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ARTICLE

Mutation bias and GC content shape antimutator
invasions
Alejandro Couce 1,2 & Olivier Tenaillon1

Mutators represent a successful strategy in rapidly adapting asexual populations, but theory

predicts their eventual extinction due to their unsustainably large deleterious load. While

antimutator invasions have been documented experimentally, important discrepancies

among studies remain currently unexplained. Here we show that a largely neglected factor,

the mutational idiosyncrasy displayed by different mutators, can play a major role in this

process. Analysing phylogenetically diverse bacteria, we find marked and systematic differ-

ences in the protein-disruptive effects of mutations caused by different mutators in species

with different GC compositions. Computer simulations show that these differences can

account for order-of-magnitude changes in antimutator fitness for a realistic range of para-

meters. Overall, our results suggest that antimutator dynamics may be highly dependent on

the specific genetic, ecological and evolutionary history of a given population. This context-

dependency further complicates our understanding of mutators in clinical settings, as well as

their role in shaping bacterial genome size and composition.
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The idea that the mutation rate is evolvable has captivated
the interest of evolutionary biologists for decades1. It was
early recognised that, since the vast majority of mutations

with phenotypic effects are deleterious, selection should primarily
act to reduce the deleterious load, pushing mutation rates to be as
low as physiologically affordable2–6. However, strains with
highly-elevated mutation rates (i.e., mutators) are readily selected
in clinical and laboratory populations of bacteria7,8 and yeast9,10,
as well as in certain cancers11. Theory and experiments have
explained this phenomenon in terms of selection pressures
operating at different timescales: linkage with strong beneficial
mutations enables mutators to rapidly reach fixation before their
increased deleterious load becomes fully manifest, which requires
the accumulation of multiple secondary deleterious mutations12.
Due to this reliance on rapid hitchhiking, mutators are most
likely to thrive whenever populations face strong selection pres-
sures13 and under conditions in which both recombination14 and
genetic drift15 are unimportant.

But, eventually, populations fixed for a mutator phenotype are
expected to re-evolve low mutation rates once selective pressure
subsides—provided that restorative alleles are available16,17.
Given the longer timescales involved, the evolution of reduced
mutation rates has proven much more difficult to observe than its
reverse process, the selection for mutator alleles. Indirect evidence
comes from the fact that DNA repair genes seem to undergo
frequent horizontal transfer18–20, and the observation of marked
mutation rate polymorphisms within single-patient bacterial
populations21. Direct, empirical evidence of the evolution of
reduced mutation rates is limited to a handful of experimental
evolution studies17,22–25. The provisional picture that emerges
from these studies is rather heterogeneous, with different
experiments reporting contrasting findings in terms of timescales,
mechanisms and magnitude of mutation rate reduction. Recent
theoretical work has begun to provide a framework to account for
these contrasting patterns, emphasising the role of several factors
in determining the fixation probability of antimutator alleles.
These factors include differences in population size, beneficial and
deleterious mutation rates, mutator strength, and the availability
of secondary mutations compensating the cost of deleterious
mutations12,26,27.

An additional, yet unexplored factor is the well-known muta-
tional idiosyncrasy exhibited by different mutators28. This idio-
syncrasy arises from the particular molecular details of the
mutation-avoidance mechanism that are impaired in each
mutator genotype. In Escherichia coli, for instance, impairment of
any of the enzymes removing oxidised guanine from the DNA
(e.g., MutM, MutY) results into substantial elevations of G:C→
T:A mutations, while disruption of the enzyme preventing its
incorporation from the free nucleotide pool (e.g., MutT) leads to
a marked increase in A:T→ C:G mutations29. These sort of
mutational biases shape the tendency of different mutators to
generate mutations with different fitness effects, which can have
dramatic consequences on mutator success when adaptation
involves just a few strongly beneficial mutations30. In analogy to
this phenomenon, an intriguing hypothesis is that mutators that
tend to generate stronger deleterious mutations may be more
easily out-competed by an invading, low-mutation rate genotype.
Similarly, mutators producing on average milder deleterious
mutations than the wild-type may resist the invasion of anti-
mutator alleles for longer. Whether these possibilities are plau-
sible or not under realistic scenarios remains largely unknown.

