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Abstract

The routing challenges in Flying Ad Hoc Networks (FANETS), char-
acterized by high-speed Unmanned Aerial Vehicles (UAVs), limited UAV
battery life, intermittent links, network partitioning, and dynamic topolo-
gies, have led to the development of specialized routing protocols based
on Reinforcement Learning (RL). In this context, the Q-Learning algo-
rithm is the most commonly used RL algorithm. It relies on two pri-
mary hyperparameters: the learning rate and discount factor. The pro-
tocol’s efficiency hinges on the selection of these parameters. To tackle
this challenge, numerous adaptive Q-Learning routing protocols introduce
novel functions to dynamically adjust the learning parameters. Therefore,
this paper delves into an examination of these parameters and introduces
a novel taxonomy categorizing them into three distinct classes: linear
function-based adjustment, exponential function-based adjustment, and
grid search-based adjustment. This paper highlights that the prevailing
adjustment function for the learning rate follows a decreasing exponen-
tial pattern, while the discount factor adheres to a linear function. This
equilibrium facilitates swift adaptation to changes while ensuring a stable
transition between short-term and long-term rewards. Such balance is
essential for efficient and effective routing in FANETs.

Index Terms: FANET, Q-Learning, Learning rate, Discount factor, Adap-
tive learning, Routing protocol, Topology changes.



1 Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, are objects that au-
tonomously fly using onboard computer systems and sensors or can be remotely
controlled by an operator [1]. They are becoming increasingly popular due
to their versatility and ability to perform dangerous or challenging tasks for
humans. According to the Federal Aviation Agency (FAA), there will be a
significant increase in the number of UAVs in the coming years.

UAVs cooperate through an ad-hoc network to form a Flying Ad-Hoc Net-
work (FANET) and collaborate to route data among themselves. Each UAV
collects data and transmits it within the swarm until it reaches the destination,
which is mostly the base station. Due to the highly dynamic nature of UAV
network topology, routing in such networks presents a significant challenge. The
relative positions of UAVs change rapidly, often resulting in intermittent links.
Furthermore, in many UAV deployment scenarios, UAV density may be very
low, leading to frequent network partitions.

Due to the unique characteristics of FANETS, conventional routing proto-
cols designed for Mobile Ad-Hoc Networks (MANETS) and Vehicular Ad-Hoc
Networks (VANETS) cannot be applied to them. To address this issue, two
different routing approaches have been proposed in the literature: (i) topology-
based routing and (ii) position-based routing. In topology-based routing, UAVs
build their routing tables based on their link status. In position-based routing,
UAVs share their localization to build their routing tables. Machine learning
algorithms enable interactive decision-making in wireless networks by learning
from data and past experiences. Reinforcement Learning (RL) refers to a ma-
chine learning algorithm that not only uses existing data but also acquires new
data through exploration of the environment to achieve real-time dynamic op-
timization. This characteristic makes RL particularly suitable for finding paths
in the context of FANETSs. Recently, RL has gained widespread use in designing
routing protocols for FANETSs. While node locations play a fundamental role in
routing decisions, especially in scenarios with high node speeds like FANETS,
most RL-based routing protocols are position-based. These protocols use the
physical locations of nodes, typically obtained through GPS or other localization
methods, as input features for the RL agent. In the literature, the most com-
monly used RL algorithm for routing is Q-Learning (QL) due to its simplicity
and low computational cost.

In this paper, we provide a comprehensive review of existing Q-Learning-
based routing protocols for FANETSs. We explore the relationship between Q-
Learning and routing in FANETSs, emphasizing that the Q-Learning algorithm
relies on two main hyperparameters: the learning rate and the discount fac-
tor. The efficiency of the algorithm hinges on the careful selection of these
parameters. Our primary focus is on the challenge of adapting Q-Learning hy-
perparameters. We delve into a detailed review of adaptive Q-Learning-based
routing protocols and discuss the formulation of these parameters. Addition-
ally, we categorize adaptive QQ-Learning-based routing protocols based on the
types of functions used to adjust the learning parameters. We propose a novel



taxonomy categorizing the learning parameters adjustments into three classes:
linear function-based adjustment, exponential function-based adjustment, and
grid search-based adjustment.

