. 

Whilst the non-radiative contribution varies with surface-to-volume ratio, crystallinity, and 

defect density, the radiative rate mostly depends on the symmetry and local refractive index, thus 

being less variable for a given phase and structure (e.g., tetragonal YVO4). An ARAD=1033 s
-1

 

value is almost twice the 
5
D0 radiative decay rates usually observed for YVO4:Eu

3+
 as nanosized 

solids, which are around 450-600 s
-1

.
16,27

 

The ARAD value of the 
5
D0 state can be determined using the integrated intensity (I01) and the rate 

of spontaneous emission of the magnetic dipole-allowed 
5
D0→

7
F1 transition in vacuum 

(AMD=14.65 s
-1

)
28,29

 in comparison to the integrated intensities of the other 
5
D0→

7
FJ (I0J) 

transitions (Eq. 2): 

           
  

   

   
         (Eq. 2) 

where nef is the effective refractive index around the particles. The reported emission spectra are 

highly similar to other YVO4:Eu
3+

 compositions found in the literature both in terms of spectral 

shape and relative intensities.
6,12,16,30,31

 So, no alterations on ARAD are expected to arise from the 

I0J terms, and the I0J/I01 intensity ratios can be assumed to be nearly 0, 1, 9, 0.3, and 2 for the 

5
D0→

7
FJ (J=0, 1, 2, 3, and 4, respectively) transitions based on our observations and on several 

previous results.
6,7,12,16,22,27,30,31

 Because AMD=14.65 s
-1

 is a constant, the conclusion is that an 

ARAD value of 1033 s
-1

 must result from a high effective refractive of about 1.79. 
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Consequently, the volume fraction occupied by the particles () and the refractive index of the 

dispersing medium (nmed) can be taken into account considering that the effective refractive 

index is given by (Eq. 3): 

                 ,   (Eq. 3) 

where nP is the refractive indices of the solid particles. The refractive index of YVO4 is expected 

to be nP=1.99.
32

 Therefore, an effective refractive index of nef=1.79 requires a high density of 

particle packing (i.e. high ) or a very high refractive index of the dispersing medium. Even if 

we assume a high nmed due to surface ligands (e.g. nmed=1.4, which is approximately the 

refractive index of pure butyric acid or n-butylamine),
33

 the volume fraction necessary for 

nef=1.79 still should be as high as . This is nearly the random-close packing limit for 

polydisperse hard spheres with log-normal distribution and radii standard deviation lower than 

0.3.
34

 These conditions are inconsistent with the narrow size distribution and low aggregation 

degree reported by the authors, especially considering the transmission electron microscopy. 

Additionally, the luminescence measurements were performed with powders in air, so nmed is 

probably lower than 1.4. 

Hence, unless the obtained particles show an unprecedently high intrinsic refractive index or a 

significant packing density combined with a high amount of surface ligands providing nmed as 

high as for pure butyric acid/butylamine, a PLQY of 62% is rather unlike to occur for 

YVO4:Eu
3+

 particles showing a 
5
D0 lifetime of 0.6 ms and the characteristic spectral shape 

described in the paper. 
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Finally, we evaluated the validity of the published results by conducting experiments with 

YVO4:Eu
3+

 nanocrystals containing 40 mol% of Eu
3+

, as it was claimed to present the highest 

PLQY. It is worth mentioning that variations regarding synthesis reproductivity are expected, but 

they do not prevent us from making comparisons of emission yields. The Eu
3+

 emission profile is 

very similar to that described in the paper (Figure 1a). However, we measured a PLQY of only 

21% for the prepared nanocrystals, which obviously contrasts with the reported result (PLQY = 

62%). So, we checked the validity of our measurement by experimentally determining the 

quantum yield of the bulk material, which has a 70% yield for 5% Eu
3+

 doping.
14

 The sample 

prepared by conventional solid-state synthesis exhibited a PLQY of 72%, in excellent agreement 

with the expected value (Figure 1b). 

 

Figure 1. Experimental determination of absolute emission quantum yields (exc=310 nm) of 

Y0.60Eu0.40VO4 nanocrystals prepared by reproducing the methodology described in Ref. [1] (red 

lines) in comparison to a Y0.95Eu0.05VO4 reference prepared by conventional solid-state synthesis 

(blue lines): (a) absolute emission intensities, and (b) photoluminescence quantum yields 
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(PLQY). Errors bars correspond to standard deviations within each triplicate. The measurements 

were performed with powder samples on a Horiba-Jobin-Yvon Fluoromax-4P 

spectrofluorometer coupled to an integrating sphere (Horiba Quanta φ) and using a Spectralon® 

sample cup with coverslip as a blank. The parameters were adjusted to obtain a scattering signal 

of around 1.3 x 10
6
 counts at 310 nm with the blank. 

 

Thus, we confirmed that extremely small YVO4:Eu
3+

 nanoparticles do not exhibit luminescent 

performances close to the bulk material. This is because poor crystallinity, surface, and dielectric 

effects in this size regime limit high emission yields. Additionally, since optimizing emission 

quantum yield is crucial for the application of luminescent nanocrystals, the present discussion 

highlights the importance of conducting precise and meticulous measurements, providing all 

required experimental details, and testing on reference samples. In the work of Pan and co-

workers, although the most appealing report is the extremely high emission yield, no details were 

provided regarding the measurement of PLQY. 
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