In a first approach, at least two considerations argue against the
idea that mutational spectrum differences can play any significant
role in the evolution of reduced mutation rates. The first one
comes from the classic Haldane-Muller principle31,32, which
states that the reduction in fitness caused by recurring deleterious

mutations is roughly on the order of the deleterious mutation rate
(ud), irrespective of the actual fitness cost of each individual
mutation (sd). Such independence from sd should preclude any
spectrum-driven differences in mutational load among mutators.
It is well-known, however, that this principle only holds as long as
sd > ud33, a condition that may readily be violated in well-adapted,
mutator populations of microbes. Second, different biases in the
production of mutations are likely to translate into substantial
fitness differences when just a few number of sites have a huge
impact on fitness, as in the case of strongly beneficial antibiotic
resistance mutations30. It is unclear, however, to what extent
these kind of spectrum-driven differences may balance out when
considering a larger number of sites. Relevant to this issue is the
observation that some amino acid substitutions tend to be much
more disruptive to proteins than others, a well-established fact
that forms the basis of many protein alignment tools34. This fact
affords speculation that systematic patterns may emerge at the
genome-wide scale, so that different mutational spectra may
produce, on average, deleterious mutations with characteristically
different fitness effects.

Here, we use computer simulation to explore the extent to
which the advantage of an antimutator allele deviates from the
Haldane-Muller expectations under the relevant range of para-
meters. In addition, we estimate the genome-wide average dis-
ruptive effect on proteins of mutations caused by different
mutational spectra. Importantly, since different codon usage
patterns might alter the probability that a particular spectrum
generates strong-effect amino acid changes, we also test whether
systematic differences are to be expected among mutators in
species with widely-divergent genomic GC compositions. Overall,
our results suggest that mutational spectrum differences (under-
stood as differences in the distribution of deleterious effects
produced by different mutators) may play an unsuspectedly
important role in the selection against high mutation rates in
bacteria.

Results
Broad conditions allow biases to shape antimutator invasions.
To test whether mutational spectrum differences can alter the
evolution of reduced mutation rates, we built a computer model
that simulates the evolutionary dynamics of antimutator alleles
invading a mutator population. The model was designed to cap-
ture the basic properties of the influential Lenski’s Long-Term
Evolution Experiment (LTEE), in which 12 Escherichia coli
populations have been serially propagated in the same glucose-
limited medium for more than 60,000 generations35. Crucially, one
of these bacterial populations was observed to re-evolve reduced
mutation rates after being dominated by a mutator phenotype for
more than 10,000 generations17. Inspired by this experiment, we
considered the simple scenario of an asexual mutator population
being serially propagated in a constant environment to which is
already well-adapted (see Methods). At the start of each simula-
tion, a single antimutator allele, restoring the mutation rate to
wild-type levels, is introduced. The trajectory of this allele is
tracked until it either reaches fixation or is lost by drift. Multiple
frequency trajectories are then used to estimate the average
effective selection coefficient (seff) of the antimutator allele, com-
puted empirically as the log change of the antimutator-to-mutator
ratio per generation (see Methods and Supplementary Fig. 1).

Our first aim was to test whether the Haldane-Muller principle
can be violated over the range of parameters typically reported in
experiments with mutator bacteria. In particular, the two most
important parameters for this matter are the mutation rate of
mutators (m) and the average selection coefficient of deleterious
mutations (sd). Most estimates of m are based on a few reporter
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genes, and so caution should be exercised when using them as a
proxy for genome-wide rates36. However, while more than a dozen
genes are known to increase bacterial mutation rates when
inactivated28,37, only those causing order-of-magnitude elevations
of m are the ones typically observed in clinical and experimental
evolution studies37,38. Therefore, the relevant range spans from
slightly over a 10-fold increase (e.g., mutY–)39 to a 1000-fold
increase of m (e.g., dnaQ–)40, although all mutators observed in the
LTEE fall in the several 100-fold range (e.g., mutT–, mutL–)8,17.