The rest of this paper is organized as follows. Section 2 explains the fun-
damentals of the Q-Learning algorithm. Then, in section 3, we discuss the
challenges of the Q-Learning-based routing protocols designed for FANET's and
techniques proposed to address them. Section 4 is dedicated to the investigation
of adaptive Q-Learning parameters and categorization of adaptive Q-Learning-
based routing protocols. Finally, section 5 concludes the paper.

2 Fundamentals of Q-Learning

In this section, we detail the Q-Learning algorithm and its challenges.

The Q-Learning algorithm is a principal technique in RL that has been
widely used in various applications [2]. It does not require a priori knowledge
of the environment’s dynamics. It is based on the concept of a Q-value, which
represents the expected utility of taking a particular action in a given state.
Eq. (1) presents the Bellman equation for the Q-value [3]. The Bellman
equation provides the framework for updating Q-values, which is a key step in
the process of learning an optimal policy. This optimal policy enables the agent
to make well-informed decisions within the environment, aimed at maximizing
cumulative rewards.

Q(Se, Ay) <= Q(Se, Ay) + o[ Ry + 7 max Q(Sit1,a)
_Q(St7At)]

Q(S¢, Ay) is the Q-value of the current state S; when action A, is selected
at time ¢. max, Q(S;+1,a) represents the maximum Q-value among all possible
actions a that can be taken in the next state Sy;1. This value estimates the
potential future rewards that the agent can obtain from the next state. Ry 1 is
the immediate reward received by the agent at time ¢ + 1 after taking action A;
in state S;. « is the learning rate, and - is the discount factor. Both « and
are referred to as learning parameters, and their values typically range between
0 and 1.

« represents the extent to which an agent updates its Q-values based on new
information. It determines the weight assigned to new observations in compar-
ison to existing Q-values. When « is set to a higher value, the agent tends
to prioritize new information over previous knowledge. This means that the
agent will rapidly adjust its Q-values based on recent experiences. A higher «
is advantageous in dynamic environments where rapid learning is necessary. On
the contrary, when « is set to a lower value, the agent places greater emphasis
on its existing Q-values and exhibits a more conservative approach in updating
them with new information. This can be useful in stable environments where
the agent needs to gradually refine its policy and avoid making rapid changes

(1)



based on limited observations. Choosing an appropriate o depends on the en-
vironment. It often requires experimentation and tuning to find the optimal
balance between exploration and exploitation of the agent’s knowledge.

7 represents the rate at which future rewards are discounted. It determines
the importance given to immediate rewards compared to future rewards when
updating the Q-values. When the « value is close to 1, the agent places high
importance on long-term rewards. This means that the agent considers not
only immediate rewards but also potential future rewards. As a result, the agent
makes decisions that maximize cumulative returns over time. We conclude that,
a higher v value is suitable for scenarios where delayed rewards are significant,
such as in tasks with long-term planning, or where the consequences of actions
are observed over multiple steps. Conversely, when the ~ value is close to 0,
the agent prioritizes immediate rewards over future rewards. This means that
it focuses on short-term gains rather than long-term planning. This makes
the agent myopic in decision-making [3]. We conclude that, a lower v value
is appropriate in high dynamic environments. Choosing an optimal ~ value
depends on the targeted application. The trade-off between short-term gains
and long-term planning requires careful consideration of the task dynamics and
the importance of immediate and future rewards.

3 Q-Learning-based routing protocols and chal-
lenges

Q-Learning-based routing protocols in FANETSs aim to enhance routing deci-
sions among UAVs. Each node in the network must determine efficient paths for
transmitting data while sensing and adapting to environmental changes. Several
works have considered the agent as the UAV, others as the data packet. Agents
update their action strategies through the reward earned after performing a
particular action. So, they do not need to know the whole network when mak-
ing routing decisions. Agent routing relies on a neighbor table called Q-Table,
that stores local information about neighboring nodes, such as position, speed,
direction, and energy. This table takes as input the states and actions of the
agent, then the Q-value for each stored state-action pair is calculated. A second
table is also necessary to store the rewards that will be used when calculating
the Q-value.

While effective in many situations, the main limitation of Q-Learning is its
slow convergence speed. In the following section, we will discuss three main
challenges that arise as a consequence: (i) the curse of dimensionality, (ii) the
exploration-exploitation trade-off, and (iii) the optimization of Q-Learning pa-
rameters.

3.0.1 The curse of dimensionality

Due to the unique characteristics of FANETS, such as the high mobility of
UAVs, the number of states and actions will be high. Similarly, in large-scale



networks, the number of states and actions is high. As the state space increases,
the dimensions of the Q-Table also increase. Consequently, the time and mem-
ory requirements to store and update Q-values increase exponentially. Hence,
the performance of Q-Learning degrades. To mitigate this issue, one possible
solution is to reduce the size of the Q-Table [4] [5]. For this, Q-FANET [5] and
QMR [4] narrow down the neighborhood set. To filter the neighbors’ set, a ve-
locity requirement condition must be checked before proceeding to the decision-
making module based on the Q-value. This process involves evaluating the
actual velocities of a data packet as it traverses links from the current node
to its neighbors. By maintaining a shorter list of potential neighbors selected
based on their actual velocities, the data packet can reach its destination with
reduced delay. This approach not only improves convergence speed but also
minimizes transmission delays. Researchers propose also the use of deep rein-
forcement learning methods to enhance convergence speed, such as DQN-VR [6]
and TQNGPSR [7] [8].

3.0.2 The exploration-exploitation trade-off

Q-Learning is grounded in two primary strategies: exploration and exploitation,
as outlined in Watkins’ work [2]. In exploration, the agent deliberately selects
a random action instead of the one it believes to be the best. This strategy
encourages the agent to explore new actions and states, promoting a broader
exploration of the environment. On the other hand, exploitation involves choos-
ing actions with the highest Q-values based on the agent’s current knowledge
or learned policy. Balancing between exploration and exploitation is a funda-
mental aspect of Q-Learning. Excessive exploration may make it challenging
to retain potentially superior actions, while excessive exploitation can hinder
the discovery of new and better actions that have not been previously explored.
In the context of FANETS, achieving an optimal balance between exploration
and exploitation is not only regulated by traditional methods like the e-greedy
strategy [3], but also requires adaptation according to the network’s changing
conditions. Therefore, an adaptive mechanism for exploration and exploita-
tion is needed, one that dynamically adjusts this balance in response to the
network’s evolving state. For example, in QRIFC [9], the authors introduce
a mechanism based on the relationship between the normalized average link
duration (NALD), packet travel time (PTT), and packet travel speed (PTS).

3.0.3 The optimization of Q-Learning parameters

Optimizing the values of a and v based on the degree of topology change is a
challenging task in FANETSs. Setting an appropriate a can significantly impact
the convergence of the Q-Learning algorithm. The higher « is, the faster the
Q-value is updated. The more unstable the link between nodes, the faster the
Q-values should be updated. Conversely, if « is set too low, the Q-values may
converge very slowly. Many existing Q-learning-based routing protocols use
fixed « values, which is not suitable for FANETSs. Adapting « can lead to faster



and more stable convergence.

For the second parameter of Q-Learning, ~y, a high value promotes long-term
rewards more and indicates that the future Q-values are stable. However, a low
v value gives more weight to immediate rewards, leading the agent to focus
on maximizing short-term gains and indicates unstable Q-values. Adjusting
allows the agent to balance immediate and future rewards based on the char-
acteristics of the environment. In FANETS, it is important to tailor v to the
mobility of neighboring nodes in adjacent time slots to reliably select a neigh-
bor for packet transmission. Adapting v leads to improved agent performance
and convergence speed. In this rest of the paper, we will focus on the strate-
gies proposed to adapt the learning parameters in order to overcome these two
aforementioned challenges. 4.

4 Adaptive Q-Learning parameters for routing
in FANETSs

In FANETSs, when Q-Learning parameters are fixed [5] [10] [11], the accu-
racy of action selection declines, and the selected link may have low prob-
ability to connect to a neighbor node. A possible solution is to adjust «
and v in accordance to the topology change. Several works propose the use
of adaptive approaches for learning parameters. In this section, we describe
the learning parameters formulas proposed in recent works and discuss them.
We also categorize them into three classes according to the function type:
(i) Linear function-based adjustment, (ii) Exponential function-based
adjustment and (iii) Grid search-based adjustment.

In the Linear function-based adjustment class, the learning parameter
is expressed in the form of a first-order polynom. This category provides an intu-
itive method that simplifies both the calculation process and the interpretation
of results.