The estimates of sd also display a certain degree of uncertainty.
Attempts to estimate sd classically relied on mutation accumula-
tion experiments, in which populations are serially passaged
through single-cell bottlenecks to restrain selection from purging
deleterious mutations41. However, since populations need to
recover sufficiently after the single-cell bottleneck for the
experiment to continue, there exists an upper limit on how
deleterious a mutation can be to get detected, which may lead to
an underestimation of sd according to the growth conditions
employed42. Despite this limitation, different experiments have
provided similar values for both the upper and the lower bounds
of sd. Using an early isolate from the LTEE, Kibota & Lynch43

estimated an upper bound for sd of 0.012. Two later studies, also
using E. coli, reported slightly higher values (sd ~0.03)42,44. Of
note, both studies pointed to differences in mutational spectrum
as a possible explanation for their higher estimates (they
examined a transposon-based insertion library, and a mutS
mutator strain, respectively). More recently, a few studies have
leveraged the resolution afforded by next-generation sequencing
to provide a lower bound for sd. These studies reported
remarkably close values for this lower bound (sd ~0.0015 to
0.0017), even though they involved three different bacterial
species (Salmonella typhimurium;45 Pseudomonas aeruginosa46

and Burkholderia cenocepacia47). In addition, one of these studies
found that sd can vary noticeably across environments47.

Figure 1 provides a general overview of the invasion dynamics
observed in the computer simulation model. In line with the
Haldane-Muller expectations, we observed that the mutation
rate of the resident mutator (m) strongly determines the speed of
the antimutator invasion (Fig. 1a). However, in contrast with the
Haldane-Muller principle, we found that the fitness cost of
deleterious mutations (sd) can also exert a substantial, albeit less
dramatic effect on invasion speed (Fig. 1b). While this
dependence on sd is most pronounced when mutation rates are
the highest and fitness costs the smallest, our results show that
invasion dynamics can indeed be affected by sd over a large
fraction of the relevant range of parameters (Supplementary
Fig. 2). Therefore, there are grounds to speculate whether
spectrum-driven differences in sd may alter the propensity of
different mutators to evolve reduced mutation rates. To examine
this possibility, we expanded the computer simulation model to
allow consideration of general biases in the production of
deleterious mutations. We modelled these biases as a multi-
plicative factor (κ) that modifies the selection coefficient of
deleterious mutations in the mutator background, such that when
κ < 1 mutators produce milder deleterious mutations than
antimutators, when κ= 1 there is no difference between back-
grounds, and when κ > 1 mutations are more harmful in mutators
(see Methods).

Figure 2 captures how the interplay between sd and m controls
the degree to which mutational spectra differences (κ) impact on
the success of antimutator alleles. Two patterns can readily be
appreciated by observing the overall shape of the curves in Fig. 2.
First, the slopes become steeper with mutation rate (m) (which
increases from panel a to d). In turn, the slopes become flatter
with fitness cost (sd) (which increases within each panel from
bottom to top). In line with the discussion in the previous

paragraph, these general patterns can be interpreted in terms of
deviations from the Haldane-Muller principle. Thus, the impact
of κ is the greatest when mutation rate is maximal and fitness cost
is minimal (Fig. 2d, lowest line)—exactly the same conditions
under which the dependence of invasion speed on sd is most
pronounced (Fig. 1b and Supplementary Fig. 2). Conversely,
when populations approach the regime in which the Haldane-
Muller principle holds (sd > ud), the impact of κ becomes rather
modest, which visually translates into comparatively flatter slopes
(Fig. 2a, upper lines).