In the Exponential function-based adjustment class, the learning pa-
rameter can be represented in two forms (i) an exponential decreasing function:
e~ * or (ii) complementary exponential decreasing function: 1—e~%, with = being
a positive value. The first form, e™*, yields a value between 0 and 1, indicating
an increase or decrease in the parameter value depending on x. As the value
of  increases, e~* approaches 0, which decreases the learning parameter value.
Conversely, as the value of x decreases, e™® approaches 1, which increases the
learning parameter value. Thus, the value of the learning parameter is influ-
enced by the behavior of the exponential function with respect to the variable x.
The second form is 1 — e~ % offering an alternative representation with similar
characteristics. Both forms provide valuable insights into the adjustment pro-
cess, taking into consideration the dynamic behavior of the environment, which
is modeled by the variable z. This method is commonly used for adjusting the
learning rate.

We refer to the last class as Grid Search. It consists on defining a set of



learning parameter values and evaluating the performance of Q-Learning for
each value. Therefore, a search is conducted over a range of these values to find
the best parameter value according to a predefined condition. In the following,
we will provide a more detailed examination of how each learning parameter is
adjusted for each protocol, based on the mentioned classification.

4.1 Dynamic learning rate adjustment

The learning rate «, also referred to as the step size, controls the speed of
updating Q-values. In dynamic network topologies where changes occur rapidly,
a larger learning rate is required to prioritize new information. Consequently,
several studies have focused on updating the learning rate.

Most studies have predominantly focused on employing an exponential de-
creasing function-based adjustment method for the adaptive learning rate a.
The first form of this method is represented as e™®. As x increases, e~ % ap-
proaches 0. Cui et al. applied this form in the routing protocol TARRAQ [12],
where x denotes the predicted residual link duration, denoted as TH This
duration is calculated based on the predicted status (position and velocity) of
neighboring nodes. When the connection duration increases, the link stability
also improves. In such cases, older information remains valid, making the ex-
ploitation of existing knowledge more valuable than exploring new knowledge.
Moreover, the value of o gradually decreases and approaches 0, which aligns
well with the requirements of a static and less dynamic environment. However,
in dynamic environments characterized by rapid network topology changes due
to high mobility, leading to frequent link interruptions and shorter connection
durations, the value of = decreases. Consequently, the value of « increases and
approaches 1. A high « value prioritizes recent information and encourages
exploration, which is desirable in such an environment.

The other form of exponential decreasing function-based adjustment is 1 —
e~ *. As x increases, the expression 1 — e~ * approaches 1, and as x decreases,
1 —e™® tends to 0. This form has been employed in several works, including
QMR [4], QRIFC [9], and QTAR [13], where x represents the delay.

In QMR [4], Liu et al. introduced an adjusted « that measures the quality
of each link based on one-hop delay. The adaptive a corresponding to a link (i,
j) is expressed in (2).

1-— e_ai’j Ji,' 7é 0
Qi = T (2)
0.3 045 = 0

Where ¢; ; is the normalized one-hop delay from node ¢ to node j.

A link with a low one-hop delay is considered relatively stable. However,
links with significant delays are considered unstable so they require rapid up-
dates. To address this, the expression of « assigns a higher value based on the
increased delay.



In QRIFC [9] , « is introduced through (3). m;; and oy;; are respectively
the mean and variance of the PTTy,,. PTTy,, is the packet travel time from
node 4 to node j.

||PTTUH —mij

Qu; ; = 1-e e ou,; # 0 (3)
0.3 oy,; =0

In this context, = represents the normalized packet travel time, which reaches
a minimal value when the link is stable. In such cases, « approaches 0. However,
as x increases, it indicates a dynamic environment with unstable links, so we
need more exploration. Consequently, « increases and approaches 1.

In QTAR [13], « is introduced by (4). = denoting &y, ,_,,,, which is the
two-hop normalized delay.

1— e igom . 0
T o @
’ 037 soUi,fA»m = O

Similar to QMR and QRIFC, x decreases in a dynamic environment and in-
creases in the case of a static or less dynamic environment.

On the other hand, few works propose using the linear function-based ad-
justment method, such as SAIQL [14]. The adaptive learning rate is denoted

by 7m2 and its expression takes the form of ax, where a = n -k and z = %:—;,
shown in (5).
M=ok (5)

TII] ax

n and k refer respectively to a basic fixed learning rate and a predefined pa-
rameter to be tuned by the experiments for optimal performance. T is the
estimate of the average delivery time and Tj,.x is the estimate of the maximum
average delivery time. When the average delivery time increases, it indicates
that the link stability declines. However, as z increases, link stability decreases.
Consequently, 72 increases to prioritize exploration and new information.

In summary, we conclude that the most common form for the learning rate
follows a decreasing exponential pattern. It decreases because it is considered
that learning is more focused on exploration in the earlier stages of the rout-
ing decision process, making the learning rate intuitively more critical at these
stages. Additionally, many formulas that calculate « are related to the packet
transmission delay to a neighbor node. Some formulas also make adjustments
based on the predicted residual link duration. In practice, high mobility can
lead to sudden disconnections between a node and its neighbors, resulting in
short link durations. In such cases, when the connection duration is short,
the exponential function yields a value close to 1, whereas it approaches 0 for
significant connection durations.



4.2 Dynamic discount factor adjustment

The faster the network topology changes, the smaller discount factor v should
be to reflect unstable future expectations. Most of works have mainly focused
on using the linear function-based adjustment.

In QMR [4], Liu et al. have introduced an adjusted discount factor as shown
in (6).

INi(t = DU N:(O)] = [Ns(t = 1) N:(2)]
|V (t — 1) U Na(2)]

vi=1- (6)

here, v = 1 — = where z = ‘Ni(t*l)LleJj(it(i)ll;LIJNg,(f(;)l‘)ﬂNi(t)l. A node i has two
neighbor sets at different time steps: N;(t — 1) and N;(t) at times t — 1 and ¢
respectively. The size of the intersection between N;(t—1) and N;(t) denotes the
stable neighbors. An increase in this intersection indicates more stable links and
a reduced change in the network topology. In this case, the value of x decreases
and approaches 0. As the mobility of neighbors increases, the Q-values of these
neighbors become unstable within adjacent time intervals. Consequently, their
significance diminishes. To address this issue, it becomes necessary to minimize
the value of 7. This is achieved by allowing the expression of v to decrease
based on the stability of the neighbors.

In QTAR [13] v is introduced by (7). v = x, where x =

NL ;(Q)UNL (t-1)

me(t) represents the current one-hop neighbor set of node U; at time ¢, and
N ;(t — 1) is the previous one-hop neighbor set of node U; at time (¢ — 1).

Ny (ONNL (E=1) oy !
NNt e Nui®)UNy(t—1) #0

(7)

0, otherwise

Similar to QMR [4], the size of the intersection between N, ;(t) and N. ;(t —1)
represents stable neighbors. As the size of this intersection increases, the value of
x also increases, causing <y to approach 1. A large value of x close to 1 indicates
stable links and fewer network topology changes. Conversely, in a dynamic
environment characterized by rapid changes in network topology, the value of
x decreases, leading - to approach 0. This process reduces the significance of
future Q-values due to the increasing fluctuations in network topology.
In QRIFC [9] 7 is denoted Ay, ; and it is introduced by (8).

R,.—duy, . .
SEtesll e <y, < R,

lf R’I“ S d(J,L_7 S Ra

1
)\Uiyj = dU,ij T

(8)

dy,; is the inter-UAV distance, R, represents the repulsion range, R, denotes
the attraction range. These two regions form together the transmission range
of the UAV. Therefore, in order to adhere to both safety distance requirements



and transmission range boundaries, it is necessary to ensure that the distance
between UAVs remains within R, < dy,; < R,. dy,; < R, indicates the exis-
tence of a direct communication link between the two UAVs. Here, vy =1 — z.
The value of x alternates between two formulas based on the relative distance.
In the first condition, when a neighboring UAV is within the repulsion zone, the

risk of collision or interference increases. In such a situation, the link between

R,—dy,, .
the two UAVs is considered unstable. Therefore, x = ”RiUf As the dis-

tance between UAVs increases, the UAV is directed toward the attraction zone,
and the link between them becomes more stable. Consequently, the value of x
decreases, and the value of  increases, approaching 1. This means that as the
UAVs move toward the attractive zone, the link becomes stable, and long-term
rewards are prioritized. In the second condition, when the neighboring UAV is
already within the attraction zone, there is a risk of losing the connection with
the current UAV if the distance between them exceeds R,. Therefore, the ex-
. du, ; e - .
pression for x becomes x = R As mobility increases, the distance between the
current UAV and its neighbor also increases. A larger distance corresponds to a
higher value of x. Consequently, as = increases, the link stability decreases, so
decreases and approaches 0. Conversely, when mobility decreases, the distance
reduces, leading to a decrease x, followed by an increase in « that approaches
1. This adjustment aims to assign more importance to long-term rewards in
dynamic environments and reduce their importance in stable environments.