The previous analysis shows that the importance of mutational
spectrum ultimately depends on how large the mutation rate is
compared with the fitness cost of deleterious mutations. Therefore,
a further natural parameter to consider is the basal deleterious
mutation rate (ud), that is, the absolute rate at which deleterious
mutations are produced in the non-mutator background.
Estimates of this quantity have classically been obtained through
mutation accumulation experiments, and consequently suffer
from the same uncertainties discussed for sd. Throughout the
previous simulations we set ud= 2 × 10−4, as originally estimated
in E. coli43. However, while reports in other bacteria have provided
similar or slightly lower values (ud= 1.8–0.7 × 10−4)44,47, esti-
mates in yeast differ by more than an order of magnitude,
depending on whether the strain is haploid (ud= 1.1 × 10−3)48 or
diploid (ud= 0.6–0.5 × 10−4)49,50. On top of this, an additional
layer of variability comes from the fact that the overall mutation
rate can vary across growth conditions51–54. In Fig. 3a–c we
explored how changes in ud within the empirically relevant range
can alter the previously discussed results from Fig. 2. A prominent
pattern emerging from Fig. 3 is that the slopes become steeper
with larger values of ud (Fig. 3c). This result mimics the pattern
found for increasing m in Fig. 2, and can be understood in terms
of populations moving gradually away from the Haldane-Muller
regime. A more remarkable observation is that even for the lowest
values tested, despite the relatively flatter slopes, the mutational
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Fig. 1 Frequency trajectories of antimutator alleles invading well-adapted,
mutator populations. Lines represent 100 independent simulations for each
condition. a Invasion dynamics under various values of the mutation rate of
the resident mutator (grey, m= 1000; magenta, m= 300; blue, m= 100;
green, m= 30; light grey, m= 1), and a fixed fitness cost of deleterious
mutations (sd= 0.064). b Invasion dynamics under various values of the
fitness cost of deleterious mutations (from left to right, sd equals: 0.064,
0.032, 0.016, 0.008, 0.004, 0.002, 0.001), and a fixed mutation rate of the
resident mutator (m= 1000). Other parameters as described in Methods
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spectrum is still capable of exerting a moderate but sizeable impact
on the performance of invading antimutator alleles.

Another issue worth considering is the lethal mutation rate
(ul). Lethal mutations typically occur at a much lower rate than
deleterious mutations55,56, and so as a first approximation we
have neglected their influence. Lethal mutations, however, can be
seen as a distinct subclass of deleterious mutations, namely, as
large-effect deleterious mutations affecting essential genes. It
seems possible, therefore, that mutators producing more harmful
mutations may also produce a greater proportion of lethal
mutations. Such spectrum-driven elevations in ul, if strong
enough, may alter the results discussed in Fig. 2. A further
consideration is that ul is expected to be even more environmen-
tally dependent than ud, since not only the overall mutation rate
varies across conditions, but also the fraction of the genome that
is essential57,58. As a lower bound, we set ul= 2 × 10−6 from
estimates in E. coli that ~7% of the genome is unconditionally
essential58 and that ~13% of mutations within a protein are
inactivating59. On the other hand, direct estimates in yeast have
produced a value roughly an order of magnitude larger (ul=
3.2 × 10−5)60. Figure 3d–f) confirms the intuition that lethal
mutations have generally a modest effect on antimutator
dynamics, except for the largest values of κ and ul considered.
How often such extreme conditions are met in natural scenarios
is a matter of empirical investigation, but overall our results show
that spectrum-driven variations on ul within the relevant range
can play a significant, yet typically secondary role in the invasion
dynamics of antimutator alleles.

We also wanted to explore to what extent the previous results
can be applicable to adaptive scenarios other than the LTEE
setting. In particular, we extended the simulation analyses to
study the consequences of changing two key demographic
parameters: the bottleneck and the maximum population size.
We found that these parameters have a minor effect on
antimutator dynamics even in their lower value range, in which
the influence of random genetic drift begins to be noticeable
(Supplementary Fig. 3). Taken together, our results support the
notion that the impact of mutational spectrum on antimutator
evolution can be substantial under a wide and relevant range of
parameters and experimental conditions.