In PARROT [15] 7 is introduced by (9) where v(j) is a variable discount fac-
tor, 7o is a basic constant discount factor, ;g7 (i,j) represents an estimation
of the Link Expiry Time (LET) between ¢ and j which takes into account the
results of the mobility prediction process. ®copn(j) is a measure of the neigh-
bor set coherence of message forwarder j based on the difference between two
successive neighbor sets.

() = 0-PrLer(i,j)-Pcon () 9)
Here, v = ax where, a = v9 and © = ®rpr(i,5).Poon(j). In a dynamic
environment scenario, the neighbor set of a node becomes unstable, resulting in
a decrease in ®o,p (7). As a consequence, both z and subsequently the value of
~ decrease. Similarly, the high mobility causes a shorter link expiration time,
leading to a decrease in ® 1,57 (7, ), which, in turn, results in a decrease in  and
subsequently the value of v. In a stable environment, both the link expiration
time and the stability of the neighbor set increase, leading to an increase in x
and the value of =, approaches 1.

In the category of exponential decreasing function-based adjustment, we find
the TARRAQ protocol [12] where v is introduced by (10).

Vi =1—exp(~TI%) (10)

v takes the form of 1 — e™", where x = T} ;. Here, Tj,;€ represents the residual
link duration. As the node speed increases, the residual link duration between

xT

10



node j and k could decrease and becomes shorter. This increases the probability
of link interruption, which decrease the link stability. Consequently, a smaller
value of 7y is required. So, with a small value of z, links are unstable, thus
decreases. Furthermore, the increase in x leads to an increase in link stability
and the value of . This highlights the dependence of « and link stability.

In the category of Grid search-based adjustment, we find the Q-GEO proto-
col [16], in which the authors updated 7 using (11). deomm is the communication
range and E[d; ;] is the expected neighbor distance.

0.6 , when Eld; ;] < dcomm
y = { [ J] (11)

0.4 , otherwise

The value of ~ alternates between only two values. If the expected neighbor dis-
tance is shorter than the communication range, this means that the connection
with the neighbor is still valid and the link is stable, leading to an increase in
to 0.6. Else, the value of v decreases to 0.4. The idea behind setting the average
value of v at 0.6 is to facilitate the comparison of relative routing schemes [16].

In summary, using a decreasing exponential function for « allows for rapid
adaptation when changes occur and slower adaptation when the network stabi-
lizes. Using a linear function for v means that it changes gradually with network
conditions. This is because linear adjustments provide a more stable and pre-
dictable transition between prioritizing immediate rewards and future rewards.
In dynamic networks, a linear adjustment allows for a continuous adaptation
that reflects the changing nature of link stability and network topology without
abrupt shifts. As a conclusion, the choice of using a decreasing exponential
function for a and a linear one for +y is tailored to the specific requirements of
network routing in dynamic environments. It strikes a balance between rapid
adaptation to changes (for «) and maintaining a stable transition between short-
term and long-term rewards (for ), which are essential for efficient and effective
routing in scenarios like FANETSs.

5 Conclusion

Applying Q-Learning in FANET'Ss routing protocols has shown both positive and
negative outcomes. The positive aspect is that it does not require knowledge
of the entire network to make routing decisions. It only needs information
about the next-hop. Additionally, it offers a simple and low-computation cost
approach. However, this algorithm suffers from slow convergence speed, mainly
due to frequent topology changes and the large dimension of the neighboring
table. To enhance the convergence speed, many techniques have been proposed,
including filtering the neighboring table, adjusting the learning parameters and
enhancing exploration-exploitation mechanisms, all while considering network
conditions and environmental dynamism. Adjusting the learning parameters is
one of the most interesting techniques. Many approaches have been introduced,
so we classify them into three classes. Exponential function-based adjustment

11



represents the most commonly used category for adjusting the learning rate,
whereas Linear function-based adjustment is the most commonly used category
for adjusting the discount factor. There is also a third category known as Grid
search-based adjustment, but its usage is limited because it relies on predefined
values for adapting learning parameters, which may not effectively respond to
varying degrees of topology changes. As a perspective, It would be interesting
to investigate the impact of these different classes of adjustment on a specific
mobility model used in FANETSs.

References

1]

M. M. Alam and S. Moh, “Survey on g-learning-based position-aware
routing protocols in flying ad hoc networks,” Flectronics, vol. 11, no. 7,
2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/7/1099

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, mno. 3, pp. 279-292, May 1992. [Ounline]. Available: https:
//doi.org/10.1007/BF00992698

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

J. Liu, Q. Wang, C. He, K. Jaffres-Runser, Y. Xu, Z. Li, and Y. Xu, “Qmr:
Q-learning based multi-objective optimization routing protocol for flying ad
hoc networks,” Computer Communications, vol. 150, pp. 304-316, 2020.

L. A. L. da Costa, R. Kunst, and E. P. de Freitas, “Q-fanet: Improved q-
learning based routing protocol for fanets,” Computer Networks, vol. 198,
p. 108379, 2021.

M. F. Khan, K.-L.. A. Yau, M. H. Ling, M. A. Imran, and Y.-W. Chong,
“An intelligent cluster-based routing scheme in 5g flying ad hoc networks,”
Applied Sciences, vol. 12, no. 7, p. 3665, 2022.

Y.-n. Chen, N.-q. Lyu, G.-h. Song, B.-w. Yang, and X.-h. Jiang, “A traffic-
aware g-network enhanced routing protocol based on gpsr for unmanned
aerial vehicle ad-hoc networks,” Frontiers of Information Technology €
Electronic Engineering, vol. 21, no. 9, pp. 1308-1320, 2020.

J. Lansky, S. Ali, A. M. Rahmani, M. S. Yousefpoor, E. Yousefpoor,
F. Khan, and M. Hosseinzadeh, “Reinforcement learning-based routing pro-
tocols in flying ad hoc networks (fanet): A review,” Mathematics, vol. 10,
no. 16, p. 3017, 2022

M. M. Alam and S. Moh, “Q-learning-based routing inspired by adaptive
flocking control for collaborative unmanned aerial vehicle swarms,” Vehic-
ular Communications, vol. 40, p. 100572, 2023.

12



[10]

[11]

[15]

[16]

Z. Zheng, A. K. Sangaiah, and T. Wang, “Adaptive communication proto-
cols in flying ad hoc network,” IEEE Communications Magazine, vol. 56,
no. 1, pp. 136-142, 2018.

M. Zhang, C. Dong, S. Feng, X. Guan, H. Chen, and Q. Wu, “Adaptive
3d routing protocol for flying ad hoc networks based on prediction-driven
g-learning,” China Communications, vol. 19, no. 5, pp. 302-317, 2022.

Y. Cui, Q. Zhang, Z. Feng, Z. Wei, C. Shi, and H. Yang, “Topology-aware
resilient routing protocol for fanets: An adaptive g-learning approach,”
IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 632—-18 649, 2022.

M. Y. Arafat and S. Moh, “A g-learning-based topology-aware routing
protocol for flying ad hoc networks,” IEFEE Internet of Things Journal,
vol. 9, no. 3, pp. 1985-2000, 2021.

A. Rovira-Sugranes, F. Afghah, J. Qu, and A. Razi, “Fully-echoed g-routing
with simulated annealing inference for flying adhoc networks,” IEEE Trans-
actions on Network Science and Engineering, vol. 8, no. 3, pp. 2223-2234,
2021.

B. Sliwa, C. Schiiler, M. Patchou, and C. Wietfeld, “Parrot: Predictive ad-
hoc routing fueled by reinforcement learning and trajectory knowledge,”
in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring).
IEEE, 2021, pp. 1-7.

W.-S. Jung, J. Yim, and Y.-B. Ko, “Qgeo: Q-learning-based geographic ad
hoc routing protocol for unmanned robotic networks,” IEEE Communica-
tions Letters, vol. 21, no. 10, pp. 2258-2261, 2017.

13