As a final note, it is worth highlighting that the variation in the
slopes in Figs. 2 and 3 results in a large area of overlap among the
curves obtained for different mutators under various combina-
tions of parameters, especially for the smaller values of κ. This
overlap represents the range of conditions under which a stronger
mutator will actually be more robust to antimutator invasions
than a weaker one. Since sd, ud and ul can vary appreciably across
species and environments, such a counterintuitive outcome
illustrates the importance of considering the mutational spectrum
when investigating the evolution of reduced mutation rates.

Mutational biases cause distinct protein-disrupting patterns.
The previous results show that spectrum-driven differences in sd
can greatly influence the evolution of reduced mutation rates in
bacteria. It remains to be explored, nonetheless, whether
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spectrum-driven differences in sd are actually likely to occur
among bacterial mutators. While differences in fitness have
indeed been observed in the case of beneficial mutations involving
a few genomic sites30, the very large mutational target size for
deleterious mutations may cause local, spectrum-driven differ-
ences to balance out at the genome-wide scale. However, a first
look at the properties of the genetic code affords reasonable
grounds for expecting the emergence of some general trends.
Certainly, it has long been known that transversions are overall
more detrimental than transitions, due to the fact that transver-
sions underlie a larger fraction of non-synonymous substitutions
and, among these, tend to produce changes that are less con-
servative of the physicochemical properties of amino acids61–63.
Besides these trends, a closer examination reveals that the 6 types
of point mutations display fairly broad distributions of disruptive
effects (see Supplementary Fig. 4). Such breadth raises the pos-
sibility that, ultimately, the average disruptive effect of a given
mutational spectrum may actually be determined by the highly-
diverse codon usage preferences observed among bacterial
species64.

To explore these possibilities, we set out to quantify the average
protein-disrupting effect of the specific point mutations elevated
in 3 prominent types of mutators: mutY– (G:C→ T:A),mutT– (A:
T→ C:G) and Mismatch Repair– (G:C→A:T, A:T→G:C)
mutators28,37 (see Methods). Briefly, we systematically computed
all of the possible substitutions per codon associated with each
mutational spectrum across a panel of bacterial genomes
spanning a wide range of GC compositions. We then estimated
the protein-disrupting effects of all these spectrum-specific
substitutions by applying the well-known Grantham’s matrix of
physicochemical distance65. This amino-acid substitution matrix
was previously shown to provide the best predictions of empirical

fitness effects among standard distance-based matrices59. As
validation, we also applied an alignment-based substitution
matrix (BLOSUM100)66, which provided comparable results.
Moreover, for the specific case of the LTEE experiment, we have
shown that the use of Grantham’s matrix provides an efficient
alternative to more sophisticated and computationally intensive
methods, such as Direct Coupling Analysis57 (see Supplementary
Fig. 5). Finally, seeking to increase the likelihood of non-
synonymous mutations being predominantly harmful, we initially
conducted these analyses for genes belonging to the COG
categories most commonly enriched in essential genes (H:
Coenzyme metabolism, J: Translation and M: Cell wall/mem-
brane/envelop biogenesis)67—although the overall patterns
remained similar when considering whole genomes (see Supple-
mentary Fig. 6).

Figure 4 shows that there are indeed marked differences in the
protein-disrupting effects of mutations caused by the different
mutational spectra. The Mismatch Repair– spectrum displays the
weakest disruptive effects in all tested backgrounds (Fig. 4, green),
which makes sense since this spectrum comprises the two
transitions, well-known to be the most conservative among all
possible point mutation types61–63. While interesting, we shall
note that this result is probably an underestimation since
Mismatch Repair mutators, apart from point mutations, also
exhibit an elevated occurrence of indels and large recombination
events68. More remarkable is the fact that the disruptive effects
associated with the mutY– and mutT– spectra exhibit a strong and
opposite dependence on the GC content of the genetic back-
ground. In particular, we observe that the mutY– spectrum is
highly detrimental in AT-rich backgrounds (Fig. 4, red), while the
mutT– spectrum inflicts its greatest disruption in GT-rich
backgrounds (Fig. 4, blue). This contrasting behaviour is
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amenable to a straightforward explanation: whatever the
processes causing the base composition bias may be, the last
codons to be changed to conform to this bias should be the ones
for which the change will produce the most harmful effects. These
last codons are exactly the ones being predominantly altered by
mutY–-specific mutations (G:C→ T:A) and mutT–-specific muta-
tions (A:T→ C:G) in AT-rich and GT-rich backgrounds,
respectively.

In addition, we should expect the fitness cost of altering these
last, non-conforming codons to be the greatest in conditions
where selection is weak compared to other evolutionary forces,
since under such conditions selection can only prevent the most
essential amino-acid sites from changing. This phenomenon
would help explain why the most disruptive effects are found for
the mutY– spectrum in the most AT-biased genomes—generally
seen as reflective of highly-relaxed selective conditions69–71. This
effect is better appreciated in the analyses with the distance-based
instead of the aligned-based matrix (Fig. 4b versus Fig. 4c),
perhaps because physicochemical distance is a more pure proxy
for protein-disrupting effects than evolutionary conservation,
which integrates the effects of several other factors (e.g., epistasis,
basal mutational bias)34.

Discussion
Our analyses reveal that different mutators can be expected to
produce deleterious mutations with distinctive fitness effects, and
that such idiosyncrasy can greatly impact antimutator invasion
dynamics. At least three points regarding these findings merit
brief discussion. First, the simulations purposely focused on the
effects of mutational spectra on deleterious mutations, leaving
aside the complications of considering either compensatory or
generally-beneficial mutations. While previous research has
already studied the importance of these types of mutations on
antimutator dynamics12,26,27, a full treatment of this problem
should include the fact that spectrum-driven differences can also
bias mutator access to both compensatory and generally-
beneficial mutations. Second, the dynamics can be further com-
plicated by considering two phenomena well-known to limit the
evolution of mutation rates: recombination and the cost of fide-
lity1. Recombination disrupts mutator hitchhiking by separating
the mutator allele from its linked mutations4,14. Its relevance to
the dynamics studied here, therefore, is probably confined to
scenarios in which recombination rate is either very low or
fluctuating, so as not to impede mutator fixation in the first place.
Regarding the cost of fidelity, it is plausible that antimutator
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alleles can exhibit differences on their direct physiological cost
based on their particular genetic underpinnings (e.g., true rever-
sion72 versus gain-of-function mutations16). Characterising the
complexities introduced by these factors will be reserved for
future research. Third, it is worth noting the breadth of condi-
tions under which spectrum effects are noticeable, as well as the
magnitude that these effects can reach—including the paradoxical
situation of weak mutators exhibiting larger deleterious load that
strong mutators. The breadth and magnitude of these effects lead
us to conclude that, even if taken only as a first approximation,
our analyses strongly support the notion that mutational spec-
trum differences can greatly influence antimutator evolution in
many biologically-relevant scenarios.

Finally, it is worth pointing out that the general finding of our
study is that antimutator success depends not only on the extent
of mutation rate elevation, but also on the mutational spectrum,
the genetic background and the environmental conditions. Since
the exact contribution of these factors is essentially an empirical
question, it is possible that the likelihood of antimutator invasions
in real-world scenarios may have to be evaluated on a case-by-
case basis. Such dependence on the particulars of each case has at
least two important consequences. In clinical settings, it can
complicate predictions about the long-term persistence and
transmissibility of mutators, thus being relevant to interventions
aimed at curbing the contribution of mutators to antibiotic
resistance evolution37. More broadly, it has implications for our
views on how mutators shape the evolution of bacterial genomes.
Episodes of hypermutability can be common along the evolu-
tionary history of bacterial lineages, inflicting rapid changes in
genome size and composition that can blur the signature of
selection57. Our results suggest that the length of these pulses of
hypermutability, and therefore their potential impact, may be
highly dependent on the specific genetic, ecological and evolu-
tionary history of a given lineage—a possibility further compli-
cating the interpretation of present-day patterns of bacterial
genome diversity.

Methods
Computer simulation. The computer model simulates the serial passage of a
bacterial population in a laboratory environment to which is already well-adapted.
Since we focused on strictly asexual populations, we used a class-based model in
which individuals are grouped according to their genotype13,30. Mimicking the
serial passage protocol from the LTEE, the algorithm recreates two stages: popu-
lation growth and the 1/100 bottleneck73. In the first stage, cells reproduce
deterministically and accumulate mutations stochastically while populations
expand from 107 to at least 109 individuals. Reproduction is formulated in terms of
discrete, non-overlapping generations74. Every generation, individuals reproduce
deterministically according to their multiplicative growth rate, defined as r= 2+
nsd, where n represents the number of accumulated deleterious mutations and sd is
the average deleterious selection coefficient. Mutation is implemented by using a
Poisson-distributed pseudorandom number generator (the function rpois in R).
Every generation, individuals acquire deleterious mutations stochastically with a
probability depending on the basal deleterious mutation rate (ud) and the mutator
strength (m) (note that for antimutator alleles m= 1). The second part of the
algorithm is executed when population size exceeds the limit of 109 individuals,
and consist of taking a random sample of 107 individuals, after which growth is
resumed. To recover from this daily bottleneck, populations require ≥ 7 generations
(owing to discrete generation time and the accumulation of deleterious mutations).

Simulations start with a single antimutator allele entering a population of 107

mutator individuals, and terminate when this allele either reaches fixation or is lost
by random drift. The average effective selection coefficient of the antimutator allele
is calculated empirically as seff= log((pg/qg)/(p0/q0))/g, where p and q represent the
frequency of the antimutator and mutator allele, respectively, and g is the number
of generations74 (see Supplementary Fig. 1). To implement the differential access of
mutators to deleterious mutations with different fitness costs, we introduced a
multiplicative factor (κ) that modifies sd in the mutator background as r= 2+
κnsd. Note that when κ < 1 mutators produce milder deleterious mutations than
antimutators, when κ= 1 there are no differences between backgrounds, and when
κ > 1 mutations are more harmful in the mutator background. To implement the
differential propensity of mutators to produce lethal mutations, we allowed κ to
modify the basal lethal mutation rate (ul) in the mutator background, such that
lethal mutations represent a smaller (κ < 1), equal (κ= 1) or larger (κ > 1) than

expected proportion of the total deleterious mutations. For all tested parameter
combinations, reported values of seff were computed from 200 independent
replicates. All programming was performed in R version 3.2.375, and basic codes
are freely available on https://github.com/ACouce/NatComm2019.

Genome analyses. To conduct the bioinformatic analyses we developed a series of
scripts in Python (version 2.7.12) (www.python.org). These codes were applied to a
panel of 25 bacterial genomes, including relevant pathogens, and chosen to span a
wide range of GC compositions. A summary of the main features of these genomes is
presented in Supplementary Table 1. For all strains, the predicted coding sequences
(CDSs) and their functional classification (COG) were retrieved from the Microscope
platform from Genoscope (www.genoscope.cns.fr)76. After formatting and parsing,
we estimated the average protein-disrupting effect of different mutations for all CDSs
across the panel of genomes. We achieved this by computing the Grantham and
BLOSUM100 scores for all of the possible substitutions per codon associated with
each mutational spectrum. The Grantham and BLOSUM100 matrices were obtained
from the AAindex database (www.genome.jp/aaindex)77 and the NCBI FTP server
(ftp.ncbi.nih.gov/blast/matrices), respectively. Codons harbouring incompletely spe-
cified bases (e.g., N, R, Y) were excluded from the analyses. Basic codes are freely
available on https://github.com/ACouce/NatComm2019.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Genome sequences were retrieved from Genoscope and are publicly accessible at http://
www.genoscope.cns.fr/agc/microscope. The source data underlying Fig. 4 and
Supplementary Figs. 4, 5, 6 are provided as a Source Data file.

Code availability
Basic codes to reproduce the results here presented are publicly available at https://
github.com/ACouce/NatComm2019.
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